

Parallel Interface Type Lens Drivers for Voice Coil Motor BD6883GUL, BH6453GUL BD6369GUL

Description

The BD6883GUL, and the BH6453GUL motor driver provide 1 Constant-Current Driver Half-bridge, and 1 Constant-Voltage Driver Half-bridge channel. The BD6886GUL, and the BD6369GUL motor driver provide 1 Constant-Voltage Driver H-bridge channel. These lens drivers are offered in an ultra-small functional lens system for use in an auto focus system using a Voice Coil motor.

Features

1) BD6883GUL Characteristics

- 1) Ultra-small chip size package; 1.1mm×1.6mm×0.55mm
- 2) Low ON-Resistance Power CMOS output; on high side PMOS typ.0.65 Ω , on low side NMOS typ.0.40 Ω
- 3) ESD resistance (Human Body Model); 8kV
- 4) Built-in ±5% high-precision Constant-Voltage Driver (phase compensation capacitor-free design)
- 5) Built-in UVLO (Under Voltage Locked Out: UVLO)
- 6) Built-in TSD (Thermal Shut Down) circuit
- 7) Standby current consumption: 0µA Typ.

2) BH6453GUL Characteristics

- 1) Ultra-small chip size package; 1.5mm × 0.9mm × 0.55mm
- 2) Low ON-Resistance Power CMOS output; on high side PMOS typ.1.2 Ω , on low side NMOS typ.0.4 Ω
- 3) ESD resistance (Human Body Model); 8kV
- 4) Built in resistor for output current detect (phase compensation capacitor-free design)
- 5) 1.8V can be put into each control input terminal
- 6) Built-in UVLO (Under Voltage Locked Out: UVLO)
- 7) Built-in TSD (Thermal Shut Down) circuit
- 8) Standby current consumption: 0µA Typ.

3) BD6886GUL, BD6369GUL Characteristics

- 1) Ultra-small chip size package; 2.1mm × 2.1mm × 0.55mm
- 2) Low ON-Resistance Power CMOS output; on high and low sides in total typ.0.80 $\!\Omega$
- 3) ESD resistance (Human Body Model); 8kV
- 4) Built-in ±5% high-precision Constant-Voltage Driver (phase compensation capacitor-free design)
- 5) Control Input mode selection function
- 6) Built-in UVLO (Under Voltage Locked Out: UVLO)
- 7) Built-in TSD (Thermal Shut Down) circuit
- 8) Standby current consumption: 0µA Typ.

Absolute Maximum Ratings (Ta=+25°C)

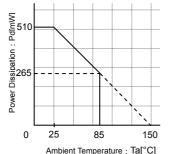
Demonster	Symb	Limit					
Parameter	ol	BD6883GUL	BH6453GUL	BD6886GUL	BD6369GUL	Unit	
Power supply voltage	VCC	-0.5 to +6.5	-0.5 to +4.5	-0.5 to +6.5	-0.5 to +6.5	V	
Motor power supply voltage	VM	-	-	-0.5 to +6.5	-0.5 to +6.5	V	
Control input voltage	VIN	-0.5 to VCC+0.5	-0.5 to VCC+0.5	-0.5 to VCC+0.5	-0.5 to VCC+0.5	V	
Input voltage for Constant-Voltage setting	VLIM	-0.5 to VCC+0.5	-	-0.5 to VM+0.5	-0.5 to VM+0.5	V	
Input voltage for Constant-Current setting	CLIM	-	-0.5 to VCC+0.5	-	-	V	
Power dissipation	Pd	510 ^{**1}	430 ^{**2}	730 ^{**3}	730 ^{**3}	mW	
Operating temperature range	Topr	-25 to +85	-25 to +85	-25 to +85	-25 to +85	°C	
Junction temperature	Tjmax	+150	+125	+150	+150	°C	
Storage temperature range	Tstg	-55 to +150	-55 to +125	-55 to +150	-55 to +150	°C	
H-bridge output current	lout	-200 to +200 ^{**4}	-300 to +300 ^{**5}	-200 to +200 ^{**4}	-500 to +500 ^{**4}	mA	

^{*1} Reduced by 4.08mW/°C over 25°C, when mounted on a glass epoxy board (50mm × 58mm × 1.75mm; 8 layers).

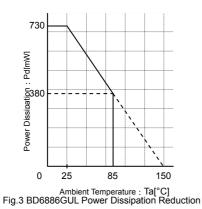
 *2 Reduced by 4.30mW/°C over 25°C, when mounted on a glass epoxy board (50mm × 58mm × 1.75mm; 8 layers).

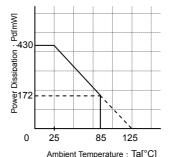
 *3 Reduced by 5.84mW/°C over 25°C, when mounted on a glass epoxy board (50mm × 58mm × 1.75mm; 8 layers).

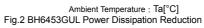
^{**4} Must not exceed Pd, ASO, or Tjmax of 150°C.

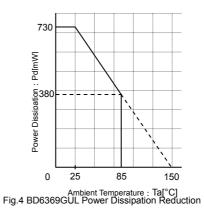

*5 Must not exceed Pd, ASO, or Tjmax of 125°C.

Operating Conditions


Parameter	Symbol	Limit					
Parameter	Symbol	BD6883GUL	BH6453GUL	BD6886GUL	BD6369GUL		
Power supply voltage	VCC	+2.5 to +5.5	+2.3 to +3.6	+2.5 to +5.5	+2.5 to +5.5	V	
Motor power supply voltage	VM	-	-	+2.5 to +5.5	+2.5 to +5.5	V	
Control input voltage	VIN	0 to VCC	0 to VCC	0 to VCC	0 to VCC	V	
Input voltage for Constant-Voltage setting	VLIM	0 to VCC	-	0 to VM	0 to VM	V	
Input voltage for Constant-Current setting	CLIM	-	0 to VCC	-	-	V	
H-bridge output current	lout	-150 to +150 ^{**6}	-200 to +200 ^{**6}	-150 to +150 ^{**6}	-400 +400 ^{**6}	mA	


^{*6} Must not exceed Pd or ASO.


Power Dissipation Reduction



Ambient Temperature : Ta[°C] Fig.1 BD6883GUL Power Dissipation Reduction

Electrical Characteristics

1) BD6883GUL Electrical Characteristics (Unless otherwise specified, Ta=25°C, VCC=3.0V)

Parameter	Symbol Limit		Unit	Conditions		
Falameter	Symbol	Min.	Тур.	Typ. Max.		Conditions
Overall						
Circuit current during standby operation	ICCST	-	0	10	μA	PS=0V
Circuit current	ICC	-	0.9	1.4	mA	PS=3V, VLIM=3V with no signal and load
Control input (VIN=IN, PS)			1			
High level input voltage	VINH	2.0	-	VCC	V	
Low level input voltage	VINL	0	-	0.7	V	
High level input current	IINH	15	30	60	μA	VINH=3V, pull-down resistor typ.100k Ω
Low level input current	IINL	-1	0	-	μA	VINL=0V
Input for Constant-Voltage se	etting					
Input current	IVLIM	-1.5	-0.5	-	μA	VLIM=0V
UVLO						
UVLO voltage	VUVLO	1.6	-	2.4	V	
Constant-Voltage Drive block	K					
PMOS Output ON-Resistance	RONP	-	0.65	0.80	Ω	Io=-150mA
NMOS Output ON-Resistance	RONN	-	0.40	0.60	Ω	lo=+150mA
Output H voltage	VOH	1.9×VLIM	2.0×VLIM	$2.1 \times VLIM$	V	VLIM=1V, 10Ω load
Output AC characteristic						
Turn-on time	ton	-	1.5	5	μs	lo=-150mA, 10Ω load
Turn-off time	toff	-	0.1	2	μs	lo=-150mA, 10Ω load
Rise time	tr	-	1.5	8	μs	lo=-150mA, 10Ω load
Fall time	tf	-	0.05	1	μs	lo=-150mA, 10Ω load

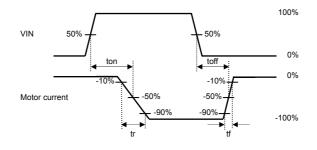


Fig.5 BD6883GUL I/O Switching Waveform (The direction flowing into IC is plus)

2) BH6453GUL Electrical Characteristics (Unless otherwise specified, Ta=25°C, VCC=3.0V)

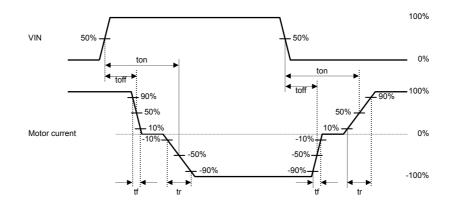
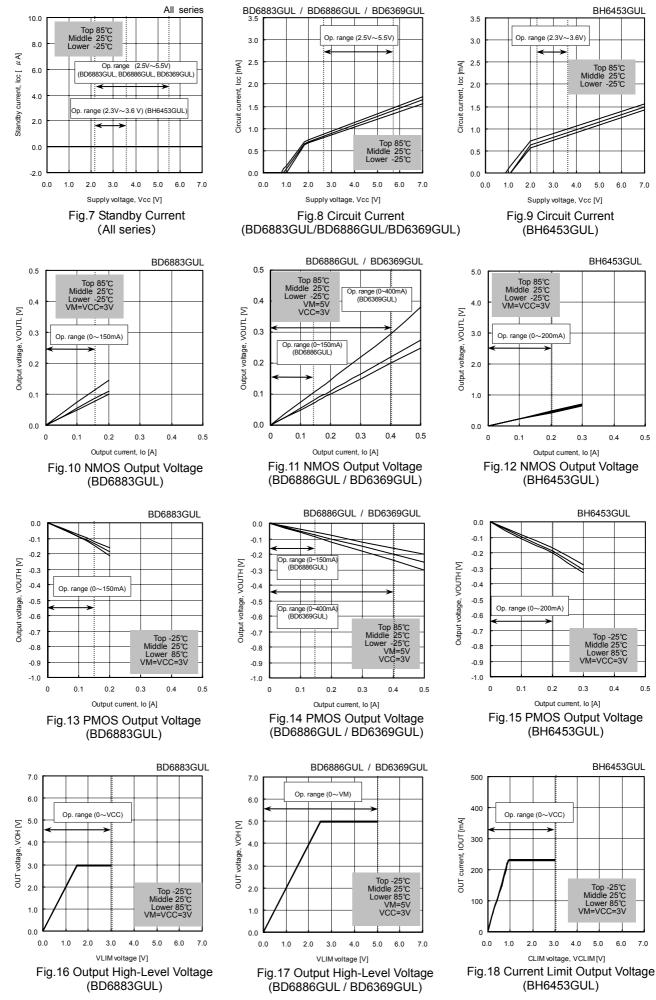
Parameter	Symbol	Limit			Unit	Conditions	
Farameter	Symbol	Min.	Тур.	Max.	Onit	Conditions	
Overall							
Circuit current during standby operation	ICCST	-	0	5	μA	PS=0V	
Circuit current	ICC	-	0.9	1.3	mA	PS=3V, IN=3V, no load	
Control input (VIN=IN, PS)							
High level input voltage	VINH	1.5	-	VCC	V		
Low level input voltage	VINL	0	-	0.5	V		
High level input current	IINH	15	30	60	μA	VINH=3V, pull down resistance typ.100kΩ	
Low level input current	IINL	-1	0	-	μA	VINL=0V	
UVLO							
UVLO voltage	VUVLO	1.6	-	2.2	V		
Constant-Current Drive bloc	k						
PMOS Output ON-Resistance	RONP	-	1.2	1.5	Ω	Io=-200mA	
NMOS Output ON-Resistance	RONN	-	0.35	0.50	Ω	Io=+200mA	
Offset current	lofs	0	1	5	mA	CLIM=0V	
Output current	lout	180	200	220	mA	CLIM=0.8V, RL=10Ω	

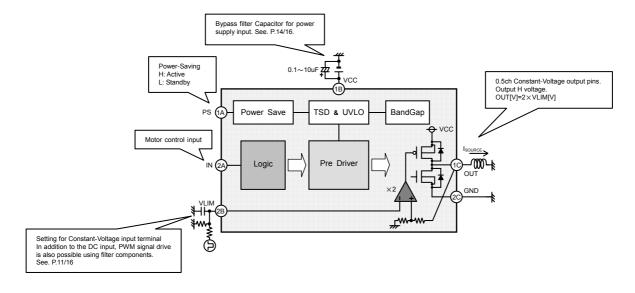
Drive system of Constant-Current

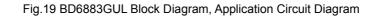
 $I_{SINK}[A] = \frac{CLIM[V]}{2 \times 2.0(Typ.)[\Omega]}$

 $\begin{cases} I_{\text{SINK}}: \text{VCC-OUT current} \\ \text{CLIM}: \text{VCC-OUT current setting voltage} \\ \text{R}_{\text{RNF}}: \text{VCC-OUT current detection resistance} \end{cases}$

Parameter	Symbol	Limit			Unit	Conditions	
Parameter	Symbol	Min	Тур Мах		Unit	Conditions	
Overall							
Circuit current during standby operation	ICCST	-	0	10	μA	PS=0V	
Circuit current 1	ICC	-	0.9	1.4	mA	PS=3V, with no signal	
Circuit current 2	IM	-	0.4	0.65	mA	PS=3V, VLIM=5V, no load	
Control input (VIN=INA, INB,	, SEL, PS)						
High-level input voltage	VINH	2.0	-	VCC	V		
Low-level input voltage	VINL	0	-	0.7	V		
High-level input current	IINH	15	30	60	μA	VINH=3V	
Low-level input current	IINL	-1	0	-	μA	VINL=0V	
Pull-down resistor	RIN	50	100	200	kΩ		
Input for Constant-Voltage se	etting						
Input current	IVLIM	-1.5	-0.5	-	μA	VLIM=0V	
UVLO							
UVLO voltage	VUVLO	1.6	-	2.4	V		
Constant-Voltage Drive block	K						
Output ON-Resistance	RON	-	0.80	1.20	Ω	$lo=\pm 150mA$ on high and low sides in total	
Output high-level voltage	VOH	1.9×VLIM	2.0 imes VLIM	2.1×VLIM	V	VLIM=1V with 10Ω load	
Output AC characteristic							
Turn-on time	ton	-	1.5	5	μs	$lo=\pm 150 mA$ with 10Ω load	
Turn-off time	toff	-	0.1	2	μs	$lo=\pm 150 mA$ with 10Ω load	
Rise time	tr	-	2	8	μs	$lo=\pm 150 mA$ with 10Ω load	
Fall time	tf	-	0.05	1	μs	$lo=\pm 150$ mA with 10Ω load	


Fig.6 BD6886GUL, BD6369GUL I/O Switching Waveform


Electrical Characteristic Diagrams

6/16

1) BD6883GUL Block Diagram, Application Circuit Diagram, Pin Arrangement, Pin Function Table

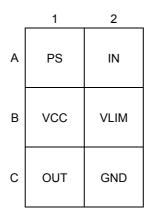


Fig.20 BD6883GUL Pin Arrangement (Top View)

BD6883GUL Pin Function Table

No.	Pin Name	Function	No.	Pin Name	Function
1A	PS	Power-saving pin	2B	VLIM	Output high-level voltage setting pin
2A	IN	Control input pin	1C	OUT	Half-bridge output pin
1B	VCC	Power supply pin	2C	GND	Ground pin

2) BH6453GUL Block Diagram, Application Circuit Diagram, Pin Arrangement, Pin Function Table

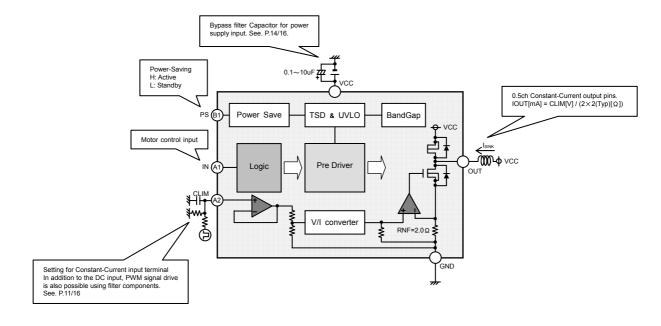
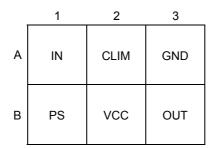



Fig.21 BH6453GUL Block Diagram, Application Circuit Diagram

Fig.22 BH6453GUL	Pin Arrangement	(Ton View)
FIY.22 DI 1040300L	FINALIANYEINEN	

BH6453GUL Pin Function Table

No.	Pin Name	Function	No.	Pin Name	Function
1A	IN	Control input pin	1B	PS	Power-saving pin
2A	CLIM	Output current setting pin	2B	VCC	Power supply pin
3A	GND	Ground pin	3B	OUT	Half-bridge output pin

3) BD6886GUL, BD6369GUL Block Diagram, Application Circuit Diagram, Pin Arrangement, Pin Function Table

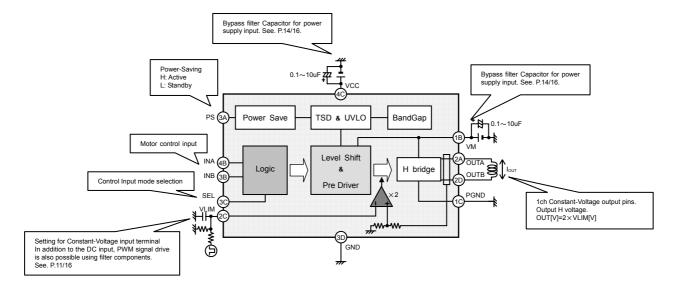


Fig.23 BD6886GUL, BD6369GUL Block Diagram, Application Circuit Diagram

	1	2	3	4
A	N.C.	OUTA	PS	N.C.
В	VM	INDEX POST	INB	INA
С	PGND	VLIM	SEL	VCC
D	N.C.	OUTB	GND	N.C.

Fig.24 BD6886GUL, BD6369GUL Pin Arrangement (Top View)

No.	Pin Name	Function	No.	Pin Name	Function			
1A	N.C.	N.C.	1C	PGND	Motor ground pin			
2A	OUTA	H-bridge output pin A	2C	VLIM	Output high-level voltage setting pin			
ЗA	PS	Power-saving pin	3C	SEL	Control input mode selection pin			
4A	N.C.	N.C.	4C	VCC	Power supply pin			
1B	VM	Motor power supply pin	1D	N.C.	N.C.			
2B			2D	OUTB	H-bridge output pin B			
3B	INB	Control input pin B	3D	GND	Ground pin			
4B	INA	Control input pin A	4D	N.C.	N.C.			

BD6886GUL, BD6369GUL Pin Function Table

•Function Explanation

1) Power-saving function (all series)

When the L voltage is applied the PS pin, the IC's inside circuit stop, and when 0V applied, the circuit current became 0µA(Typ.), especially.

When the IC drive, serial input while the PS pin applied H voltage. (See the electrical characteristics; P.3, 4, 5/16)

2) Control Input Pin

(I) IN pin (BD6883GUL, BH6453GUL)

The IN pin is used to program and control the motor drive modes.

(See the electrical characteristics; P3, 4/16, and the I/O Truth Table; P12/16)

(II) INA, INB, SEL pins (BD6886GUL, BD6369GUL)

The INA and INB are used to program and control the motor drive modes. When the L voltage is applied to the SEL pin, the I/O logic can be set to EN (Enable)/IN mode, and when the H voltage is applied to the one, the I/O logic can be set to IN/IN mode. (See the electrical characteristics; P5/16, and the I/O Truth Table; P12/16)

3) H-bridge and Half-bridge on the output stage (ALL series)

Specify maximum current applied to the H-bridge and Half-bridge within the operating range, in consideration of power dissipation. (See the Operating Conditions; P.2/16)

- 4) Drive system of Linear Constant-Voltage H-bridge (BD6883GUL, BD6886GUL, and BD6369GUL) To set up the output H voltage, when the voltage input to the VLIM pin, the output H voltage is two times as high as the voltage.
 - (|) BD6883GUL The output H voltage VOH [V] = $2.0 \times VLIM$ [V] (When VLIM [V] > $\frac{VCC [V]}{2}$, Output H voltage is about VCC voltage)
 - (II) BD6886GUL, BD6369GUL The output H voltage VOH [V] = $2.0 \times VLIM$ [V] (When VLIM [V] > $\frac{VM [V]}{2}$, Output H voltage is about VM voltage) $\cdots 2$

For example, the output voltage is $2.0V \pm 5\%$, if 1.0V is applied to the VLIM pin. If the VLIM pin is shorted to the VM pin (or the same voltage level as the VM is applied), you can be used as a Full-ON Drive H-bridge.

5) Drive system of Linear Constant-Current H-bridge (BH6453GUL)

To detect the output current and the output current settings

The BH6453GUL built in resistor for output current detect. The output current is kept constant by comparing it with the CLIM voltage. In addition, impress a highly accurate voltage form the outside of IC to the CLIM terminal, when you do the output current setting accuracy or more good.

Output current
$$I_{SINK}[A] = \frac{CLIM[V]}{2 \times 2(Typ)[\Omega]}$$

.....3

If the CLIM pin applied 0.8V, Output current is $200mA \pm 10\%$.

7) Setting of PWM signal input VLIM and CLIM terminals (all series)

It is also possible to compose filters outside the IC, change an input voltage for output voltage and output current setting terminals such as VLIM and CLIM terminals by the DUTY control using an PWM signal, etc., and use them as set values for control. In this case, however, ensure the smoothing of the signals, heeding the constant number of the low-pass filter as stated below. A cutoff frequency F_c (-3dB attenuation frequency) of the low-pass filter in Fig25 is calculated by the formula mentioned below.

Cutoff frequency
$$F_{C}[Hz] = \frac{1}{2 \pi C_{IN} (R_{INA}//R_{INB})}$$
 [Hz](4)

Set the cutoff frequency F_c at 1/100 or below of the PWM frequency F_{PWM} .

For example, if the cutoff frequency F_C is set at 1/100 of F_{PWM} when the PWM frequency F_{PWM}=50[kHz], according to the formula above:

Cutoff frequency
$$F_{C}[Hz] = \frac{1}{2 \pi C_{IN} (R_{INA}//R_{INB})} = \frac{1}{100} \times F_{PWM} = \frac{50 \times 10^{3}}{100} [Hz]$$
(5)

When $C_{IN}=0.1[\mu F]$, according to the formula above:

Where, an effective value of PWM signal as a DC current, according to crest values V_{MAX} and ON DUTY [%]= $\frac{ON \text{ time}}{ON \text{ time} + OFF \text{ time}}$ is as follows:

$$V_{PWM}[V] = V_{MAX}[V] \times \text{ ON DUTY}[\%] \qquad \qquad \cdots \cdot ?$$

An actual voltage VLIM input to terminals that specify output current and voltages, such as VLIM and CLIM terminals is as follows according to resistance potential division of RINA and RINB:

$$V_{\text{LIM}}[V] = \frac{R_{\text{INB}}}{R_{\text{INA}} + R_{\text{INB}}} \times V_{\text{PWM}}[V] \qquad \dots \otimes \mathbb{R}$$

For example, when an PWM signal with crest values $V_{MAX}=3[V]$ and DUTY [%]=5[%] is input, a V_{LIM} value according to the formula above is:

$$V_{\text{LIM}}[V] = \frac{R_{\text{INB}}}{R_{\text{INA}} + R_{\text{INB}}} \times 3[V] \times 50[\%] \qquad \dots$$

(I) BD6883GUL, BD6886GUL, and BD6369GUL

Where, to specify an output voltage VOH=2[V], a value VLIM=1.0[V] according to the formula in the previous page. And then, according to the formula above, VLIM=1.0[V].

$$VLIM=1.0[V]=V_{LIM}=\frac{R_{INB}}{R_{INA}+R_{INB}} \times 3[V] \times 50[\%]$$

e, R_{INA}=0.5R_{INB}@

According to (6) and (10), R_{INA} =4.8k Ω , R_{INB} =9.6k Ω .

(II) BH6453GUL

Therefor

Where, to specify an output current I_{SINK}=100[mA], the following formula is derived according to the formula in the previous page ③, CLIM=0.4[V], and according to the formula above (9):

$$\begin{array}{l} \text{CLIM=0.4[V]=V_{\text{LIM}}=\frac{R_{\text{INB}}}{R_{\text{INA}}+R_{\text{INB}}}} \times 3[V] \times 50[\%] \\ \text{R}_{\text{INA}}=2.75R_{\text{INB}} \end{array}$$

According to (6) and (1): $R_{INA}=11.9k \Omega$, $R_{INB}=4.3k \Omega$

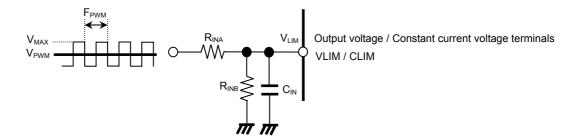


Fig.25 Example PWM signal input

.....1

BD6883GUL I/O Truth Table

MODE	INF	TUY	OUTPUT			
MODE	PS	IN	OUT	OUTFUT MODE		
	Ц	L	L	Sink		
-	п	Н	Н	Source		
-	L X		Z** ⁷	Standby		

L: Low, H: High, X: Don't care, Z: Hi impedance

Sink is a direction of current flowing into the driver, and Source is a direction of current flowing out the driver.

When it is sink, which drive FULL ON.

^{**7}Z at the Constant-Voltage driver output L voltage for connect feedback resistance (20kΩ Typ.) for output H voltage setting between OUT pin and GND. But output Power MOS is OFF condition.

BH6453GUL I/O Truth Table

MODE	INPUT		OUTPUT		
	PS	IN	OUT	OUTFUT MODE	
-	Н	Н	L	Sink	
		L	Н	Source	
-	L	Х	Z	Standby	

L: Low, H: High, X: Don't care, Z: Hi impedance

Sink is a direction of current flowing into the driver, and Source is a direction of current flowing out the driver. When it is source, which drive FULL ON.

BD6886GUL, BD6369GUL I/O Truth Table

	INPUT			OUTPUT			
MODE	INPUI			OUTPUT			
	PS	SEL	INA	INB	OUTA	OUTB	
	Н	L	L	Х	Z* ⁷	Z* ⁷	Standby
EN/IN			Н	L	Н	L	Forward rotation
			Н	Н	L	Н	Reverse rotation
IN/IN		Н	L	L	L	L	Brake
			L	Н	L	Н	Reverse rotation
			Н	L	Н	L	Forward rotation
			н	Н	Z** ⁸	Z** ⁸	Standby
-	L	Х	Х	Х	Z* ⁸	Z** ⁸	Standby

L: Low, H: High, X: Don't care, Z: Hi impedance

At forward rotation, current flows from OUTA to OUTB. At reverse rotation, current flows from OUTB to OUTA.

^{**8}Z at the Constant-Voltage driver output L voltage for connect feedback resistance (20kΩ Typ.) for output H voltage setting between OUT pin and GND. But output Power MOS is OFF condition.

●I/O Circuit Diagram

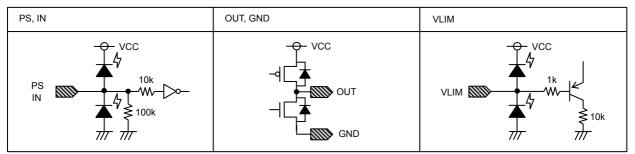


Fig.26 BD6883GUL I/O Circuit Diagram (Resistance values are typical ones.)

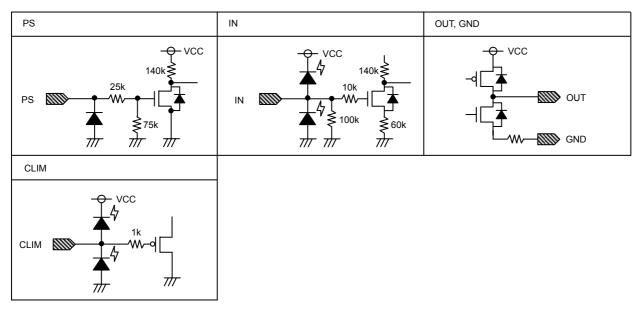


Fig.27 BH6453GUL I/O Circuit Diagram (Resistance values are typical ones.)

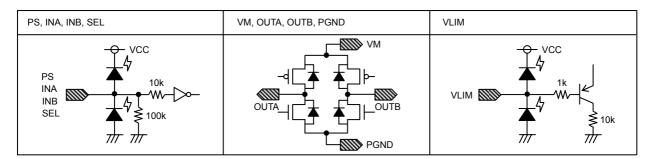


Fig.28 BD6886GUL, BD6369GUL I/O Circuit Diagram (Resistance values are typical ones.)

Operation Notes

1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings, such as the applied voltage (VCC, VM) or operating temperature range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using the IC at times where the absolute maximum ratings may be exceeded.

2) Storage temperature range (Tstg)

As long as the IC is kept within this range, there should be no problems in the IC's performance. Conversely, extreme temperature changes may result in poor IC performance, even if the changes are within the above range.

3) Power supply and wiring

Be sure to connect the power terminals outside the IC. Do not leave them open. Because a return current is generated by a counter electromotive force of the motor, take necessary measures such as putting a Capacitor between the power source and the ground as a passageway for the regenerative current. Be sure to connect a Capacitor of proper capacitance $(0.1\mu F to 10\mu F)$ between the power source and the ground at the foot of the IC, and ensure that there is no problem in properties of electrolytic Capacitors such as decrease in capacitance at low temperatures. When the connected power source does not have enough current absorbing capability, there is a possibility that the voltage of the power source line increases by the regenerative current an exceeds the absolute maximum rating of this product and the peripheral circuits.

Therefore, be sure to take physical safety measures such as putting a zener diode for a voltage clamp between the power source an the ground.

4) Ground terminal and wiring

The potential at GND terminals should be made the lowest under any operating conditions. Ensure that there are no terminals where the potentials are below the potential at GND terminals, including the transient phenomena. The motor ground terminals PGND, and the small signal ground terminal GND are not interconnected with one another inside the IC. It is recommended that you should isolate the large-current RNF pattern and PGND pattern from the small-signal GND pattern, and should establish a one-point grounding at a reference point of the set, to avoid fluctuation of small-signal GND voltages caused by voltage changes due to pattern wire resistances and large currents. Also prevent the voltage variation of the ground wiring patterns of external components. Use short and thick power source and ground wirings to ensure low impedance.

5) Thermal design

Use a proper thermal design that allows for a sufficient margin of the power dissipation (Pd) at actual operating conditions.

6) Pin short and wrong direction assembly of the device.

Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if positive and ground power supply terminals are reversed. The IC may also be damaged if pins are shorted together or are shorted to other circuit's power lines.

7) Avoiding strong magnetic field

Malfunction may occur if the IC is used around a strong magnetic field.

8) ASO

Ensure that the output transistors of the motor driver are not driven under excess conditions of the absolute maximum ratings and ASO.

9) TSD (Thermal Shut Down) circuit

If the junction temperature (Tjmax) reaches 175°C (but the BH6453GUL is 150°C), the TSD circuit will operate, and the coil output circuit of the motor will open. There is a temperature hysterics of approximately 25°C (but the BH6453GUL is 20°C). The TSD circuit is designed only to shut off the IC in order to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. The performance of the IC's characteristics is not guaranteed and it is recommended that the device is replaced after the TSD is activated.

10) Testing an application board

When testing the IC on an application board, connecting a Capacitor to a pin with low impedance subjects the IC to stress. Always discharge Capacitors after each process or step. Always turn the IC's power supply off before connecting it to, or removing it from a jig or fixture, during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting and storing the IC.

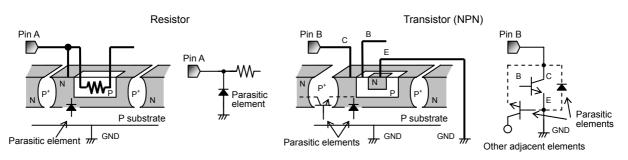
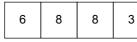
11) Regarding the input pin of the IC

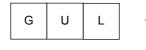
This monolithic IC contains P^* isolation and P substrate layers between adjacent elements to keep them isolated. P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. For example, the relation between each potential is as follows:

When GND > Pin A, the P-N junction operates as a parasitic diode.

When GND > Pin B, the P-N junction operates as a parasitic diode and transistor.

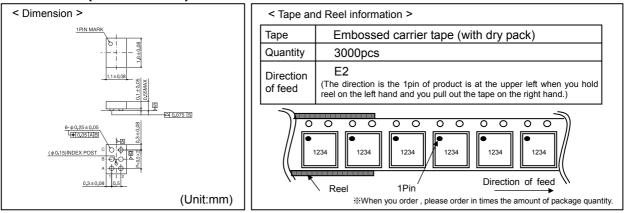
Parasitic elements can occur inevitably in the structure of the IC. The operation of parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic elements operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.

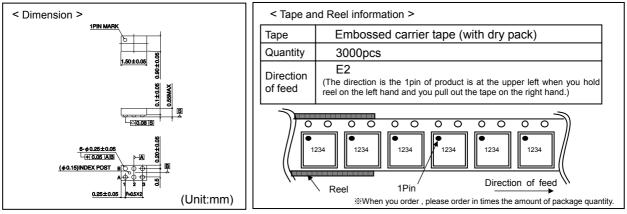




Fig.29 Example of Simple IC Architecture

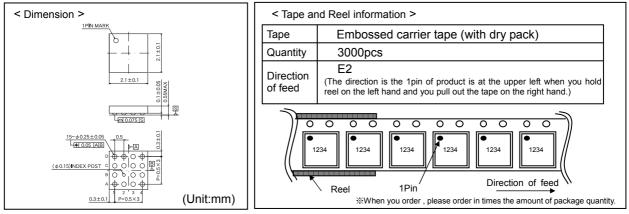
ROHM model name

Part number
6883 = Const. V. 0.5ch
6453 = Const. C. 0.5ch
6886 = Const. V. 1ch
6369 = Const. V. 1ch


Package type GUL = VCSP50L1 (BD6883) GUL = VCSP50L1 (BH6453) GUL = VCSP50L2 (BD6886) GUL = VCSP50L2 (BD6369)


Taping type

E2 = Reel-wound embossed taping


VCSP50L1 (BD6883GUL)

VCSP50L1 (BH6453GUL)

VCSP50L2 (BD6886GUL, BD6369GUL)

The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO. LTD.

Any part of this application note must not be duplicated or copied without our permission.

Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.

Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.

• Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.

The products described herein utilize silicon as the main material.

The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Contact us for further information about the products.

ROHM CO., LTD.

21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL: +81-75-311-2121 FAX: +81-75-315-0172

URL http://www.rohm.com	Russia Seoul	
Published by	Masan Dalian	
LSI Business Promotion Dept.	Beijing Tianjin	

Contact	us ior iurther into	malion about
San Diego	TEL: +1-858-625-3630	FAX: +1-858-625-3670
Atlanta	TEL: +1-770-754-5972	FAX: +1-770-754-0691
Boston	TEL: +1-978-371-0382	FAX: +1-928-438-7164
Chicago	TEL: +1-847-368-1006	FAX: +1-847-368-1008
Dallas	TEL: +1-469-287-5366	FAX: +1-469-362-7973
Denver	TEL: +1-303-708-0908	FAX: +1-303-708-0858
Detroit	TEL: +1-248-348-9920	FAX: +1-248-348-9942
Nashville	TEL: +1-615-620-6700	FAX: +1-615-620-6702
Mexico	TEL: +52-33-3123-2001	FAX: +52-33-3123-2002
Düsseldorf	TEL: +49-2154-9210	FAX: +49-2154-921400
Munich	TEL: +49-8161-48310	FAX: +49-8161-483120
Stuttgart	TEL: +49-711-72723710	FAX: +49-711-72723720
France	TEL: +33-1-5697-3060	FAX: +33-1-5697-3080
United Kingdom	TEL: +44-1-908-306700	FAX: +44-1-908-235788
Denmark	TEL: +45-3694-4739	FAX: +45-3694-4789
Barcelona	TEL: +34-9375-24320	FAX: +34-9375-24410
Hungary	TEL: +36-1-4719338	FAX: +36-1-4719339
Poland	TEL: +48-22-5757213	FAX: +48-22-5757001
Russia	TEL: +7-95-980-6755	FAX: +7-95-937-8290
Seoul	TEL: +82-2-8182-700	FAX: +82-2-8182-715
Masan	TEL: +82-55-240-6234	FAX: +82-55-240-6236
Dalian	TEL: +86-411-8230-8549	FAX: +86-411-8230-853
Beijing	TEL: +86-10-8525-2483	FAX: +86-10-8525-2489
Tianjin	TEL: +86-22-23029181	FAX: +86-22-23029183

FAX: +1-770-754-0691
FAX: +1-928-438-7164
FAX: +1-847-368-1008
FAX: +1-469-362-7973
FAX: +1-303-708-0858
FAX: +1-248-348-9942
FAX: +1-615-620-6702
FAX: +52-33-3123-2002
FAX: +49-2154-921400
FAX: +49-8161-483120
FAX: +49-711-72723720
FAX: +33-1-5697-3080
FAX: +44-1-908-235788
FAX: +45-3694-4789
FAX: +34-9375-24410
FAX: +36-1-4719339
FAX: +48-22-5757001
FAX: +7-95-937-8290
FAX: +82-2-8182-715
FAX: +82-55-240-6236
FAX: +86-411-8230-8537
FAX: +86-10-8525-2489
FAX: +86-22-23029183

TEL: +86-21-6279-2727 FAX: +86-21-6247-2066 TEL: +86-571-87658072 FAX: +86-571-87658071 TEL: +86-52-8689-0015 FAX: +86-52-8689-0393 TEL: +86-542487654201 FAX: +86-574-87654208 TEL: +86-532-5779-312 FAX: +86-512-807-2300 TEL: +86-510-82702693 FAX: +86-510-82702992 TEL: +86-755-8307-3008 FAX: +86-710-82702992 TEL: +86-755-8307-3008 FAX: +86-755-8307-3003 Shanghai Hangzhou Nanjing Ningbo Shenzher TEL: 486-755-8307-3008 FAX: 486-755-8307-3003 TEL: 486-769-8339-3320 FAX: 486-769-83896-4140 TEL: 486-591-8801-8698 FAX: 486-591-8801-8690 TEL: 486-722-205-1054 FAX: 486-722-205-1059 TEL: 486-752-205-1054 FAX: 486-752-205-1059 TEL: 486-592-238-5705 FAX: 486-592-239-8380 Dongguan Fuzhou Guangzhou Huizhou TEL: +86-756-3232-480 FAX: +86-756-3232-460 Hong Kong Taipei Kaohsiung TEL: +852-2-740-6262 FAX: +852-2-375-8971 TEL: +852-2-740-6262 TEL: +886-2-2500-6956 TEL: +886-7-237-0881 TEL: +65-6332-2322 FAX: +852-2-375-8971 FAX: +886-2-2503-2869 FAX: +886-7-238-7332 FAX: +65-6332-5662 FAX: +63-2-809-1422 Singapore Philippines TEL: +63-2-807-6872 Thailand TEL: +66-2-254-4890 FAX: +66-2-256-6334 Kuala Lumpu TEL: +60-3-7958-8355 TEL: +60-4-2286453 FAX: +60-3-7958-8377 Penang Kyoto Yokohama FAX: +60-3-7958-6377 FAX: +60-4-2286452 FAX: +81-75-365-1228 FAX: +81-45-476-2295 TEL: +81-75-365-1218 TEL: +81-45-476-2290

Qingdad

Suzhou Wuxi

Xiamen

Zhuhai

Catalog No.08T100A '08.6 ROHM © 1000 NZ

The contents described herein are correct as of June, 2008

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUROPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2008 ROHM CO.,LTD. ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172

Appendix1-Rev2.0

rohm