2.5 VOLT HIGH-SPEED TeraSync ${ }^{\text {TM }}$ FIFO

18-BIT/9-BIT CONFIGURATIONS
T72T1845, IDT72T1855
IDT72T1865, IDT72T1875
IDT72T1885, IDT72T1895
IDT72T18105, IDT72T18115
IDT72T18125

FEATURES:

- Choose among the following memory organizations:

IDT72T1845	-	$2,048 \times 18 / 4,096 \times 9$
IDT72T1855	-	$4,096 \times 18 / 8,192 \times 9$
IDT72T1865	-	$8,192 \times 18 / 16,384 \times 9$
IDT72T1875	$-16,384 \times 18 / 32,768 \times 9$	
IDT72T1885	-	$32,768 \times 18 / 65,536 \times 9$
IDT72T1895	-	$65,536 \times 18 / 131,072 \times 9$
IDT72T18105	-	$131,072 \times 18 / 262,144 \times 9$
IDT72T18115	-	$262,144 \times 18 / 524,288 \times 9$
IDT72T18125	$524,288 \times 18 / 1,048,576 \times 9$	

- Up to 225 MHz Operation of Clocks
- User selectable HSTL/LVTTL Input and/or Output
- Read Enable \& Read Clock Echo outputs aid high speed operation
- User selectable Asynchronous read and/or write port timing
- 2.5V LVTTL or 1.8V, 1.5V HSTL Port Selectable Input/Ouput voltage
- 3.3V Input tolerant
- Mark \& Retransmit, resets read pointer to user marked position
- Write Chip Select ($\overline{\mathrm{WCS}}$) input enables/disables Write operations
- Read Chip Select ($\overline{\mathrm{RCS}}$) synchronous to RCLK
- Programmable Almost-Empty and Almost-Full flags, each flag can default to one of eight preselected offsets
- Program programmable flags by either serial or parallel means
- Selectable synchronous/asynchronous timing modes for Almost-

Empty and Almost-Full flags

- Separate SCLK input for Serial programming of flag offsets
- User selectable input and output port bus-sizing
- x9 in to x9 out
- x9 in to x18 out
- x18 in to x9 out
- x18 in to 18 out
- Big-Endian/Little-Endian user selectable byte representation
- Auto power down minimizes standby power consumption
- Master Reset clears entire FIFO
- Partial Reset clears data, but retains programmable settings
- Empty, Full and Half-Full flags signal FIFO status
- Select IDT Standard timing (using EF and FF flags) or First Word Fall Through timing (using $\overline{O R}$ and $\overline{\mathrm{R}}$ flags)
- Output enable puts data outputs into high impedance state
- JTAG port, provided for Boundary Scan function
- Available in 144-pin ($13 \mathrm{~mm} \times 13 \mathrm{~mm}$) or $240-\mathrm{pin}$ ($19 \mathrm{~mm} \times 19 \mathrm{~mm}$) Plastic Ball Grid Array (PBGA)
- Easily expandable in depth and width
- Independent Read and Write Clocks (permit reading and writing simultaneously)
- High-performance submicron CMOS technology
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts are available, see ordering information

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

A1 ball pad corner												
A	$\frac{O}{\mathrm{WCS}}$	$\frac{0}{P R S}$	$\frac{\mathrm{O}}{\mathrm{LD}}$	$\frac{O}{\text { FFIR }}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{ow} \end{aligned}$	$\stackrel{\mathrm{O}}{\mathrm{OF}}$	O	$\underset{\mathbb{1 P}}{\mathrm{O}}$	$\frac{\bigcirc}{\text { ASYR }}$	$\underset{\text { PFM }}{\bigcirc}$	$\stackrel{\bigcirc}{\text { EREN }}$	\bigcirc
B	$\underset{\text { WCLK }}{ }$	$\frac{O}{M R S}$	$\underset{\text { FWFT/SI }}{\mathrm{O}}$	$\frac{O}{\text { PAF }}$	$\underset{\text { FSELO }}{\bigcirc}$	$\underset{\text { SHSTL }}{\bigcirc}$	$\underset{\text { FSEL }}{\bigcirc}$	$\underset{\text { DNC }}{\mathrm{O}}$	$\underset{\text { RHSTL }}{\bigcirc}$	$\stackrel{\bigcirc}{\text { PAE }}$	$\frac{\mathrm{O}}{\mathrm{EFFOR}}$	$\underset{\text { RCLK }}{\text { O }}$
c	$\frac{0}{\mathrm{WEN}}$	$\underset{\text { wHSTL }}{\bigcirc}$	$\underset{\text { vDDa }}{0}$	$\underset{\text { VDDQ }}{0}$	$\underset{\text { VDDQ }}{\bigcirc}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\text { VDDQ }}{\circ}$	$\underset{\text { VDDa }}{\circ}$	$\underset{\text { VDDa }}{\circ}$	$\frac{\bigcirc}{\text { REN }}$	$\bigcirc{ }_{\text {RT }}$
D	$\frac{0}{\text { ASTW }}$	$\frac{\bigcirc}{\text { SEN }}$	$\underset{\text { vODQ }}{\bigcirc}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\text { GND }}{ }$	$\underset{\text { GND }}{ }$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\mathrm{vcc}}{\bigcirc}$	$\underset{\text { vDDo }}{\circ}$	$\stackrel{\bigcirc}{\text { RCS }}$	\bigcirc
E	$\underset{\text { SCLK }}{ }$	○	$\underset{\text { VDDa }}{\circ}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\text { GND }}{\circ}$	GND	$\underset{\mathrm{GND}}{\mathrm{O}}$	$\underset{\text { GND }}{ }$	$\underset{\text { GND }}{\mathrm{O}}$	\bigcirc	$\stackrel{\bigcirc}{\text { VDDQ }}$	Q17
F	$\stackrel{\bigcirc}{\text { VREF }}$	$\underset{017}{\bigcirc}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\text { GND }}{ }$	$\underset{\mathrm{GND}}{\bigcirc}$	$\underset{\text { GND }}{\circ}$	$\underset{\mathrm{GND}}{\mathrm{O}}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\text { VODQ }}{\circ}$	Q16
G	$\underset{\mathrm{O} 15}{\mathrm{O}}$	$\underset{\text { D16 }}{\bigcirc}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\text { GND }}{\circ}$	$\underset{\text { GND }}{\circ}$	$\underset{\text { GND }}{\circ}$	$\underset{\mathrm{GND}}{\mathrm{O}}$	$\underset{\text { GND }}{\circ}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\mathrm{VCC}}{\mathrm{O}}$	$\underset{\text { VDDQ }}{\bigcirc}$	Q15
H	$\underset{\mathrm{D} 13}{\mathrm{O}}$	$\underset{\mathrm{D} 14}{\mathrm{O}}$	$\underset{\text { VDDO }}{\circ}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\text { GND }}{ }$	O	$\underset{\mathrm{GND}}{\mathrm{O}}$	$\underset{\mathrm{GND}}{\mathrm{O}}$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\stackrel{\mathrm{O}}{\mathrm{~V} D \mathrm{O}}$	Q14	Q13
J	$\underset{\mathrm{D} 11}{\mathrm{O}}$	$\underset{\text { D12 }}{\mathrm{O}}$	$\underset{\text { VODQ }}{\circ}$	$\underset{\mathrm{VCO}}{\mathrm{O}}$	$\underset{\mathrm{Vcc}}{0}$	$\underset{\text { GND }}{\bigcirc}$	$\underset{\text { GND }}{ }$	$\underset{\mathrm{Vcc}}{\mathrm{O}}$	$\underset{\mathrm{vcc}}{\mathrm{O}}$	$\underset{\text { VDDQ }}{\circ}$	$\mathrm{O}_{\mathrm{Q} 12}$	$\mathrm{O}_{\mathrm{O} 11}$
K	O	$\underset{\text { D10 }}{\bigcirc}$	$\underset{\text { vodo }}{ }$	$\underset{\text { VIDO }}{\circ}$	\bigcirc	$\underset{\mathrm{VCc}}{\mathrm{O}}$	$\underset{\mathrm{VCC}}{\mathrm{O}}$	$\underset{\text { vodo }}{ }$	\bigcirc	\bigcirc	$\mathrm{O}_{\mathrm{Q} 10}$	\bigcirc
L	$\stackrel{\mathrm{O}}{\mathrm{O} 7}$	$\underset{05}{0}$	$\underset{\text { D }}{\mathrm{O}}$	O	$\underset{\text { TRST }}{\bigcirc}$	$\underset{\text { TCK }}{\substack{0}}$	O	$\underset{\text { ERCLK }}{\bigcirc}$	O	O	O 0	\bigcirc
m	O_{D}	$\mathrm{O}_{\mathrm{D} 6}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{D} \end{aligned}$	O	O	$\underset{\text { TMS }}{\text { TM }}$	$\underset{\text { TDO }}{\bigcirc}$	$\mathrm{O}_{\mathrm{Q}}^{0}$	$\mathrm{O}_{\mathrm{Q} 2}$	O_{Q}	O_{Q6}	$\mathrm{O}_{\mathrm{Q} 7}$
	1	2	3	4	5	6	7	8	9	10	11	12

NOTE:

1. DNC - Do Not Connect.

PIN CONFIGURATIONS (CONTINUED)

NOTE:

1. DNC - Do Not Connect.

DESCRIPTION:

The IDT72T1845/72T1855/72T1865/72T1875/72T1885/72T1895/ 72T18105/72T18115/72T18125 are exceptionally deep, extremely high speed, CMOS First-In-First-Out(FIFO) memories with clocked read and write controls and a flexible Bus-Matching x18/x9 data flow. These FIFOs offer several key user benefits:

- Flexible x18/x9 Bus-Matching on both read and write ports
- Auser selectableMARK locationfor retransmit
- User selectable I/O structure for HSTL or LVTTL
- Asynchronous/Synchronous translation on the read or write ports
- The firstword data latency period, from the time the firstword is writtentoan empty FIFO to the time it can be read, is fixed and short.
- High density offerings up to 9 Mbit

Bus-Matching TeraSync FIFOs are particularly appropriate for network, video, telecommunications, data communications and other applications that need to buffer large amounts of data and match busses of unequal sizes.

Each FIFO has a data input port (Dn) and a data output port (Qn), both of which can assume either a 18-bitor a 9 -bit width as determined by the state of external control pins Input Width (IW) and Output Width (OW) pin during the Master Reset cycle.

The input portcan be selected as either a Synchronous (clocked) interface, or Asynchronous interface. During Synchronous operation the input port is controlled byaWriteClock(WCLK) inputandaWrite Enable $(\overline{\mathrm{WEN}})$ input. Data present on the Dn data inputs is written into the FIFO on every rising edge of WCLK when $\overline{W E N}$ is asserted. During Asynchronous operation only the WR input is used to write data into the FIFO. Data is written on a rising edge of WR, the $\overline{W E N}$ input should be tied to its active state, (LOW).

The outputportcanbe selected as eitheraSynchronous (clocked) interface, or Asynchronous interface. During Synchronous operation the output port is controlled by a Read Clock (RCLK) input and Read Enable ($\overline{\operatorname{REN}}$) input. Data is read from the FIFO on every rising edge of RCLK when $\overline{R E N}$ is asserted. During Asynchronous operation only the RD inputis used to read data fromthe FIFO. Data is read on a rising edge of RD, the $\overline{R E N}$ input should be tied to its active state,LOW. When Asynchronous operation is selected ontheoutputport the FIFO must be configured for Standard IDT mode, also the $\overline{R C S}$ should be tied LOW andthe $\overline{O E}$ inputused to providethree-state control ofthe outputs, Qn.

The output port can be selected for either2.5V LVTTL or HSTL operation, this operation is selected by the state of the RHSTL input during a master reset.

An OutputEnable $(\overline{\mathrm{OE}})$ inputis providedforthree-statecontrol of theoutputs. AReadChip Select $(\overline{\mathrm{RCS}})$ inputis also provided, the $\overline{\mathrm{RCS}}$ inputis synchronized to the read clock, and also provides three-state control of the Qn data outputs. When $\overline{\mathrm{RCS}}$ is disabled, the data outputs will be high impedance. During Asynchronous operation of the outputport, $\overline{\mathrm{RCS}}$ should beenabled, heldLOW.

Echo Read Enable, $\overline{\text { EREN }}$ and Echo Read Clock, ERCLK outputs are provided. These are outputs from the read port of the FIFO that are required forhigh speed data communication, to providetightersynchronizationbetween the data beingtransmitted from the Qnoutputs and the data being received by the inputdevice. Data read fromthe read portis available on the outputbus with respect to $\overline{E R E N}$ and ERCLK, this is very useful when data is being read at high speed. The ERCLK and EREN outputs are non-functional whenthe Read port is setup for Asynchronous mode.

The frequencies of boththe RCLK and the WCLK signals may vary from 0 tofmax with completeindependence. Thereareno restrictions onthefrequency of the one clock input with respect to the other.

There are two possible timing modes of operation with these devices: IDT Standard mode and First Word Fall Through (FWFT) mode.

In IDTStandardmode, the first word writtento anempty FIFO will notappear on the data output lines unless a specific read operation is performed. A read
operation, which consists of activating $\overline{R E N}$ and enabling a rising RCLKedge, will shift the word from internal memory to the data output lines.

In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A $\overline{R E N}$ does not have to be asserted for accessing the first word. However, subsequent words written to the FIFO do require aLOW on $\overline{R E N}$ for access. The state of the FWFT/Sl input during Master Reset determines the timing mode in use.

For applications requiring more data storage capacity than a single FIFO can provide, the FWFTtiming mode permits depthexpansion by chaining FIFOs in series (i.e. the data outputs of one FIFO are connected to the corresponding data inputs of the next). No external logic is required.

These FIFOs have five flag pins, $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$ (Empty Flag or Output Ready), $\overline{\mathrm{FF}} / \overline{\mathrm{R}}$ (Full Flag or Input Ready), $\overline{\mathrm{HF}}$ (Half-full Flag), $\overline{\mathrm{PAE}}$ (Programmable
 functions are selected in IDT Standard mode. The $\overline{\mathrm{R}}$ and $\overline{\mathrm{OR}}$ functions are selected in FWFT mode. $\overline{\mathrm{HF}}, \overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ are always available for use, irrespective oftimingmode.
$\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ can be programmed independently to switch at any point in memory. Programmable offsets determinetheflag switching thresholdand can be loaded bytwo methods: parallel or serial. Eightdefaultoffsetsettings arealso provided, sothat $\overline{\mathrm{PAE}}$ canbe setto switch at a predefined number of locations from the empty boundary and the $\overline{\text { PAF }}$ threshold can also be set at similar predefinedvaluesfromthe full boundary. The defaultoffsetvalues are setduring Master Reset by the state of the FSEL0, FSEL1, and $\overline{L D}$ pins.

For serial programming, $\overline{\text { SEN }}$ together with $\overline{\mathrm{LD}}$ on each rising edge of SCLK, are used to load the offset registers viathe Serial Input(SI). For parallel programming, $\overline{\mathrm{WEN}}$ together with $\overline{\mathrm{LD}}$ on each rising edge of WCLK, are used to load the offset registers via Dn . $\overline{\mathrm{REN}}$ together with $\overline{\mathrm{LD}}$ on each rising edge of RCLK canbe usedto read the offsets in parallelfrom Qn regardless of whether serial or parallel offset loading has been selected.

During Master Reset $(\overline{\mathrm{MRS}})$ the following events occur: the read and write pointers are set to the first location of the FIFO. The FWFT pin selects IDT Standard mode or FWFT mode.

The Partial Reset $(\overline{\mathrm{PRS}})$ also sets the read and write pointers to the first location of the memory. However, the timing mode, programmable flag programmingmethod, and defaultorprogrammed offsetsettings existingbefore Partial Resetremain unchanged. Theflags are updated according to thetiming mode and offsets in effect. $\overline{\text { PRS }}$ is useful for resetting adevice in mid-operation, when reprogramming programmable flags would be undesirable.

Itisalsopossibletoselectthetimingmodeofthe $\overline{\operatorname{PAE}}$ (Programmable AlmostEmpty flag) and $\overline{\text { PAF }}$ (Programmable Almost-Full flag) outputs. The timing modes can be set to be either asynchronous or synchronous for the $\overline{P A E}$ and $\overline{\text { PAF flags. }}$

If asynchronous $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ configuration is selected, the $\overline{\mathrm{PAE}}$ is asserted LOW ontheLOW-to-HIGHtransition of RCLK. $\overline{\text { PAE is resettoHIGH ontheLOW- }}$ to-HIGH transition of WCLK. Similarly, the $\overline{\text { PAF }}$ is asserted LOW on the LOW-to-HIGH transition of WCLK and $\overline{\text { PAF }}$ is reset to HIGH on the LOW-to-HIGH transition of RCLK.

If synchronous $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ configuration is selected, the $\overline{\mathrm{PAE}}$ is asserted and updated on the rising edge of RCLK only and not WCLK. Similarly, $\overline{\text { PAF }}$ is asserted and updated onthe risingedge of WCLKonly and notRCLK. Themode desiredisconfigured duringMasterResetbythestateofthe ProgrammableFlag Mode (PFM) pin.

This device includes a Retransmitfrom Mark feature thatutilizestwo control inputs, MARK and, $\overline{R T}$ (Retransmit). Ifthe MARK inputis enabled with respect to the RCLK, the memory location being read at that point will be marked. Any subsequent retransmit operation, $\overline{R T}$ goes LOW, will resetthe read pointer to this 'marked' location.

The device can be configured with different input and output bus widths as shown in Table 1.

A Big-Endian/Little-Endian data word format is provided. This function is useful when data is written into the FIFO in long word format (x18) and read out of the FIFO in small word (x 9) format. If Big-Endian mode is selected, then the mostsignificantbyte (word) of the long word written intothe FIFO will be read out of the FIFO first, followed by the leastsignificant byte. If Little-Endianformat is selected, then the leastsignificantbyte of the long word written into the FIFO will be read outfirst, followed by the mostsignificantbyte. The mode desired is configured during master reset by the state of the Big-Endian ($\overline{\mathrm{BE}})$ pin.

The Interspersed/Non-Interspersed Parity (IP) bitfunction allows the user to select the parity bit in the word loaded into the parallel port (Do-Dn) when programming the flag offsets. If Interspersed Parity mode is selected, thenthe FIFO will assumethatthe parity bitis located in bit positionsD8duringthe parallel programming of the flag offsets. IfNon-Interspersed Parity mode is selected, then D8 is assumed to be a valid bit and D16 and D17 are ignored. IP mode is selected during Master Reset by the state of the IP input pin. This mode is relevant only when the input width is set to $x 18$ mode.

If, at any time, the FIFO is not actively performing an operation, the chip will automatically power down. Once in the power down state, the standby supply
current consumption is minimized. Initiating any operation(by activating control inputs) will immediately take the device out of the power down state.

Both an Asynchronous Output Enable pin ($\overline{\mathrm{OE})}$ and Synchronous Read ChipSelect pin ($\overline{\mathrm{RCS}}$) are provided on the FIFO. The Synchronous ReadChip Selectis synchronizedtothe RCLK. Boththeoutputenable and read chipselect control the output buffer of the FIFO, causing the buffer to be either HIGH impedance orLOW impedance.

AJTAG test port is provided, here the FIFO has fully functional Boundary Scan feature, compliant with IEEE 1449.1 Standard Test Access Port and Boundary Scan Architecture.

The TeraSync FIFO has the capability of operating its ports (write and/or read) in either LVTTL orHSTL mode, each ports selection independent of the other. The write port selection is made viaWHSTL and the read port selection via RHSTL. An additional input SHSTL is also provided, this allows the user to selectHSTL operation for other pins on the device (not associated with the write or read ports).

The IDT72T1845/72T1855/72T1865/72T1875/72T1885/72T1895/ 72T18105/72T18115/72T18125 are fabricated using IDT's high speed submicronCMOS technology.

Figure 1. Single Device Configuration Signal Flow Diagram

TABLE 1 - BUS-MATCHING CONFIGURATION MODES

IW	OW	Write Port Width	Read Port Width
L	L	x 18	x 18
L	H	x 18	x
H	L	x 9	x 18
H	H	x 9	x

PIN DESCRIPTION

Symbol	Name	I/OTYPE	Description
$\overline{\text { ASYR }}^{(1)}$	Asynchronous Read Port	LVTTL INPUT	A HIGH on this input during Master Reset will select Synchronous read operation for the output port. A LOW will select Asynchronous operation. If Asynchronous is selectedthe FIFO mustoperate in IDTStandard mode.
$\overline{\text { ASYW }}^{(1)}$	Asynchronous WritePort	LVTTL INPUT	A HIGH on this input during Master Reset will select Synchronous write operation for the input port. A LOW will selectAsynchronous operation.
$\overline{\mathrm{BE}}{ }^{(1)}$	Big-Endian/ Little-Endian	LVTTL INPUT	During Master Reset, a LOW on $\overline{\mathrm{BE}}$ will select Big-Endian operation. A HIGH on $\overline{\mathrm{BE}}$ during Master Reset will selectLittle-Endianformat.
D0-D17	Datalnputs	$\begin{gathered} \hline \text { HSTL-LVTTL } \\ \text { INPUT } \end{gathered}$	Data inputs for an 18-or 9-bit bus. When in 18-or 9-bit mode, the unused input pins should be tied to GND.
$\overline{\mathrm{EF}} / \overline{\mathrm{OR}}$	Empty Flag/ Output Ready	HSTL-LVTTL OUTPUT	In the IDTStandard mode, the $\overline{\text { EF }}$ function is selected. $\overline{\text { EF }}$ indicates whether ornothe FIFO memory is empty. In FWFT mode, the $\overline{\mathrm{OR}}$ function is selected. $\overline{\mathrm{OR}}$ indicates whether or not there is valid data available at the outputs.
ERCLK	RCLK Echo	HSTL-LVTTL OUTPUT	Read clock Echo output, only available when the Read is setup for Synchronous mode.
$\overline{\text { EREN }}$	Read Enable Echo	$\begin{gathered} \hline \text { HSTL-LVTTL } \\ \text { OUTPUT } \end{gathered}$	Read Enable Echo output, only available when the Read is setup for Synchronous mode.
$\overline{\mathrm{FF}} / \overline{\mathrm{IR}}$	Full Flag/ Input Ready	HSTL-LVTTL OUTPUT	In the IDT Standard mode, the $\overline{F F}$ function is selected. $\overline{\text { FF }}$ indicates whether or not the FIFO memory is full. In the FWFT mode, the $\overline{\mathbb{R}}$ function is selected. T/R indicates whether or not there is space available for writing to the FIFO memory.
FSELO ${ }^{(1)}$	Flag SelectBit0	LVTTL INPUT	During Master Reset, this input along with FSEL1 and the $\overline{\text { D }}$ pin, will select the default offset values for the programmable flags PAE and PAF. There are up to eight possible settings available.
FSEL1 ${ }^{(1)}$	Flag Select Bit 1	LVTTL INPUT	During Master Reset, this input along with FSELO and the $\overline{\mathrm{LD}}$ pin will select the default offset values for the programmable flags $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$. There are up to eight possible settings available.
$\begin{array}{\|l\|} \hline \text { FWFT/ } \\ \text { SI } \end{array}$	FirstWord Fall Through/Serial In	HSTL-LVTTL INPUT	During Master Reset, selects First Word Fall Through or IDT Standard mode. After Master Reset, this pin functions as a serial inputfor loading offset registers. If Asynchronous operation of the read porthas been selected then the FIFO must be setup in IDT Standard mode.
$\overline{\mathrm{HF}}$	Half-Full Flag	$\begin{gathered} \hline \text { HSTL-LVTTL } \\ \text { OUTPUT } \\ \hline \end{gathered}$	$\overline{\mathrm{HF}}$ indicates whether the FIFO memory is more or less than half-full.
IP ${ }^{(1)}$	Interspersed Parity	LVTTL INPUT	During Master Reset, aLOW on IP will select Non-Interspersed Parity mode. A HIGH will select Interspersed Parity mode.
IW ${ }^{(1)}$	InputWidth	LVTTL INPUT	This pin, along with OW, selects the bus width of the write port. See Table 1 for bus size configuration.
$\overline{\mathrm{LD}}$	Load	$\begin{aligned} & \hline \text { HSTL-LVTTL } \\ & \text { INPUT } \end{aligned}$	This is a dual purpose pin. During Master Reset, the state of the $\overline{\mathrm{LD}}$ input along with FSEL0 and FSEL1, determines one of eight defaultoffset values for the $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ flags, along with the method by which these offset registers can be programmed, parallel or serial (seeTable2). AfterMaster Reset, this pin enables writing to and reading from the offset registers. THIS PIN MUST BE HIGH AFTER MASTER RESET TO WRITE OR READ DATA TO/FROM THE FIFO MEMORY.
MARK	MarkforRetransmit	HSTL-LVTTL INPUT	When this pin is asserted the currentlocation of the read pointer will be marked. Any subsequent Retransmit operation will resetthe read pointer to this position.
$\overline{\mathrm{MRS}}$	Master Reset	$\begin{aligned} & \text { HSTL-LVTTL } \\ & \text { INPUT } \end{aligned}$	$\overline{\mathrm{MRS}}$ initializes the read and write pointers to zero and sets the output register to all zeroes. During Master Reset, the FIFO is configured for either FWFT or IDT Standard mode, Bus-Matching configurations, Synchronous/Asynchronous operation of the read orwrite port, one of eight programmable flag defaultsettings, serial or parallel programming ofthe offsetsettings, Big-Endian/Little-Endianformat, zerolatency timing mode, interspersed parity, and synchronous versus asynchronous programmable flag timing modes.
$\overline{\mathrm{OE}}$	OutputEnable	$\begin{aligned} & \text { HSTL-LVTTL } \\ & \text { INPUT } \end{aligned}$	$\overline{\overline{O E}}$ provides Asynchronous three-state control of the data outputs, Qn. During a Master or Partial Reset the OE input is the only input that provide High-Impedance control of the data outputs.
OW ${ }^{(1)}$	OutputWidth	LVTTL INPUT	This pin, along with IW, selects the bus width of the read port. See Table 1 for bus size configuration.
$\overline{\text { PAE }}$	Programmable Almost-Empty Flag	HSTL-LVTTL OUTPUT	$\overline{\text { PAE }}$ goes LOW ifthe number of words in the FIFO memory is less than offsetn, which is stored in the Empty Offset register. $\overline{\text { PAE goes HIGHifthe number of words in the FIFO memory is greater than or equal to offsetn. }}$
$\overline{\text { PAF }}$	Programmable Almost-Full Flag	HSTL-LVTTL OUTPUT	$\overline{\text { PAF }}$ goes HIGH if the number of free locations in the FIFO memory is more than offset m, which is stored in the Full Offsetregister. PAF goes LOW ifthe number offree locations in the FIFO memory is less than or equal tom.
PFM ${ }^{(1)}$	Programmable Flag Mode	$\begin{aligned} & \text { LVTTL } \\ & \text { INPUT } \end{aligned}$	During Master Reset, a LOW on PFM will select Asynchronous Programmable flag timing mode. AHIGH on PFM will selectSynchronous Programmableflagtiming mode.

PIN DESCRIPTION (CONTINUED)

Symbol	Name	I/OTYPE	Description
$\overline{\text { PRS }}$	Partial Reset	$\begin{gathered} \hline \text { HSTL-LVTTL } \\ \text { INPUT } \end{gathered}$	$\overline{\text { PRS }}$ initializes the read and write pointers tozero and sets the output registerto all zeroes. During Partial Reset, the existing mode (IDT or FWFT), programming method (serial or parallel), and programmable flag settings are all retained.
Q0-Q17	DataOutputs	$\begin{gathered} \hline \text { HSTL-LVTTL } \\ \text { OUTPUT } \\ \hline \end{gathered}$	Data outputs for an 18-or 9-bit bus. When in 9-bit mode, any unused output pins should not be connected. Outputs are not 5 V tolerant regardless of the state of $\overline{\mathrm{OE}}$ and RCS .
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { RCLK/ } \\ \text { RD } \end{array} \\ \hline \end{array}$	ReadClock/ Read Strobe	HSTL-LVTTL INPUT	If Synchronous operation of the read porthas been selected, when enabled by REN, the rising edge of RCLK reads datafromthe FIFO memory andoffsets from the programmable registers. IfLLD is LOW, the values loaded intothe offsetregisters is outputona arisingedge of RCLK.IA Asynchronous operation of the read porthas been selected, arising edge on RD reads data from the FIFOO inan Asynchronous manner. REN should betied LOW.
$\overline{\mathrm{RCS}}$	ReadChipSelect	$\begin{gathered} \hline \text { HSTL-LVTTL } \\ \text { INPUT } \end{gathered}$	$\overline{R C S}$ provides synchronous control of the read portand outputimpedance of Qn, synchronous to RCLK. During a Master or Partial Reset the $\overline{\text { RCS }}$ input is don't care, if $\overline{O E}$ is LOW the data outputs will be Low-Impedance regardless of RCS.
$\overline{\text { REN }}$	Read Enable	HSTL-LVTTL INPUT	If Synchronous operation of the read port has been selected, $\overline{\text { REN }}$ enables RCLK for reading data from the FIFO memory and offset registers. If Asynchronous operation of the read port has been selected, the REN input should betiedLOW.
RHSTL ${ }^{(1)}$	Read Port HSTL Select	$\begin{aligned} & \text { LVTTL } \\ & \text { INPUT } \\ & \hline \end{aligned}$	This pin is used to select HSTL or 2.5V LVTTL outputs for the FIFO. If HSTL or eHSTL outputs are required, this input mustbe tied HIGH. Otherwise its should be tied LOW.
$\overline{\mathrm{RT}}$	Retransmit	$\begin{array}{\|c} \hline \text { HSTL-LVTTL } \\ \text { INPUT } \end{array}$	$\overline{R T}$ asserted onthe rising edge of RCLKinitializesthe READ pointertozero, sets the EF flagto LOW ($\overline{\mathrm{OR}}$ to HIGH in FWFTmode) anddoesn'tdisturbthe write pointer, programming method, existingtiming mode orprogrammable flagsettings. Ifa a ark has been setviathe MARK input pin, then the read pointer will jump tothe 'mark' location.
SCLK	Serial Clock	HSTL-LVTTL INPUT	A rising edge on SCLK will clock the serial data present on the SI input into the offset registers providing that SEN is enabled.
SEN	Serial Enable	HSTL-LVTTL INPUT	$\overline{\text { SEN }}$ enables serial loading of programmable flag offsets.
SHSTL	System HSTL Select	LVTTL INPUT	All inputs not associated with the write or read port can be selected for HSTL operation via the SHSTL input.
TCK ${ }^{(2)}$	JTAG Clock	HSTL-LVTTL INPUT	ClockinputforJTAG function. One offourterminals required by IEEE Standard 1149.1-1990. Testoperations of the device are synchronous to TCK. Data from TMS and TDI are sampled on the rising edge of TCK and outputs change on the falling edge of TCK. Ifthe JTAG function is notused this signal needs to be tied to GND.
TDI(${ }^{(2)}$	JTAG Test Data Input	HSTL-LVTTL INPUT	One offourterminals required by IEEEStandard 1149.1-1990. During the JTAG boundary scan operation, test dataserially loadedviathe TDI onthe rising edge of TCK toeitherthe Instruction Register, ID Registerand Bypass Register. An internal pull-up resistorforces TDI HIGHifleft unconnected.
TDO ${ }^{(2)}$	JTAG TestData Output	HSTL-LVTTL OUTPUT	One offourterminals required by IEEEStandard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded outputviathe TDO onthe falling edge of TCK from eitherthe Instruction Register, ID Register and Bypass Register. This output is high impedance except when shifting, while in SHIFT-DR and SHIFT-IR controller states.
TMS ${ }^{(2)}$	JTAG Mode Select	HSTL-LVTTL INPUT	TMS is a serial input pin. One of four terminals required by IEEE Standard 1149.1-1990. TMS directs the the device through its TAP controller states. An internal pull-up resistor forces TMS HIGHifleft unconnected.
$\overline{\text { TRST }}{ }^{(2)}$	JTAG Reset	HSTL-LVTTL INPUT	$\overline{\text { TRST is an asynchronous resetpin for the JTAG controller. The JTAG TAP controller does not automatically }}$ reset upon power-up, thus it must be reset by either this signal or by setting TMS=HIGH for five TCK cycles. If the TAP controller is not properly resetthen the FIFO outputs will always be in high-impedance. If the JTAG function is used but the user does not want to use $\overline{\text { TRST, }}$, then $\overline{\text { TRST }}$ can be tied with $\overline{\mathrm{MRS}}$ to ensure proper FIFO operation. If the JTAG function is not used then this signal needs to be tied to GND.
$\overline{\mathrm{WEN}}$	Write Enable	$\begin{gathered} \hline \text { HSTL-LVTTL } \\ \text { INPUT } \end{gathered}$	When Synchronous operation of the write port has been selected, $\overline{\text { WEN }}$ enables WCLK for writing data into the FIFO memory and offsetregisters. If Asynchronous operation of the write port has been selected, the WEN input should betied LOW.
$\overline{\mathrm{WCS}}$	Write ChipSelect	$\begin{gathered} \hline \text { HSTL-LVTTL } \\ \text { INPUT } \end{gathered}$	The $\overline{\text { WCS }}$ pin can be regarded as a second $\overline{\mathrm{WEN}}$ input, enabling/disabling write operations.
$\begin{array}{\|l} \hline \text { WCLKI } \\ \text { WR } \end{array}$	WriteClock/ WriteStrobe	$\begin{array}{\|c} \hline \text { HSTL-LVTTL } \\ \text { INPUT } \end{array}$	If Synchronous operation of the write porthas been selected, when enabled by $\overline{W E N}$, the rising edge of WCLK writes data into the FIFO. If Asynchronous operation of the write port has been selected, WR writes data into the FIFO on a rising edge in an Asynchronous manner, (WEN should be tied to its active state).

PIN DESCRIPTION (CONTINUED)

Symbol	Name	I/OTYPE	\quad Description
WHSTL			

NOTES:

1. Inputs should not change state after Master Reset.
2. These pins are for the JTAG port. Please refer to pages 29-32 and Figures 6-8.

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Commercial	Unit
VTERM	TerminalVoltage with respect to GND	-0.5 to $+3.6^{(2)}$	V
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IOUT	DCOutputCurrent	-50 to +50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Compliant with JEDEC JESD8-5. VCC terminal only.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
$\mathrm{CIN}^{(2,3)}$	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	$10^{(3)}$	pF
Cout $^{(1,2)}$	Output Capacitance	Vout $=0 \mathrm{~V}$	10	pF

NOTES:

1. With output deselected, $(\overline{\mathrm{OE}} \geq \mathrm{VIH})$.
2. Characterized values, not currently tested.
3. CIN for Vref is 20 pF .

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc	Supply Voltage	2.375	2.5	2.625	V
GND	Supply Voltage	0	0	0	V
VIH	Input High Voltage - LVTTL - eHSTL - HSTL	1.7 VREF+0.2 VREF+0.2	-	3.45 VDDQ 0.3 VDDQ+0.3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
VIL	$\begin{array}{ll} \hline \text { Input Low Voltage } & \text { - LVTTL } \\ & - \text { eHSTL } \\ & - \text { HSTL } \end{array}$	$\begin{gathered} -0.3 \\ -0.3 \\ -0.3 \end{gathered}$	-	$\begin{gathered} 0.7 \\ \text { VREF- } 0.2 \\ \text { VREF-0.2 } \end{gathered}$	V V V
VREF ${ }^{(1)}$	$\begin{array}{ll} \hline \text { Voltage Reference Input } & - \text { eHSTL } \\ & - \text { HSTL } \end{array}$	$\begin{gathered} 0.8 \\ 0.68 \end{gathered}$	$\begin{gathered} 0.9 \\ 0.75 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
TA	OperatingTemperatureCommercial	0	-	70	${ }^{\circ} \mathrm{C}$
TA	OperatingTemperature Industrial	-40	-	85	${ }^{\circ} \mathrm{C}$

NOTE:

1. VREF is only required for HSTL or eHSTL inputs. Vref should be tied LOW for LVTTL operation.
2. Outputs are not 3.3 V tolerant.

DC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=2.5 \mathrm{~V} \pm 0.125 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=2.5 \mathrm{~V} \pm 0.125 \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter		Min.	Max.	Unit
ILI	InputLeakageCurrent OutputLeakageCurrent		-10	10	$\mu \mathrm{A}$
ILO			-10	10	$\mu \mathrm{A}$
VoH ${ }^{(5)}$	OutputLogic "1"Voltage,	$\begin{array}{ll} \mathrm{IOH}=-8 \mathrm{~mA} & @ \mathrm{VDDQ}=2.5 \mathrm{~V} \pm 0.125 \mathrm{~V}(\mathrm{LVTTL}) \\ \mathrm{IOH}=-8 \mathrm{~mA} & @ \mathrm{VDDQ}=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}(\mathrm{HSTL}) \\ \mathrm{IOH}=-8 \mathrm{~mA} & @ \mathrm{VDDQ}=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}(\mathrm{HSTL}) \\ \hline \end{array}$	VDDQ-0.4 Vdda-0.4 VDDQ-0.4	-	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Vol	OutputLogic "0" Voltage,	$\begin{array}{ll} \text { loL }=8 \mathrm{~mA} & @ V D D Q=2.5 \mathrm{~V} \pm 0.125 \mathrm{~V}(\mathrm{LVTTL}) \\ \mathrm{lOL}=8 \mathrm{~mA} & @ V D D Q=1.8 \mathrm{~V} \pm 0.1 \mathrm{~V}(\mathrm{HSTL}) \\ \mathrm{lOL}=8 \mathrm{~mA} & @ V D D Q=1.5 \mathrm{~V} \pm 0.1 \mathrm{~V}(\mathrm{HSTL}) \end{array}$	-	$\begin{aligned} & 0.4 \mathrm{~V} \\ & 0.4 \mathrm{~V} \\ & 0.4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
IDT72T1845/72T1855/72T1865/72T1875/72T1885/72T1895					
$\mathrm{ICC1} 1^{(1,2)}$	Active Vcc Current (Vcc $=2.5 \mathrm{~V}$)	$\begin{aligned} & \mathrm{I} / \mathrm{O}=\mathrm{LVTTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{HSTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{eHSTL} \end{aligned}$	-	$\begin{aligned} & 40 \\ & 60 \\ & 60 \end{aligned}$	mA mA mA
ICC2 ${ }^{(1)}$	Standby Vcc Current (Vcc $=2.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{I} / \mathrm{O}=\mathrm{LVTTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{HSTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{eHSTL} \end{aligned}$	-	$\begin{aligned} & 10 \\ & 50 \\ & 50 \end{aligned}$	mA mA mA
IDT72T18105/72T18115/72T18125					
ICC1 ${ }^{(1,2)}$	Active Vcc Current (Vcc $=2.5 \mathrm{~V}$)	$\begin{aligned} & \mathrm{I} / \mathrm{O}=\mathrm{LVTTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{HSTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{eHSTL} \end{aligned}$	-	$\begin{aligned} & 50 \\ & 70 \\ & 70 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
ICC2 ${ }^{(1)}$	Standby Vcc Current (Vcc $=2.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{I} / \mathrm{O}=\mathrm{LVTTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{HSTL} \\ & \mathrm{I} / \mathrm{O}=\mathrm{eHSTL} \end{aligned}$	-	$\begin{aligned} & 20 \\ & 60 \\ & 60 \end{aligned}$	mA mA mA

NOTES:

1. Both WCLK and RCLK toggling at 20MHz. Data inputs toggling at 10 MHz . $\overline{\mathrm{WCS}}=\mathrm{HIGH}, \overline{\mathrm{REN}}$ or $\overline{\mathrm{RCS}}=\mathrm{HIGH}$.
2. For the IDT72T18105/72T18115/72T18125, typical ICC1 calculation (with data outputs in Low-Impedance):
for LVTTL I/O ICC1 (mA) = 1.0 xfs , fs = WCLK = RCLK frequency (in MHz)
for HSTL or eHSTL I/O ICC1 (mA) = $30+(1.0 x \mathrm{fs}$), fs = WCLK = RCLK frequency (in MHz)
For the IDT72T1845/72T1855/72T1865/72T1875/72T1885/72T1895, typical ICC1 calculation (with data outputs in Low-Impedance):
for LVTTL I/O ICC1 (mA) $=0.7 \mathrm{~mA} x$ fs, fs $=$ WCLK $=$ RCLK frequency (in MHz)
for HSTL or eHSTL I/O ICC1 (mA) = $30+(0.7 \mathrm{xfs}$), fs = WCLK $=$ RCLK frequency (in MHz),
3. For all devices, typical IDDQ calculation:
with data outputs in High-Impedance: $\operatorname{IDDQ}(\mathrm{mA})=0.15 \mathrm{xfs}$, fs $=$ WCLK $=$ RCLK frequency (in MHz)
with data outputs in Low-Impedance: IDDQ (mA) = (CL x VDDQ x fs x N)/2000
fs $=$ WCLK $=$ RCLK frequency (in MHz), VDDQ $=2.5 \mathrm{~V}$ for LVTTL; 1.5 V for HSTL; 1.8 V for eHSTL, $\mathrm{CL}=$ capacitive load (pf), $\mathrm{tA}=25^{\circ} \mathrm{C}$,
$\mathrm{N}=$ Number of outputs switching.
4. Total Power consumed: $\operatorname{PT}=(\mathrm{VCC} \times I C C)+\mathrm{VDDQ} \times \operatorname{IDDQ})$.
5. Outputs are not 3.3 V tolerant.

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ —SYNCHRONOUS TIMING

(Commercial: $\mathrm{VCC}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Commercial		Com'I \& Ind' ${ }^{(2)}$		Commercial		Commercial		Unit
		IDT72T1845L4-4 IDT72T1855L4-4 IDT72T1865L4-4 IDT72T1875L4-4 IDT72T1885L4-4 IDT72T1895L4-4 IDT72T18105L4-4 IDT72T18115L4-4 IDT72T18125L4-4		IDT72T1845L5 IDT72T1855L5 IDT72T1865L5 IDT72T1875L5 IDT72T1885L5 IDT72T1895L5 IDT72T18105L5 IDT72T18115L5 IDT72T18125L5		IDT72T1845L6-7 IDT72T1855L6-7 IDT72T1865L6-7 IDT72T1875L6-7 IDT72T1885L6-7 IDT72T1895L6-7 IDT72T18105L6-7 IDT72T18115L6-7 IDT72T18125L6-7		IDT72T18105L10 IDT72T18115L10 IDT72T18125L10		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
fic	Clock Cycle Frequency (Synchronous)	-	$२ 25$	-	200	-	150	-	100	MHz
tA	Data Access Time	0.6	3.4	0.6	3.6	0.6	3.8	0.6	4.5	ns
tclk	Clock Cycle Time	4.44	-	5	-	6.7	-	10	-	ns
tCLKH	Clock High Time	2.0	-	2.3	-	2.8	-	4.5	-	ns
tCLKL	Clock Low Time	2.0	-	2.3	-	2.8	-	4.5	-	ns
DS	DataSetup Time	1.2	-	1.5	-	2.0	-	3.0	-	ns
$\pm{ }^{\text {DH }}$	Data Hold Time	0.5	-	0.5	-	0.5	-	0.5	-	ns
tens	EnableSetup Time	1.2	-	1.5	-	2.0	-	3.0	-	ns
tenh	Enable Hold Time	0.5	-	0.5	-	0.5	-	0.5	-	ns
tLDS	LoadSetup Time	1.2	-	1.5	-	2.0	-	3.0	-	ns
セLD	Load Hold Time	0.5	-	0.5	-	0.5	-	0.5	-	ns
twcss	$\overline{\text { WCS }}$ setuptime	1.2	-	1.5	-	2.0	-	3.0	-	ns
tWCSH	WCS hold time	0.5	-	0.5	-	0.5	-	0.5	-	ns
fs	Clock Cycle Frequency (SCLK)	-	10	-	10	-	10	-	10	MHz
tSCLK	Serial Clock Cycle	100	-	100	-	100	-	100	-	ns
tsckH	Serial Clock High	45	-	45	-	45	-	45	-	ns
tSCKL	Serial Clock Low	45	-	45	-	45	-	45	-	ns
tsDS	Serial Data In Setup	15	-	15	-	15	-	15	-	ns
tSDH	Serial Data In Hold	5	-	5	-	5	-	5	-	ns
tSENS	Serial Enable Setup	5	-	5	-	5	-	5	-	ns
tsenh	Serial Enable Hold	5	-	5	-	5	-	5	-	ns
tRS	ResetPulse Width ${ }^{(3)}$	30	-	30	-	30	-	30	-	ns
tRSS	ResetSetup Time	15	-	15	-	15	-	15	-	ns
tHRSS	HSTL ResetSetup Time	4	-	4	-	4	-	4	-	$\mu \mathrm{S}$
tRSR	Reset Recovery Time	10	-	10	-	10	-	10	-	ns
tRSF	Resetto Flag and Output Time	-	10	-	12	-	15	-	15	ns
tWFF	Write Clock to $\overline{\mathrm{FF}}$ or $\overline{\mathrm{R}}$	-	3.4	-	3.6	-	3.8	-	4.5	ns
tREF	Read Clock to $\overline{\mathrm{EF}}$ or $\overline{\mathrm{OR}}$	-	3.4	-	3.6	-	3.8	-	4.5	ns
tPAFS	Write Clock to Synchronous Programmable Almost-Full Flag	-	3.4	-	3.6	-	3.8	-	4.5	ns
tPAES	Read Clock to Synchronous Programmable Almost-Empty Flag	-	3.4	-	3.6	-	3.8	-	4.5	ns
tercLK	RCLK to Echo RCLK output	-	3.8	-	4	-	4.3	-	5	ns
tCLKEN	RCLK to Echo $\overline{\text { REN }}$ output	-	3.4	-	3.6	-	3.8	-	4.5	ns
tRCSLZ	RCLK to Active from High-Z ${ }^{(4)}$	-	3.4	-	3.6	-	3.8	-	4.5	ns
tRCSHz	RCLK to High-Z ${ }^{(4)}$	-	3.4	-	3.6	-	3.8	-	4.5	ns
tSkEw1	Skew time between RCLK and WCLK for $\overline{\bar{F} / \overline{\mathrm{OR}} \text { and } \overline{\mathrm{FF}} / \overline{\mathrm{R}} \text {. }{ }^{\text {a }} \text { (}}$	3.5	-	4	-	5	-	7	-	ns
tskew2	Skew time between RCLK and WCLK for $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$	4	-	5	-	6	-	8	-	ns

NOTES:

1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.
2. Industrial temperature range product for the 5 ns speed grade is available as a standard device. All other speed grades are available by special order.
3. Pulse widths less than minimum values are not allowed.
4. Values guaranteed by design, not currently tested.

AC ELECTRICAL CHARACTERISTICS—ASYNCHRONOUS TIMING

(Commercial: $\mathrm{VCC}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=2.5 \mathrm{~V} \pm 5 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Commercial		Com'I \& Ind' ${ }^{(2)}$		Commercial		Commercial		Unit
		IDT72T1845L4-4 IDT72T1855L4-4 IDT72T1865L4-4 IDT72T1875L4-4 IDT72T1885L4-4 IDT72T1895L4-4 IDT72T18105L4-4 IDT72T18115L4-4 IDT72T18125L4-4		IDT72T1845L5 IDT72T1855L5 IDT72T1865L5 IDT72T1875L5 IDT72T1885L5 IDT72T1895L5 IDT72T18105L5 IDT72T18115L5 IDT72T18125L5		IDT72T1845L6-7 IDT72T1855L6-7 IDT72T1865L6-7 IDT72T1875L6-7 IDT72T1885L6-7 IDT72T1895L6-7 IDT72T18105L6-7 IDT72T18115L6-7 IDT72T18125L6-7		IDT72T18105L10 IDT72T18115L10 IDT72T18125L10		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
fA	Cycle Frequency (Asynchronous)	-	100	-	83	-	66	-	50	MHz
taA	Data Access Time	0.6	8	0.6	10	0.6	12	0.6	14	ns
tcyc	Cycle Time	10	-	12	-	15	-	20	-	ns
tCYH	Cycle HIGH Time	4.5	-	5	-	7	-	8	-	ns
tCYL	Cycle LOW Time	4.5	-	5	-	7	-	8	-	ns
tPPE	Read Pulse after EF HIGH	8	-	10	-	12	-	14	-	ns
tFFA	Clock to Asynchronous FF	-	8	-	10	-	12	-	14	ns
tefa	Clock to Asynchronous EF	-	8	-	10	-	12	-	14	ns
tPAFA	Clock to Asynchronous Programmable Almost-Full Flag	-	8	-	10	-	12	-	14	ns
tPAEA	Clock to Asynchronous Programmable Almost-Empty Flag	-	8	-	10	-	12	-	14	ns
tolz	Output Enable to Outputin Low Z $^{(3)}$	0	-	0	-	0	-	0	-	ns
toe	OutputEnableto Output Valid	-	3.4	-	3.6	-	3.8	-	4.5	ns
tohz	OutputEnable to Outputin High ${ }^{(3)}$	-	3.4	-	3.6	-	3.8	-	4.5	ns
thF	Clock to $\overline{\mathrm{HF}}$	-	8	-	10	-	12	-	14	ns

NOTES:

1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.
2. Industrial temperature range product for the 5 ns speed grade is available as a standard device. All other speed grades are available by special order.
3. Values guaranteed by design, not currently tested.

HSTL

1.5V AC TEST CONDITIONS

InputPulse Levels	0.25 to 1.25 V
InputRise/FallTimes	0.4 ns
InputTiming ReferenceLevels	0.75
OutputReferenceLevels	VDDo/2

NOTE:

1. $\mathrm{VDDQ}=1.5 \mathrm{~V} \pm$.

EXTENDED HSTL

1.8V AC TEST CONDITIONS

InputPulse Levels	0.4 to 1.4 V
InputRise/FallTimes	0.4 ns
InputTiming ReferenceLevels	0.9
OutputReferenceLevels	$\mathrm{VdDo} / 2$

NOTE:

1. $\mathrm{VDDQ}=1.8 \mathrm{~V} \pm$.

AC TEST LOADS

Figure 2a. AC Test Load

Figure 2b. Lumped Capacitive Load, Typical Derating

2.5V LVTTL

2.5V AC TEST CONDITIONS

InputPulse Levels	GND to 2.5 V
InputRise/FallTimes	1 ns
InputTiming ReferenceLevels	$\mathrm{Vcc} / 2$
OutputReferenceLevels	$\mathrm{VDDO} / 2$

NOTE:

1. For LVTTL VCC $=$ VDDQ.

OUTPUT ENABLE \& DISABLE TIMING

READ CHIP SELECT ENABLE \& DISABLE TIMING

NOTES:

1. $\overline{R E N}$ is HIGH.
2. $\overline{O E}$ is LOW.

FUNCTIONAL DESCRIPTION

TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH (FWFT) MODE

The IDT72T1845/72T1855/72T1865/72T1875/72T1885/72T1895/ 72T18105/72T18115/72T18125 supporttwo differenttiming modes of operation: IDT Standard mode or First Word Fall Through (FWFT) mode. The selection of which mode will operate is determined during Master Reset, by the state of the FWFT/SI input.

If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag ($\overline{\mathrm{EF}})$ to indicate whether or not there are any words present inthe FIFO. Italso uses the Full Flagfunction ($\overline{\mathrm{FF}}$) to indicate whether or not the FIFO has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using the Read Enable ($\overline{\mathrm{REN}}$) and RCLK.

If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be selected. This mode uses Output Ready $(\overline{\mathrm{OR}})$ to indicate whether or not there is valid data at the data outputs (Qn_{n}. It also uses Input Ready ((IR) to indicate whether or nottheFIFO has anyfree space for writing. Inthe FWFT mode, the first word written to an empty FIFO goes directly to Qn after three RCLK rising edges, $\overline{R E N}=$ LOW is not necessary. Subsequent words must be accessed using the Read Enable ($\overline{\mathrm{REN}}$) and RCLK.

Varioussignals, bothinputand outputsignals operate differently depending on whichtiming mode is in effect.

IDT STANDARD MODE

In this mode, the status flags, $\overline{\mathrm{FF}}, \overline{\mathrm{PAF}}, \overline{\mathrm{HF}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{EF}}$ operate in the manneroutlined in Table3. To write datainto totheFIFO, Write Enable ($\overline{\mathrm{WEN}})$ mustbeLOW. DatapresentedtotheDATAIN lines will be clocked intothe FIFO on subsequent transitions of the Write Clock (WCLK). After the first write is performed, the Empty Flag $(\overline{\mathrm{EF}})$ will go HIGH. Subsequent writes will continue to fill up the FIFO. The Programmable Almost-Empty flag ($\overline{\mathrm{PAE}})$ will go HIGH after $n+1$ words have been loaded into the FIFO, where n is the empty offset value. The default setting for these values are stated in the footnote of Table 2. This parameter is alsouser programmable. See section on ProgrammableFlag OffsetLoading.

If one continued to write data into the FIFO, and we assumed no read operations were taking place, the Half-Fullflag $(\overline{\mathrm{HF}})$ would toggle to LOW once (D/2+1) words were written intotheFIFO. Ifx18Inputorx18OutputbusWidth is selected, $(\mathrm{D} / 2+1)=$ the 1,025 th word for the IDT72T1845, 2,049th word for IDT72T1855, 4,097th word for the IDT72T1865, 8,193rd word for the IDT72T1875, 16,385th word for the IDT72T1885, 32,769th word for the IDT72T1895, 65,537th word for the IDT72T18105, 131,073rd word for the IDT72T18115 and 262,145th word for the IDT72T18125. If both $x 9$ Input and x9 Output bus Widths are selected, $(D / 2+1)=$ the 2,049th word for the IDT72T1845,4,097th wordforIDT72T1855,8,193rdwordfortheIDT72T1865, 16,385th word for the IDT72T1875, 32,769th word for the IDT72T1885, 65,537th word for the IDT72T1895, 131,073rd word for the IDT72T18105, 262,145thwordforthe IDT72T18115 and524,289th wordforthe IDT72T18125. Continuing to write data into the FIFO will cause the Programmable Almost-Full flag ($\overline{\mathrm{PAF}}$) to go LOW. Again, if no reads are performed, the $\overline{\mathrm{PAF}}$ will go LOW after (D-m) writes to the FIFO. Ifx18 Inputorx18Outputbus Width is selected, (D-m) $=(2,048-m)$ writes for the IDT72T1845, $(4,096-m)$ writes for the IDT72T1855, (8,192-m) writes for the IDT72T1865, (16,384-m) writes for the IDT72T1875, ($32,768-\mathrm{m}$) writes for the IDT72T1885, $(65,536-\mathrm{m})$ writes forthe IDT72T1895, (131,072-m) writes for the IDT72T18105, (262,144-m) writes forthe IDT72T18115 and ($524,288-\mathrm{m}$) writes for the IDT72T18125. If both $x 9$ Inputandx9 OutputbusWidths are selected, (D-m) $=(4,096-m)$ writes forthe

IDT72T1845, (8,192-m) writes for the IDT72T1855, (16,384-m) writes for the IDT72T1865, (32,768-m) writes for the IDT72T1875, (65,536-m) writes for the IDT72T1885, (131,072-m) writes for the IDT72T1895, (262,144-m) writes for the IDT72T18105, ($524,288-\mathrm{m}$) writesfortheIDT72T18115 and (1,048,576-m) writes for the IDT72T18125. The offset " m " is the full offset value. The default setting for these values are stated in the footnote of Table2. This parameter is also user programmable. See section on Programmable Flag OffsetLoading.

Whenthe FIFO is full, the Full Flag ($\overline{\mathrm{FF}})$ will go LOW, inhibiting further write operations. Ifno reads are performed aftera reset, $\overline{\mathrm{FF}}$ will goLOW afterD writes totheFIFO. Ifthe x18Inputorx18OutputbusWidth is selected, $D=2,048$ writes for the IDT72T1845, 4,096 writes for the IDT72T1855, 8,192 writes for the IDT72T1865, 16,384 writes for the IDT72T1875, 32,768 writes for the IDT72T1885, 65,536 writes for the IDT72T1895, 131,072 writes for the IDT72T18105,262,144 writes forthe IDT72T18115 and524,288 writes forthe IDT72T18125. Ifboth x9 Inputandx9 OutputbusWidths are selected, $D=4,096$ writes for the IDT72T1845, 8, 192 writes forthe IDT72T1855, 16,384 writes for the IDT72T1865, 32,768 writes for the IDT72T1875, 65,536 writes for the IDT72T1885, 131,072 writes for the IDT72T1895, 262,144 writes for the IDT72T18105,524,288 writes for the IDT72T18115 and 1,048,576 writes for the IDT72T18125, respectively.

If the FIFO is full, the first read operation will cause $\overline{\text { FF }}$ to go HIGH. Subsequent readoperations will cause $\overline{\mathrm{PAF}}$ and $\overline{\mathrm{HF}}$ to goHIGH atthe conditions described in Table3. Iffurther read operations occur, without write operations,
 offsetvalue. Continuing read operations will cause the FIFO to become empty. When the last word has been read from the FIFO, the $\overline{\mathrm{EF}}$ will go LOW inhibiting further read operations. $\overline{\text { REN }}$ is ignored when the FIFO is empty.

When configured in IDT Standard mode, the $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ outputs are double register-buffered outputs.

Relevant timing diagrams for IDT Standard mode can be found in Figure 11, 12, 13 and 18.

FIRST WORD FALL THROUGH MODE (FWFT)

In this mode, the status flags, $\overline{\mathrm{IR}}, \overline{\mathrm{PAF}}, \overline{\mathrm{HF}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{OR}}$ operate in the manneroutlined in Table 4. To write datainto to the FIFO, $\overline{\mathrm{WEN}}$ mustbeLOW. DatapresentedtotheDATAINlines will beclocked intotheFIFO on subsequent transitions of WCLK. After the firstwrite is performed, the Output Ready ($\overline{\mathrm{OR}})$ flag will goLOW. Subsequent writes will continue tofill upthe FIFO. $\overline{\text { PAE }}$ will go HIGH aftern + 2 words have been loaded into the FIFO, where is the empty offset value. The default setting for these values are stated in the footnote of Table2. This parameter is also user programmable. See section on ProgrammableFlag OffsetLoading.

If one continued to write data into the FIFO, and we assumed no read operations were taking place, the $\overline{\mathrm{HF}}$ would toggle to LOW once the $(\mathrm{D} / 2+2)$ wordswerewrittenintotheFIFO. Ifx18Inputorx18OutputbusWidthisselected, (D/2 + 2) = the 1,026th wordfortheIDT72T1845,2,050th wordforIDT72T1855, 4,098th word forthe IDT72T1865,8,194th word for the IDT72T1875, 16,386th word for the IDT72T1885, 32,770th word for the IDT72T1895,65,538th word for the IDT72T18105, 131,074th word for the IDT72T18115 and 262,146th word for the IDT72T18125. If both $x 9$ Input and x9 Output bus Widths are selected, $(\mathrm{D} / 2+2)=$ the 2,050th word for the IDT72T1845, 4,098th word for IDT72T1855, 8,194th word for the IDT72T1865, 16,386th word for the IDT72T1875, 32,770th word for the IDT72T1885, 65,538th word for the IDT72T1895, 131,074th word for the IDT72T18105, 262,146th word for the IDT72T18115 and 524,290th word for the IDT72T18125. Continuing to write data into the FIFO will cause the $\overline{\mathrm{PAF}}$ to go LOW. Again, if no reads are performed, the $\overline{\mathrm{PAF}}$ will go LOW after (D-m) writes to the FIFO. If x18 Input or x18OutputbusWidthisselected, (D-m) $=(2,049-m)$ writesforthe IDT72T1845,
(4,097-m) writes for the IDT72T1855, (8,193-m) writes for the IDT72T1865, ($16,385-\mathrm{m}$) writes forthe IDT72T1875, (32,769-m) writes for the IDT72T1885, ($65,536-\mathrm{m}$) writesforthe IDT72T1895, (131,073-m) writesforthe IDT72T18105, ($262,145-\mathrm{m}$) writes for the IDT72T18115 and $(524,289-\mathrm{m})$ writes for the IDT72T18125. If both $\times 9$ Input and $\times 9$ Outputbus Widths are selected, (D-m) $=(4,097-m)$ writes for the IDT72T1845, (8,193-m) writes for the IDT72T1855, ($16,385-\mathrm{m}$) writes for the IDT72T1865, ($32,769-\mathrm{m}$) writesforthe IDT72T1875, ($65,537-\mathrm{m}$) writesforthe IDT72T1885, ($131,073-\mathrm{m}$) writesforthe IDT72T1895, ($262,145-\mathrm{m}$) writes for the IDT72T18105, ($524,289-\mathrm{m}$) writes for the IDT72T18115 and ($1,048,577-\mathrm{m}$) writes for the IDT72T18125. The offsetm isthefull offsetvalue. The defaultsettingforthese values are stated inthefootnote of Table 2.

Whenthe FIFO is full, the Input Ready ($\overline{(\mathbb{R})}$) flagwill go HIGH, inhibiting further write operations. If no reads are performed after a rese, $\overline{\bar{R}}$ will go HIGH after Dwrites tothe FIFO. Ifx18Inputorx18OutputbusWidth is selected, $\mathrm{D}=2,049$ writes forthe IDT72T1845, 4,097 writes for the IDT72T1855, 8, 193 writes for the IDT72T1865, 16,385 writes for the IDT72T1875, 32,769 writes for the IDT72T1885, 65,536 writes for the IDT72T1895, 131,073 writes for the IDT72T18105,262,145 writes forthe IDT72T18115 and 524,289 writes forthe

TABLE 2 - DEFAULT PROGRAMMABLE FLAG OFFSETS

IDT72T1845				
* $\overline{\mathrm{LD}}$	FSEL1	FSELO	Offsets n,m	
			All Other Modes	$\begin{aligned} & x 9 \text { to x9 } \\ & \text { Mode } \end{aligned}$
L	H	L	511	511
L	L	H	255	255
L	L	L	127	127
L	H	H	63	63
H	L	L	31	1,023
H	H	L	15	31
H	L	H	7	15
H	H	H	3	7
IDT72T1855, 72T1865, 72T1875, 72T1885, 72T1895, 72T18105, 72T18115, 72T18125				
* $\overline{\text { LD }}$	FSEL1	FSELO	Offsets n,m	
H	L	L	1,023	
L	H	L	511	
L	L	H	255	
L	L	L	127	
L	H	H	63	
H	H	L	31	
H	L	H	15	
H	H	H	7	
* $\overline{\mathrm{LD}}$	FSEL1	FSELO	Program Mode	
H	X	X	Serial ${ }^{(3)}$	
L	X	X	Parallel ${ }^{(4)}$	
*THIS PIN MUST BE HIGH AFTER MASTER RESET TO WRITE OR READ DATA TO/FROM THE FIFO MEMORY.				

NOTES:

1. $\mathrm{n}=$ empty offset for $\overline{\mathrm{PAE}}$.
2. $m=$ full offset for $\overline{P A F}$.
3. As well as selecting serial programming mode, one of the default values will also be loaded depending on the state of FSELO \& FSEL1.
4. As well as selecting parallel programming mode, one of the default values will also be loaded depending on the state of FSELO \& FSEL1.

IDT72T18125. Ifboth $x 9$ Inputand $\times 9$ Outputbus Widths are selected, $D=4,097$ writes for the IDT72T1845, 8,193 writes for the IDT72T1855, 16,385 writes for the IDT72T1865,32,769 writes for the IDT72T1875,65,537 writes for the IDT72T1885, 131,073 writes for the IDT72T1895, 262,145 writes for the IDT72T18105,524,289 writes for the IDT72T18115 and 1,048,577 writes for the IDT72T18125, respectively. Note that the additional word in FWFT mode is due to the capacity of the memory plus output register.

If the FIFO is full, the first read operation will cause the $\overline{\mathrm{R}}$ flag to go LOW. Subsequent read operations will cause the $\overline{\mathrm{PAF}}$ and $\overline{\mathrm{FF}}$ to go HIGH at the conditions described in Table 4. Iffurther read operations occur, withoutwrite operations, the $\overline{\text { PAE }}$ will go LOW when there are +1 words inthe FIFO, where nis the empty offsetvalue. Continuing read operations will cause the FIFO to become empty. When the last word has been read from the FIFO, $\overline{\mathrm{R}}$ will go HIGH inhibiting further read operations. $\overline{\text { REN }}$ is ignored when the FIFO is empty.

When configured in FWFT mode, the $\overline{\mathrm{OR}}$ flag output is triple registerbuffered, and the $\overline{\mathrm{R}}$ flag outputis double register-buffered.

Relevant timing diagrams for FWFT mode can be found in Figure 14, 15, 16 and 19.

PROGRAMMING FLAG OFFSETS

Full and Empty Flagoffsetvalues are userprogrammable. The IDT72T1845/ 72T1855/72T1865/72T1875/72T1885/72T1895/72T18105/72T18115/ 72T18125have internal registers forthese offsets. There are eightdefault offset values selectable during Master Reset. These offsetvalues are shownin Table 2. Offsetvalues canalsobe programmed intothe FIFO in one oftwo ways; serial or parallel loading method. The selection of the loading method is done using the $\overline{\mathrm{LD}}$ (Load) pin. During Master Reset, the state of the $\overline{\mathrm{LD}}$ input determines whether serial or parallel flag offset programming is enabled. A HIGH on $\overline{\mathrm{LD}}$ during Master Resetselects serial loading of offsetvalues. ALOW on $\overline{L D}$ during Master Reset selects parallel loading of offsetvalues.

In addition to loading offset values into the FIFO, itis also possible to read the current offsetvalues. Offsetvalues can be read viathe paralle output port Qo-Qn, regardless of the programming mode selected (serial or parallel). It is not possible to read the offsetvalues in serial fashion.

Figure 3, Programmable Flag OffsetProgramming Sequence, summaries the control pins and sequence for both serial and parallel programming modes. For a moredetailed description, see discussionthatfollows.

The offset registers may be programmed (and reprogrammed) any time after Master Reset, regardless of whether serial or parallel programming has been selected. Valid programming ranges are from 0 to $\mathrm{D}-1$.

SYNCHRONOUS vs ASYNCHRONOUS PROGRAMMABLE FLAG timing selection

The IDT72T1845/72T1855/72T1865/72T1875/72T1885/72T1895/ 72T18105/72T18115/72T18125 can be configured during the Master Reset cycle witheither synchronous or asynchronous timing for $\overline{\text { PAF }}$ and $\overline{\text { PAE flags }}$ by use of the PFM pin.

If synchronous $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ configuration is selected (PFM, HIGH during $\overline{\mathrm{MRS}}$), the PAF is asserted and updated on the rising edge of WCLK only and not RCLK. Similarly, $\overline{\text { PAE is asserted and updated on the rising edge of RCLK }}$ only and notWCLK. Fordetail timing diagrams, see Figure 23forsynchronous $\overline{\mathrm{PAF}}$ timing and Figure 24 for synchronous $\overline{\text { PAE timing. }}$

If asynchronous PAF/PAE configuration is selected (PFM, LOW during $\overline{\mathrm{MRS}}$), the PAF is asserted LOW on the LOW-to-HIGHtransition of WCLK and $\overline{\text { PAF }}$ is resetto HIGH on the LOW-to-HIGH transition of RCLK. Similarly, $\overline{\text { PAE }}$ is asserted LOW onthe LOW-to-HIGH transition of RCLK. PAE is resettoHIGH ontheLOW-to-HIGHHtransition ofWCLK. Fordetailitimingdiagrams, see Figure 25 for asynchronous $\overline{\mathrm{PAF}}$ timing and Figure 26 for asynchronous $\overline{\mathrm{AEE}}$ timing.

TABLE 3 - STATUS FLAGS FOR IDT STANDARD MODE

IW = OW = x9		IDT72T1845	IDT72T1855	IDT72T1865	IDT72T1875	$\overline{\text { FF }}$	$\overline{\text { PAF }}$	$\overline{\mathrm{HF}}$	$\overline{\text { PAE }}$	$\overline{\mathrm{EF}}$
$\begin{aligned} & \hline \text { IW = x18 or } \\ & \text { OW = x18 } \\ & \hline \end{aligned}$	IDT72T1845	IDT72T1855	IDT72T1865	IDT72T1875	IDT72T1885					
Number of Words in FIFO	0	0	0	0	0	H	H	H	L	L
	1 to ${ }^{(1)}$	1 to $\mathrm{n}^{(1)}$	1 to ${ }^{(1)}$	1 to $\mathrm{n}^{(1)}$	1 to n (1)	H	H	H	L	H
	$(\mathrm{n}+1)$ to 1,024	$(\mathrm{n}+1)$ to 2,048	$(\mathrm{n}+1)$ to 4,096	$(\mathrm{n}+1)$ to 8,192	$(\mathrm{n}+1)$ to 16,384	H	H	H	H	H
	1,025 to (2048-(m+1))	2,049 to (4,096-(m+1))	4,097 to (8,192-(m+1))	8,193 to (16,384-(m+1))	16,385 to (32,768-(m+1))	H	H	L	H	H
	(2048-m) to 2,047	(4,096-m) to 4,095	(8,192-m) to 8,191	(16,384-m) to 16,383	(32,768-m) to 32,767	H	L	L	H	H
	2,048	4,096	8,192	16,384	32,768	L	L	L	H	H

IW = OW = x9	IDT72T1885	IDT72T1895	IDT72T18105	IDT72T18115	IDT72T18125					
$\begin{aligned} & \hline \text { IW = x18 or } \\ & \text { OW = x18 } \end{aligned}$	IDT72T1895	IDT72T18105	IDT72T18115	IDT72T18125		FF	$\overline{\text { PAF }}$	HF	$\overline{\text { PAE }}$	$\overline{\mathrm{EF}}$
Number of Words in FIFO	0	0	0	0	0	H	H	H	L	L
	1 to ${ }^{(1)}$	1 to $\mathrm{n}^{(1)}$	1 to $\mathrm{n}^{(1)}$	1 to ${ }^{(1)}$	1 to ${ }^{(1)}$	H	H	H	L	H
	$(\mathrm{n}+1)$ to 32,768	$(\mathrm{n}+1)$ to 65,536	$(\mathrm{n}+1)$ to 131,072	$(\mathrm{n}+1)$ to 262,144	$(\mathrm{n}+1)$ to 524,288	H	H	H	H	H
	32,769 to (65,536-(m+1))	65,537 to (131,072-(m+1))	131,073 to (262,144-(m+1))	262,145 to (524,288-(m+1))	524,289 to (1,048,576-(m+1))	H	H	L	H	H
	(65,536-m) to 65,535	(131,072-m) to 131,071	(262,144-m) to 262,143	(524,288-m) to 524,287	(1,048,576-m) to 1,048,575	H	L	L	H	H
	65,536	131,072	262,144	524,288	1,048,576	L	L	L	H	H

NOTE:

1. See table 2 for values for n, m.

TABLE 4 - STATUS FLAGS FOR FWFT MODE

IW = OW = x9		IDT72T1845	IDT72T1855	IDT72T1865	IDT72T1875	$\overline{\mathrm{IR}}$	$\overline{\text { PAF }}$	$\overline{\text { HF }}$	$\overline{\text { PAE }}$	$\overline{\mathrm{OR}}$
$\begin{aligned} & \text { IW = x18 or } \\ & \text { OW = x18 } \\ & \hline \end{aligned}$	IDT72T1845	IDT72T1855	IDT72T1865	IDT72T1875	IDT72T1885					
Number of Words in FIFO	0	0	0	0	0	L	H	H	L	H
	1 to $\mathrm{n}+1^{(1)}$	1 to $\mathrm{n}+1^{(1)}$	1 to $\mathrm{n}+1^{(1)}$	1 to $\mathrm{n}+{ }^{(1)}$	1 to $\mathrm{n}+{ }^{(1)}$	L	H	H	L	L
	$(\mathrm{n}+2)$ to 1,025	$(\mathrm{n}+2)$ to 2,049	$(\mathrm{n}+2)$ to 4,097	$(\mathrm{n}+2)$ to 8,193	$(\mathrm{n}+2)$ to 16,385	L	H	H	H	L
	1,026 to (2049-(m+1))	2,050 to (4,097-(m+1))	4,098 to (8,193-(m+1))	8,194 to (16,385-(m+1))	16,386 to (32,769-(m+1))	L	H	L	H	L
	(2049-m) to 2,048	(4,097-m) to 4,096	(8,193-m) to 8,192	(16,385-m) to 16,384	(32,769-m) to 32,768	L	L	L	H	L
	2,049	4,097	8,193	16,385	32,769	H	L	L	H	L

IW = OW = x9	IDT72T1885	IDT72T1895	IDT72T18105	IDT72T18115	IDT72T18125					
$\begin{aligned} & \hline \text { IW = x18 or } \\ & \text { OW = x18 } \end{aligned}$	IDT72T1895	IDT72T18105	IDT72T18115	IDT72T18125	\square	$\overline{\mathrm{IR}}$	$\overline{\text { PAF }}$	$\overline{\mathrm{HF}}$	PAE	$\overline{O R}$
Number of Words in FIFO	0	0	0	0	0	L	H	H	L	H
	1 to $\mathrm{n}+{ }^{(1)}$	1 to $\mathrm{n}+{ }^{(1)}$	1 to $\mathrm{n}+{ }^{(1)}$	1 to $\mathrm{n}+1^{(1)}$	1 to $\mathrm{n}+{ }^{(1)}$	L	H	H	L	L
	($\mathrm{n}+2$) to 32,769	$(\mathrm{n}+2)$ to 65,537	$(\mathrm{n}+2)$ to 131,073	$(\mathrm{n}+2)$ to 262,145	$(\mathrm{n}+2)$ to 524,289	L	H	H	H	L
	32,770 to (65,537-(m+1))	65,538 to (131,073-(m+1))	131,074 to (262,145-(m+1))	262,146 to (524,289-(m+1))	524,290 to (1,048,577-(m+1))	L	H	L	H	L
	(65,537-m) to 65,536	(131,073-m) to 131,072	(262,145-m) to 262,144	(524,289-m) to 524,288	(1,048,577-m) to 1,048,576	L	L	L	H	L
	65,537	131,073	262,145	524,289	1,048,577	H	L	L	H	L

NOTE:

1. See table 2 for values for n, m.
2. Number of Words in FIFO = Depth + Output Register.

NOTES:

1. The programming method can only be selected at Master Reset.
2. Parallel reading of the offset registers is always permitted regardless of which programming method has been selected.
3. The programming sequence applies to both IDT Standard and FWFT modes.

Figure 3. Programmable Flag Offset Programming Sequence

1st Parallel Offset Write/Read Cycle

2nd Parallel Offset Write/Read Cycle
D/Q8

D/Q0							
16	15	14	13	12	11	10	9

3rd Parallel Offset Write/Read Cycle

4th Parallel Offset Write/Read Cycle

IDT72T1845/72T1855/72T1865/72T1875/ 72T1885/72T1895 ${ }^{(1)}$ - x9 Bus Width

$\mathbf{x 9}$ to $\mathbf{x 9}$ Mode	All Other Modes
\# of Bits Used:	\# of Bits Used:
12 bits for the IDT72T1845	11 bits for the IDT72T1845
13 bits for the IDT72T1855	12 bits for the IDT72T1855
14 bits for the IDT72T1865	13 bits for the IDT72T1865
15 bits for the IDT72T1875	14 bits for the IDT72T1875
16 bits for the IDT72T1885	15 bits for the IDT72T1885
17 bits for the IDT72T1895	16 bits for the IDT72T1895
18 bits for the IDT72T18105	17 bits for the IDT72T18105
19 bits for the IDT72T18115	18 bits for the IDT72T18115
20 bits for the IDT72T18125	19 bits for the IDT72T18125
Note: All unused bits of the	Note: All unused bits of the
LSB \& MSB are don't care	LSB \& MSB are don't care

NOTES:

1. When programming the IDT72T1895 with an input bus width of $x 9$ and output bus width of $x 18,4$ write cycles will be required. When Reading the IDT72T1895 with an output bus width of x 9 and input bus width of $\mathrm{x} 18,4$ read cycles will be required. A total of 6 program/read cycles will be required if both the input and output bus widths are set to x 9 .
2. Consecutive reads of the offset registers is not permitted. The read operation must be disabled for a minimum of one RCLK cycle in between offset register accesses. (Please refer to Figure 22, Parallel Read of Programmable Flag Registers (IDT Standard and FWFT Modes) for more details).

Figure 3. Programmable Flag Offset Programming Sequence (Continued)

SERIAL PROGRAMMING MODE

If Serial Programming mode has been selected, as described above, then programming of $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ values can be achieved by using a combination ofthe $\overline{\mathrm{LD}}, \overline{\mathrm{SEN}}, \mathrm{SCLK}$ andS I inputpins. Programming $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ proceeds asfollows: when $\overline{\mathrm{LD}}$ and $\overline{\mathrm{SEN}}$ are setLOW, data ontheS I inputare written, one bitfor each SCLK rising edge, starting with the Empty Offset LSB and ending with the Full Offset MSB. If $x 9$ to $\times 9$ mode is selected, a total of 24 bits for the IDT72T1845, 26 bits for the IDT72T1855, 28 bits for the IDT72T1865, 30 bits forthe IDT72T1875, 32 bits for the IDT72T1885, 34 bits for the IDT72T1895, 36 bits for the IDT72T18105, 38 bits for the IDT72T18115 and 40 bits for the IDT72T18125. For any other mode of operation (that includes x18 bus width on either the Input or Output), minus 2 bits from the values above. So, a total of 22 bits for the IDT72T1845, 24 bits for the IDT72T1855, 26 bits for the IDT72T1865, 28 bits forthe IDT72T1875, 30 bits for the IDT72T1885, 32 bits forthe IDT72T1895, 34 bitsforthe IDT72T18105,36 bitsforthe IDT72T18115 and 38 bits for the IDT72T18125. See Figure 20, Serial Loading of Programmable Flag Registers, for the timing diagram for this mode.

Using the serial method, individual registers cannot be programmed selectively. $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ can show a valid status only after the complete set of bits (for all offset registers) has been entered. The registers can be reprogrammed as long as the complete set of new offset bits is entered. When $\overline{\mathrm{LD}}$ is LOW and $\overline{\mathrm{SEN}}$ is HIGH, no serial write to the registers can occur.

Write operations to the FIFO are allowed before and during the serial programmingsequence. Inthiscase, the programming of all offsetbits does not have to occurat once. A select number of bits can be written to the Sl inputand then, by bringing $\overline{\mathrm{LD}}$ and $\overline{\mathrm{SEN}}$ HIGH, data can be written to FIFO memory via Dnby toggling $\overline{\mathrm{WEN}}$. When $\overline{\mathrm{WEN}}$ is brought HIGH with $\overline{\mathrm{LD}}$ and $\overline{\mathrm{SEN}}$ restored to a LOW, the next offset bit in sequence is written to the registers viaSI. If an interruption of serial programming is desired, itis sufficienteitherto set $\overline{\mathrm{LD}} \mathrm{LOW}$ anddeactivate $\overline{\mathrm{SEN}}$ orto set $\overline{\mathrm{SEN}} \mathrm{LOW}$ anddeactivate $\overline{\mathrm{LD}}$. Once $\overline{\mathrm{LD}}$ and $\overline{\mathrm{SEN}}$ are both restored to a LOW level, serial offset programming continues.

From the time serial programming has begun, neither programmable flag will be valid until the full set of bits required to fill all the offset registers has been written. Measuring from the rising SCLKedge that achieves the above criteria; $\overline{\text { PAF }}$ will be valid afterthree more rising WCLKedges plustPAF, $\overline{\text { PAE }}$ will be valid after the next three rising RCLK edges plus tPAE.

It is only possible to read the flag offset values viathe parallel outputportQn.

PARALLELMODE

IfParallel Programming modehas been selected, as describedabove, then programming of $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ values can be achieved by using a combination of the $\overline{L D}, W C L K, \overline{W E N}$ and Dninput pins. Ifthe FIFO is configured for an input bus width and output bus width both set to $\times 9$, then the total number of write operations required to program the offset registers is 4 for the IDT72T1845/ 72T1855/72T1865/72T1875/72T1885 or 6 for the IDT72T1895/72T18105/ 72T18115/72T18125. Refer to Figure 3, Programmable Flag Offset Programming Sequence, for a detailed diagram of the datainput lines Do-Dnused during parallel programming. Ifthe FIFO is configured for an inputto outputbus width of $x 9$ to $x 18, x 18$ to $\times 9$ or $x 18$ to $x 18$, then the following number of write operations are required. For an inputbus width of x18 atotal of 2 write operations will be required to program the offset registers for the IDT72T1845/72T1855/ 72T1865/72T1875/72T1885/72T1895 or 4 forthe IDT72T18105/72T18115/ 72T18125. For an input bus width of $x 9$ a total of 4 write operations will be requiredtoprogramtheoffsetregistersfortheIDT72T1845/72T1855/72T1865/ 72T1875/72T1885. A total of 6 will be required for the IDT72T1895/72T18105/ 72T18115/72T18125. Refer to Figure 3, Programmable Flag Offset Programming Sequence, for a detailed diagram.

For example, programming $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ on the IDT72T1895 configured for x18 bus width proceeds as follows: when $\overline{L D}$ and $\overline{W E N}$ are set LOW, data onthe inputs Dnare written intothe LSB ofthe Empty OffsetRegisteronthefirst LOW-to-HIGH transition of WCLK. Uponthe second LOW-to-HIGH transition of WCLK, dataare writtenintotheMSB ofthe Empty OffsetRegister. Onthethird LOW-to-HIGHtransition ofWCLK, dataare written into the LSB ofthe Full Offset Register. On the fourthLOW-to-HIGH transition ofWCLK, data are written into theMSB ofthe Full Offset Register. ThefifthLOW-to-HIGHtransition ofWCLK, data are written, once again to the Empty Offset Register. Note that for x9 bus width, one extraWrite cycle is required for boththe Empty Offset Register and Full Offset Register. See Figure 21, Parallel Loading of Programmable Flag Registers, for the timing diagram for this mode.

The act of writing offsets in parallel employs a dedicated write offset register pointer. The act of reading offsets employs a dedicated read offset register pointer. The two pointers operate independently; however, a read and a write should notbe performed simultaneously totheoffset registers. AMaster Reset initializes both pointers to the Empty Offset (LSB) register. A Partial Resethas no effecton the position of these pointers.

Write operations to the FIFO are allowed before and during the parallel programmingsequence. Inthiscase, the programming of all offsetregisters does not have to occur at one time. One, two or more offset registers can be written and then by bringing $\overline{\mathrm{LD}}$ HIGH, write operations can be redirected to the FIFO memory. When $\overline{\mathrm{LD}}$ is setLOW again, and $\overline{\mathrm{WEN}}$ is LOW, the next offset register in sequence is writtento. As an alternative to holding WEN LOW and toggling $\overline{\mathrm{LD}}$, parallel programming can also be interrupted by setting $\overline{\mathrm{LD}} \mathrm{LOW}$ and toggling $\overline{W E N}$.

Note that the status of a programmable flag ($\overline{\mathrm{PAE}}$ or $\overline{\mathrm{PAF}}$) output is invalid during the programming process. From the time parallel programming has begun, a programmable flagoutput will not be valid until the appropriate offset word has been written to the register(s) pertaining to thatflag. Measuring from the rising WCLK edge that achieves the above criteria; $\overline{\mathrm{PAF}}$ will be valid after two more risingWCLKedges plustPAF, $\overline{\text { PAE }}$ will be valid after the nexttwo rising RCLK edges plus tPAE plus tSKEW2.

The act of reading the offset registers employs a dedicated read offset register pointer. The contents of the offset registers can be read on the Qo-Qn pins when $\overline{\mathrm{LD}}$ is set LOW and $\overline{\mathrm{REN}}$ is set LOW. It is important to note that consecutive reads of theoffsetregisters isnotpermitted. The readoperationmust be disabled for a minimum of one RCLK cycle in between offset register accesses. Ifthe FIFO is configured for an input bus width and output bus width both setto $\times 9$, then the total number of read operations required to read the offset registers is 4 forthe IDT72T1845/72T1855/72T1865/72T1875/72T1885 or6 for the IDT72T1895/72T18105/72T18115/72T18125. Refer to Figure 3, Programmable Flag Offset Programming Sequence, for a detailed diagram of the data input lines Do-Dn used during parallel programming. IftheFIFO is configured for an input to output bus width of $x 9$ to $\times 18, \times 18$ to $\times 9$ or $\times 18$ to $\times 18$, then the following number of read operations are required: for an output bus width of $x 18$ atotal of 2 read operations will be required to read the offsetregisters forthe IDT72T1845/72T1855/72T1865/72T1875/72T1885/72T1895 or 4 for the IDT72T18105/72T18115/72T18125. For an output bus width of x9 a total of 4 read operations will be required to read the offset registers for the IDT72T1845/72T1855/72T1865/72T1875/72T1885. A total of 6 will be required for the IDT72T1895/72T18105/72T18115/72T18125. Referto Figure 3, Programmable Flag OffsetProgramming Sequence, for a detailed diagram. See Figure 22, Parallel Read of Programmable Flag Registers, for the timing diagramforthis mode.

Itis permissible to interrupt the offset register read sequence with reads or writes to the FIFO. The interruption is accomplished by deasserting $\overline{R E N}, \overline{\mathrm{LD}}$,
or both together. When $\overline{\mathrm{REN}}$ and $\overline{\mathrm{LD}}$ are restored to a LOW level, reading of the offset registers continues whereitleftoff. Itshould be noted, and care should be taken from the fact that when a parallel read of the flag offsets is performed, the data word that was present on the output lines Qn will be overwritten.

Parallel reading of the offset registers is always permitted regardless of which timing mode (IDT Standard or FWFT modes) has been selected.

RETRANSMIT FROM MARK OPERATION

The Retransmit from Markfeature allows FIFO data to be read repeatedly starting atauser-selected position. TheFIFO is firstputinto retransmitmodethat will 'mark' abeginning word and also seta pointer that will preventongoing FIFO write operations from over-writing retransmit data. The retransmit data can be read repeatedly any number oftimes from the 'marked' position. The FIFO can be taken out of retransmit mode at any time to allow normal device operation. The 'mark'position can be selected any number oftimes, each selection overwriting the previous marklocation. Retransmitoperation is available inbothIDT standard and FWFT modes.

During IDT standard mode the FIFO is put into retransmit mode by a Low-to-High transition on RCLK when the 'MARK' input is HIGH and EF is HIGH. The rising RCLK edge 'marks' the data present in the FIFO output register as the firstretransmitdata. TheFIFO remains in retransmitmode until arising edge on RCLK occurs while MARK is LOW.

Oncea 'marked' location has been set (and the device is still in retransmit mode, MARK is HIGH), a retransmit can be initiated by a rising edge on RCLK while the retransmit input ($\overline{\mathrm{RT}}$) is LOW. $\overline{\mathrm{REN}}$ must be HIGH (reads disabled) before bringing $\overline{R T}$ LOW. The device indicates the start of retransmit setup by setting $\overline{\mathrm{EF}} \mathrm{LOW}$, also preventing reads. When $\overline{\mathrm{EF}}$ goes HIGH, retransmitsetup iscompleteand readoperationsmay beginstarting withthefirstdataattheMARK location. Since IDT standard mode is selected, every word read including the first 'marked' wordfollowing a retransmitsetup requires a LOW on $\overline{R E N}$ (read enabled).

Note, write operations may continue as normal during all retransmit functions, however write operations to the 'marked' location will be prevented. See Figure 18, Retransmit from Mark (IDT standard mode), for the relevant timingdiagram.

During FWFT mode the FIFO is put into retransmitmodeby a rising RCLK edge when the 'MARK' input is HIGH and $\overline{O R}$ is LOW. The rising RCLK edge 'marks' the data present in the FIFO output register as the first retransmit data. The FIFO remains in retransmit mode until a rising RCLK edge occurs while MARKisLOW.

Once a marked location has been set (and the device is still in retransmit can be initiated by a rising RCLK edge while the retransmit input $(\overline{\mathrm{RT}})$ is LOW. $\overline{\text { REN }}$ must be HIGH (reads disabled) before bringing RT LOW. The device indicates the start of retransmit setup by setting $\overline{\mathrm{OR}} \mathrm{HIGH}$.

When $\overline{\text { OR }}$ goes LOW, retransmit setup is complete and on the next rising RCLKedge after retransmit setup is complete, ($\overline{\mathrm{RT}}$ goes HIGH), the contents of the first retransmit location are loaded onto the output register. Since FWFT mode is selected, the first word appears on the outputs regardless of $\overline{R E N}$, a LOW on $\overline{R E N}$ is not required for the firstword. Reading all subsequentwords requires a LOW on $\overline{\text { REN }}$ to enable the rising RCLK edge. See Figure 19, Retransmit from Marktiming (FWFTmode), for the relevanttiming diagram.

Note, for the IDT72T1845/72T1855/72T1865/72T1875/72T1885/ 72T1895there mustbea minimum of 32 bytes of databetween the write pointer and read pointerwhentheMARK is asserted, for the IDT72T18105/72T18115 there mustbea minimum of 128 bytes and for the IDT72T18125there mustbe a minimum of 256 bytes. Remember, $2(\mathrm{x} 9)$ bytes $=1(\mathrm{x} 18)$ word. (32 bytes $=$ 16 word $=8$ long words). Also, once the MARK is set, the write pointer will not increment past the "marked" location until the MARK is deasserted. This prevents"overwriting" of retransmit data.

HSTL/LVTTL I/O

Both the write port and read port are user selectable between HSTL or LVTTL I/O, via two select pins, WHSTL and RHSTL respectively. All other control pins are selectable via SHSTL, see Table 5 for details of groupings.

Note, thatwhenthewriteportisselectedforHSTL mode, the usercan reduce the power consumption (in stand-by mode by utilizing the $\overline{W C S}$ input).

All "Static Pins" must be tied to VCC or GND. These pins are LVTTL only, and are purely device configuration pins.

TABLE 5 - I/O CONFIGURATION

WHSTL SELECT	RHSTL SELECT		SHSTL SELECT		STATIC PINS	
$\begin{aligned} \hline \hline \text { WHSTL: HIGH } & =\text { HSTL } \\ \text { LOW } & =\text { LVTTL } \end{aligned}$	$\begin{aligned} \text { RHSTL: HIGH } & =\text { HSTL } \\ \text { LOW } & =\text { LVTTL } \end{aligned}$		$\begin{aligned} \hline \text { SHSTL: } \mathrm{HIGH} & =\text { HSTL } \\ \text { LOW } & =\text { LVTTL } \end{aligned}$		LVTTL ONLY	
Dn (I/P) WCLKWR (I/P) WEN (I/P) WCS (I/P)	$\begin{aligned} & \text { RCLK/RD (I/P) } \\ & \begin{array}{l} \text { RCS } \\ \text { MARK } \\ \text { MA/P) } \end{array} \\ & \hline \operatorname{REN}(I / P) \\ & \hline \overline{\mathrm{OE}}(I / /(/ P) \\ & \text { Qn }(0 / P) \end{aligned}$	EF/DR (O/P) $\overline{\mathrm{PAF}}$ (O / P) EREN (O/P) PAE (O / P) $\overline{F F} / \bar{R}(O / P)$ $\overline{\mathrm{HF}}$ (O/P) ERCLK (O/P) TDO (O/P)		$\begin{aligned} & \hline \overline{\operatorname{PRS}}(I / P) \\ & \overline{\operatorname{TRST}}(I / P) \end{aligned}$ TDI (I/P)	IW (I/P) BM (I/P) $\overline{\text { ASYR (IIP) }}$ IP (IP) FSEL1 (I/P) SHSTL (IIP) RHSTL (I/P)	$\begin{aligned} & \text { OW (I/P) } \\ & \overline{\text { ASYW }}(I / P) \\ & \overline{B E}(I / P) \\ & \text { FSELO (IIP) } \\ & \text { PFM (IIP) } \\ & \text { WHSTL (I/P) } \end{aligned}$

SIGNAL DESCRIPTION

INPUTS:

DATA IN (D0 - Dn)

Datainputs for 18-bitwide data (D0-D17) ordata inputs for 9-bit wide data (D0-D8).

CONTROLS:

MASTER RESET ($\overline{\text { MRS }}$)

AMasterResetis accomplishedwheneverthe $\overline{M R S}$ inputistakentoaLOW state. This operation sets the internal read and write pointers to the firstlocation

If FWFT/SI is LOW during Master Reset then the IDT Standard mode, along with $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ are selected. $\overline{\mathrm{EF}}$ will go LOW and $\overline{\mathrm{FF}}$ will go HIGH. If FWFT/Sl is HIGH, then the FirstWord Fall Through mode(FWFT), along with $\overline{\mathrm{R}}$ and $\overline{\mathrm{OR}}$, are selected. $\overline{\mathrm{OR}}$ will go HIGH and $\overline{\mathrm{R}}$ will go LOW.

All control settings such as OW, IW, $\overline{\mathrm{EE}}, \mathrm{RM}, \mathrm{PFM}$ and IP are defined during the Master Resetcycle.

DuringaMasterReset, the outputregisteris initializedtoallzeroes. AMaster Resetis required afterpowerup, before a write operation cantake place. $\overline{M R S}$ is asynchronous.

See Figure 9, Master Reset Timing, for the relevant timing diagram.

PARTIAL RESET ($\overline{\operatorname{PRS}}$)

APartial Resetis accomplished wheneverthe $\overline{\overline{R S}}$ inputis takentoaLOW state. As in the case of the Master Reset, the internal read and write pointers are settothefirstlocation ofthe RAM array, $\overline{\text { PAE goes LOW, PAF goes HIGH, }}$ and $\overline{\mathrm{HF}}$ goes HIGH.

Whichever mode is active atthe time of Partial Reset, IDTStandard mode orFirstWord Fall Through, that mode will remainselected. Ifthe IDTStandard mode is active, then $\overline{\text { FF }}$ will go HIGH and EF will go LOW. If the First Word Fall Through mode is active, then $\overline{\mathrm{OR}}$ will go HIGH , and $\overline{\mathrm{R}}$ will go LOW.

Following Partial Reset, all values held in the offset registers remain unchanged. The programming method (parallel or serial) currently active at the time of Partial Resetis also retained. The output registeris initializedto all zeroes. $\overline{\mathrm{PRS}}$ is asynchronous.

A Partial Reset is useful for resetting the device during the course of operation, when reprogramming programmableflagoffsetsettings may notbe convenient.

See Figure 10, Partial Reset Timing, for the relevant timing diagram.

ASYNCHRONOUS WRITE ($\overline{\text { ASYW }})$

The write portcan be configuredforeitherSynchronous or Asynchronous mode of operation. If during Master Reset the ASYW input is LOW, then Asynchronous operation of the write port will be selected. During Asynchronous operation of the write port the WCLK inputbecomes WR input, this is the Asynchronous write strobe input. A rising edge on WR will write data present on the Dninputs into the FIFO. ($\overline{W E N}$ mustbetied LOW when using the write port in Asynchronous mode).

Whenthe write portis configured for Asynchronous operation the full flag (FF) operates in an asynchronous manner, thatis, the full flag will be updated based in both a write operation and read operation. Note, if Asynchronous mode is selected, FWFT is not permissable. Refer to Figures 30, 31, 34 and 35 for relevant timing and operational waveforms.

ASYNCHRONOUS READ ($\overline{\text { ASYR }}$)

The read port can be configuredfor eitherSynchronous or Asynchronous mode of operation. If during a Master Reset the $\overline{\text { ASYR input is LOW, then }}$ Asynchronous operation of the read port will be selected. During Asynchronous operation of the read port the RCLK inputbecomes RD input, this is the Asynchronous read strobe input. A rising edge on RD will read data from the FIFO via the output register and Qn port. (REN must be tied LOW during Asynchronous operation of the read port).

The $\overline{\mathrm{OE}}$ input provides three-state control of the Qn output bus, in an asynchronous manner. ($\overline{R C S}$, provides three-state control of the read port in Synchronous mode).

When the read portis configured for Asynchronous operation the device mustbe operating on IDT standard mode, FWFT mode is notpermissible ifthe read portis Asynchronous. The Empty Flag(EF) operates in an Asynchronous manner, that is, the empty flag will be updated based on both a read operation and a write operation. Refer to Figures $32,33,34$ and 35 for relevant timing and operational waveforms.

RETRANSMIT ($\overline{\mathrm{RT}}$)

The Retransmit ($\overline{\mathrm{RT}}$) input is used in conjunction with the MARK input, together they provide a means by which data previously read out of the FIFO canbe reread any number of times. If retransmitoperation has been selected (i.e.the MARK inputis HIGH), arising edge on RCLK while $\widehat{R T}$ is LOW will reset the read pointerbacktothe memory location setby the userviathe MARKinput.

IfIDT standard mode has been selectedthe EF flag will go LOW and remain LOW for the time that $\overline{\mathrm{RT}}$ is held $\mathrm{LOW} . \overline{\mathrm{RT}}$ can be held LOW for any number of RCLK cycles, the read pointer being resetto the marked location. The next rising edge of RCLK after $\overline{R T}$ has returned HIGH , will cause $\overline{\mathrm{EF}}$ to go HIGH, allowing read operations to be performed onthe FIFO. The nextread operation will access datafrom the 'marked' memory location.

Subsequent retransmit operations may be performed, each time the read pointer returning tothe 'marked' location. See Figure 18, RetransmitfromMark (IDT Standard mode) for the relevant timing diagram.

IfFWFT mode has beenselectedthe $\overline{\mathrm{OR}}$ flag will go HIGH and remain HIGH for the time that $\overline{R T}$ is held LOW. $\overline{R T}$ canbeheld LOW for any number of RCLK cycles, the read pointer being resetto the 'marked' location. The next RCLK rising edge after $\overline{\mathrm{RT}}$ has returned HIGH , will cause $\overline{\mathrm{OR}}$ to go LOW and due to FWFToperation, the contents ofthe marked memorylocation will be loaded onto the output register, a read operation being required for all subsequent data reads.

Subsequent retransmit operations may be performed each time the read pointer returning tothe 'marked' location. See Figure 19, RetransmitfromMark (FWFT mode) for the relevant timing diagram.

MARK

The MARK inputis usedto select Retransmit mode of operation. An RCLK rising edge while MARK is HIGH will mark the memory location of the data currently present on the output register, the device will also be placed into retransmit mode. Note, for the IDT72T1845/72T1855/72T1865/72T1875/ 72T1885/72T1895 there must be a minimum of 32 bytes of data between the write pointer and read pointerwhentheMARKisasserted, forthe IDT72T18105/ 72T18115 there must be a minimum of 128 bytes and for the IDT72T18125 there mustbe a minimum of 256 bytes. Remember, $2(\times 9)$ bytes $=1$ ($\times 18$) word. (32 bytes $=16$ word $=8$ long words). Also, once the MARK is set, the write pointer will not increment past the "marked" location until the MARK is deasserted. This prevents "overwriting" of retransmitdata.

The MARK input must remain HIGH during the whole period of retransmit mode, a falling edge of RCLK while MARK is LOW will take the device out of retransmitmode and into normal mode. Any number of MARKlocations can be set during FIFO operation, only the last marked locationtaking effect. Oncea mark location has been set the write pointer cannot be incremented past this marked location. During retransmit mode write operations to the device may continue withouthindrance.

FIRST WORD FALL THROUGH/SERIAL IN (FWFT/SI)

This is a dual purpose pin. During Master Reset, the state of the FWFT/ Sl input determines whether the device will operate in IDT Standard mode or First Word Fall Through (FWFT) mode.

If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag ($\overline{\mathrm{EF}}$) to indicate whether or notthere are any words present inthe FIFO memory. Italso uses the Full Flag function $(\overline{\mathrm{FF}})$ to indicate whether or not the FIFO memory has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using the Read Enable ($\overline{\mathrm{REN}})$ and RCLK.

If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be selected. This mode uses Output Ready ($\overline{\mathrm{OR}})$ to indicate whether or not there is valid data at the data outputs (Qn). It also uses Input Ready ($\overline{\mathrm{R}}$) to indicate whether or not the FIFO memory has any free space for writing. Inthe FWFT mode, thefirstwordwrittentoanempty FIFOgoes directly to Qnafterthree RCLK rising edges, $\overline{\text { REN }}=$ LOW is not necessary. Subsequent words must be accessed using the Read Enable ($\overline{\mathrm{REN}}$) and RCLK.

AfterMaster Reset, FWFT/Sl acts as a serial inputforloading $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$ offsets into the programmable registers. The serial input function can only be used when the serial loading method has been selected during Master Reset. Serial programming using the FWFT/SI pinfunctions the same way in both IDT Standard and FWFT modes.

WRITE STROBE \& WRITE CLOCK (WR/WCLK)

IfSynchronous operation of the write porthas beenselected via $\overline{\text { ASYW, }}$, this inputbehaves asWCLK.

A write cycle is initiated on the rising edge of the WCLK input. Data setup and hold times mustbe met with respect to the LOW-to-HIGH transition of the WCLK. It is permissible tostoptheWCLK. Note that whileWCLKis idle, the $\overline{F F} /$ $\overline{\mathrm{IR}}, \overline{\mathrm{PAF}}$ and $\overline{\mathrm{HF}}$ flags will not be updated. (Note that WCLK is only capable of updating $\overline{\mathrm{HF}}$ flag to LOW). The Write and Read Clocks can either be independentorcoincident.

IfAsynchronous operationhas been selectedthis inputisWR(writestrobe). Data is Asynchronously written intothe FIFO viathe Dninputs wheneverthere is a rising edge on WR. In this mode the WEN input must be tied LOW.

WRITE ENABLE ($\overline{\mathrm{WEN}})$

When the $\overline{W E N}$ input is LOW, data may beloaded intotheFIFO RAM array on the rising edge of every WCLK cycle if the device is not full. Data is stored in the RAM array sequentially and independently of any ongoing read operation.

WhenWEN is HIGH, no new datais written inthe RAM array oneachWCLK cycle.

To prevent data overflow in the IDT Standard mode, $\overline{\mathrm{FF}}$ will go LOW, inhibiting further write operations. Upon the completion of a valid read cycle, $\overline{\mathrm{FF}}$ will go HIGH allowing a write to occur. The $\overline{\mathrm{FF}}$ is updated by two WCLK cycles + tSKEW after the RCLK cycle.

To prevent data overflow in the FWFT mode, $\overline{\mathrm{IR}}$ will go HIGH, inhibiting further write operations. Upon the completion of a valid read cycle, $\overline{\mathrm{R}}$ will go LOW allowing a write to occur. The $\overline{\mathrm{IR}}$ flag is updated by two WCLK cycles + tSKEW after the valid RCLK cycle.
$\overline{\text { WEN }}$ is ignored whenthe FIFO isfull ineitherFWFTorIDTStandardmode.
If Asynchronous operation of the write port has been selected, then WEN mustbeheld active, (tied LOW).

READ STROBE \& READ CLOCK (RD/RCLK)

If Synchronous operation of the read porthas been selectedvia $\overline{A S Y R}$, this inputbehaves as RCLK. A read cycle is initiated onthe rising edge of the RCLK input. Data can be read on the outputs, on the rising edge of the RCLK input. Itispermissible tostoptheRCLK. NotethatwhileRCLKis idle, the $\overline{\mathrm{EF}} / \overline{\mathrm{OR}}, \overline{\mathrm{PAE}}$ and $\overline{\mathrm{HF}}$ flags will not be updated. (Note that RCLK is only capable of updating the $\overline{\mathrm{HF}}$ flag to HIGH). The Write and Read Clocks can be independent or coincident.

If Asynchronous operation has been selected this input is RD (Read Strobe). Data is Asynchronously read from the FIFO via the output register whenever there is a rising edge on RD. In this mode the $\overline{\mathrm{REN}}$ and $\overline{\mathrm{RCS}}$ inputs mustbetied LOW. The $\overline{\text { OE inputis used to provide Asynchronous control of the }}$ three-state Qnoutputs.

WRITE CHIP SELECT ($\overline{\mathrm{WCS}}$)

The $\overline{\text { WCS }}$ disables all Write Port inputs (data only) if it is held HIGH. To perform normal operations on the write port, the $\overline{W C S}$ must be enabled, held LOW.

READ ENABLE ($\overline{\operatorname{REN}}$)

When Read Enable is LOW, data is loaded from the RAM array into the output registeronthe rising edge of every RCLK cycle ifthe device is notempty.

When the $\overline{R E N}$ input is HIGH, the output register holds the previous data and no new data is loaded into the output register. The data outputs Qo-Qn maintain the previous data value.

Inthe IDT Standard mode, every word accessed at Qn, including the first word written to an empty FIFO, must be requested using $\overline{\operatorname{REN}}$ provided that $\overline{\mathrm{RCS}}$ is LOW. Whenthe lastword has been readfromtheFIFO, the Empty Flag ($\overline{\mathrm{EF}}$) will go LOW, inhibiting further read operations. $\overline{\mathrm{REN}}$ is ignored when the FIFO is empty. Once a write is performed, $\overline{\mathrm{EF}}$ will go HIGH allowing a read to occur. The EFflagis updated by two RCLKcycles+tSKEw afterthe validWCLK cycle. Both $\overline{\mathrm{RCS}}$ and $\overline{\mathrm{REN}}$ must be active, LOW for data to be read out on the rising edge of RCLK.

IntheFWFTmode, thefirstword writtentoanempty FIFOautomatically goes to the outputs Qn, on the third valid LOW-to-HIGH transition of RCLK + tSKEW after the firstwrite. $\overline{\mathrm{REN}}$ and $\overline{\mathrm{RCS}}$ do not need to be asserted LOW for the First Word to fall through to the output register. In order to access all other words, a read must be executed using $\overline{R E N}$ and $\overline{R C S}$. The RCLK LOW-to-HIGH transition after the lastword has been readfrom the FIFO, Output Ready ($\overline{\mathrm{OR}})$ will go HIGH with a true read (RCLK with $\overline{\mathrm{REN}}=\mathrm{LOW} ; \overline{\mathrm{RCS}}=\mathrm{LOW}$), inhibiting further read operations. $\overline{R E N}$ is ignored when the FIFO is empty.

If Asynchronous operation of the Read porthas been selected, then $\overline{R E N}$ mustbeheldactive, (tied LOW).

SERIAL ENABLE ($\overline{\operatorname{SEN}}$)

The $\overline{\text { SEN }}$ input is an enable used only for serial programming of the offset registers. The serial programming method must be selected during Master Reset. $\overline{\text { SEN }}$ is always used in conjunction with $\overline{\mathrm{LD}}$. Whenthese lines are both LOW, dataattheSl inputcanbeloaded intothe program registeronebitforeach LOW-to-HIGHtransition of SCLK.

When $\overline{\text { SEN }}$ is HIGH, the programmable registers retains the previous settings and no offsets are loaded. $\overline{\text { SEN }}$ functions the same way in both IDT Standard and FWFT modes.

OUTPUT ENABLE ($\overline{O E}$)

When Output Enable is enabled(LOW), the parallel outputbuffers receive datafrom the output register. When $\overline{\text { OE }}$ is HIGH, the output databus $\left(Q_{n}\right)$ goes intoahighimpedance state. During MasteroraPartial Resetthe $\overline{\mathrm{OE}}$ is the only inputthat can place the outputbusQn, into High-Impedance. During Reset the $\overline{\mathrm{RCS}}$ input can be HIGH or LOW, it has no effect on the Qn outputs.

READ CHIP SELECT ($\overline{\text { RCS }}$)

The Read Chip Select input provides synchronous control of the Read output port. When $\overline{R C S}$ goes LOW, the next rising edge of RCLK causes the Qnoutputs to go to the Low-Impedance state. When $\overline{R C S}$ goes HIGH, the next RCLK rising edge causes the Qnoutputs to returnto HIGHZ. During a Master or Partial Resetthe $\bar{R} C S$ inputhas no effectonthe Qnoutputbus, $\overline{\mathrm{OE}}$ is the only inputthatprovides High-Impedance control of the Qnoutputs. If $\overline{\mathrm{OE}}$ is LOW the Qn data outputs will be Low-Impedance regardless of $\overline{\mathrm{RCS}}$ until the firstrising edge of RCLK aftera Reset is complete. Thenif $\overline{\mathrm{RCS}}$ is HIGH the data outputs will goto High-Impedance.

The $\overline{\mathrm{RCS}}$ inputdoes noteffect theoperation oftheflags. For example, when the first word is written to an empty FIFO, the $\overline{\mathrm{EF}}$ will still go from LOW to HIGH based on a rising edge of RCLK, regardless of the state of the $\overline{R C S}$ input.

Also, when operating the FIFO in FWFT mode the first word written to an empty FIFO will still be clocked throughto the output register based on RCLK, regardless of the state of $\overline{\mathrm{RCS}}$. For this reason the user must take care when a data word is writtento anempty FIFO in FWFT mode. If $\overline{\mathrm{RCS}}$ is disabled when an empty FIFO is written into, the firstword will fall throughtothe output register, but will not be available on the Qn outputs which are in HIGH-Z. The usermust take $\overline{\mathrm{RCS}}$ active LOW to access this first word, place the outputbus in LOW-Z. $\overline{\mathrm{REN}}$ mustremaindisabledHIGHforatleastonecycleafter $\overline{\mathrm{RCS}}$ has goneLOW. A rising edge of RCLK with $\overline{R C S}$ and $\overline{R E N}$ active LOW, will read out the next word. Care must be taken so as not to lose the first word written to an empty FIFO when $\overline{\mathrm{RCS}}$ is HIGH. Referto Figure 17, $\overline{\mathrm{RCS}}$ and $\overline{\mathrm{REN}}$ Read Operation (FWFT Mode). The $\overline{R C S}$ pin must also be active (LOW) in order to perform aRetransmit. See Figure 13 for Read Cycle and Read ChipSelect Timing (IDT StandardMode). See Figure 16 for Read Cycle and Read ChipSelect Timing (First Word Fall Through Mode).

If Asynchronous operation of the Read porthas been selected, then $\overline{R C S}$ mustbe held active, (tied LOW). $\overline{O E}$ provides three-state control of Qn.

WRITE PORT HSTL SELECT (WHSTL)

The control inputs, datainputs and flag outputs associated with the write port can be setup to beeitherHSTL or LVTTL. IfWHSTL is HIGH during the Master Reset, then HSTL operation of the write port will be selected. IfWHSTL is LOW at Master Reset, then LVTTL will be selected.

The inputs and outputs associated with the write port are listed in Table 5.

READ PORT HSTL SELECT (RHSTL)

The control inputs, datainputs and flag outputs associated with the read port can be setup to be either HSTL or LVTTL. If RHSTL is HIGH during the Master Reset, then HSTL operation of the read port will be selected. If RHSTL is LOW at Master Reset, then LVTTL will be selected forthe read port, thenecho clock and echo read enable will not be provided.

The inputs and outputs associated with the read port are listed in Table 5.

SYSTEM HSTL SELECT (SHSTL)

All inputs notassociated withthe write and read port can be setup to beeither HSTL orLVTTL. IfSHSTL is HIGH during Master Reset, then HSTL operation of all the inputs not associated with the write and read port will be selected. If SHSTL is LOW at Master Reset, then LVTTL will be selected. The inputs associated with SHSTL are listed in Table 5.

LOAD (디)
This is a dual purpose pin. During Master Reset, the state of the $\overline{\mathrm{LD}}$ input, along with FSELO andFSEL1, determines one of eight default offset values for the $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$ flags, along with the method by which these offset registers can be programmed, parallel or serial (see Table2). After Master Reset, $\overline{\mathrm{LD}}$ enables write operations to and read operations from the offset registers. Only the offsetloadingmethod currently selected canbeusedto write to the registers. Offset registers can be read only in parallel.

AfterMasterReset, the $\overline{L D}$ pinis usedto activatethe programming process of the flagoffsetvalues $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$. Pulling $\overline{\mathrm{L}} \mathrm{LOW}$ will begin a serial loading or parallel load or read of these offset values. THIS PIN MUST BE HIGH AFTERMASTERRESETTOWRITEORREADDATATO/FROMTHEFIFO MEMORY.

BUS-MATCHING (IW, OW)

The pins IW and OW are used to define the input and output bus widths. During Master Reset, the state of these pins is used to configure the device bus sizes. See Table 1 for control settings. All flags will operate on the word/byte size boundary as defined by the selection of bus width. See Figure 5 for BusMatching Byte Arrangement.

BIG-ENDIAN/LITTLE-ENDIAN ($\overline{\mathrm{BE}}$)

During Master Reset, a LOW on $\overline{B E}$ will select Big-Endian operation. A HIGH on $\overline{\mathrm{BE}}$ during Master Reset will select Little-Endianformat. Thisfunction is useful when data is written into the FIFO in word format (x18) and read out of the FIFO in word format (x18) or byte format (x 9). If Big-Endian mode is selected, then the mostsignificant byte of the word written intothe FIFO will be read out of the FIFO first, followed by the leastsignificant byte. If Little-Endian formatis selected, thentheleastsignificant byte of the word written intotheFIFO will be read out first, followed by the most significant byte. The mode desired is configured during master resetby the state of the Big-Endian $(\overline{\mathrm{BE}})$ pin. See Figure 5 for Bus-Matching Byte Arrangement.

PROGRAMMABLE FLAG MODE (PFM)

During Master Reset, a LOW on PFM will select Asynchronous Programmable flag timing mode. A HIGH on PFM will select Synchronous Programmable flagtiming mode. If asynchronous $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ configuration is selected (PFM, LOW during $\overline{\mathrm{MRS}}$), the $\overline{\mathrm{PAE}}$ is asserted LOW on the LOW-to-HIGH transition of RCLK. PAE is reset to HIGH on the LOW-to-HIGH transition of WCLK. Similarly, the $\overline{\mathrm{PAF}}$ is asserted LOW on the LOW-to-HIGH transition of WCLK and $\overline{\mathrm{PAF}}$ is reset to HIGH on the LOW-to-HIGH transition of RCLK.

If synchronous $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ configuration is selected (PFM, HIGH during MRS), the $\overline{\mathrm{PAE}}$ is asserted and updated on the rising edge of RCLK only and notWCLK. Similarly, $\overline{\text { PAF }}$ is asserted and updated on the rising edge ofWCLK only and not RCLK. The mode desired is configured during master reset by the state of the Programmable Flag Mode (PFM) pin.

INTERSPERSED PARITY (IP)

During Master Reset, a LOW on IP will select Non-Interspersed Parity mode. AHIGH will select Interspersed Parity mode. The IP bitfunction allows the user to select the parity bit in the word loaded into the parallel port (Do-Dn) when programming the flagoffsets. If Interspersed Parity mode is selected, then theFIFO will assumethatthe parity bitis located inbitposition D8 and D17 during the parallel programming of the flag offsets, and will therefore ignore D8 when loading the offset register in parallel mode. This is also applied to the output register when reading the value of the offset register. If Interspersed Parity is selected then output Q8 will be invalid. If Non-Interspersed Parity mode is selected, then D16 and D17 are the parity bits and are ignored during parallel
programming ofthe offsets. (D8becomes avalid bit). Additionally, outputQ8 will become a valid bit when performing a read of the offset register. IP mode is selected during Master Reset by the state of the IP input pin.

OUTPUTS:

FULL FLAG ($\overline{\mathrm{FF}} / \overline{\mathrm{R}}$)

This is adual purpose pin. InIDTStandard mode, the Full Flag(FF)function is selected. When the FIFO is full, $\overline{F F}$ will go LOW, inhibiting further write operations. When FF is HIGH, the FIFO is not full. If no reads are performed after a reset (either $\overline{\mathrm{MRS}}$ or $\overline{\mathrm{PRS}}$), $\overline{\mathrm{FF}}$ will go LOW after D writes to the FIFO. Ifx18Inputorx18Outputbus Width is selected, $\mathrm{D}=2,048$ for the IDT72T1845, 4,096 for the IDT72T1855, 8,192 for the IDT72T1865, 16,384 for the IDT72T1875, 32,768 for the IDT72T1885, 65,536 for the IDT72T1895, 131,072 writes for the IDT72T18105,262,144 writes forthe IDT72T18115 and 524,288 writes for the IDT72T18125. If both $\times 9$ Inputand $\times 9$ Outputbus Widths are selected, $D=4,096$ for the IDT72T1845, 8,192 for the IDT72T1855, 16,384 for the IDT72T1865, 32,768 for the IDT72T1875, 65,536 for the IDT72T1885, 131,072 for the IDT72T1895, 262,144 writes for the IDT72T18105,524,288 writes for the IDT72T18115 and 1,048,576 writes for the IDT72T18125. See Figure 11, Write Cycle and Full Flag Timing (IDT StandardMode), for the relevant timing information.

In FWFT mode, the Input Ready ((IR) function is selected. $\overline{\mathrm{R}}$ goes LOW when memory space is available for writing in data. When there is no longer anyfree space left, \bar{R} goes HIGH, inhibiting furtherwrite operations. If no reads are performed after a reset (either $\overline{\mathrm{MRS}}$ or $\overline{\mathrm{PRS}}$), $\overline{\mathrm{R}}$ will go HIGH afterD writes tothe FIFO. Ifx18 Input orx18OutputbusWidth is selected, $D=2,049$ for the IDT72T1845, 4,097 for the IDT72T1855, 8, 193 for the IDT72T1865, 16,385 forthe IDT72T1875, 32,769 forthe IDT72T1885, 65,537 forthe IDT72T1895, 131,073 writesfor the IDT72T18105,262,145 writes for the IDT72T18115 and 524,289 writes for the IDT72T18125. If both $\times 9$ Inputand $\times 9$ Outputbus Widths are selected, $\mathrm{D}=4,097$ forthe IDT72T1845,8,193forthe IDT72T1855, 16,385 forthe IDT72T1865, 32,769forthe IDT72T1875, 65,537forthe IDT72T1885, 131,073 for the IDT72T1895, 262,145 writes for the IDT72T18105,524,289 writes for the IDT72T18115 and 1,048,577 writes for the IDT72T18125. See Figure 14, Write Timing (FWFT Mode), for the relevant timing information.

The \bar{R} status notonly measures the contents of the FIFO memory, butalso counts the presence of a word in the output register. Thus, in FWFT mode, the total number of writes necessary to deassert $\overline{\mathrm{R}}$ is one greater than needed to assert FF in IDT Standard mode.
$\overline{F F} / \bar{R}$ is synchronous and updated on the rising edge of WCLK. $\overline{F F} / \bar{R}$ are double register-buffered outputs.

Note, whenthe device is in Retransmitmode, this flagis a comparison ofthe write pointerto the 'marked' location. This differs from normal mode where this flag is a comparison of the write pointer to the read pointer.

EMPTY FLAG ($\overline{E F} / \overline{O R}$)

This is a dual purpose pin. In the IDTStandard mode, the Empty Flag (EF) function is selected. When the FIFO is empty, EF will goLOW, inhibiting further read operations. When EF is HIGH, the FIFO is notempty. See Figure 12, Read Cycle, Empty Flag and First Word Latency Timing (IDT Standard Mode), for the relevant timinginformation.

InFWFT mode, the Output Ready ($\overline{\mathrm{OR}}$) function is selected. $\overline{\mathrm{OR}}$ goes LOW at the same time that the first word written to an empty FIFO appears valid on the outputs. $\overline{\mathrm{OR}}$ stays LOW afterthe RCLKLOW to HIGH transitionthatshiftsthe lastword from the FIFO memory to the outputs. $\overline{\text { R goes HIGH only with a true }}$ read(RCLKwith $\overline{\mathrm{REN}}=\mathrm{LOW})$. The previous datastays attheoutputs, indicating the last word was read. Further data reads are inhibited until $\overline{\mathrm{OR}}$ goes LOW
again. See Figure 15, Read Timing (FWFT Mode), for the relevant timing information.
$\overline{E F} / \overline{O R}$ is synchronous and updated on the rising edge of RCLK.
In IDT Standard mode, EF is a double register-buffered output. In FWFT mode, $\overline{\mathrm{OR}}$ is atriple register-buffered output.

PROGRAMMABLE ALMOST-FULL FLAG ($\overline{\text { PAF }}$)

The Programmable Almost-Full flag ($\overline{\mathrm{PAF}}$) will go LOW when the FIFO reaches the almost-full condition. In IDT Standard mode, if no reads are performed after reset ($\overline{\mathrm{MRS}}$), $\overline{\mathrm{PAF}}$ will go LOW after (D-m) words are written tothe FIFO. Ifx18Inputorx18OutputbusWidth is selected, $(\mathrm{D}-\mathrm{m})=(2,048-\mathrm{m})$ writes for the IDT72T1845, (4,096-m) writes for the IDT72T1855, (8,192-m) writes forthe IDT72T1865, ($16,384-\mathrm{m}$) writes forthe IDT72T1875, (32,768-m) writesforthe IDT72T1885,(65,536-m) writesforthe IDT72T1895, (131,072-m) writes for the IDT72T18105, (262,144-m) writes for the IDT72T18115 and ($524,288-\mathrm{m}$) writes for the IDT72T18125. If both $\times 9$ Input and $\times 9$ Output bus Widths are selected, (D-m) $=(4,096-\mathrm{m})$ writes for the IDT72T1845, $(8,192-\mathrm{m})$ writes for the IDT72T1855, (16,384-m) writes for the IDT72T1865, (32,768-m) writesforthe IDT72T1875,(65,536-m) writesforthe IDT72T1885, (131,072-m) writes for the IDT72T1895, ($262,144-m$) writes for the IDT72T18105, ($524,288-\mathrm{m}$) writes for the IDT72T18115 and ($1,048,576-\mathrm{m}$) writes for the IDT72T18125. The offset " m " i ithe full offsetvalue. The default setting forthis value is stated in Table 2.

In FWFT mode, if x18 Input or x18 Output bus Width is selected, the $\overline{\text { PAF }}$ will goLOW after (2,049-m) writes forthe IDT72T1845, (4,097-m) writes forthe IDT72T1855, (8,193-m) writes for the IDT72T1865, (16,385-m) writes forthe IDT72T1875, ($32,769-\mathrm{m}$) writes for the IDT72T1885, ($65,537-\mathrm{m}$) writes forthe IDT72T1895, (131,073-m) writes for the IDT72T18105, (262,145-m) writes for the IDT72T18115 and ($524,289-\mathrm{m}$) writes for the IDT72T18125. If both x 9 Inputand $\times 9$ Outputbus Widths are selected, the $\overline{\text { PAF }}$ will go LOW after (4,097m) writes forthe IDT72T1845, (8,193-m) writes forthe IDT72T1855, (16,385-m) writesforthe IDT72T1865, ($32,769-\mathrm{m}$) writes forthe IDT72T1875, ($65,537-\mathrm{m}$) writes for the IDT72T1885, (131,073-m) writesforthe IDT72T1895, (262,145$\mathrm{m})$ writes for the IDT72T18105, ($524,289-\mathrm{m}$) writes for the IDT72T18115 and ($1,048,577-\mathrm{m}$) writes for the IDT72T18125. The offset m is the full offset value. The default setting for this value is stated in Table 2 .

See Figure 23, Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFTMode), for the relevant timing information.

If asynchronous $\overline{\text { PAF }}$ configuration is selected, the $\overline{\text { PAF is asserted LOW }}$ ontheLOW-to-HIGHtransition oftheWrite Clock (WCLK). PAF is resetto HIGH onthe LOW-to-HIGH transition ofthe Read Clock (RCLK). Ifsynchronous $\overline{\text { PAF }}$ configuration is selected, the $\overline{\text { PAF is is updated on the rising edge of WCLK. See }}$ Figure 25 for Asynchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Mode).

Note, when the device is in Retransmitmode, thisflagis a comparison of the write pointer to the 'marked' location. This differs from normal mode where this flag is a comparison of the write pointer to the read pointer.

PROGRAMMABLEALMOST-EMPTYFLAG(로E)

The Programmable Almost-Empty flag(PAE) will go LOW when the FIFO reaches the almost-empty condition. InIDTStandard mode, PAE will go LOW when there are n words or less in the FIFO. The offset " n " is the empty offset value. The default setting for this value is stated in Table 2 .

In FWFT mode, the PAE will go LOW when there are $n+1$ words or less in the FIFO. The default setting for this value is stated in Table 2.

See Figure 24, Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Mode), for the relevant timing information.

If asynchronous $\overline{\mathrm{PAE}}$ configuration is selected, the $\overline{\text { PAE }}$ is asserted LOW ontheLOW-to-HIGHtransition ofthe Read Clock(RCLK). PAE is resetto HIGH ontheLOW-to-HIGH transition of the Write Clock (WCLK). Ifsynchronous PAE configuration is selected, the $\overline{\text { PAE }}$ is updated on the rising edge of RCLK. See Figure 26, Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Mode), for the relevant timing information.

HALF-FULL FLAG ($\overline{\mathrm{FF}}$)

This outputindicates ahalf-full FIFO. The risingWCLKedgethatilllsthe FIFO beyond half-full sets $\overline{\mathrm{HF}}$ LOW. The flag remains LOW until the difference between the write and read pointers becomes less than or equal to half of the total depth ofthe device; the rising RCLK edge thataccomplishes this condition sets $\overline{H F}$ HIGH.

InIDTStandard mode, ifno reads are performedafter reset(MRSor $\overline{\text { PRS }}$), HF will go LOW after (D/2 + 1) writes to the FIFO. If x18 Input or x18 Output busWidthisselected, $\mathrm{D}=2,048$ forthe IDT72T1845,4,096forthe IDT72T1855, 8,192 for the IDT72T1865, 16,384 for the IDT72T1875, 32,768 for the IDT72T1885, 65,536 for the IDT72T1895, 131,072 for the IDT72T18105, 262,144 for the IDT72T18115 and 524,288 for the IDT72T18125. If both $x 9$ Input and $\times 9$ Outputbus Widths are selected, $D=4,096$ for the IDT72T1845, 8,192 for the IDT72T1855, 16,384 for the IDT72T1865, 32,768 for the IDT72T1875, 65,536 for the IDT72T1885, 131,072 for the IDT72T1895, 262,144 for the IDT72T18105,524,288for the IDT72T18115 and 1,048,576 for the IDT72T18125.

In FWFT mode, if no reads are performed after reset ($\overline{\mathrm{MRS}}$ or $\overline{\mathrm{PRS}})$, $\overline{\mathrm{HF}}$ will go LOW after($(\mathrm{D}-1 / 2+2)$ writes to the FIFO. Ifx18Inputorx18Outputbus Width is selected, $\mathrm{D}=2,049$ for the IDT72T 1845, 4,097 for the IDT72T1855, 8,193 for the IDT72T1865, 16,385 for the IDT72T1875, 32,769 for the IDT72T1885, 65,537 for the IDT72T1895, 131,073 for the IDT72T18105, 262,145 for the IDT72T18115 and 524,289 for the IDT72T18125. If both $x 9$ Inputandx9 Outputbus Widths are selected, $D=4,097$ forthe IDT72T1845, 8,193 for the IDT72T1855, 16,385 for the IDT72T1865, 32,769 for the IDT72T1875, 65,537 for the IDT72T1885, 131,073 for the IDT72T1895, 262,145 for the IDT72T18105,524,289for the IDT72T18115 and 1,048,577 for the IDT72T18125.

See Figure 27, Half-Full Flag Timing (IDT Standard and FWFT Mode), for the relevanttiming information. Because $\overline{\text { FF }}$ is updated by both RCLK and WCLK, itis considered asynchronous.

NOTES:

1. REN is LOW; $\overline{R C S}$ is LOW.
2. terclk >ta, guaranteed by design.
3. Qslowest is the data output with the slowest access time, tA.
4. Time, to is greater than zero, guaranteed by design.

ECHO READ CLOCK (ERCLK)

The Echo Read Clock outputis provided in both HSTL and LVTTL mode, selectable viaRHSTL. The ERCLK is afree-running clock output, itwill always follow the RCLK input regardless of $\overline{\mathrm{REN}}, \overline{\mathrm{RCS}}$.

The ERCLK outputfollows the RCLK inputwith an associated delay. This delay provides the user with a more effective read clock source when reading data from the Qn outputs. This is especially helpful at high speeds when variables withinthe device may cause changes in the dataaccess times. These variations in access time maybe caused by ambient temperature, supply voltage, device characteristics. The ERCLK outputalso compensates for any trace length delays betweenthe Qndataoutputs and receiving devices inputs.

Any variations effectingthe dataaccess time will also have a corresponding effectonthe ERCLK outputproduced bythe FIFO device, thereforethe ERCLK outputleveltransitions shouldalways be atthe same position intime relative to the data outputs. Note, that ERCLK is guaranteed by designto be slowerthan the slowest Qn, data output. Refer to Figure 4, Echo Read Clock and Data Output Relationship, Figure 28, Echo Read Clock \& Read Enable Operation and Figure 29, Echo RCLK\& Echo $\overline{R E N}$ Operationfor timing information.

ECHO READ ENABLE (EREN)

The Echo Read Enable outputis provided in both HSTL and LVTTL mode, selectable via RHSTL.

The EREN output is provided to be used in conjunction with the ERCLK outputand provides the reading device with a more effective schemefor reading datafrom the Qnoutputportathigh speeds. The EREN outputis controlled by internal logic that behaves as follows: The EREN outputis active LOW for the RCLK cycle that a new word is read out of the FIFO. That is, a rising edge of RCLK will cause ERENtogoactive, LOWifboth REN and RCS are active,LOW and the FIFO is NOT empty.

SERIAL CLOCK (SCLK)

During serial loading of the programming flag offsetregisters, arising edge on the SCLKinput is usedto load serial data present on the Sl input provided that the $\overline{\text { SEN }}$ inputis LOW.

DATA OUTPUTS(Qo-Qn)

(Q0 - Q17) data outputs for 18-bit wide data or (Q0-Q8) data outputs for 9 -bitwide data.

Figure 4. Echo Read Clock and Data Output Relationship

BYTE ORDER ON INPUT PORT:

$\overline{B E}$	IW	OW
\mathbf{L}	\mathbf{L}	\mathbf{H}

(c) x18 INPUT to $x 9$ OUTPUT - BIG ENDIAN

$\overline{B E}$	IW	OW
H	L	H

(d) x18 INPUT to $\mathbf{x 9}$ OUTPUT - LITTLE ENDIAN

BYTE ORDER ON INPUT PORT:

BYTE ORDER ON OUTPUT PORT:

$\overline{\mathrm{BE}}$	IW	OW
L	H	L

$\overline{\mathrm{BE}}$	IW	OW
H	H	L

(a) x9 INPUT to $\times 18$ OUTPUT - LITTLE ENDIAN

Figure 5. Bus-Matching Byte Arrangement

JTAG TIMING SPECIFICATION

Figure 6. Standard JTAG Timing

SYSTEM INTERFACE PARAMETERS

Parameter	Symbol	Test Conditions	IDT72T1845 IDT72T1855 IDT72T1865 IDT72T1875 IDT72T1885 IDT72T1895 IDT72T18105 IDT72T18115 IDT72T18125		
			Min.	Max.	Units
DataOutput	tDO ${ }^{(1)}$		-	20	ns
Data Output Hold	tDOH ${ }^{(1)}$		0	-	ns
Datalnput	tDS	$\begin{aligned} & \text { trise=3ns } \\ & \text { tfall=3ns } \end{aligned}$	1010	-	ns
	tD				

NOTE:

1. 50 pf loading on external output signals.

JTAG
AC ELECTRICAL CHARACTERISTICS
(Vcc $=2.5 \mathrm{~V} \pm 5 \%$; Tcase $=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions			
			Min.	Max.	Units
JTAG Clock InputPeriod	tTCK	-	100	-	ns
JTAG ClockHIGH	tTCKHIGH	-	40	-	ns
JTAG Clock Low	tTCKLOW	-	40	-	ns
JTAG Clock Rise Time	tTCKRISE	-	-	$5^{(1)}$	ns
JTAG Clock Fall Time	tTCKFALL	-	-	$5^{(1)}$	ns
JTAGReset	tRST	-	50	-	ns
JTAG Reset Recovery	tRSR	-	50	-	ns

NOTE:

1. Guaranteed by design.

JTAG INTERFACE

Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to support the JTAG boundary scan interface. The IDT72T1845/72T1855/ 72T1865/72T1875/72T1885/72T1895/72T18105/72T18115/72T18125 incorporates the necessary tap controllerandmodified pad cells to implementthe JTAG facility.

NotethatIDT provides appropriateBoundary Scan DescriptionLanguage programfiles for these devices.

The Standard JTAG interface consists of fourbasic elements:

- Test Access Port (TAP)
- TAP controller
- Instruction Register (IR)
- Data Register Port (DR)

The following sections provide a brief description of each element. For a completedescription refertotheIEEE Standard TestAccessPortSpecification (IEEE Std. 1149.1-1990).

The Figure below shows the standard Boundary-Scan Architecture.

Figure 7. Boundary Scan Architecture

TEST ACCESS PORT (TAP)
The Tap interface is a general-purpose port that provides access to the internal of the processor. Itconsists offour input ports(TCLK, TMS, TDI, TRST) and one output port (TDO).

THETAPCONTROLLER

The Tap controller is a synchronous finite state machine that responds to TMS and TCLK signals to generate clock and control signals to the Instruction and Data Registers for capture and update of data.

NOTES:

1. Five consecutive TCK cycles with TMS $=1$ will reset the TAP.
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).
3. TAP controller must be reset before normal FIFO operations can begin.

Figure 8. TAP Controller State Diagram

Refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1) for the full state diagram

All state transitions within the TAP controller occur atthe rising edge of the TCLKpulse. The TMS signal level (0 or 1) determines the state progression that occurs on each TCLK rising edge. The TAP controllertakes precedence over the FIFO memory and must be reset after power up of the device. See $\overline{\text { TRST }}$ description for more details on TAP controller reset.

Test-Logic-Reset All testlogic is disabled inthis controller state enabling the normal operation of the IC. TheTAP controllerstate machine is designedinsuch a way that, no matterwhatthe initial state of the controlleris, the Test-Logic-Reset state can be entered by holding TMS at high and pulsing TCK five times. This is the reason why the Test Reset ($\overline{\mathrm{TRST}}$) pin is optional.

Run-Test-Idle Inthis controller state, the testlogic in the IC is active only if certaininstructions are present. For example, if aninstruction activates the self test, then it will be executed when the controller enters this state. The testlogic in the IC is idles otherwise.

Select-DR-Scan This is a controller state where the decision to enter the Data Path orthe Select-IR-Scan state is made.

Select-IR-Scan This is a controller state where the decision to enter the InstructionPath is made. TheControllercan returntotheTest-Logic-Resetstate otherwise.

Capture-IR In this controller state, the shift registerbank in the Instruction Register parallel loads a pattern of fixed values on the rising edge of TCK. The last two significant bits are always required to be "01".
Shift-IR In this controller state, the instruction register gets connected between TDIandTDO, andthe captured patterngets shifted oneach risingedge of TCK. The instruction availableonthe TDI pinisalso shifted intotheinstruction register.
Exit1-IRThis is a controllerstate where a decisionto entereitherthePauseIR state or Update-IR state is made.
Pause-IR This state is provided in order to allow the shifting of instruction register to be temporarily halted.
Exit2-DRThis is a controller state where a decision to enter either the ShiftIR state or Update-IR state is made.
Update-IR Inthis controller state, the instruction inthe instruction register is latched into the latch bank of the Instruction Register on every falling edge of TCK. This instruction also becomes the current instruction once it is latched.
Capture-DR In this controllerstate, the data is parallelloaded in to the data registers selected by the current instruction on the rising edge of TCK.
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These controller states are similar to the Shift-IR, Exit1-IR, Pause-IR, Exit2-IR and Update-IR states in the Instruction path.

THE INSTRUCTION REGISTER

The Instruction register allows an instruction to be shifted in serially into the processor at the rising edge of TCLK.

The Instruction is used to select the test to be performed, or the test data registertobeaccessed, orboth. The instruction shifted intothe register is latched atthe completion of the shifting process when the TAP controller is atUpdateIRstate.

The instruction register must contain 4 bit instruction register-based cells which canhold instruction data. These mandatory cells are located nearestthe serial outputs they are the leastsignificantbits.

TESTDATA REGISTER

The Test Data register contains three test data registers: the Bypass, the Boundary Scan register and Device ID register.

These registers are connected in parallel between a common serial input and a common serial data output.

The following sections provide a brief description of each element. For a completedescription, refertothe IEEE Standard TestAccessPortSpecification (IEEE Std. 1149.1-1990).

TEST BYPASS REGISTER

The register is used to allow test data to flow through the device from TDI toTDO. Itcontainsasinglestage shiftregisterfora minimumlength in serial path. When the bypass register is selected by an instruction, the shift register stage is set to a logic zero on the rising edge of TCLK when the TAP controller is in theCapture-DR state.

The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction.

THE BOUNDARY-SCAN REGISTER

The Boundary Scan Register allows serial data TDI be loaded in to or read out of the processor input/outputports. The Boundary Scan Register is a part of the IEEE 1149.1-1990 Standard JTAG Implementation.

THE DEVICE IDENTIFICATION REGISTER

The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the processor to be determined through the TAP in response to the IDCODE instruction.

IDT JEDEC ID number is $0 x B 3$. This translates to 0×33 when the parity is dropped in the 11-bit Manufacturer ID field.

For the IDT72T1845/72T1855/72T1865/72T1875/72T1885/72T1895/ 72T18105/72T18115/72T18125, the PartNumberfield contains the following values:

Device	Part\# Field
IDT72T1845	040E
IDT72T1855	040D
IDT72T1865	040C
IDT72T1875	040B
IDT72T1885	040 A
IDT72T1895	0409
IDT72T18105	0419
IDT72T18115	0418
IDT72T18125	0417

31 (MSB) 2827
28 11 1 Version (4 bits) OX0

IDT72T1845/55/65/75/85/95/105/115/125JTAG Device Identification Register

JTAG INSTRUCTION REGISTER

The Instruction register allows instructionto be serially input intothe device when the TAP controller is in the Shift-IR state. The instruction is decoded to perform the following:

- Selecttest data registers that may operate while the instruction is current. The other test data registers should not interfere with chip operation and the selected data register.
- Definetheserialtestdata registerpaththatisused toshiftdatabetween TDI and TDO during data register scanning.
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode 16 different possible instructions. Instructions are decoded as follows.

Hex Value	Instruction	Function
0×00	EXTEST	SelectBoundary Scan Register
0×02	IDCODE	SelectChipIdentificationdataregister
0×01	SAMPLE/PRELOAD	SelectBoundary Scan Register
0×03	HIGH-IMPEDANCE	JTAG
$0 \times 0 F$	BYPASS	SelectBypass Register

JTAG Instruction Register Decoding
The following sections provide abrief description of each instruction. For acompletedescription refertothe IEEEStandardTestAccess PortSpecification (IEEE Std. 1149.1-1990).

EXTEST

The required EXTEST instruction places the IC into an external boundarytestmode and selectstheboundary-scan registerto be connected betweenTDI and TDO. During this instruction, the boundary-scan register is accessed to drive test data off-chip viathe boundary outputs and receive test data off-chip via the boundary inputs. As such, the EXTEST instruction is the workhorse of IEEE. Std 1149.1, providing for probe-lesstesting of solder-jointopens/shorts and of logic clusterfunction.

IDCODE

TheoptionalIDCODE instructionallowsthe ICto remaininitsfunctional mode and selects the optional device identification register to be connected between TDI and TDO. Thedeviceidentification registerisa32-bitshiftregistercontaining information regarding the IC manufacturer, device type, and version code. Accessing the device identification register does not interfere withtheoperation of the IC. Also, accesstothe device identification register should be immediately available, via a TAP data-scan operation, after power-up of the IC or after the TAP has been reset using the optional TRST pin orby otherwise moving to the Test-Logic-Resetstate.

SAMPLE/PRELOAD

The required SAMPLE/PRELOAD instruction allows the IC to remain in a normal functional mode and selectstheboundary-scan registerto be connected betweenTDI and TDO. During this instruction, theboundary-scan registercan be accessed via a date scan operation, to take a sample of the functional data entering and leaving the IC. This instruction is also used to preloadtest datainto the boundary-scan registerbefore loading an EXTEST instruction.

HIGH-IMPEDANCE

The optional High-Impedance instruction sets all outputs (includingtwo-state as well as three-state types) of an IC to a disabled (high-impedance) state and selects the one-bit bypass register to be connected between TDI and TDO. Duringthis instruction, data can be shiftedthroughthe bypass registerfromTDI to TDO withoutaffecting the condition of the IC outputs.

BYPASS

The required BYPASS instruction allows the IC to remain in a normal functional mode and selects the one-bit bypass register to be connected between TDI and TDO. The BYPASS instruction allows serial data to be transferred through the IC from TDI to TDO without affecting the operation of the IC.

NOTE:

1. During Master Reset the High-Impedance control of the Qn data outputs is provided by $\overline{\mathrm{OE}}$ only, $\overline{\mathrm{RCS}}$ can be HIGH or LOW until the first rising edge of RCLK after Master Reset is complete.

NOTE:

1. During Partial Reset the High-Impedance control of the Qn data outputs is provided by $\overline{\mathrm{OE}}$ only, $\overline{\mathrm{RCS}}$ can be HIGH or LOW until the first rising edge of RCLK after Master Reset is complete.

Figure 10. Partial Reset Timing

NOTES:

1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH (after one WCLK cycle pus twFF). If the time between the rising edge of the RCLK and the rising edge of the WCLK is less than tSkEW1, then the $\overline{F F}$ deassertion may be delayed one extra WCLK cycle.
2. $\overline{\mathrm{LD}}=\mathrm{HIGH}, \overline{\mathrm{OE}}=\mathrm{LOW}, \overline{\mathrm{EF}}=\mathrm{HIGH}$.
3. $\overline{W C S}=$ LOW .

Figure 11. Write Cycle and Full Flag Timing (IDT Standard Mode)

NOTES:

1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{\mathrm{EF}}$ will go HIGH (after one RCLK cycle plus tref). If the time between the rising edge of WCLK and the rising edge of RCLK is less than tskew1, then $\overline{\mathrm{EF}}$ deassertion may be delayed one extra RCLK cycle.
2. $\overline{\mathrm{LD}}=\mathrm{HIGH}$.
3. First data word latency $=$ tskew $1+1^{*}$ TrCLK + tref.
4. $\overline{\mathrm{RCS}}$ is LOW.

Figure 12. Read Cycle, Output Enable, Empty Flag and First Data Word Latency (IDT Standard Mode)

NOTES:

1. tskewi is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{\mathrm{EF}}$ will go HIGH (after one RCLK cycle plus tref). If the time between the rising edge of WCLK and the rising edge of RCLK is less than tskew1, then EF deassertion may be delayed one extra RCLK cycle.
2. $\overline{\mathrm{LD}}=\mathrm{HIGH}$.
3. First data word latency $=$ tskew $1+1^{*}$ TrcLK + treF.
4. $\overline{O E}$ is LOW.

Figure 13. Read Cycle and Read Chip Select (IDT Standard Mode)

Figure 14. Write Timing (First Word Fall Through Mode)
NOTES.

1. tSKEW1
2. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge 2. tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge
 is less than tsKEW2, then the $\overline{\text { PAE }}$ deassertion may be delayed one extra RCLK cycle.
3. $\overline{\mathrm{LD}}=\mathrm{HIGH}, \overline{\mathrm{OE}}=$ LOW
4. $n=\overline{\mathrm{P}} \overline{\mathrm{AE}}$ offset, $m=\overline{\mathrm{PAF}}$ offset and $\mathrm{D}=$ maximum FIFO depth
 for IDT72T18115, 524,288 for IDT72T18125.
 524,288 for IDT72T18115, 1,048,576 for IDT72T18125.
5. First data word latency $=$ tskew $+2 *$ TrCLK + tref.

NOTES:
 is less than tskew1, then the $\overline{\mathbb{R}}$ assertion may be delayed one extra WCLK cycle.

is less than tSKEW2, then the $\overline{\mathrm{PAF}}$ deassertion may be delayed one extra WCLK cycle.
. $\mathrm{DD}=\overline{\mathrm{PAE}}$ Offset, $m=\overline{\mathrm{PAF}}$ offset and $\mathrm{D}=$ maximum FIFO depth

 $\frac{524,288}{}$ for IDT72T18115, 1,048,576 for IDT72T18125.

6. Retran

- ~

Figure 18. Retransmit from Mark (IDT Standard Mode)

NOTES:

1. $x 9$ to $x 9$ mode: $X=12$ for the IDT72T1845, $X=13$ for the IDT72T1855, $X=14$ for the IDT72T1865, $X=15$ for the IDT72T1875, $X=16$ for the IDT72T1885, $X=17$ for the IDT72T1895, $X=18$ for the IDT72T18105, $X=19$ for the IDT72T18115 and $X=20$ for the IDT72T18125.
2. All other modes: $\mathrm{X}=11$ for the IDT72T1845, $\mathrm{X}=12$ for the IDT72T1855, $\mathrm{X}=13$ for the IDT72T1865, $\mathrm{X}=14$ for the IDT72T1875, $\mathrm{X}=15$ for the IDT72T1885 and $\mathrm{X}=16$ for the IDT72T1895, $X=17$ for the IDT72T18105, $X=18$ for the IDT72T18115 and $X=19$ for the IDT72T18125.

Figure 20. Serial Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)

NOTES:

1. This timing diagram is based on programming with a $x 18$ bus width.
2. Overwrites previous offset value.

Figure 21. Parallel Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)

NOTES:

1. $\overline{\mathrm{O}}=\mathrm{LOW}$.
2. The timing diagram illustrates reading of offset registers with an output bus width of 18 bits.
3. The offset registers cannot be read on consecutive RCLK cycles. The read must be disabled ($\overline{\mathrm{REN}}=\mathrm{HIGH}$) for a minimum of one RCLK cycle in between register accesses.

Figure 22. Parallel Read of Programmable Flag Registers (IDT Standard and FWFT Modes)

NOTES:

1. $m=\overline{\mathrm{PAF}}$ offset .
2. $D=$ maximum FIFO depth.

In IDT Standard mode: if $x 18$ Input or $x 18$ Output bus Width is selected, $D=2,048$ for the IDT72T1845, 4,096 for the IDT72T1855, 8,192 for the IDT72T1865, 16,384 for the IDT72T1875, 32,768 for the IDT72T1885, 65,536 for the IDT72T1895, 131,072 for the IDT72T18105, 262,144 for the IDT72T18115 and 524,288 for the IDT72T18125. If both $x 9$ Input and $x 9$ Output bus Widths are selected, $D=4,096$ for the IDT72T1845, 8,192 for the IDT72T1855, 16,384 for the IDT72T1865, 32,768 for the IDT72T1875, 65,536 for the IDT72T1885, 131,072 for the IDT72T1895, 262,144 for the IDT72T18105, 524,288 for the IDT72T18115 and 1,048,576 for the IDT72T18125.
In FWFT mode: if x18 Input or x18 Output bus Width is selected, $D=2,049$ for the IDT72T1845, 4,097 for the IDT72T1855, 8,193 for the IDT72T1865, 16,385 for the IDT72T1875, 32,769 for the IDT72T1885, 65,537 for the IDT72T1895, 131,073 for the IDT72T18105, 262,145 for the IDT72T18115 and 524,289 for the IDT72T18125. If both x9 Input and x9 Output bus Widths are selected, $D=4,097$ for the IDT72T1845, 8,193 for the IDT72T1855, 16,385 for the IDT72T1865, 32,769 for the IDT72T1875, 65,537 for the IDT72T1885, 131,073 for the IDT72T1895, 262,145 for the IDT72T18105, 524,289 for the IDT72T18115 and 1,048,577 for the IDT72T18125.
3. tSKEW2 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\text { PAF }}$ will go HIGH (after one WCLK cycle plus tPAFS). If the time between the rising edge of RCLK and the rising edge of WCLK is less than tskew2, then the PAF deassertion time may be delayed one extra WCLK cycle.
4. $\widehat{\text { PAF }}$ is asserted and updated on the rising edge of WCLK only.
5. Select this mode by setting PFM HIGH during Master Reset.
6. $\overline{\mathrm{RCS}}$ is LOW.

Figure 23. Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. $n=\overline{\text { PAE }}$ offset.
2. For IDT Standard mode
3. For FWFT mode.
4. tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{\text { PAE will go HIGH (after one RCLK cycle plus tPaES). If the time between the }}$ rising edge of WCLK and the rising edge of RCLK is less than tSKEW2, then the PAE deassertion may be delayed one extra RCLK cycle.
5. $\overline{\mathrm{PAE}}$ is asserted and updated on the rising edge of WCLK only.
6. Select this mode by setting PFM HIGH during Master Reset.
7. RCS = LOW.

Figure 24. Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. $\mathrm{m}=\overline{\mathrm{PAF}}$ offset
2. $\mathrm{D}=$ maximum FIFO depth.

In IDT Standard mode: if $x 18$ Input or $x 18$ Output bus Width is selected, $D=2,048$ for the IDT72T1845, 4,096 for the IDT72T1855, 8,192 for the IDT72T1865, 16,384 for the IDT72T1875, 32,768 for the IDT72T1885, 65,536 for the IDT72T1895, 131,072 for the IDT72T18105, 262,144 for the IDT72T18115 and 524,288 for the IDT72T18125. If both $x 9$ Input and $x 9$ Output bus Widths are selected, $D=4,096$ for the IDT72T1845, 8,192 for the IDT72T1855, 16,384 for the IDT72T1865, 32,768 for the IDT72T1875, 65,536 for the IDT72T1885, 131,072 for the IDT72T1895, 262,144 for the IDT72T18105, 524,288 for the IDT72T18115 and 1,048,576 for the IDT72T18125.
In FWFT mode: if $x 18$ Input or $x 18$ Output bus Width is selected, $D=2,049$ for the IDT72T1845, 4,097 for the IDT72T1855, 8,193 for the IDT72T1865, 16,385 for the IDT72T1875, 32,769 for the IDT72T1885, 65,537 for the IDT72T1895, 131,073 for the IDT72T18105, 262,145 for the IDT72T18115 and 524,289 for the IDT72T18125. If both $x 9$ Input and $\times 9$ Output bus Widths are selected, $\mathrm{D}=4,097$ for the IDT72T1845, 8,193 for the IDT72T1855, 16,385 for the IDT72T1865, 32,769 for the IDT72T1875, 65,537 for the IDT72T1885, 131,073 for the IDT72T1895, 262,145 for the IDT72T18105, 524,289 for the IDT72T18115 and 1,048,577 for the IDT72T18125.
3. $\overline{\text { PAF }}$ is asserted to LOW on WCLK transition and reset to HIGH on RCLK transition.
4. Select this mode by setting PFM LOW during Master Reset.
5. $\overline{\mathrm{RCS}}$ is LOW.

Figure 25. Asynchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. $n=\overline{\text { PAE }}$ offset.
2. For IDT Standard Mode.
3. For FWFT Mode.
4. $\overline{\text { PAE }}$ is asserted LOW on RCLK transition and reset to HIGH on WCLK transition.
5. Select this mode by setting PFM LOW during Master Reset.
6. $\overline{R C S}=L O W$.

Figure 26. Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)

NOTES:

1. In IDT Standard mode: $\mathrm{D}=$ maximum FIFO depth. If x 18 Input or x 18 Output bus Width is selected, $\mathrm{D}=2,048$ for the IDT72T1845, 4,096 for the IDT72T1855, 8,192 for the IDT72T1865, 16,384 for the IDT72T1875, 32,768 for the IDT72T1885, 65,536 for the IDT72T1895, 131,072 for the IDT72T18105, 262,144 for the IDT72T18115 and 524,288 for the IDT72T18125. If both $x 9$ Input and $x 9$ Output bus Widths are selected, $D=4,096$ for the IDT72T1845, 8,192 for the IDT72T1855, 16,384 for the IDT72T1865, 32,768 for the IDT72T1875, 65,536 for the IDT72T1885, 131,072 for the IDT72T1895, 262,144 for the IDT72T18105, 524,288 for the IDT72T18115 and $1,048,576$ for the IDT72T18125.
2. In FWFT mode: $\mathrm{D}=$ maximum FIFO depth. If x 18 Input or x 18 Output bus Width is selected, $\mathrm{D}=2,049$ for the IDT72T1845, 4,097 for the IDT72T1855, 8,193 for the IDT72T1865, 16,385 for the IDT72T1875, 32,769 for the IDT72T1885, 65,537 for the IDT72T1895, 131,073 for the IDT72T18105, 262,145 for the IDT72T18115 and 524,289 for the IDT72T18125. If both $x 9$ Input and $x 9$ Output bus Widths are selected, $D=4,097$ for the IDT72T1845, 8,193 for the IDT72T1855, 16,385 for the IDT72T1865, 32,769 for the IDT72T1875, 65,537 for the IDT72T1885, 131,073 for the IDT72T1895, 262,145 for the IDT72T18105, 524,289 for the IDT72T18115 and 1,048,577 for the IDT72T18125.
3. $\overline{\mathrm{RCS}}=\mathrm{LOW}$.

Figure 27. Half-Full Flag Timing (IDT Standard and FWFT Modes)

NOTE:

1. The O / P Register is the internal output register. Its contents are available on the Qn output bus only when $\overline{R C S}$ and $\overline{O E}$ are both active, LOW, that is the bus is not in HighImpedance state.
2. $\overline{O E}$ is LOW.

Cycle:
a\&b. At this point the FIFO is empty, $\overline{\mathrm{OR}}$ is HIGH.
RCS and REN are both disabled, the output bus is High-Impedance.
c. Word $W n+1$ falls through to the output register, $\overline{\mathrm{OR}}$ goes active, LOW.

RCS is HIGH, therefore the Qn outputs are High-Impedance. EREN goes LOW to indicate that a new word has been placed on the output register.
d. EREN goes HIGH, no new word has been placed on the output register on this cycle.
e. No Operation.
f. $\overline{\mathrm{RCS}}$ is LOW on this cycle, therefore the Qn outputs go to Low-Impedance and the contents of the output register ($\mathrm{W} \mathrm{n}+1$) are made available.

NOTE: In FWFT mode is important to take RCS active LOW at least one cycle ahead of REN, this ensures the word $(\mathrm{Wn}+1)$ currently in the output register is made available for at least one cycle.
g. $\quad \overline{R E N}$ goes active LOW, this reads out the second word, $\mathrm{W} n+2$.

EREN goes active LOW to indicate a new word has been placed into the output register.
h. Word $W n+3$ is read out, EREN remains active, LOW indicating a new word has been read out.

NOTE: $\mathrm{Wn}+3$ is the last word in the FIFO.
i. This is the next enabled read after the last word, $\mathrm{W} n+3$ has been read out. $\overline{\mathrm{OR}}$ flag goes HIGH and $\overline{\mathrm{EREN}}$ goes HIGH to indicate that there is no new word available.

Figure 29. Echo RCLK and Echo $\overline{\text { REN }}$ Operation (FWFT Mode Only)

NOTE: 1. $\overline{\mathrm{OE}}=\mathrm{LOW}, \overline{\mathrm{WEN}}=\mathrm{LOW}$ and $\overline{\mathrm{RCS}}=\mathrm{LOW}$.

Figure 30. Asynchronous Write, Synchronous Read, Full Flag Operation (IDT Standard Mode)

NOTE:

1. $\overline{\mathrm{OE}}=\mathrm{LOW}, \overline{\mathrm{WEN}}=\mathrm{LOW}$ and $\overline{\mathrm{RCS}}=\mathrm{LOW}$.

Figure 31. Asynchronous Write, Synchronous Read, Empty Flag Operation (IDT Standard Mode)

NOTES:

1. $\overline{\mathrm{OE}}=\mathrm{LOW}, \overline{\mathrm{RCS}}=\mathrm{LOW}$ and $\overline{\mathrm{REN}}=\mathrm{LOW}$.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 32. Synchronous Write, Asynchronous Read, Full Flag (IDT Standard Mode)

NOTES:

1. $\overline{\mathrm{OE}}=\mathrm{LOW}, \overline{\mathrm{RCS}}=\mathrm{LOW}$ and $\overline{\mathrm{REN}}=\mathrm{LOW}$.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 33. Synchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)

NOTES:

1. $\overline{O E}=$ LOW, $\overline{W E N}=$ LOW, $\overline{\text { REN }}=$ LOW and $\overline{\text { RCS }}=$ LOW .
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 34. Asynchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)

NOTES:

1. $\overline{\mathrm{OE}}=$ LOW, $\overline{\mathrm{WEN}}=$ LOW, $\overline{\mathrm{REN}}=$ LOW and $\overline{\mathrm{RCS}}=$ LOW.
2. Asynchronous Read is available in IDT Standard Mode only.

Figure 35. Asynchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)

OPTIONALCONFIGURATIONS

WIDTH EXPANSION CONFIGURATION

Word width may be increased simply by connecting together the control signals of multiple devices. Status flags can be detected from any one device. The exceptions are the $\overline{\mathrm{EF}}$ and $\overline{\mathrm{FF}}$ functions in IDT Standard mode and the $\overline{\mathrm{R}}$ and $\overline{\text { OR functions inFWFTmode. Because of variations inskewbetween RCLK }}$ and WCLK, it is possible for $\overline{E F} / \overline{F F}$ deassertion and $\overline{\mathrm{R}} / \overline{\mathrm{OR}}$ assertion to vary by one cycle between FIFOs. In IDT Standard mode, such problems can be
avoided by creating composite flags, that is, ANDing $\overline{\mathrm{EF}}$ of every FIFO, and separately ANDing FF of every FIFO. In FWFT mode, composite flags can be created by ORing $\overline{O R}$ of every FIFO, and separately ORing \bar{R} of every FIFO.

Figure 36 demonstrates a width expansion using two IDT72T1845/ 72T1855/72T1865/72T1875/72T1885/72T1895/72T18105/72T18115/ $72 T 18125$ devices. Do-D17 from each deviceforma36-bitwide inputbus and Q0-Q17 from each device form a 36-bit wide output bus. Any word width can be attained by adding additional IDT72T1845/72T1855/72T1865/72T1875/ 72T1885/72T1895/72T18105/72T18115/72T18125 devices.

NOTES:

1. Use an AND gate in IDT Standard mode, an OR gate in FWFT mode.
2. Do not connect any output control signals directly together.
3. FIFO \#1 and FIFO \#2 must be the same depth, but may be different word widths.

Figure 36. Block Diagram of Width Expansion
For the x18 Input or x18 Output bus Width: 2,048 x 36, 4,096 x 36, 8, $192 \times 36,16,384 \times 18,32,768 \times 18,65,536 \times 36,131,072 \times 36$, $262,144 \times 36$ and $524,288 \times 36$
For both x9 Input and x9 Output bus Widths: $4,096 \times 18,8,192 \times 18,16,384 \times 18,32,768 \times 18,65,536 \times 18,131,072 \times 18,262,144 \times 18$, $524,288 \times 18$ and $1,048,576 \times 18$

Figure 37. Block Diagram of Depth Expansion
For the x18 Input or x18 Output bus Width:
$4,096 \times 18,8,192 \times 18,16,384 \times 18,32,768 \times 18,65,536 \times 18,131,072 \times 18,262,144 \times 18,524,288 \times 18$ and $1,048,576 \times 18$
For both $x 9$ Input and $x 9$ Output bus Widths:
$8,192 \times 9,16,384 \times 9,32,768 \times 9,65,536 \times 9,131,072 \times 9,262,144 \times 9,524,288 \times 9,1,048,576 \times 9$ and 2,097,152 x 9

DEPTH EXPANSION CONFIGURATION (FWFT MODE ONLY)

The IDT72T1845 can easily be adapted to applications requiring depths greaterthan2,048whenthex18Inputorx18OutputbusWidth is selected,4,096 forthe IDT72T1855, 8,192 for the IDT72T1865, 16,384 for the IDT72T1875, 32,768 for the IDT72T1885, 65,536 for the IDT72T1895, 131,072 for the IDT72T18105, 262,144 for the IDT72T18115 and 524,288 for the IDT72T18125. When both x 9 Input and x 9 Output bus Widths are selected, depths greater than 4,096 can be adapted for the IDT72T1845, 8, 192 for the IDT72T1855, 16,384 for the IDT72T1865, 32,768 for the IDT72T1875, 65,536 for the IDT72T1885, 131,072 for the IDT72T1895, 262,144 for the IDT72T8105, 524,288 for the IDT72T18115 and 1,048,576 for the IDT72T18125. InFWFT mode, the FIFOs canbe connected in series (the data outputs of one FIFO connected to the data inputs of the next) with no external logic necessary. The resulting configuration provides a total depth equivalent to the sum of the depths associated with each single FIFO. Figure 37 shows a depth expansion using two IDT72T1845/72T1855/72T1865/72T1875/ 72T1885/72T1895/72T18105/72T18115/72T18125devices.

Care shouldbetakentoselectFWFTmodeduringMasterResetforallFIFOs in the depth expansion configuration. The first word written to an empty configuration will pass from one FIFO to the next ("ripple down") until it finally appears at the outputs of the last FIFO in the chain - no read operation is necessarybutthe RCLK ofeachFIFO mustbefree-running. Eachtimethe data word appears at the outputs of one FIFO, that device's $\overline{\mathrm{OR}}$ line goes LOW, enabling a write to the next FIFO in line.

For an empty expansion configuration, the amount of time ittakes for $\overline{\mathrm{OR}}$ of the lastFIFO inthe chainto go LOW (i.e. valid datato appear on the lastFIFO's
outputs) after a word has been written to the firstFIFO is the sum of the delays for each individual FIFO:

$$
(\mathrm{N}-1)^{\star}\left(4^{*} \text { transfer clock }\right)+3^{\star} \text { TRCLK }
$$

whereNisthenumber of FIFOs inthe expansionand TrCLKisthe RCLKperiod. Note that extra cycles should be added for the possibility that the tSKEW1 specificationis notmetbetweenWCLK andtransferclock, orRCLKandtransfer clock, for the $\overline{\mathrm{OR}}$ flag.

The "ripple down" delay is only noticeableforthefirst word writtento anempty depth expansion configuration. There will be no delay evidentfor subsequent words written to the configuration.

The first free location created by reading from a full depth expansion configuration will "bubble up" from the lastFIFO to the previous one until it finally moves intothe firstFIFO of the chain. Eachtime afree location is created in one FIFO of the chain, that FIFO's $\overline{\mathrm{R}}$ line goes LOW, enabling the preceding FIFO to write a word to fill it.
Forafullexpansionconfiguration, the amount oftime ittakesfor $\overline{\mathrm{R}}$ of the first FIFO in the chain to go LOW after a word has been read from the last FIFO is the sum of the delays for each individual FIFO:

$$
(\mathrm{N}-1)^{*}\left(3^{*} \text { transfer clock }\right)+2 \text { TwcLK }
$$

where N is the number of FIFOs in the expansion and TwCLK is the WCLK period. Note thatextracyclesshould beaddedforthepossibility thatthetSKEW1 specificationis notmetbetweenRCLKandtransferclock, orWCLKandtransfer clock, for the $\overline{\mathrm{R}}$ flag.

The TransferClock line should be tied to eitherWCLK or RCLK, whichever is faster. Boththese actions result in data moving, asquickly as possible, to the end of the chain and free locations to the beginning of the chain.

ORDERING INFORMATION

NOTES:

1. Industrial temperature range product for 5 ns speed grade is available as a standard device. All other speed grades are available by special order.
2. Green parts available. For specific speeds and packages contact your sales office.
3. Available for IDT72T18105/72T18115/72T18125 only.

DATASHEET DOCUMENT HISTORY

05/30/2001	pg. 18.
07/09/2001	pgs. 1, 7, 8, 19, and 50.
10/17/2001	pgs. 1-6, 8, 10, 11, 13-20, 23, 24, 26, 27, 29, 34, 35, 36, 38-43, 49-51.
11/19/2001	pgs. 1, 9, 12, 38, and 39.
11/29/2001	pgs. 1, 38, and 39.
01/15/2002	pg. 40.
03/04/2002	pgs. 9, 10, 17, and 27.
06/05/2002	pgs. 9, 10, and 14.
06/27/2002	pg. 20.
02/11/2003	pgs. 8, 9, and 31.
03/03/2003	pgs. 1, 11-13, 29, and 31-33.
09/02/2003	pgs. 7, 17, and 25.
01/11/2007	pgs. 1, 12, 13, and 55.
02/10/2009	pg. 55.

for SALES:
800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

