P150 SERIES

ENGINEERING DATA SHEET

SOLID STATE POWER CONTROLLER 28 VDC. 1PNO-WITH CURRENT OR VOLTAGE STATUS OUTPUT **UP TO 30 AMP RATING**

SIZE: 69.6 x 34 x 9.65 mm

DESCRIPTION

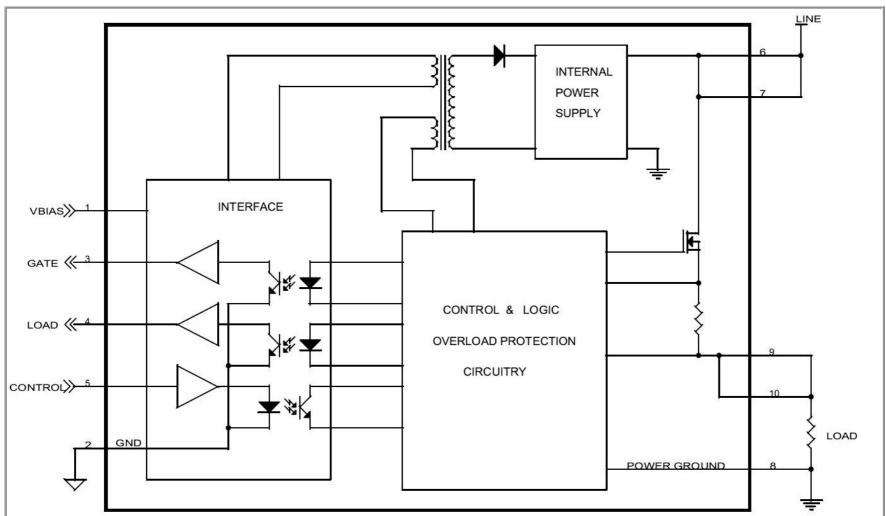
The P150 Series of Solid State Power Controllers (SSPC) is rated from 2 to 30 Amperes. These LEACH SSPC's feature reliable, trouble free switching together with real short circuit protection. Employing a power FET output stage, and built using thick film technology, they offer low on state resistance and low on state voltage drop. They react to fault condition and can shutdown within microseconds, if required. Two status signals, derived from the load current value or voltage and from the device gate, are reported via optical isolators. Designed to operate in 28 VDC systems, these devices do not require derating for any load type. They are hermetically sealed, in a metal package.

FEATURES

.Fast acting

Built-in overload and short circuit protection

Load current or voltage status


.FET Gate status or trip status Very low voltage drop

No derating up to 105° C

.Trip free

.Fully isolated bias, control and status No derating for non-resistive loads Exceeds MIL-P-81653C requirements Very low voltage drop output stage

BLOCK DIAGRAM

Featuring LEACH[©] power and control solutions

EUROPE 2 Rue Goethe P.O. Box 5032 57430 Sarralbe Buena Park, CA 90622 USAFrance

Room 501, 5/F, The Centre Mark 287 - 299 Queen's Road Central Hong Kong

www.leachintl.com

Tel: (01) 714-736-7599 Tel: (852) 2 191 3830 Tel: (33) 3 87 97 31 01 Fax: (01) 714-670-1145 Fax: (33) 3 87 97 96 86 Fax: (852) 2 389 5803 Data sheets are for initial product selection and comparison. Contact Leach International prior to choosing a component.

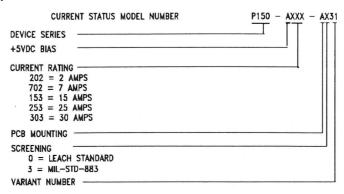
Date of issue: 4/10 - 9 -Page 1 of 6

ELECTRICAL CHARACTERISTICS (CURRENT STATUS)

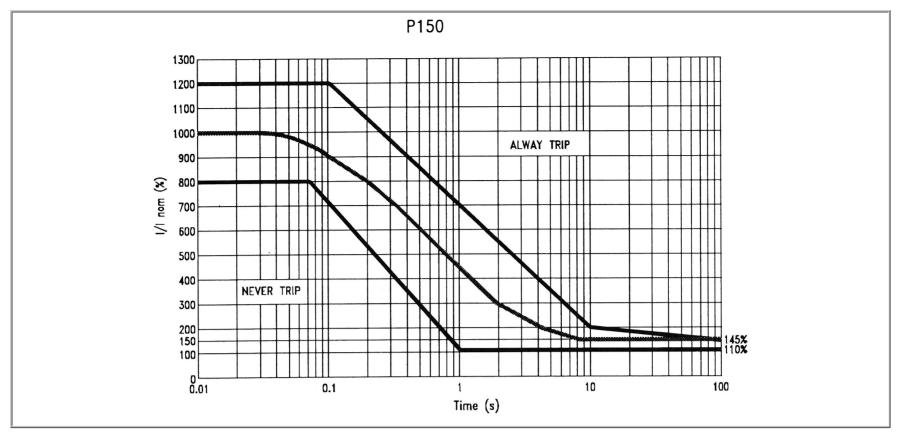
P150 SERIES

Typical values are at 25 ± 5° C INPUT		DEVICE WITH CURRENT STATUS					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
BIAS On Voltage	V _{IHB}	4.5		5.5	V	1,2	
BIAS On current	ІІНВ			10	mA	3	
BIAS Off current	I _{ILB}			1	mA	3	
CONTROL voltage on	V _{IHC}	2.4			V		
CONTROL voltage off	V _{ILC}	-0.8		0.8	V		
CONTROL current on	I _{IHC}			50	μA	4	
CONTROL current off	I _{ILC}	7		-10	μA	5	
Transients (BIAS input)	V _{TB}			+50	V	6	

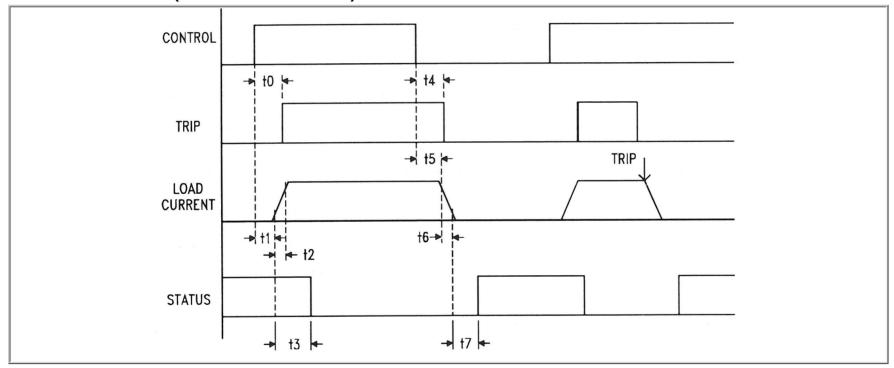
Notes:


- 1. BIAS voltage must be a step function.
- 2. No reverse polarity protection.
- 3. BIAS voltage is 5.0 V.

- 4. Control voltage at 2.4 vdc.
- 5. Control voltage at 0.4 vdc.
- 6. Max. Duration 50 ms, Duty Cycle 1%, Repetition Rate 1 Hz.


b. DIAS voltage is 5.0 v.	0. 10	iax. Daration	oo mo, baty	Cycle 170, 10	spetition rate 1112:	
OUTPUT						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Load current	IL	0		100	%I rated	1
On state voltage drop	V_{LD}			200	mV	2
Off state line voltage	V _L			32	V	3
Gate high voltage	V _{OHS}	2.4			V	
Gate high current	I _{OHS}			50	μΑ	
Gate low voltage	V _{OLS}			0.8	V	
Gate low current	I _{OLS}			0.2	mA	
Load pick up	I _{SON}			15	%I rated	
Load drop out	I _{SOFF}	5			%I rated	
Leakage current	I _{LL}			1	mA	4
Transient voltage	V _T			+50	V	5
Spikes	V _S	-600		+600	V	6
Trip current	I _{TR}	110	130	145	%I rated	7
Isolation voltage	V _{ISO}			750	VRMS	
Insulation resistance	R _{INS}	100		1000	ΜΩ	8

- 1. Load current is subject to thermal derating.
- 2. At load current $I_I = 100\%$ rated value.
- 3. Reverse polarity is not blocked and may damage the SSPC.
- 4. At V_L =28V, Case temperature = 105 $^{\circ}$ C.

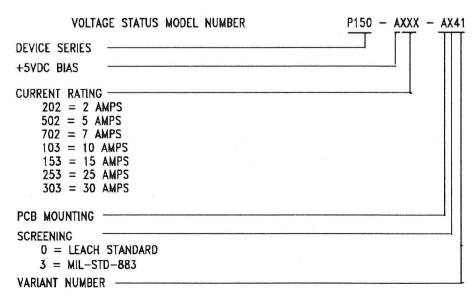

- 5. Duration 12.5 ms max. per MII-STD-704D.
- 6. Duration 10 µs max. per Mil-STD-704D.
- 7. See Trip Characteristics.
- 8. 500 Vdc, ± 10%

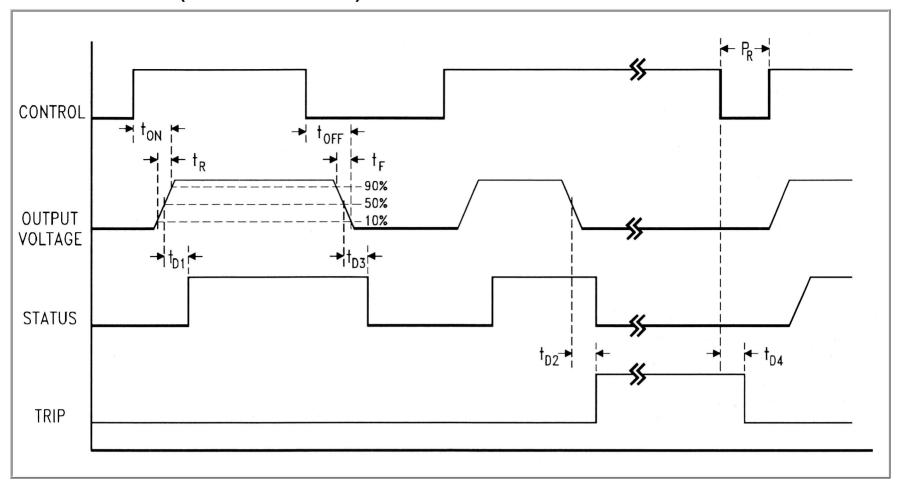
TRIP CHARACTERISTIC P150 SERIES

TIMING DIAGRAM (CURRENT STATUS)

TIMING

Parameter	Symbol	Тур.	Max.	Unit	Note
CONTROL to GATE delay	t ₀	300	1000	μs	
Turn on delay	t ₁	150	200	μs	
Load current rise time	t ₂	30	1000	μs	
Turn on to LOAD delay	t ₃	75	1000	μs	
CONTROL to GATE	t ₄	150	1000	μs	
Turn off delay	t ₅	150	200	μs	
Load current fall time	t ₆	20	1000	μs	2
Turn off to LOAD delay	t ₇	400	1000	μs	


- 1. All timing measurements taken at 10% and 90% points into resistive rated load.
- 2. Current fall time from trip dependant on overload condition.


ELECTRICAL CHARACTERISTICS (VOLTAGE STATUS)

P150 SERIES

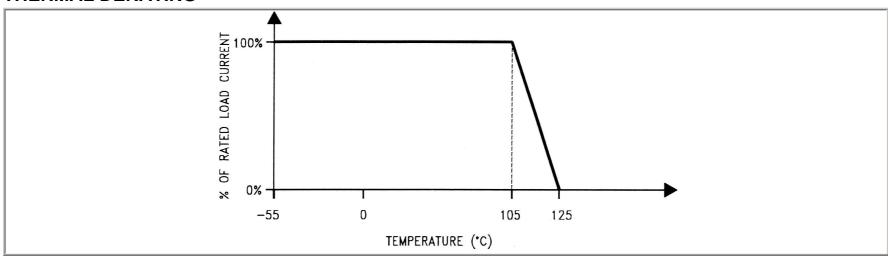
Typical values are at 25 ± 5° C INPUT	DEVICE	WITH VOLTAGE STATUS	LIMITS		UNIT	NOTES
Parameter	Symbol	CONDITIONS -55°C to +105°C (1)	MIN	MAX		
Logic supply voltage	V _{CC}		4.5	5.5	Vdc	
CONTROL voltage high	V _{IH}		2.0		Vdc	
CONTROL voltage low	V _{IL}			0.8	Vdc	
Transient		Pulse width = 12.5 msec max. per MIL-STD-704D		+50	Vdc	2
Spikes		Pulse width = 10 µsec max. per MIL-STD-704D	-600	+600	Vdc	2
REQUIREMENTS	,	,		,	,	,
28 Vdc initialization spike voltage		During of output spike at 50% amplitude shall be 100µsec maximum		5	V _{PR}	
5 Vdc initialization control		Vline = 28 Vdc, Vcontrol = 0 Vdc, Vbias = 0 to 5 Vdc, rated at <1 msec				3
Logic supply current	I _{cc}	V _{CC} =5.5 Vdc		50	mA	4
Load current continuous	I _{LOAD}			100	%l	
"ON" state voltage drop	Vo			200	mV	5
Leakage current	IL			1	mA	
STATUS & TRIP voltage high	V _{OH}	IOH=5mA	2.4		Vdc	
STATUS & TRIP voltage low	V _{OL}	IOL=1mA		0.4	Vdc	
CONTROL current high	l _{IH}	VI=2.4 Vdc		50	μA	
CONTROL current low	I _{IL}	VI=0.4 Vdc		10	μA	
Output "ON" sense voltage	V _{ON}	See Timing Diagram (Voltage Status)	30	70	%	5,6,7

- 1. Unless specified otherwise, test conditions shall be at Vcc=5.0 ±0.25Vdc and Vline=28±0.5Vdc. The design shall be capable of meeting all requirements with Vcc=4.5 to 5.5Vdc.
- 2. The transient and spike requirements apply only to the 28Vdc power lines.
- 3. The device output shall remain off when 5V bias is raised from 0 to 5Vdc.
- 4. Without any load connected to the STATUS or TRIP outputs.
- 5. At 100% rated current.
- 6. Rated resistive load; measurements taken between 10% and 90% points.
- 7. Percent of actual applied Vline.

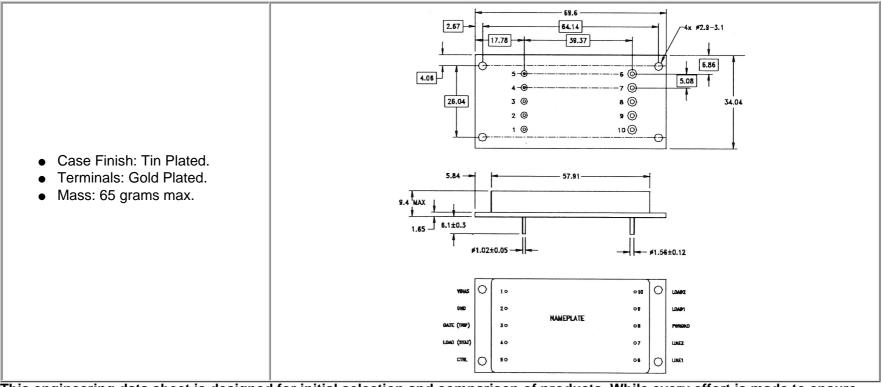
TIMING

Parameter	Symbol	Conditions -55°C to +105°c	Min.	Max.	Unit	Notes
Turn-on time	t _{on}	See Timing Diagram		1000	µsec	1,3
Turn-off time	t _{off}			1000	µsec	1,3
Load voltage rise time	t _R		20	200	µsec	1,3
Load voltage fall time	t _F			200	µsec	1,3
STATUS on delay	t _{D1}			2000	µsec	1
STATUS of delay	t _{D3}			2000	µsec	1
TRIP on delay	t _{D2}			150	µsec	2
TRIP of delay	t _{D4}			150	µsec	2
CONTROL pulse width for device reset	P _R		50		msec	

- 1. At 100% rated current.
- 2. At 250% rated current.
- 3. Rated resistive load; measurements taken between 10% and 90% points.


P150 SERIES

Parameter	Symbol	Min.	Max.	Unit	Notes
Operational Temp. Range	T _{op}	-55	125	° C	1,2
Storage Temp. Range	T _{st}	-55	125	° C	
Thermal resistance junction to case	Θ^{jc}		15	° C/W	
Max. Junction Temperature of Output Stage	T _{j(max)}		150	° C	
Vibration			20	G	3
Acceleration			3000	G	4
Shock			1500	G	5
Seal (Hermetic)					7
Altitude			80000	ft	
MTBF			1.1	hours	6


Notes:

- 1. Case temperature.
- 2. See thermal derating curve.
- 3. MIL-P-883C, Method 2007, test condition A; 20-2000 Hz.
- 4. MIL-P-883C, Method 2001, test condition A.
- 5. MIL-P-883C, Method 2002, test condition B, 0.5 ms.
- 6. Per MIL-HBK-217E, Quality level B-1, AUT environment at 25°C.
- 7. Meets the leakage levels in accordance with MIL-STD-883, Method 1014, test condition A1.

THERMAL DERATING

PHYSICAL DATA (in mm)

This engineering data sheet is designed for initial selection and comparison of products. While every effort is made to ensure the accuracy of all data, each part number, and its application, must be controlled by a Product Control Drawing (PCD). Please contact PowerCom, a Leach International Company, for further information.