8032AH/8052AH #### DESCRIPTION The Philips 8032AH/8052AH is a high-performance microcontroller fabricated using the Philips high-density highly reliable +5V, depletion-load, N-channel, silicon-gate, N500 MOS process technology. It provides the hardware features, architectural enhancements and instructions that are necessary to make it a powerful and cost-effective controller for applications requiring up to 64k bytes of program memory and/or up to 64k bytes of data storage. The 8032AH/8052AH contains 256 bytes of read/write data memory, 32 I/O lines configured as four 8-bit ports, three 16-bit counter/filmers, a six-source, two-priority-level nested interrupt structure, a programmable serial I/O port and on-chip oscillator and clock circuitry. The 8052AH has all of these features plus 8k bytes of non-volatile read-only program memory. Both microcontrollers have memory expansion capabilities of up to 64k bytes of data storage and 64k bytes of program memory that can be attained with standard TTL compatible memories. Because of its extensive BCD/binary arithmetic and bit-handling facilities, the 8032AH/8052AH microcontroller is efficient at both computational and control-oriented tasks. Efficient use of program memory is also achieved by using the familiar compact instruction set of the 8031AH/8051AH. Forty-four percent of the instructions are one-byte, 41% two-byte, and 15% three-byte instructions. With a 12MHz crystal, the majority of the instructions execute in just 1.0µs. The longest instructions, multiply and divide, require only 4µs at 12MHz. #### **FEATURES** - 8032AH control-oriented CPU with RAM and I/O - 8052AH an 8032AH with factory mask-programmable ROM - 8k X 8 ROM (8052AH only) - 256 X 8 FIAM - Four 8-bit ports, 32 I/O lines - Three 16-bit timer/counters - Programmable full-duplex serial channel - Variable transmit/receive baud rate capability - Timer 2 capture capability - External memory - 64k ROM and 64k RAM - Boolean processor - 128 user bit-addressable locations - Upward compatible with 8031AH/8051AH #### **PIN CONFIGURATIONS** # 8032AH/8052AH ### **ORDERING INFORMATION** | | PHILIPS | | | PHILIPS | NORTH AMERICA | | | | |--------------------------------|------------------------------|---------------|-------------------|---------------|---------------|-------------------|--|--------------| | ROMIess
(MARKING
NUMBER) | ROMIess
(ORDER
NUMBER) | ROM | Drawing
Number | ROMiess | ROM | Drawing
Number | TEMPERATURE
°C
AND PACKAGE | FREQ.
MHz | | MAB8032AH-2-12P | MAB8032A-2N | MAB8052AH-2P | SOT129 | SCN8032HCCN40 | SCN8052HCCN40 | 0415C | 0 to +70,
Plastic Dual
In-Ilne Package | 12 | | MAB8032AH-2-12WP | MAB8032A-2A | MAB8052AH-2WP | SOT187 | SCN8032HCCA44 | SCN8052HCCA44 | 0403G | 0 to +70,
Plastic Leaded
Chip Carrier | 12 | | MAF8032AH-2-12P | MAF8032A-2N | MAF8052AH-2P | SOT129 | SCN8032HACN40 | SCN8052HACN40 | 0415C | -40 to +85,
Plastic Dual
In-Line Package | 12 | | MAF8032AH-2-12WP | MAF8032A-2A | MAF8052AH-2WP | SOT187 | SCN8032HACA44 | SCN8052HACA44 | 0403G | -40 to +85,
Plastic Leaded
Chip Carrier | 12 | | MAB8032AH-2-15P | MAB8032A-3N | | | SCN8032HCFN40 | SCN8052HCFN40 | 0415C | 0 to +70,
Plastic Dual
In-Line Package | 15 | | MAB8032AH-2-15WP | MAB8032A-3A | | | SCN8032HCFA44 | SCN8052HCFA44 | 0403G | 0 to +70,
Plastic Leaded
Chip Carrier | 15 | | MAF8032AH-2-15P | MAF8032A-3N | | | SCN8032HAFN40 | SCN8052HAFN40 | 0415C | -40 to +85,
Plastic Dual
In-Line Package | 15 | | MAF8032AH-2-15WP | MAF8032A-3A | | | SCN8032HAFA44 | SCN8052HAFA44 | 0403G | -40 to +85,
Plastic Leaded
Chip Carrier | 15 | ### **LOGIC SYMBOL** # 8032AH/8052AH #### **BLOCK DIAGRAM** ### 8032AH/8052AH #### PIN DESCRIPTION | PIN NO. | | | * | | |-----------------|-------------|--------------------|----------|--| | MNEMONIC | DIP | LCC | TYPE | NAME AND FUNCTION | | V _{SS} | 20 | 22 | ī | Ground: 0V reference. | | V _{CC} | 40 | 44 | 1 | Power Supply: This is the power supply voltage for normal, idle, and power-down operation. | | P0.0-0.7 | 39–32 | 43–36 | 1/0 | Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external program and data memory. In this application, it uses strong internal pull-ups when emitting 1s. | | P1.0-P1.7 | 1–8 | 2–9 | I⁄O | Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Pins P1.0 and P1.1 also correspond to the special functions T2, timer 2 counter trigger input, and T2EX, external input to timer 2. the output latch on these two special functions must be programmed to one for that function to operate. Port 1 also receives the low-order address byte during program verification. | | | 1 | 2 | 1 | T2 (P1.0): Timer/counter 2 trigger input. | | | 2 | 3 | 1 | T2EX (P1.1): Timer/counter 2 external count input. | | P2.0-P2.7 | 21–28 | 24–31 | 1/0 | Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). During accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function register. | | P3.0-P3.7 | 10–17
10 | 11,
13–19
11 | 1/O
1 | Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 also serves the special features of the SC80C51 family, as listed below: RxD (P3.0): Serial input port | | | 11 | 13 | 6 | TxD (P3.1): Serial output port | | | 12 | 14 | ' | INTO (P3.2): External interrupt | | | 13
14 | 15
16 | | INT1 (P3.3): External interrupt | | | 15 | 17 | li | T0 (P3.4): Timer 0 external input T1 (P3.5): Timer 1 external input | | | 16 | 18 | 0 | WR (P3.6): External data memory write strobe | | | 17 | 19 | 0 | RD (P3.7): External data memory read strobe | | RST | 9 | 10 | 1 | Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device. A small external pull-down resistor (approx 8.2kohm) from RST to V _{SS} permits power-on reset when a capacitor (approx 10uF) is also connected from this pin to V _{CC} . | | ALE | 30 | 33 | 1/0 | Address Latch Enable: Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. | | PSEN | 29 | 32 | 0 | Program Store Enable: The read strobe to external program memory. When the device is executing code from the external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory. | | EA | 31 | 35 | l
l | External Access Enable: EA must be externally held low to enable the device to fetch code from external program memory locations 0000H and 1FFFH. If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than 1FFFH. | | XTAL1 | 19 | 21 | 1 | Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits. | | XTAL2 | 18 | 20 | 0 | Crystal 2: Output from the inverting oscillator amplifier. | # OSCILLATOR CHARACTERISTICS XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier. The pins can be configured for use as an on-chip oscillator, as shown in the logic symbol. To drive the device from an external clock source, XTAL2 should be driven while XTAL1 is connected to ground. There are no requirements on the duty cycle of the external clock signal, because the input to the internal clock circuitry is through a divide-by-two flip-flop. However, minimum and maximum high and low times specified in the data sheet must be observed. #### RESET A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), while the oscillator is running. ### 8032AH/8052AH #### **ABSOLUTE MAXIMUM RATINGS 1, 2, 3** | PARAMETER | RATING | UNIT | |---|--------------|------| | Storage temperature range | -65 to +150 | °C | | Voltage on any other pin to V _{SS} | -0.5 to +7.0 | ٧ | | Input, output current on any single pin | 10 | mA | | Power dissipation | 1.5 | w | #### DC ELECTRICAL CHARACTERISTICS $T_{amb} = 0$ °C to +70°C or -40°C to +85°C, $V_{CC} = 5V \pm 10$ %, $V_{SS} = 0V^{4, 5}$ | SYMBOL | | TEST | LII | | | |------------------|--|---|-----|----------------------|------| | | PARAMETER | CONDITIONS | MIN | MAX | UNIT | | V _{IL} | Input low voltage | | 0.5 | 0.8 | ٧ | | VIH | Input high voltage; except XTAL2, RST | | 2.0 | V _{CC} +0.5 | ٧ | | V _{IH1} | Input high voltage to RST for reset, XTAL2 | XTAL1 to V _{SS} | 2.5 | V _{CC} +0.5 | ٧ | | V _{OL} | Output low voltage; ports 1, 2, 3 ⁶ | I _{OL} = 1.6mA | | 0.45 | ٧ | | V _{OL1} | Output low voltage; port 0, ALE, PSEN6 | I _{OL} = 3.2mA | | 0.45 | ٧ | | V _{OH} | Output high voltage; ports 1, 2, 3 | I _{OH} = -80μA | 2.4 | | ٧ | | V _{OH1} | Output high voltage; port 0 in external bus mode, ALE, PSEN3 | I _{OH} = -400μA | 2.4 | | ٧ | | I _{IL} | Logical 0 input current; ports 1, 2, 3 | V _{IN} = 0.45V | | -800 | μА | | l _{iH1} | Input high current to RST for reset | V _{IN} = V _{CC} -1.5V | | 500 | μА | | lu | Input leakage current; port 0, EA | 0.45 < V _{IN} < V _{CC} | | ±10 | μА | | l _{IL2} | Logical 0 input current for XTAL2 | XTAL1 = V _{SS} , V _{IN} = 0.45V | | -3.2 | mA | | lcc | Power supply current | All outputs disconnected and EA = V _{CC} | | 175 | mA | | C _{IO} | Pin capacitance | f _C = 1MHz, T _{amb} = 25°C | | 10 | pF | #### T_{amb} = -40°C to +85°C - Extended temperature range, V_{CC} = 5V ±10%, V_{SS} = 0V | V _{IH} | Input high voltage; except XTAL2, RST | | 2.2 | V _{CC} +0.5 | ٧ | |------------------|--|----------------------------------|-----|----------------------|----| | V _{IH1} | Input high voltage to RST for reset, XTAL2 | XTAL1 to V _{SS} | 2.7 | | ٧ | | I _{IL2} | Logical 0 input current for XTAL2 | $XTAL1 = V_{SS}, V_{in} = 0.45V$ | | -3.5 | mA | #### NOTES: - Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section of this specification is not implied. - For operating at elevated temperatures, the device must be derated based on +150°C maximum junction temperature. - 3. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima. - Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted. - 5. All voltage measurements are referenced to ground. For testing, all input signals swing between 0.45V and 2.4V with a transition time of 20ns maximum. All time measurements are referenced at input voltages of 0.8V and 2.0V and at output voltages of 0.8V and 2.0V as appropriate. - Vol. is derated when the device rapidly discharges external capacitance. This AC noise is most pronounced during emission of address data. When using external memory, locate the latch or buffer as close as possible to the device. | | Emitting | Degraded | | | | |------------|----------|-------------|----------------------------|--|--| | Datum | Ports | VO Lines | V _{OL} (Peak Max) | | | | Address | P2, P0 | P1, P3 | 0.8V | | | | Write Data | P0 | P1, p3, ALE | 0.8V | | | 7. $C_L = 100pF$ for port 0, ALE and \overline{PSEN} outputs: $C_L = 80pF$ for all other ports. # 8032AH/8052AH #### **AC ELECTRICAL CHARACTERISTICS** T_{amb} = 0°C to +70°C or -40°C to +85°C, V_{CC} = 5V ±10%, V_{SS} = 0V^{1, 2} | | | | 12MHz CLOCK | | VARIABLE CLOCK | | | |---------------------|--------|--|-------------|-----|--------------------------|-------------------------|--------------------------| | SYMBOL | FIGURE | URE PARAMETER | | MAX | MIN | MAX | UNIT | | 1/t _{CLCL} | | Oscillator frequency: Speed Versions SCN8052 C 32MAB8052/32 -2 SCN8052 F 32MAF8052/32 -2 | | | 3.5
3.5
3.5
3.5 | 12
12
15
12 | MHz
MHz
MHz
MHz | | t _{LHLL} | 1 | ALE pulse width | 127 | | 2t _{CLCL} -40 | | ns | | t _{AVLL} | 1 | Address valid to ALE low | 43 | | t _{CLCL} -40 | | ns | | tulax | 1 | Address hold after ALE low | 48 | | t _{CLCL} -35 | | ns | | t _{LLIV} | 1 | ALE low to valid instruction in | | 233 | | 4t _{CLCL} -100 | ns | | t _{LLPL} | 1 | ALE low to PSEN low | 58 | | t _{CLCL} -25 | | ns | | t _{PLPH} | 1 | PSEN pulse width | 215 | | 3t _{CLCL} -35 | | ns | | t _{PLIV} | 1 | PSEN low to valid instruction in | | 125 | | 3t _{CLCL} -125 | ns | | t _{PXIX} | 1 | Input instruction hold after PSEN | 0 | | 0 | | ns | | t _{PXIZ} | 1 | Input instruction float after PSEN | | 63 | | t _{CLCL} -20 | ns | | t _{AVIV} | 1 | Address to valid instruction in | | 302 | | 5t _{CLCL} -115 | ns | | t _{PLAZ} | 1 | PSEN low to address float | | 20 | | 20 | ns | | t _{PXAV} | 1 | PSEN to address valid | 75 | | t _{CLCL} 8 | | ns | | Data Memo | гу | | • | • | • | | | | t _{RLRH} | 2, 3 | RD pulse width | 400 | | 6t _{CLCL} -100 | | ns | | tww | 2, 3 | WR pulse width | 400 | | 6t _{CLCL} -100 | | ns | | t _{RLDV} | 2, 3 | RD low to valid data in | | 252 | | 5t _{CLCL} -165 | ns | | t _{RHDX} | 2, 3 | Data hold after RD | 0 | | 0 | | ns | | t _{RHDZ} | 2, 3 | Data float after RD | | 97 | | 2t _{CLCL} -70 | ns | | tLLDV | 2, 3 | ALE low to valid data in | | 517 | | 8t _{CLCL} -150 | ns | | t _{AVDV} | 2, 3 | Address to valid data in | | 585 | | 9t _{CLCL} -165 | ns | | tliwl | 2, 3 | ALE low to RD or WR low | 200 | 300 | 3t _{CLCL} -50 | 3t _{CLCL} +50 | ns | | t _{AVWL} | 2, 3 | Address valid :o WR low or RD low | 203 | | 4t _{CLCL} -130 | | ns | | tavwx | 2, 3 | Data valid to WR transition | 23 | | t _{CLCL} -60 | | ns | | tаvwн | 2, 3 | Data valid to WR high | 433 | | 7t _{CLCL} -150 | | ns | | twHQX | 2, 3 | Data hold after WR | 33 | | t _{CLCL} -50 | | ns | | t _{RLAZ} | 2, 3 | RD low to address float | | 20 | | 20 | ns | | twhih | 2, 3 | RD or WR high to ALE high | 43 | 123 | t _{CLCL} -40 | t _{CLCL} +40 | ns | | External Cl | ock | <u> </u> | • | • | • | | | | [†] снсх | 5 | High time | 20 | | 20 | | ns | | tcLcx | 5 | Low time | 20 | | 20 | | ns | | tclcн | 5 | Rise time | | 20 | | 20 | ns | | t _{CHCL} | 5 | Fall time | | 20 | Ť | 20 | ns | NOTES: 1. Parameters are valid over operating temperature range unless otherwise specified. 2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF. ## 8032AH/8052AH #### **EXPLANATION OF THE AC SYMBOLS** Each timing symbol has five characters. The first character is always "t' (= time). The other characters, depending on their positions, indicate the name of a signal or the logical status of that signal. The designations are: A - Address C - Clock D - Input data H - Logic level high 1 - Instruction (program memory contents) L - Logic level low, or ALE P - PSEN Q - Output data R - RD signal t - Time V - Valid W - WR signal X - No longer a valid logic levelZ - Float Examples: t_{AVLL} = Time for address valid to ALE low. t_{LLPL} = Time for ALE low to PSEN low. # 8032AH/8052AH # 8032AH/8052AH