

STPMS2

Smart sensor II dual-channel 1-bit, 4 MHz, second-order sigma-delta modulator with embedded PGLNA

Features

- V_{CC} supply range 3.2 V 5.5 V
- Two second-order sigma-delta (ΣΔ) modulators
- Programmable chopper-stabilized low noise and low offset amplifier
- Supports 50-60 Hz, EN 50470-1, EN 50470-3, IEC 62053-21, IEC 62053-22 and IEC 62053-23 standards specs for class 1, class 0.5 and class 0.2 AC watt meters
- STPM02H: less than 0.5% error over 1:10000 range
- STPM02L: less than 0.5% error over 1:5000 range
- Precision voltage reference: 1.23 V with programmable TC (STPMS2L only)
- Internal low drop regulator @ 3 V (typ.)

Applications

- Power metering
- Motor control
- Industrial process control
- Weight scales
- Pressure transducers

Description

The STPMS2, also called "smart sensor" devices, are ASSPs designed for effective measurement in power line systems utilizing Rogowski coil, current transformer, Hall or shunt sensors. These devices are designed as building blocks for single-phase

QFN16 (4 x 4)	

or multi-phase energy meters along with the STPMC1 device, a digital signal processor designed for energy measurement. This device can be used in medium and high resolution measurement applications where single or double inputs must be monitored at the same time. The STPMS2 are mixed signal ICs consisting of an analog and digital section. The analog section consists of a programmable gain, low noise choppered amplifier, two second-order $\Delta\Sigma$ modulator blocks, a band-gap voltage reference, a low-drop voltage regulator and DC buffers, while the digital section consists of a clock generator and output multiplexer.

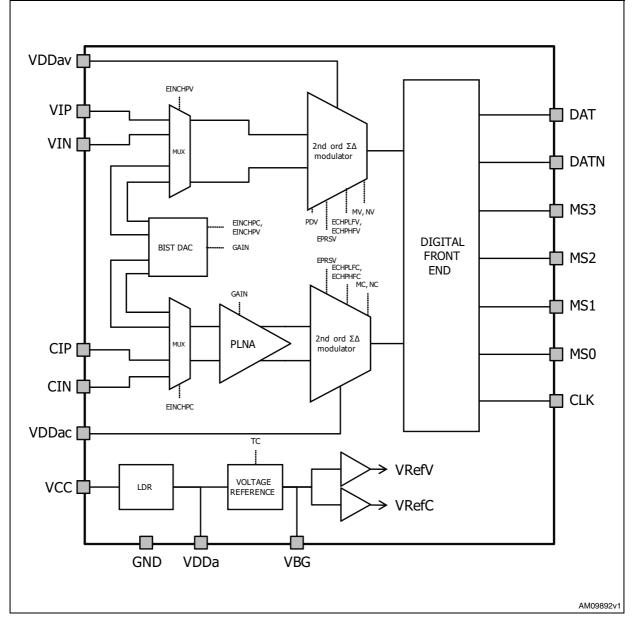
Table 1	Device	summarv
		Summary

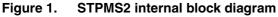
Order codes	Package	Packaging
STPMS2H-PUR	QFN16 (4 x 4 mm)	4500 parts per reel
STPMS2L-PUR	QFN16 (4 x 4 mm)	4500 parts per reel

Contents

1	Intro	duction	1	
2	Inter	nal bloo	ck diagram	
3	Pin o	configu	ration	5
4	Max i 4.1		al operating conditions	
5	App	lication		11
6			/	
	6.1 6.2		ntions	
7	Турі	cal perf	ormance characteristics	15
8	Theo	ory of o	peration	17
	8.1	Genera	al operation description	17
	8.2	Functio	onal description of the analog part	
	8.3	Functio	onal description of the digital part	
		8.3.1	Decoder for different modes of operation	
		8.3.2	Generator for clock frequency	
	8.4	Hard n	node	
	8.5	Soft m	ode	
		8.5.1	Writing to the configuration register in Soft mode	27
9	Pack	age me	chanical data	
10	Revi	sion his	story	32

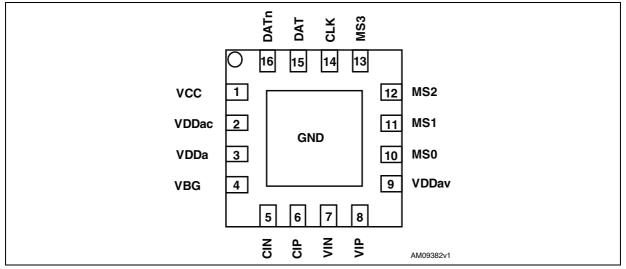
1 Introduction


The STPMS2 is a device designed to measure electrical line parameters (voltage and current) via analog signals from voltage sensors (current divider) and current sensors (inductive Rogowski coil, current transformer or shunt resistors). The device is used together with a digital signal processing circuit to implement an effective measuring system for multi-phase power meters.


The device consists of two analog measuring channels, consisting of second-order sigmadelta modulators with appropriate non-overlapping control signal generator. The STPMS2 also includes a temperature compensated band-gap reference voltage generator, a lowdrop supply voltage stabilizer and minimal digital circuitry that includes BIST (built-in selftest) structures. In a current signal processing channel, a low-noise preamplifier is included in front of the sigma-delta converter. All reference voltages (band-gap, AGND) are internally buffered to eliminate channel crosstalk.

The STPMS2 can operate in fast or low-power mode. In fast mode, a nominal clock frequency of 4.1 or 4.9 MHz is applied to the clock input. In this mode, signal bandwidth is specified between 0 and 4 kHz. In low-power mode, the nominal clock is four times slower in order to reduce the power consumption of the circuit. In low-power mode, the quiescent bias currents of the preamplifier and sigma-delta integrators are lowered and the signal bandwidth is narrowed to the frequency bandwidth of 0 to 1 kHz.

2 Internal block diagram



3 Pin configuration

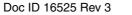
Figure 2. Pin connections

Table 2. Pin description

Pin n°	Symbol	Description
1	VCC	Unregulated supply voltage for pad-ring, bandgap, low-drop and level shifters
2	VDDac	Current channel modulator supply input
3	VDDa	Output of internal + 3.0 V low drop regulated power supply
4	VBG	Output of internal + 1.23 V bias generator (STPMS2L); Input of external precision reference voltage (STPMS2H)
5	CIN	Current channel -
6	CIP	Current channel +
7	VIN	Voltage channel -
8	VIP	Voltage channel +
9	VDDav	Voltage channel modulator supply input
10	MS0	Input for configurator 0
11	MS1	Input for configurator 1
12	MS2	Input for configurator 2
13	MS3	Input for configurator 3
14	CLK	Input for external measurement clock
15	DAT	Output of multiplexed $\Sigma\Delta$ signal Output of current $\Sigma\Delta$ signal
16	DATn	Output of inverted multiplexed $\Sigma\Delta$ signal Output of voltage $\Sigma\Delta$ signal
Exp PAD	GND	Ground level for signals and pin protection

4 Maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC Input voltage	-0.3 to 6	V
I _{PIN}	Current on any pin (sink/source)	±150	mA
V _{ID}	Input voltage at any pin	-0.3 to V _{CC} +0.3	V
V _{IA}	Input voltage at analog pins (VIP, VIN, IIP, IIN)	-0.7 to 0.7	V
ESD	Human body model (all pins)	±2	kV
T _{OP}	Operating ambient temperature	-40 to 85	°C
TJ	Junction temperature	-40 to 150	°C
T _{STG}	Storage temperature range	-55 to 150	°C


Table 3. Absolute maximum ratings

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4.Thermal data

Symbol	Parameter	Value	Unit
R _{thJA} ⁽¹⁾	Thermal resistance junction-ambient	38.66	°C/W

1. This value is referred to single-layer PCB, JEDEC standard test board.

4.1 General operating conditions

 V_{CC} = 5 V, T_{AMB} = 25 °C, 1 μF between V_{CC} , VDDa, VDDac, VDDav and GND, 100 nF between VBG and GND, f_{CLK} = 4.19 MHZ unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
General	section					
V _{CC}	Operating supply voltage		3.135		5.25	V
I _{CC}		LP, 1.229MHz; V_{CC} =3.3V; C_L =100nF; no loads		1.2	1.5	m۸
	Quiescent current	HP, 4.915MHz; V _{CC} =3.2V; C _L =100nF; no loads		4	5	mA
V _{POR}	Power on reset on V_{CC}			2.5		V
V_{DD}	Regulated supply voltage	1.049MHz; V_{CC} =3.2V; C_L =100nF; no loads	2.95	3.00	3.05	V
ILATCH	Current injection latch- up immunity				300	mA
f _{BW}	Effective bandwidth	Limited by chopper	0		4091	Hz
DC meas	surement accuracy					
	Resolution		11		16	bit
INL	Integral non linearity	Result referred to a 16-bit word of CIP- CIN channel, HP mode, f _{CLK} = 2.047MHz		3.3		LSB
		Result referred to a 12-bit word of VIP- VIN channel, HP mode, f _{CLK} =2.047MHz		3.9		LOD
	Differential linearity	Result referred to a 16-bit word of CIP- CIN channel, HP mode, f _{CLK} =2.047MHz		0.3		
DNL	Differential linearity	Result referred to a 12-bit word of VIP- VIN channel, HP mode, f _{CLK} =2.047MHz		0.5		LSB
	Offeet error	Result referred to a 16-bit word of CIP- CIN channel, HP mode, f _{CLK} =2.047MHz		0.02		
	Offset error	Result referred to a 12 bit-word of VIP- VIN channel, HP mode, f _{CLK} =2.047MHz		0.005		LSB
		Result referred to a 16-bit word of CIP- CIN channel, HP mode, f _{CLK} =2.047MHz	0.04		0.4	
	Gain error	Result referred to a 12-bit word of VIP- VIN channel, HP mode, f _{CLK} =2.047MHz		0.003		LSB/uV
		CIP-CIN channel gain 2x		120		
NF	Noise floor	CIP-CIN channel gain 16x		118		dB
		VIP-VIN channel		95		

 Table 5.
 General operating conditions

Parameter	Test conditions	Min.	Тур.	Max.	Unit		
Power supply DC rejection	Voltage signal: 200 mV _{rms} /50Hz Current signal: 10 mV _{rms} /50Hz f_{CLK} =2.048 MHz V_{CC} =3.3V ±10%, 5V ±10%				dB		
AC measurement accuracy							
Signal to poice ratio	CIP-CIN channel – Vin=±230mV @ 55Hz gain 2x over 4 kHz bandwidth		82		dB		
Signal to hoise fallo	VIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth		52		uВ		
Signal to noise ratio +	CIP-CIN channel – Vin=±230mV @ 55Hz gain 2x over 4 kHz bandwidth		82		dB		
distortion	VIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth		52		uв		
Total barmania diatartian	CIP-CIN channel – Vin=±230mV @ 55Hz gain 2x over 4 kHz bandwidth		-105		dB		
Total narmonic distortion	VIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth		-78		uБ		
SFDR Spurious free dynamic range	CIP-CIN channel – Vin=±230mV @ 55Hz gain 2x over 4 kHz bandwidth		90		٩D		
	VIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth		68		dB		
Power supply AC rejection	Voltage signal: 200 mV _{rms} /50Hz Current signal: 10 mV _{rms} /50Hz f_{CLK} =2.048 MHz V_{CC} =3.3V+0.2V _{rms} 1@100Hz V_{CC} =5.0V+0.2V _{rms} 1@100Hz				dB		
nputs (CIP, CIN, VIP, VIN)							
	VIP-VIN channel	-0.3		+0.3	V		
Maximum input signal levels	STPMS2L CIP-CIN channel Gain 2x Gain 4x Gain 8x Gain 16x STPMS2H CIP-CIN channel	-0.3 -0.15 -0.075 -0.0375 -V _{REF} / GAIN		+0.3 +0.15 +0.075 +0.0375 +V _{REF} / GAIN	V		
A/D sampling frequency			f _{CLK}		Hz		
Amplifier offset				±20	mV		
VIP, VIN impedance	Over total operating voltage range	100		400	kΩ		
CIP, CIN impedance	Over total operating voltage range	35		50	kΩ		
Gain error of current channels			±10		%		
	Power supply DC rejection urement accuracy Signal to noise ratio Signal to noise ratio + distortion Total harmonic distortion Spurious free dynamic range Power supply AC rejection Pouts (CIP, CIN, VIP, VIN) Maximum input signal levels A/D sampling frequency Amplifier offset VIP, VIN impedance Gain error of current	Power supply DC rejectionVoltage signal: 200 mVrms/50Hz Current signal: 10 mVrms/50Hz (LK=2.048 MHz VCC=3.3V±10%, 5V±10%)urement accuracyCIP-CIN channel – Vin=±230mV @ 55Hz gain 2x over 4 kHz bandwidthSignal to noise ratioCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthSignal to noise ratio + distortionCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthTotal harmonic distortionCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthTotal harmonic distortionCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthSpurious free dynamic rangeCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthSpurious free dynamic rangeCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthPower supply AC rejectionCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthPower supply AC rejectionVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthMaximum input signal levelsVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthMaximum input signal levelsVIP-VIN channelMaximum input signal levelsVIP-VIN channelMaximum input signal levelsVIP-VIN channelA/D sampling frequency CIP, CIN vIN produceVIP-CIN channelA/D sampling frequency CIP, CIN impedanceOver total operating voltage rangeGIP, CIN impedance CIP, CIN impedanceOver total operating voltage range	Power supply DC rejectionVoltage signal: 200 mVrms/50Hz Current signal: 10 mVrms/50Hz fcLK=2.048 MHz VcC=3.3V ±10%, 5V ±10%90urement accuracySignal to noise ratioCIP-CIN channel – Vin=±230mV @ 55Hz gain 2x over 4 kHz bandwidthSignal to noise ratioCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthSignal to noise ratio + distortionCIP-CIN channel – Vin=±230mV @ 55Hz gain 2x over 4 kHz bandwidthTotal harmonic distortionCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthTotal harmonic distortionCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthSpurious free dynamic rangeCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthSpurious free dynamic rangeCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthPower supply AC rejectionCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthPower supply AC rejectionViP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthPower supply AC rejectionVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthMaximum input signal levelsVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthMaximum input signal levelsVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthMaximum input signal levelsVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthMaximum input signal levelsVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidthMaximum input signal levelsSTPMS2L CIP-CIN channel Gain 8x Gain 16xA/D sampling frequency VnEFVIP-VIN channel <t< td=""><td>Voltage signal: 200 mV_{rms}/50Hz Current signal: 10 mV_{rms}/50Hz $t_{CLK}=2.048$ MHz $V_{CC}=3.3V \pm 10\%, 5V \pm 10\%$901Power supply DC $t_{CLK}=2.048$ MHz $V_{CC}=3.3V \pm 10\%, 5V \pm 10\%$9082Signal to noise ratioCIP-CIN channel – Vin=± 230mV @ 55Hz gain 2x over 4 kHz bandwidth82Signal to noise ratioCIP-CIN channel – Vin=± 230mV @ 55Hz over 4 kHz bandwidth82Signal to noise ratio + distortionCIP-CIN channel – Vin=± 230mV @ 55Hz over 4 kHz bandwidth82CIP-CIN channel – Vin=± 230mV @ 55Hz over 4 kHz bandwidth52CIP-CIN channel – Vin=± 230mV @ 55Hz over 4 kHz bandwidth61OIP-CIN channel – Vin=± 230mV @ 55Hz gain 2x over 4 kHz bandwidth-105Total harmonic distortionCIP-CIN channel – Vin=± 230mV @ 55Hz over 4 kHz bandwidth-105Spurious free dynamic CIP-CIN channel – Vin=± 230mV @ 55Hz over 4 kHz bandwidth90VIP-VIN channel – Vin=± 230mV @ 55Hz over 4 kHz bandwidth90Spurious free dynamicVIP-VIN channel – Vin=± 230mV @ 55Hz over 4 kHz bandwidth90VIP-VIN channel – Vin=± 230mV @ 55Hz over 4 kHz bandwidth90VIP-VIN channel – Vin=± 230mV @ 55Hz over 4 kHz bandwidth90VIP-VIN channel – Vin=± 230mV @ 55Hz over 4 kHz bandwidth90Spurious free dynamic to_LC = CIN channel-0.3Current signal: 10 mV_{rms}/50Hz to_LC = 2.048</td><td>Voltage signal: 200 mV_ms/50Hz Current signal: 10 mV_ms/50Hz CL_L< CL_C=2.048 MHz V_C=3.3V ±10%, 5V ±10%9010Power supply DC Current signal: 10 mV_ms/50Hz CL_K=2.048 MHz V_C=3.3V ±10%, 5V ±10%9082Signal to noise ratioCIP-CIN channel – Vin=±230mV @ 55Hz gain 2x over 4 KHz bandwidth82CIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth82CIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth82CIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth52CIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth-105Total harmonic distortionVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth-78OUP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth-78Spurious free dynamic TrageCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth-78Power supply AC rejectionVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth68VIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth68Power supply AC rejectionVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth68Maximum input signal levelsVIP-VIN channel – Vin=±230mV @ 55H2 over 4 kHz bandwidth68Maximum input signal levelsVIP-VIN channel – Vin=±230mV @ 55H2 over 4 kHz bandwidth120Maximum input signal levelsVIP-VIN channel-0.3+0.3Maximum input signal levelsSTPMS2L CIP-CIN channel Gain 16</td></t<>	Voltage signal: 200 mV _{rms} /50Hz Current signal: 10 mV _{rms} /50Hz $t_{CLK}=2.048$ MHz $V_{CC}=3.3V \pm 10\%, 5V \pm 10\%$ 901Power supply DC $t_{CLK}=2.048$ MHz $V_{CC}=3.3V \pm 10\%, 5V \pm 10\%$ 9082Signal to noise ratioCIP-CIN channel – Vin= ± 230 mV @ 55Hz gain 2x over 4 kHz bandwidth82Signal to noise ratioCIP-CIN channel – Vin= ± 230 mV @ 55Hz over 4 kHz bandwidth82Signal to noise ratio + distortionCIP-CIN channel – Vin= ± 230 mV @ 55Hz over 4 kHz bandwidth82CIP-CIN channel – Vin= ± 230 mV @ 55Hz over 4 kHz bandwidth52CIP-CIN channel – Vin= ± 230 mV @ 55Hz over 4 kHz bandwidth61OIP-CIN channel – Vin= ± 230 mV @ 55Hz gain 2x over 4 kHz bandwidth-105Total harmonic distortionCIP-CIN channel – Vin= ± 230 mV @ 55Hz over 4 kHz bandwidth-105Spurious free dynamic CIP-CIN channel – Vin= ± 230 mV @ 55Hz over 4 kHz bandwidth90VIP-VIN channel – Vin= ± 230 mV @ 55Hz over 4 kHz bandwidth90Spurious free dynamicVIP-VIN channel – Vin= ± 230 mV @ 55Hz over 4 kHz bandwidth90VIP-VIN channel – Vin= ± 230 mV @ 55Hz over 4 kHz bandwidth90VIP-VIN channel – Vin= ± 230 mV @ 55Hz over 4 kHz bandwidth90VIP-VIN channel – Vin= ± 230 mV @ 55Hz over 4 kHz bandwidth90Spurious free dynamic to_LC = CIN channel-0.3Current signal: 10 mV _{rms} /50Hz to_LC = 2.048	Voltage signal: 200 mV_ms/50Hz Current signal: 10 mV_ms/50Hz CL_L< CL_C=2.048 MHz V_C=3.3V ±10%, 5V ±10%9010Power supply DC Current signal: 10 mV_ms/50Hz CL_K=2.048 MHz V_C=3.3V ±10%, 5V ±10%9082Signal to noise ratioCIP-CIN channel – Vin=±230mV @ 55Hz gain 2x over 4 KHz bandwidth82CIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth82CIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth82CIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth52CIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth-105Total harmonic distortionVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth-78OUP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth-78Spurious free dynamic TrageCIP-CIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth-78Power supply AC rejectionVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth68VIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth68Power supply AC rejectionVIP-VIN channel – Vin=±230mV @ 55Hz over 4 kHz bandwidth68Maximum input signal levelsVIP-VIN channel – Vin=±230mV @ 55H2 over 4 kHz bandwidth68Maximum input signal levelsVIP-VIN channel – Vin=±230mV @ 55H2 over 4 kHz bandwidth120Maximum input signal levelsVIP-VIN channel-0.3+0.3Maximum input signal levelsSTPMS2L CIP-CIN channel Gain 16		

 Table 5.
 General operating conditions (continued)

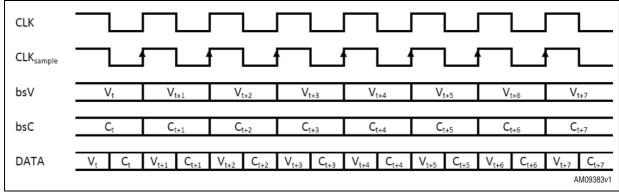

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{ILV}	Voltage channel leakage current	V _{CC} =5.25V, f _{CLK} =4.19MHz	-1		1	μA
		V _{CC} =5.25V, f _{CLK} =4.19MHz	-1		1	
I _{ILI}	Current channel leakage current	V _{CC} =5.25V, f _{CLK} =4.19MHz input enabled	-10		10	
	Crosstalk between channels			130		dB
Digital I/0	O (CLK, DAT, DATN, MS0,	MS1, MS2, MS3)				
V _{IH}	Input High voltage		0.75V _C c		5.3	V
V _{IL}	Input Low Voltage		-0.3		0.25V _C c	v
V _{OH}	Output high voltage	I _O =-1mA, C _L =50pF, V _{CC} =3.2V	V _{CC} -0.4			V
V_{OL}	Output low voltage	I _O =+1mA, C _L =50pF, V _{CC} =3.2V			0.4	V
I _{UP}	Pull up current			15		μA
t _{TR}	Transition time	C _{LOAD} =50pF		10		ns
tL	Latency	From 50% of CLK to 50% to DAT			40	ns
Clock inp	put					
		Low precision mode	1.0		1.228	
f _{CLK}	Nominal frequencies	High precision mode	2.0		2.458	MHz
		Very high precision mode	4.0		4.915	
On chip	reference voltage				•	•
V _{REF}	Reference voltage	STPMS2L only ⁽¹⁾	1.21	1.23	1.25	V
Z _{out}	Output impedance		30		200	kΩ
١ _L	Maximum load current			0		μA
т _с	Temperature coefficient	After calibration		30	50	ppm/°C

Table 5.	General operating cor	ditions (continued)
	deneral operating our	

1. This level may be delivered from external source in STPMS2H.

CLK - clock signal on CLK pin

CLK_{sample} - sigma-delta sampling frequency

bsV - sigma-delta bit stream of voltage signal

bsC - sigma-delta bit stream of current signal

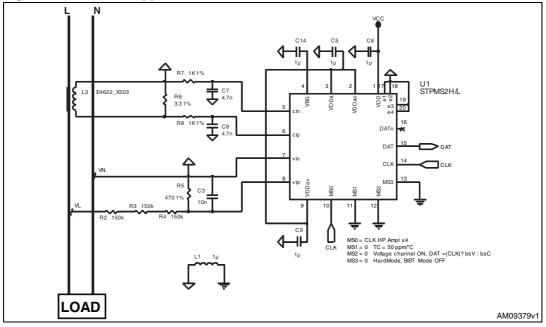
DATA - multiplexed data of voltage and current signal on DAT pin

57

5 Application

The choice of external components in the transduction section of the application is a crucial point in the application design, affecting the precision and the resolution of the entire system.

Among the several considerations, a compromise should be found between the following requirements:


- 1. Maximize the signal-to-noise ratio in the voltage and current channel
- 2. Choose the current-to-voltage conversion ratio Ks and the voltage divider ratio in a way that calibration can be achieved
- 3. Choose Ks to take advantage of the whole current dynamic range in accordance with desired maximum current and resolution.

To maximize the signal-to-noise ratio of the current channel, the voltage divider resistors ratio should be as close as possible to those shown in *Table 6*.

Figure 4 below provides a reference application schematic diagram:

- P = 64000 imp/kWh
- I_{NOM} = 5 A
- I_{MAX} = 60 A

Typical sensitivity values for the current sensors are indicated in Table 6.

Figure 4. Detailed application schematic

Function	Component	Description	Value	Tolerance		Unit
	Calculator	STPMC1				
Line voltage	Resistor	R to R ratio V _{RMS} =230V	1:1650	±1%	50ppm/°C	V/V
interface	divider	R to R ratio V _{RMS} =110V	1:830	±1%	Soppin/ C	v/v
	Rogowski coil		0.15	±5%		
Line current interface	СТ	Current-to-voltage ratio K _S	1.7	±5%	50ppm/°C	mV/A
	Shunt		0.43	±5%		

 Table 6.
 Recommended external components in metering applications

Note: Above listed components refer to typical metering application. Anyhow, STPMS2 operation is not limited to the choice of these external components.

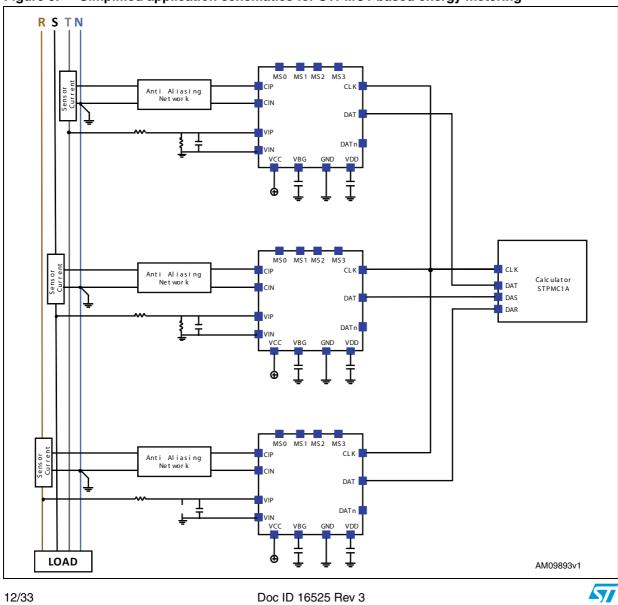


Figure 5. Simplified application schematics for STPMC1 based energy metering

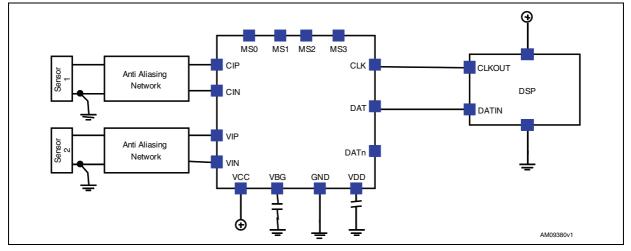


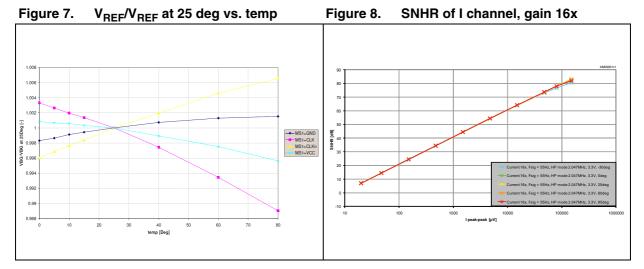
Figure 6. Connection schematics for DSP-based applications

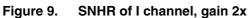
6 Terminology

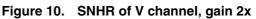
6.1 Conventions

The lowest analog and digital power supply voltage is called GND which represents the system ground. All voltage specifications for digital input/output pins are referred to GND. The highest power supply voltage is called V_{CC} . The highest core power supply is internally generated and is called V_{DD} .

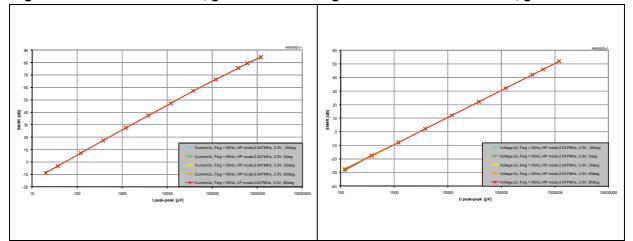
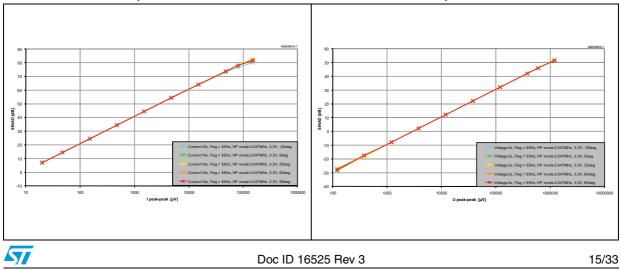
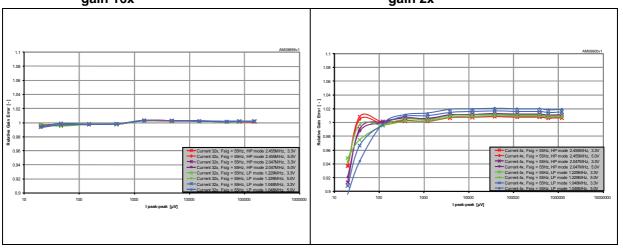
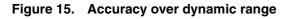
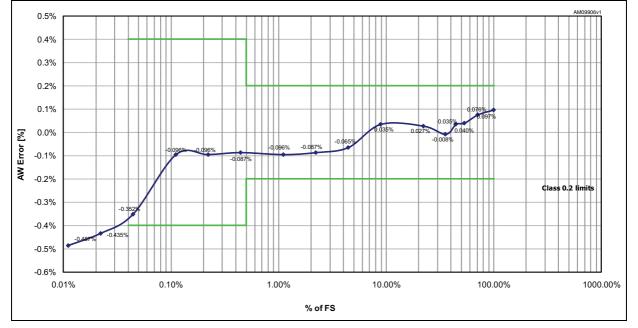
Positive currents flow into a pin. Sinking current means that the current is flowing into the pin and thus it is positive. Sourcing current means that the current is flowing out of the pin and thus it is negative.

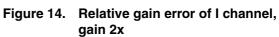

A positive logic convention is used in all equations.


6.2 Notation


Output bit streams of the modulator are indicated as bsV and bsC for voltage and current channels, respectively.

7 Typical performance characteristics


Figure 11. SINAD of I channel, gain 16x (temp. Figure 12. SINAD of I channel, gain 16x (temp. variation) variation)

8 Theory of operation

8.1 General operation description

The STPMS2 performs second-order analog modulation of two channels in parallel, with appropriate non-overlapping control signal generator, of signals with frequencies varying from DC to 4 kHz on two independent channels in parallel. The outputs of the converters provide two streams of digital ones and zeros which can be then be multiplexed in time to reduce the number of external connections.

The STPMS2 converts analog signals on two independent channels in parallel via deltasigma ($\Sigma\Delta$) analog-to-digital converters into a binary stream of sigma-delta signals. The device is particularly suitable to measure electrical line parameters (voltage and current) via analog signals from voltage sensors (current divider) and current sensors (inductive Rogowski coil, current transformer or shunt resistors). There is a current channel for measuring line current and a voltage channel for measuring line voltage. The current channel input is connected through an external anti-aliasing RC filter to a Rogowski coil, current transformer (CT) or shunt current sensor which converts line current into an appropriate voltage signal. The current channel includes a low-noise voltage preamplifier with programmable gain. The voltage channel is connected directly through a resistor voltage divider and anti-aliasing filter to a line voltage modulator (ADC). Both channels have quiescent zero signal point at GND, so the STPMS2 is able to sample differential signals on both channels with their zero point around GND.

The converted $\Sigma\Delta$ signals are multiplexed in time in order to reduce the number of external connections. The conversion and the multiplex are driven by external clock signal CLK.

The device is used in conjunction with a digital signal processing circuit to implement an effective measuring system of a multi-phase power meter.

The STPMS2 also includes a temperature compensated band-gap reference voltage generator, low-drop supply voltage regulator and minimal digital circuitry that includes BIST (built-in self-test) structures. In a current signal processing channel, a low-noise preamplifier is included upstream of the sigma-delta converter. All reference voltages are designed to eliminate channel crosstalk.

The STPMS2 can operate in fast (HP) or low-power (LP) mode (see also *Table 7*). In fast mode, a nominal clock frequency of up to 4.1 / 4.9 MHz is applied to the clock input. In this mode, signal bandwidth is specified between 0 and 4 kHz. In low-power mode, the nominal clock is four times slower (1 MHz) to lower the power consumption of the circuit. In low-power mode, the quiescent bias currents of the preamplifier and sigma-delta integrators are reduced and the signal bandwidth is narrowed to the frequency bandwidth of 0 to 1 kHz.

The mode of operation and configuration of the device can be selected by wiring configuration pins (MS0, MS1, MS2 and MS3) to V_{CC} , GND, CLK or NCLK signal. This approach can be used to change the settings of a current channel, sigma-delta stream output mode and temperature compensation curve of an internal band-gap reference. These pins can act as a serial port to change the configuration of the device.

8.2 Functional description of the analog part

The supply pins for the analog part are VCC, VDDa, VDDac, VDDav, VBG and GND.

The GND pin also represents a reference point. The VDDa is an analog I/O pin of the internal +3.0 V low drop voltage regulator and the VDDac and VDDav are the modulator

supply inputs. A 1 μ F capacitor should be connected between VDDxx and GND. The input of the regulator is VCC, which also powers the band-gap and bias generators. The band-gap output is VBG, which should be connected to GND via a 100 nF capacitor.

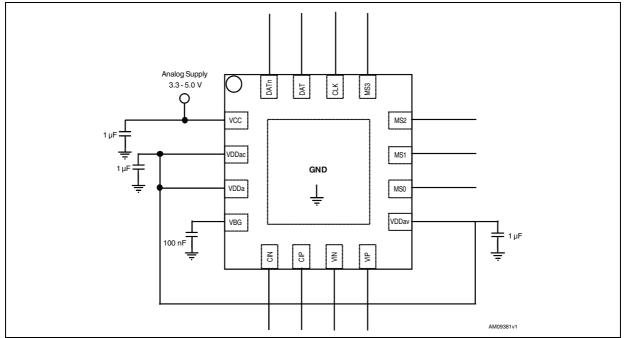


Figure 16. Power supply external connection scheme

The analog part of the STPMS2 consists of:

- pre-amplifier in the current channel
- 1.23 V reference voltage generator (STPMS2L only)
- +3 V low-drop supply voltage regulator
- two sigma-delta 2nd order modulators
- BIST DAC
- AGND and V_{REF} reference buffers
- bias current generators

The voltage channel has a pre-amplification gain of 2, which defines the maximum differential voltage on voltage channel inputs to \pm 300 mV. The relative gain of the current channel is selectable among 2, 4, 8 or 16, which defines the maximum differential voltage on the current channel to \pm 300 mV, \pm 150 mV, \pm 75 mV or \pm 37.5 mV, respectively. The full range of gains is available only in soft mode (see *Section 8.5*), while in hard mode only 2 and 16 are selectable.

The temperature-compensated reference voltage generator produces $V_{REF} = 1.23$ V. This generator is implemented as a band gap generator, whose temperature compensation curve can be selected through configuration.

The low drop regulator fixes and stabilizes the core supply voltage to VDDa = 3 V. All digital pads tolerate 5 V logic levels.

The STPMS2 is clocked by an external clock signal connected to pin CLK.

The STPMS2L sigma-delta modulators work in several operating modes, shown in *Table 7* below.

Doc ID 16525 Rev 3

Table 7.	Operating modes
	operating modes

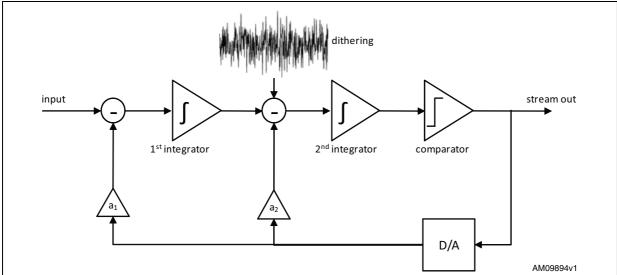
Operating mode		Device	fclk	Current consumption
LP (low power)	LPR (low precision)	STPMS2L	1 MHZ	1,2 mA typ
	HPR (high precision)	STPMS2L	2 MHz – 4MHz	4 m A tun
HP (fast)	HHPR (very high precision)	STPMS2H	4 MHz	4 mA typ

LPR (low precision): f_{CLK} = 1 MHz and settings defined by MS0 through MS3

HPR (high precision): the normal mode of operation with $f_{CLK} = 2$ MHz to 4 MHz

The STPMS2H sigma-delta modulators work in the following mode:

HHPR (very high precision) external reference must be connected to VBG, $f_{CLK} = 4$ MHz.


The STPMS2 performs operations in 2 basic modes: Hard mode and Soft mode.

In Hard mode the configuration is set through external pins MS0, MS1, MS2 and MS3.

In Soft mode, 40 configuration bits can be accessed through CFG[39:0], via serial communication. The pins used for serial communication are: MS0, MS1 and MS2.

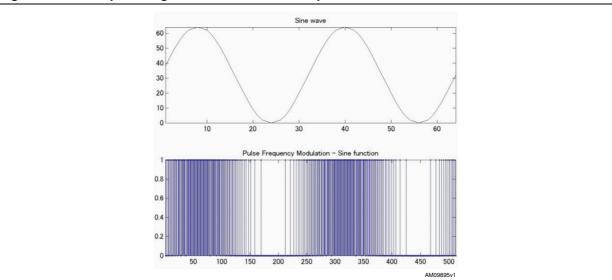
Switching between Hard and Soft modes is achieved through pin MS3.

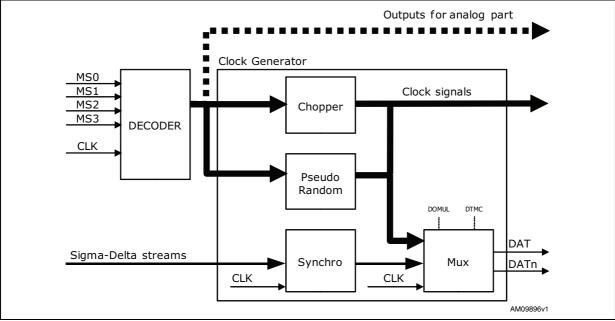
- **Hard mode**: In this case the device configuration is bootstrapped at startup and signals come from VIN and VIP for voltage channels, and CIP and CIN for current channels or from internal BIST DAC.
- **Soft mode**: In this mode all possible settings from Hard mode are accessible, as well as the additional settings described in *Section 8.5*.

Figure 17. Block diagram of the modulator

The STPMS2 sends to the DAT and DATn pins selected signals based on the configuration used.

Both outputs have cross-current and slew rate limiters to prevent excessive current spikes on supply lines.




Figure 18. Example of sigma-delta modulator output in case of sinusoidal waveform

8.3 Functional description of the digital part

The digital section (DFE) includes:

- a decoder for different modes of operation
- a generator for clock frequency
- level shifters, pull-up stages and power buffers outside the DFE block

8.3.1 Decoder for different modes of operation

The decoder defines the operating mode according to the state of the bootstrap MS0, MS1, MS2 and MS3 pins. Two different operational modes can be defined:

- Hard mode: In this case the device configuration is bootstrapped at startup and signals come from VIN and VIP for voltage channels, and CIP and CIN for current channels or from internal BIST DAC.
- Soft mode: In this mode all possible settings from Hard mode are accessible, as well as additional settings such as dither and chopper signal frequencies and operation (see *Section 8.5*).

8.3.2 Generator for clock frequency

Chopper and BIST frequency generator

The Chopper block generates the chopper frequencies and BIST signals for the voltage and current channels. The BIST DAC output levels are appropriately adjusted for the current channel according to the gain selection, while for the voltage channel the max DC voltage is used.

The levels are 300 mV for the voltage channel and 300 mV / 150 mV / 75 mV / 37.5 mV for the current channel, in accordance with gain settings 2/4/8/16, respectively, when operating in Soft mode, while 300 mV / 37.5 mV based on gain settings 2/16 when operating in Hard mode.

Pseudo random

The Pseudo random block generates pseudo random signals for the voltage and current channels. These random signals are used to implement a dithering technique to de-correlate the output of the modulators and avoid accumulation points on the frequency spectrum.

Synchro

In Synchro block the synchronization of sigma-delta input streams with strobe signals from analog part and clock signal is performed.

Mux

In the Mux block, which signals are connected to output pins DAT and DATn are selected.

In HardMode, the output signals are selected by input pin MS2.

In SoftMode, the output signals are selected by 8 configuration bits.

8.4 Hard mode

The STPMS2 operates in Hard mode when input pin MS3 is connected to GND or VCC, as described in *Table 11*.

In Hard mode, the STPMS2 has four digital input pins (MS0, MS1, MS2 and MS3) to configure the basic operating parameters:

- BIST DAC enable
- temperature curve of reference voltage
- current and voltage channels settings
- output mode settings

In this way it is possible to access 128 different combinations, which are controlled through pins MS0, MS1, MS2 and MS3.

MS0 sets the operating mode and amplifier gain selection as described in Table 8.

For the STPMS2L:

- MS0=GND or CLK to select LPR (low precision); f_{CLK} = 1 MHz is the typical input clock frequency and low power mode is selected.
- MS0=NCLK or VCC to select HPR (high precision): f_{CLK} = 2 MHz is the typical input clock frequency and accuracy is enhanced.

For the STPMS2H, LPR mode is not used and the settings should be chosen between MS0=NCLK or VCC. In this case, $f_{CLK} = 4$ MHz is typical.

The relative gain of the current channel is selectable between 2 or 16, which defines the maximum differential voltage on the current channel to \pm 300 mV or \pm 37.5 mV, respectively. The voltage channel gain setting is fixed at 2, which defines the maximum differential voltage on the voltage channel inputs to \pm 300 mV.

MS0	Mode	Description			
GND	0	PR, amplifier GAIN selection g3 = 16			
CLK	1	PR, amplifier GAIN selection g0 = 2			
NCLK	2	HPR, amplifier GAIN selection g0 = 2			
VCC	3	HPR, amplifier GAIN selection $g3 = 16$			

 Table 8.
 Precision mode and input amplifier gain selection

MS1 defines the temperature compensation (TC) curve of the internal voltage reference of the STPMS2L, as described in *Table 9*. This bootstrap function is not used with the STPMS2H. The temperature-compensated reference voltage generator produces $V_{REF} = 1.23$ V. This generator is implemented as a band gap generator, whose temperature compensation curve can be selected through the MS1 configuration pin.

MS1	Mode	Description			
GND	0	TC = 60 ppm/°C			
CLK	1	Flattest TC = +30 ppm/°C			
NCLK	2	TC = +160 ppm/°C			
VCC	3	TC = -160 ppm/°C			

Table 9. TC of the band-gap reference

MS2 defines the outputs of the device:

The STPMS2 sends to the DAT and DATn pins the sigma-delta streams synchronous to the CLK signal. The output mode can be configured according to *Table 10* as follows:

- The output current channel's sigma-delta stream on DAT and the voltage channel's sigma-delta stream on DATn
- Output multiplexed signals, so when CLK = 0, the current channel output sigma-delta value is set on the DAT pin, and when CLK = 1, the voltage channel output sigma-delta value is set on the DAT pin. The DATn pin tracks DAT, so DATn = ~DAT.
- Output current channel's sigma-delta stream on DAT and the current channel's sigmadelta stream negated on DATn

Doc ID 16525 F	Rev 3
----------------	-------

MS2	Mode	Description			
GND	0	Voltage channel ON, DATn = ~ [DAT =(CLK) ? bsV : bsC)]			
CLK	1	Voltage channel OFF, DATn = bsCn, DAT = bsC			
NCLK	2	Voltage channel OFF, DATn = bsCn, DAT = bsC			
VCC	3	Voltage channel ON, DATn = bsC, DAT = bsV			

Table 10. Control of voltage channel and output signals

MS3 enables or disables the BIST DAC output levels.

If enabled (MS3=VCC), the input of the modulators are disconnected from pin VIP, VIN and CIP, and CIN, and connected to the output of BIST DAC which generates 2 different levels appropriately adjusted for the current channel 300 mV / 37.5 mV depending on gain settings 2/16, while for the voltage channel, 300 mV is used. This mode is used as auto diagnostic methodology of good behavior of the two modulators.

When disabled (MS3=GND), the input of the modulators comes from pins VIP, VIN and CIP, and CIN. This is the normal operating condition.

Table 11.	Selection of Hard, Soft or Test mode and enable of BIST
-----------	---

MS3	Mode	Description		
GND	0	HardMode, BIST mode OFF		
CLK	1	Soft mode		
NCLK	2	Reserved		
VCC	3	HardMode, BIST mode ON		

8.5 Soft mode

The STPMS2 switches to Soft mode when MS3 is connected to CLK. In Soft mode, input pins MS0, MS1 and MS2 control the serial communication port, as described in *Table 12*. This way, all settings of the 40 internal configuration bits can be changed. The old values remain in the registers until they are overwritten.

Table 12. Pins for SPI communication

Pin	Function	Description
MS0	SCL	Clock input
MS1	TDI	Data input
MS2	TDS	Enable
MS3	CLK	SPI operation

Hard mode	Soft mode	Internal signal	Description			
MS0	CFG[0]	LP/HP	Operating mode: LP/HP=0: LPR LP/HP=1: HPR			
MS0	CFG[1]		Gain selector of current channel pre-amplifier:			
MS0	CFG[2]	GAIN	GAIN=0: x2 GAIN=1: x4 GAIN=2: x8 GAIN=3: x16			
MS1	CFG[3]		Temperature compensation of voltage reference:			
MS1	CFG[4]	тс	TC=0: TC = 60 ppm/°C TC=1: Flattest TC = +30 ppm/°C TC=2: TC = +160 ppm/°C TC=3: TC = -160 ppm/°C			
MS2	CFG[5]	DOMUL	Output multiplexer enable: DOMUL=0: outputs not multiplexed DOMUL=1: outputs multiplexed			
MS2	CFG[6]	PDV	Power-down of voltage modulator: PDV=0: Voltage modulator on PDV=1: Voltage modulator off			
MS3	CFG[7]	EBISTC	Current modulator BIST DAC enable: EBISTC=0: BISTC disabled EBISTC=1: BISTC enabled - EBISTC Frequency output 0 0 1 CLK/2 ¹⁵ x LFC			
MS3	CFG[8]	EBISTV	Voltage modulator BIST DAC enable: EBISTC=0: BISTV disabled EBISTC=1: BISTV enabled - EBISTV Frequency output 0 0 1 CLK/2 ¹⁵ x LFV			
MS3	CFG[9]	EINCHPC	CIP, CIN input pin enable: EINCHPC=0: CIN CIP disabled EINCHPC=1: CIN CIP enabled			
MS3	CFG[10]	EINCHPV	VIP, VIN input pin enable: EINCHPC=0: VIN VIP disabled EINCHPC=1: VIN VIP enabled			
1	CFG[11]	ECHPLFC	Low frequency chopper of current modulator enable: ECHPLFC=0: LFC disabled ECHPLFC=1: LFC enabled ⁽¹⁾			

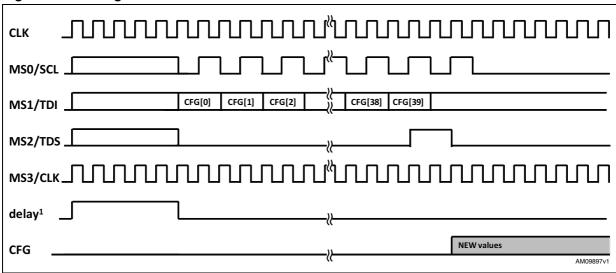
 Table 13.
 Description of output signals and configuration bits CFG[39:0]

Hard mode	Soft mode	Internal signal	Description				
1	CFG[12]		LFC of current channel frequency selector:				
0	CFG[13]		- MC[2:0] Frequency				
			000 CLK/1024				
			001 ⁽¹⁾ CLK/512				
		MC	010 CLK/256				
		in o	011 CLK/128				
0	CFG[14]		100 CLK/64				
			101 ⁽²⁾ CLK/64				
			110 ⁽²⁾ CLK/64				
			111 ⁽²⁾ CLK/64				
			High Frequency Chopper of current modulator enable:				
1	CFG[15]	ECHPHFC	ECHPHFC=0: HFC disabled				
			ECHPHFC=1: HFC enabled ⁽¹⁾				
1	CFG[16]		HFC of current channel frequency selector				
1	CFG[17]		– NC[2:0] Frequency				
			000 ⁽²⁾ CLK/256				
			001 ⁽²⁾ CLK/128				
		NC	010 CLK/256				
_		NC	011 ⁽¹⁾ CLK/128				
0	CFG[18]		100 CLK/64				
			101 CLK/32				
			110 CLK/16				
			111 CLK/8				
			Low Frequency Chopper of voltage modulator enable:				
1	CFG[19]	ECHPLFV	ECHPLFV=0: LFV disabled				
			ECHPLFV=1: LFV enabled ⁽¹⁾				
1	CFG[20]		LFC of voltage channel frequency selector:				
0	CFG[21]		– MV[2:0] Frequency				
			000 CLK/1024				
			001 ⁽¹⁾ CLK/512				
		MV	010 CLK/256				
			011 CLK/128				
0	CFG[22]		100 CLK/64				
			101 ⁽²⁾ CLK/64				
			110 ⁽²⁾ CLK/64				
			111 ⁽²⁾ CLK/64				
			High Frequency Chopper of voltage modulator enable:				
1	CFG[23]	ECHPHFV	ECHPHFC=0: HFV disabled				
			ECHPHFC=1: HFV enabled ⁽¹⁾				

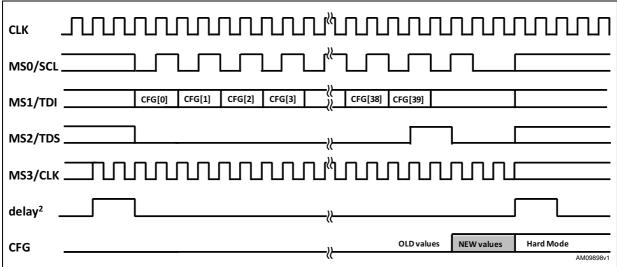
 Table 13.
 Description of output signals and configuration bits CFG[39:0] (continued)

Hard Mode	Soft mode	Internal signal	Description					
1	CFG[24]		HFC of voltage	HFC of voltage channel frequency selector:				
1	CFG[25]		– NV[2:0]	Frequ	ency			
			000 (2)	CLK/				
			001 ⁽²⁾	CLK/				
		NV	010	CLK/2				
0	CFG[26]		011 ⁽¹⁾	CLK/				
U			100	CLK/				
			101 110	CLK/: CLK/ ⁻				
			111	CLK/				
1	CFG[27]	EPRSC	Current modula EPRSC=0: PRS	-		griais enable	•	
I		LINGO	EPRSC=1: PRS					
		Voltage modulator pseudo random signals enable:						
1	CFG[28]	EPRSV	EPRSV=0: PRS	•		griais enable	•	
I		LINGV	EPRSV=1: PRS					
0	CFG[29]	-	Reserved					
0	CFG[30]	-	Reserved					
0	CFG[31]	-	Reserved					
0	CFG[32]		DAT and DAT o	utout signa	l selector:			
0	CFG[33]		- DTMC[5:0]	pdV	domul	DAT	DATn	
			00XXXX	0	0	bsV	bsC	
0	CFG[34]		00XXXX	0	1	(bsV,bsC)	(bsVn,bsCn)	
0	CFG[35]		00XXXX	1	0	bsC	bsCn	
0	CFG[36]		00XXXX	1	1	bsC	bsCn	
			01XX00	0	0	bsV	LFC	
			01XX01	0	1	(bsV,bsC)	HFC	
		DTMC	01XX10	1	0	bsC	BISTC	
			01XX11 1000XX	1	1 0	bsC LFV	PRSC bsC	
			1000XX 1001XX	0 0	1	HFV		
0	CFG[37]		1010XX	1	0	BISTV	(bsVn,bsCn) bsCn	
			1011XX	1	1	PRSV	bsCn	
			110000	x	x	LFV	LFC	
			110101	X	X	HFV	HFC	
			111010	Х	Х	BISTV	BISTC	
			111111	Х	Х	PRSV	PRSC	
0	CFG[38]	-	Reserved					
0	CFG[39]	-	Reserved					

Table 13. Description of output signals and configuration bits CFG[39:0]	(continued)
--	-------------


1. Default value for Hard mode

2. Combinations not used


8.5.1 Writing to the configuration register in Soft mode

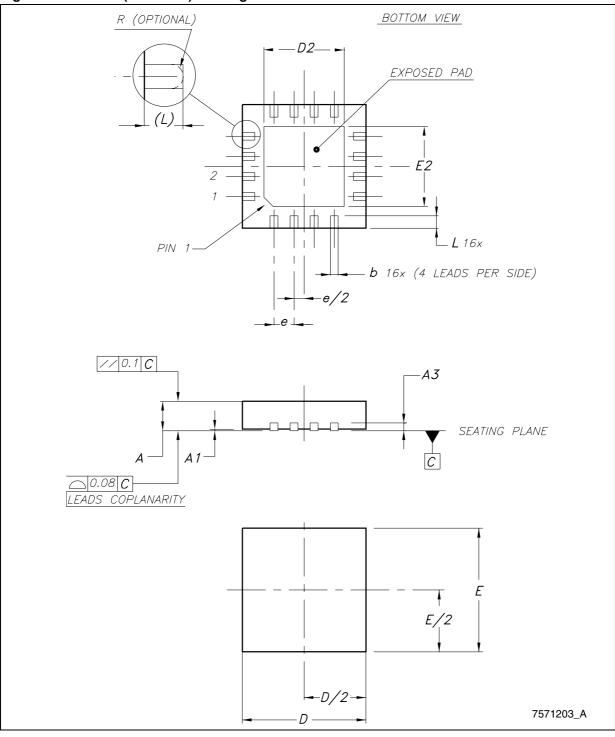
All 40 configuration bits must be overwritten.

Figure 20. Timings to switch to Soft mode after POR

1. After power-on reset, Soft mode is selected (MS3=CLK), the bits MS0 .. MS2 must be stable at least 5*CLK

Figure 21. Timings to switch to Soft mode

2. After switching into Soft mode (MS3=CLK), the bits MS0 .. MS2 must be stable at least 2*CLK. The same rule applies when switching from Soft mode to Hard mode: MS0 .. MS2 must be stable at least 2*CLK


9 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Dim.	mm.				
	Min.	Тур.	Max.		
А	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
A3		0.20			
b	0.25	0.30	0.35		
D	3.90	4.00	4.10		
D2	2.50		2.80		
E	3.90	4.00	4.10		
E2	2.50		2.80		
e		0.65			
L	0.30	0.40	0.50		

Table 14. QFN16 (4 x 4 mm.) mechanical data

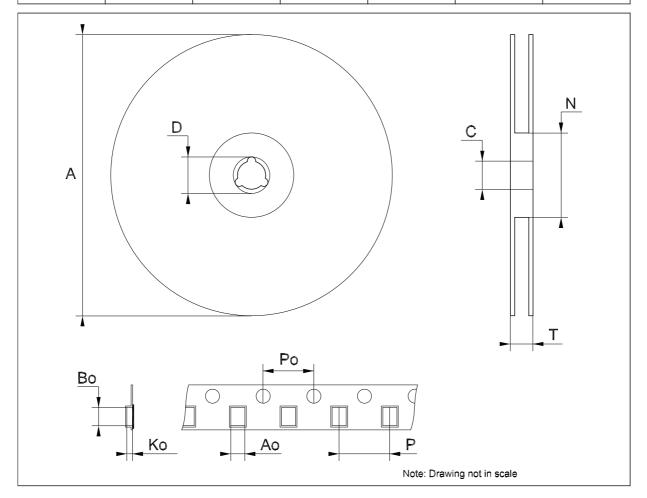


Figure 22. QFN16 (4 x 4 mm.) drawing

Dim.	mm.			inch.		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	99		101	3.898		3.976
Т			14.4			0.567
Ao		4.35			0.171	
Во		4.35			0.171	
Ko		1.1			0.043	
Po		4			0.157	

Doc ID 16525 Rev 3

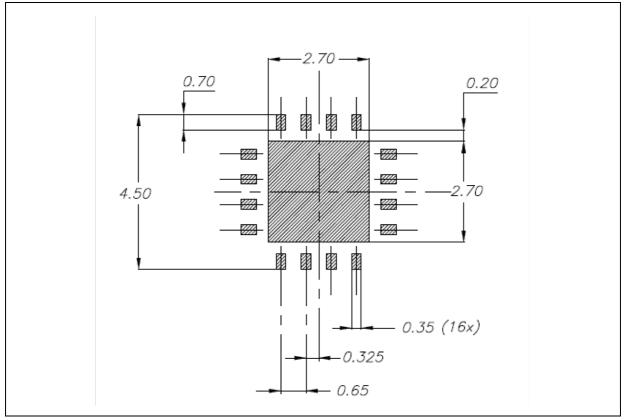


Figure 23. QFN16 (4 x 4) footprint recommended data (dimension in mm.)

10 Revision history

Table 15.	Document revision history
-----------	---------------------------

Date	Revision	Changes
23-Oct-2009	1	Initial release.
06-Jul-2011	2	Document status promoted from preliminary data to datasheet.
11-Oct-2011	3	Modified: 100 μF ==> 100 nF <i>Section 8.2 on page 17</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 16525 Rev 3