OneNAND™ Specification

Density	Part No.	Vcc(core & IO)	Temperature	PKG
	KFG5616Q1A-DEB6	1.8V(1.7V~1.95V)	Extended	67FBGA(LF)
256Mb	KFG5616Q1A-PEB6	1.8V(1.7V~1.95V)	Extended	48TSOP1
ZOOMD	KFG5616U1A-DIB6	3.3V(2.7V~3.6V)	Industrial	67FBGA(LF)
	KFG5616U1A-PIB6	3.3V(2.7V~3.6V)	Industrial	48TSOP1

Version: Ver. 1.2 Date: Dec. 23, 2005

1.0 INTRODUCTION

This specification contains information about the Samsung Electronics Company OneNANDTM, Flash memory product family. Section 1.0 includes a general overview, revision history, and product ordering information.

Section 2.0 describes the OneNAND device. Section 3.0 provides information about device operation. Electrical specifications and timing waveforms are in Sections 4.0 though 6.0. Section 7.0 provides additional application and technical notes pertaining to use of the OneNAND. Package dimensions are found in Section 8.0

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.

- 1. For updates or additional information about Samsung products, contact your nearest Samsung office.
- 2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

OneNAND™, is a trademark of Samsung Electronics Company, Ltd. Other names and brands may be claimed as the property of their rightful owners.

Copyright © 2005, Samsung Electronics Company, Ltd

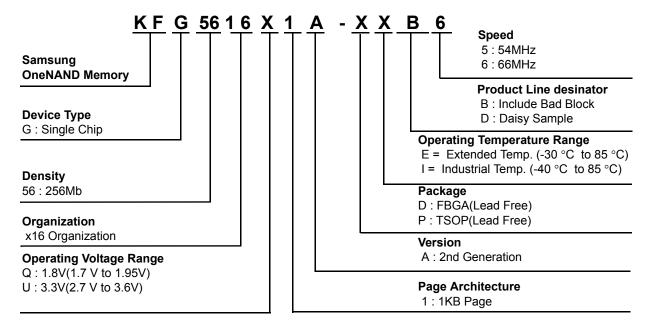
1.1 Revision History

Document Title

OneNAND

Revision History

Revision No.	. <u>History</u>	Draft Date	Remark
0.0	1. Initial Issue	April 17, 2005	Preliminary
1.0	 Corrected the errata Added Data Protection flow chart. Removed Cache Read Operation. Added additional information on command register. Revised Interrupt status register information. Added INT pin schematic. Changed tPGM1 to 205 from 320us, tPGM2 to 220 from 350us. Revised AC/DC parameters Revised ECC Bypass Description Revised Reset Parameters and Timing Diagrams. 	May 17, 2005	Final
1.1	 Corrected the errata Revised Invalid Block Table Creation Flow Chart. Revised Multi Block Erase Description. Revised Reset Mode Operation. 	Aug 12, 2005	Final
1.2	 Corrected the errata. Deleted a 2.65V option. Chapter 2.8.17: Add more explanation about cases according to BSC setting. Chapter 5.7: Modified a parameter name from 'WE Pulse Width' to 'WE Pulse Width Low'. Chpater 7.1.1 & 7.1.2: Modified description and pin connection. 	Dec. 23, 2005	Final


1.2 Flash Product Type Selector

Samsung offers a variety of Flash solutions including NAND Flash, OneNAND™ and NOR Flash. Samsung offers Flash products both component and a variety of card formats including RS-MMC, MMC, CompactFlash, and SmartMedia.

To determine which Samsung Flash product solution is best for your application, refer the product selector chart.

Application Beautype		Samsung Flash Products					
Application Requires	NAND	OneNAND TM	NOR				
Fast Random Read			•				
Fast Sequential Read	•	•					
Fast Write/Program	•	•					
Multi Block Erase		• (Max 64 Blocks)	•				
Erase Suspend/Resume		•	•				
Copyback	• (EDC)	• (ECC)					
Lock/Unlock/Lock-Tight		•	•				
ECC	External (Hardware/Software)	Internal	X				
Scalability	•	•					

1.3 Ordering Information

1.4 Architectural Benefits

OneNAND is a highly integrated non-volatile memory solution based around a NAND Flash memory array.

The chip integrates system features including:

- · A BootRAM and bootloader
- Two independent bi-directional 1KB DataRAM buffers
- A High-Speed x16 Host Interface
- On-chip Error Correction
- On-chip NOR interface controller

This on-chip integration enables system designers to reduce external system logic and use high-density NAND Flash in applications that would otherwise have to use more NOR components.

OneNAND takes advantage of the higher performance NAND program time, low power, and high density and combines it with the synchronous read performance of NOR. The NOR Flash host interface makes OneNAND an ideal solution for applications like G3 Smart Phones, Camera Phones, and mobile applications that have large, advanced multimedia applications and operating systems, but lack a NAND controller.

When integrated into a Samsung Multi-Chip-Package with Samsung Mobile DDR SDRAM, designers can complete a high-performance, small footprint solution.

The attached datasheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions about device. If you have any questions, please contact the SAMSUNG branch office near you.

1.5 Product Features

Device Architecture

Design Technology:
 90nm

Supply Voltage: 1.8V (1.7V ~ 1.95V), 3.3V (2.7 ~3.6V)
 Host Interface: 16 bit

• 3KB Internal BufferRAM: 1KB BootRAM, 2KB DataRAM

• SLC NAND Array: (1K+32)B Page Size, (64K+2K)B Block Size

Device Performance

Host Interface Type:
 Synchronous Burst Read

- Up to 66MHz clock frequency

- Linear Burst 4-, 8-, 16, 32-words with wrap around

- Continuous 512 word Sequential Burst

Asynchronous Random Read - 76ns access time

Asynchronous Random Write

Programmable Burst Read Latency
 Multiple Sector Read:
 Multiple Reset Modes:
 Latency 3(up to 40MHz), 4, 5, 6, and 7
 Up to 2 sectors using Sector Count Register
 Cold/Warm/Hot/NAND Flash Core Resets

Multi Block Erase up to 64 Blocks
 Low Power Dissipation: Typical Power,

- Standby current : 10µA @1.8V Device

25μA @3.3V Device

- Synchronous Burst Read current(66MHz) : 15mA@1.8V Device

20mA@3.3V Device 30mA@1.8v Device,

- Load current : 30mA@1.8v Device, 30mA@3.3V Device

- Program current : 25mA@1.8V Device, 28mA@3.3V Device - Erase current : 20mA@1.8V Device,

23mA@3.3V Device
- Multi Block Erase current : 20mA@1.8V Device,
23mA@3.3V Device

• Reliable CMOS Floating-Gate Technology - Endurance : 100K Program/Erase Cycles

- Data Retention: 10 Years

System Hardware

• Voltage detector generating internal reset signal from Vcc

Hardware reset input (RP)
 - Write Protection for BootRAM

Data Protection Modes
 Write Protection for NAND Flash Array

- Write Protection during power-up

- Write Protection during power-down

• User-controlled One Time Programmable(OTP) area

• Internal 2bit EDC / 1bit ECC

• Internal Bootloader supports Booting Solution in system

Handshaking Feature - INT pin indicates Ready / Busy

- Polling the interrupt register status bit

Detailed chip information
 - by ID register

Packaging

• 256Mb products 67ball, 7mm x 9mm x max 1.0mmt , 0.8mm ball pitch FBGA

48 TSOP 1, 12mm x 20mm, 0.5mm pitch

1.6 General Overview

OneNANDTM, is a monolithic integrated circuit with a NAND Flash array using a NOR Flash interface. This device includes control logic, a NAND Flash array, and 3KB of internal BufferRAM. The BufferRAM reserves 1KB for boot code buffering (BootRAM) and 2KB for data buffering (DataRAM), split between 2 independent buffers. It has a x16 Host Interface and a random access time speed of ~76ns.

The device operates up to a maximum host-driven clock frequency of 66MHz for synchronous reads at Vcc(or Vccq. Refer to chapter 4.2) with minimum 4-clock latency. Below 40MHz it is accessible with minimum 3-clock latency. Appropriate wait cycles are determined by programmable read latency.

OneNAND provides for multiple sector read operations by assigning the number of sectors to be read in the sector counter register. The device includes one block-sized OTP (One Time Programmable) area that can be used to increase system security or to provide identification capabilities.

2.0 DEVICE DESCRIPTION

2.1 Detailed Product Description

The OneNAND is an advanced generation, high-performance NAND-based Flash memory.

It integrates on-chip a single-level-cell (SLC) NAND Flash Array memory with two independent data buffers, boot RAM buffer, a page buffer for the Flash array, and a one-time-programmable block.

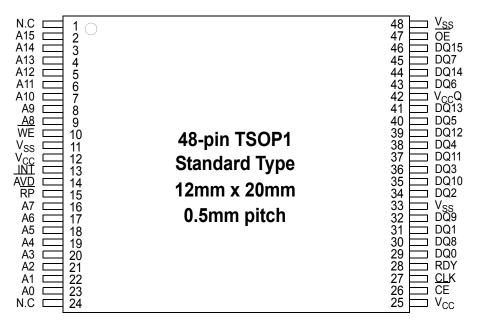
The combination of these memory areas enable high-speed pipelining of reads from host, BufferRAM, Page Buffer, and NAND Flash Array memory.

Clock speeds up to 66MHz with a x16 wide I/O yields a 54MByte/second bandwidth.

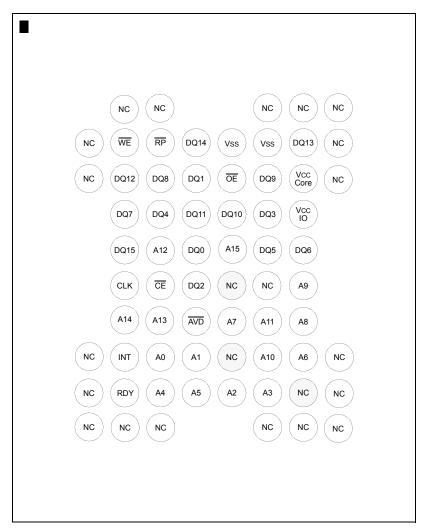
The OneNAND also includes a Boot RAM and boot loader. This enables the device to efficiently load boot code at device startup from the NAND Array without the need for off-chip boot device.

One block of the NAND Array is set aside as an OTP memory area. This area, available to the user, can be configured and locked with secured user information.

On-chip controller interfaces enable the device to operate in systems without NAND Host controllers.


2.2 Definitions

B (capital letter)	Byte, 8bits
W (capital letter)	Word, 16bits
b (lower-case letter)	Bit
ECC	Error Correction Code
Calculated ECC	ECC that has been calculated during a load or program access
Written ECC	ECC that has been stored as data in the NAND Flash array or in the BufferRAM
BufferRAM	On-chip internal buffer consisting of BootRAM and DataRAM
BootRAM	A 1KB portion of the BufferRAM reserved for Boot Code buffering
DataRAM	A 2KB portion of the BufferRAM reserved for Data buffering
Sector	Part of a Page of which 512B is the main data area and 16B is the spare data area. It is also the minimum Load/Program/Copy-Back Program unit during a 1~2 sector operation is available.
Data unit	Possible data unit to be read from memory to BufferRAM or to be programmed to memory. - 528B of which 512B is in main area and 16B in spare area - 1056B of which 1024B is in main area and 32B in spare area


2.3 Pin Configuration

2.3.1 48TSOP1

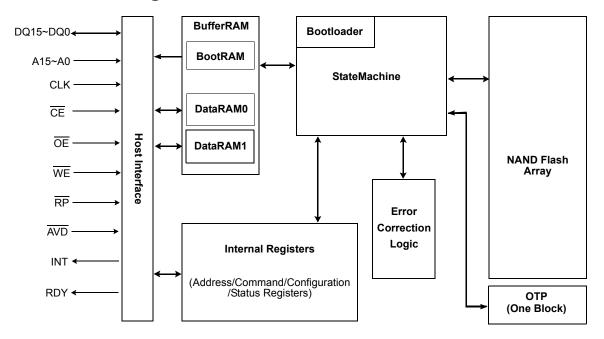
(TOP VIEW, Facing Down)
TSOP1 OneNAND Chip
48pin, 12mm x 20mm, 0.5mm pitch TSOP1

2.3.2 67ball FBGA

(TOP VIEW, Balls Facing Down) 67ball FBGA OneNAND Chip

67ball, 7mm x 9mm x max 1.0mmt, 0.8mm ball pitch FBGA

2.4 Pin Description


Pin Name	Туре	Nameand Description
Host Interface		
A15~A0	I	Address Inputs - Inputs for addresses during read and write operation, which are for addressing BufferRAM & Register.
DQ15~DQ0	I/O	Data Inputs/Outputs - Inputs data during program and commands for all operations, outputs data during memory array/ register read cycles. Data pins float to high-impedance when the chip is deselected or outputs are disabled.
INT	0	Interrupt Notifying Host when a command has completed. It is open drain output with internal resister (~50k Ohm). After power up, it is at Hi-z state. And after IOBE is set to 1, it does not turn to hi-z condition when the chip is deselected or when outputs are disabled.
RDY	0	
CLK	I	Clock CLK synchronizes the device to the system bus frequency in synchronous read mode. The first rising edge of CLK in conjunction with AVD low latches address input.
WE	I	Write Enable WE controls writes to the bufferRAM and registers. Datas are latched on the WE pulse's rising edge
AVD	I	Address Valid Detect Indicates valid address presence on address inputs. During asynchronous read operation, all addresses are latched on AVD's rising edge, and during synchronous read operation, all addresses are latched on CLK's rising edge while AVD is held low for one clock cycle. > Low: for asynchronous mode, indicates valid address; for burst mode, causes starting address to be latched on rising edge on CLK > High: device ignores address inputs
RP	I	Reset Pin When low, RP resets internal operation of OneNAND. RP status is don't care during power-up and bootloading.
CE	I	Chip Enable CE-low activates internal control logic, and CE-high deselects the device, places it in standby state, and places DQ in Hi-Z
ŌĒ	I	Output Enable OE-low enables the device's output data buffers during a read cycle.
Power Supply		
Vcc-Core / Vcc		Power for OneNAND Core This is the power supply for OneNAND Core.
Vcc-IO / Vccq		Power for OneNAND I/O This is the power supply for OneNAND I/O Vcc-IO / Vccq is internally separated from Vcc-Core / Vcc.
Vss	-	Ground for OneNAND
etc.		
DNU		Do Not Use Leave it disconnected. These pins are used for testing.
NC		No Connection Lead is not internally connected.

NOTE

Do not leave power supply(Vcc-Core/Vcc-IO, VSS) disconnected.

2.5 Block Diagram

2.6 Memory Array Organization

The OneNAND architecture integrates several memory areas on a single chip.

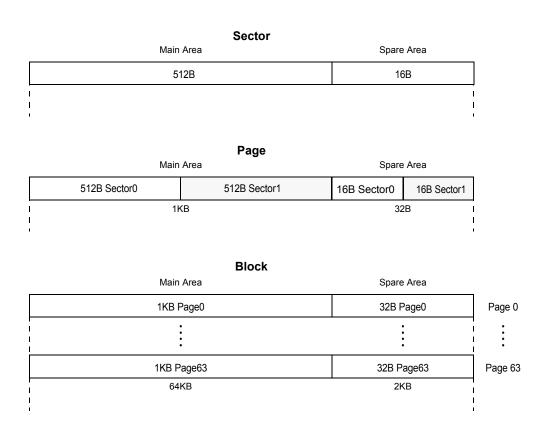
2.6.1 Internal (NAND Array) Memory Organization

The on-chip internal memory is a single-level-cell (SLC) NAND array used for data storage and code. The internal memory is divided into a main area and a spare area.

Main Area

The main area is the primary memory array. This main area is divided into Blocks of 64 Pages. Within a Block, each Page is 1KB and is comprised of 2 Sectors. Within a Page, each Sector is 512B and is comprised of 256 Words.

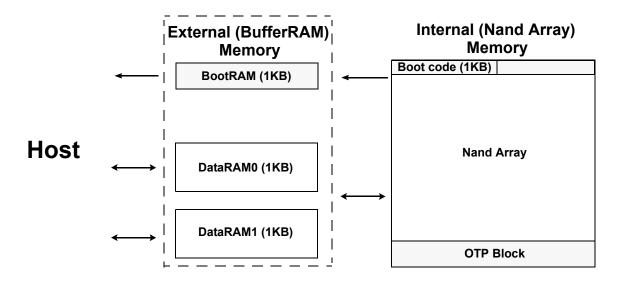
Spare Area


The spare area is used for invalid block information and ECC storage. Spare area internal memory is associated with corresponding main area memory. Within a Block, each Page has two 16B Sectors of spare area. Each spare area Sector is 8 words.

Internal Memory Array Information

Area	Block	Page	Sector
Main	64KB	1KB	512B
Spare	2KB	32B	16B

Internal Memory Array Organization

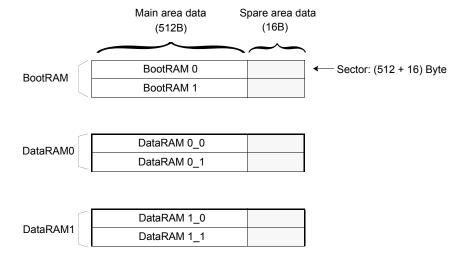


2.6.2 External (BufferRAM) Memory Organization

The on-chip external memory is comprised of 3 buffers used for Boot Code storage and data buffering.

The BootRAM is a 1KB buffer that receives Boot Code from the internal memory and makes it available to the host at start up.

There are two independent 1KB bi-directional data buffers, DataRAM0 and DataRAM1. These dual buffers enable the host to execute simultaneous Read-While load, and Write-While-program operations after Boot Up. During Boot Up, the BootRam is used by the host to initialize the main memory, and deliver boot code from NAND Flash core to host.



The external memory is divided into a main area and a spare area. Each buffer is the equivalent size of a Sector. The main area data is 512B. The spare area data is 16B.

External Memory Array Information

Area BootRAM		BootRAM	DataRAM0	DataRAM1	
Total Size		1KB+32B 1KB+32B		1KB+32B	
Number	of Sectors	2	2	2	
Sector	Main	512B	512B	512B	
Sector	Spare	16B	16B	16B	

External Memory Array Organization

2.7 Memory Map

The following tables are the memory maps for the OneNAND.

2.7.1 Internal (NAND Array) Memory Organization

The following tables show the Internal Memory address map in word order.

Block	Block Address	Page and Sector Address ⁽¹⁾	Size	Block	Block Address	Page and Sector Address ⁽¹⁾	Size
Block0	0000h	0000h~00FDh	64KB	Block32	0020h	0000h~00FDh	64KB
Block1	0001h	0000h~00FDh	64KB	Block33	0021h	0000h~00FDh	64KB
Block2	0002h	0000h~00FDh	64KB	Block34	0022h	0000h~00FDh	64KB
Block3	0003h	0000h~00FDh	64KB	Block35	0023h	0000h~00FDh	64KB
Block4	0004h	0000h~00FDh	64KB	Block36	0024h	0000h~00FDh	64KB
Block5	0005h	0000h~00FDh	64KB	Block37	0025h	0000h~00FDh	64KB
Block6	0006h	0000h~00FDh	64KB	Block38	0026h	0000h~00FDh	64KB
Block7	0007h	0000h~00FDh	64KB	Block39	0027h	0000h~00FDh	64KB
Block8	0008h	0000h~00FDh	64KB	Block40	0028h	0000h~00FDh	64KB
Block9	0009h	0000h~00FDh	64KB	Block41	0029h	0000h~00FDh	64KB
Block10	000Ah	0000h~00FDh	64KB	Block42	002Ah	0000h~00FDh	64KB
Block11	000Bh	0000h~00FDh	64KB	Block43	002Bh	0000h~00FDh	64KB
Block12	000Ch	0000h~00FDh	64KB	Block44	002Ch	0000h~00FDh	64KB
Block13	000Dh	0000h~00FDh	64KB	Block45	002Dh	0000h~00FDh	64KB
Block14	000Eh	0000h~00FDh	64KB	Block46	002Eh	0000h~00FDh	64KB
Block15	000Fh	0000h~00FDh	64KB	Block47	002Fh	0000h~00FDh	64KB
Block16	0010h	0000h~00FDh	64KB	Block48	0030h	0000h~00FDh	64KB
Block17	0011h	0000h~00FDh	64KB	Block49	0031h	0000h~00FDh	64KB
Block18	0012h	0000h~00FDh	64KB	Block50	0032h	0000h~00FDh	64KB
Block19	0013h	0000h~00FDh	64KB	Block51	0033h	0000h~00FDh	64KB
Block20	0014h	0000h~00FDh	64KB	Block52	0034h	0000h~00FDh	64KB
Block21	0015h	0000h~00FDh	64KB	Block53	0035h	0000h~00FDh	64KB
Block22	0016h	0000h~00FDh	64KB	Block54	0036h	0000h~00FDh	64KB
Block23	0017h	0000h~00FDh	64KB	Block55	0037h	0000h~00FDh	64KB
Block24	0018h	0000h~00FDh	64KB	Block56	0038h	0000h~00FDh	64KB
Block25	0019h	0000h~00FDh	64KB	Block57	0039h	0000h~00FDh	64KB
Block26	001Ah	0000h~00FDh	64KB	Block58	003Ah	0000h~00FDh	64KB
Block27	001Bh	0000h~00FDh	64KB	Block59	003Bh	0000h~00FDh	64KB
Block28	001Ch	0000h~00FDh	64KB	Block60	003Ch	0000h~00FDh	64KB
Block29	001Dh	0000h~00FDh	64KB	Block61	003Dh	0000h~00FDh	64KB
Block30	001Eh	0000h~00FDh	64KB	Block62	003Eh	0000h~00FDh	64KB
Block31	001Fh	0000h~00FDh	64KB	Block63	003Fh	0000h~00FDh	64KB

NOTE 1) The 2nd bit of Page and Sector address register is Don't care. So the address range is bigger than the real range. Even though 2nd bit is set to "1", this bit is always considered "0". Please refer to Start Address 8 register.

Block	Block Address	Page and Sector Address ⁽¹⁾	Size	Block	Block Address	Page and Sector Address ⁽¹⁾	Size
Block64	0040h	0000h~00FDh	64KB	Block96	0060h	0000h~00FDh	64KB
Block65	0041h	0000h~00FDh	64KB	Block97	0061h	0000h~00FDh	64KB
Block66	0042h	0000h~00FDh	64KB	Block98	0062h	0000h~00FDh	64KB
Block67	0043h	0000h~00FDh	64KB	Block99	0063h	0000h~00FDh	64KB
Block68	0044h	0000h~00FDh	64KB	Block100	0064h	0000h~00FDh	64KB
Block69	0045h	0000h~00FDh	64KB	Block101	0065h	0000h~00FDh	64KB
Block70	0046h	0000h~00FDh	64KB	Block102	0066h	0000h~00FDh	64KB
Block71	0047h	0000h~00FDh	64KB	Block103	0067h	0000h~00FDh	64KB
Block72	0048h	0000h~00FDh	64KB	Block104	0068h	0000h~00FDh	64KB
Block73	0049h	0000h~00FDh	64KB	Block105	0069h	0000h~00FDh	64KB
Block74	004Ah	0000h~00FDh	64KB	Block106	006Ah	0000h~00FDh	64KB
Block75	004Bh	0000h~00FDh	64KB	Block107	006Bh	0000h~00FDh	64KB
Block76	004Ch	0000h~00FDh	64KB	Block108	006Ch	0000h~00FDh	64KB
Block77	004Dh	0000h~00FDh	64KB	Block109	006Dh	0000h~00FDh	64KB
Block78	004Eh	0000h~00FDh	64KB	Block110	006Eh	0000h~00FDh	64KB
Block79	004Fh	0000h~00FDh	64KB	Block111	006Fh	0000h~00FDh	64KB
Block80	0050h	0000h~00FDh	64KB	Block112	0070h	0000h~00FDh	64KB
Block81	0051h	0000h~00FDh	64KB	Block113	0071h	0000h~00FDh	64KB
Block82	0052h	0000h~00FDh	64KB	Block114	0072h	0000h~00FDh	64KB
Block83	0053h	0000h~00FDh	64KB	Block115	0073h	0000h~00FDh	64KB
Block84	0054h	0000h~00FDh	64KB	Block116	0074h	0000h~00FDh	64KB
Block85	0055h	0000h~00FDh	64KB	Block117	0075h	0000h~00FDh	64KB
Block86	0056h	0000h~00FDh	64KB	Block118	0076h	0000h~00FDh	64KB
Block87	0057h	0000h~00FDh	64KB	Block119	0077h	0000h~00FDh	64KB
Block88	0058h	0000h~00FDh	64KB	Block120	0078h	0000h~00FDh	64KB
Block89	0059h	0000h~00FDh	64KB	Block121	0079h	0000h~00FDh	64KB
Block90	005Ah	0000h~00FDh	64KB	Block122	007Ah	0000h~00FDh	64KB
Block91	005Bh	0000h~00FDh	64KB	Block123	007Bh	0000h~00FDh	64KB
Block92	005Ch	0000h~00FDh	64KB	Block124	007Ch	0000h~00FDh	64KB
Block93	005Dh	0000h~00FDh	64KB	Block125	007Dh	0000h~00FDh	64KB
Block94	005Eh	0000h~00FDh	64KB	Block126	007Eh	0000h~00FDh	64KB
Block95	005Fh	0000h~00FDh	64KB	Block127	007Fh	0000h~00FDh	64KB

NOTE 1) 2nd bit of Page and Sector address is Don't care. So the address range is bigger than the real range. Even though 2nd bit is set to "1", this bit is always considered "0". Please refer to Start Address 8 register.

Block	Block Address	Page and Sector Address ⁽¹⁾	Size	Block	Block Address	Page and Sector Address ⁽¹⁾	Size
Block128	0080h	0000h~00FDh	64KB	Block160	00A0h	0000h~00FDh	64KB
Block129	0081h	0000h~00FDh	64KB	Block161	00A1h	0000h~00FDh	64KB
Block130	0082h	0000h~00FDh	64KB	Block162	00A2h	0000h~00FDh	64KB
Block131	0083h	0000h~00FDh	64KB	Block163	00A3h	0000h~00FDh	64KB
Block132	0084h	0000h~00FDh	64KB	Block164	00A4h	0000h~00FDh	64KB
Block133	0085h	0000h~00FDh	64KB	Block165	00A5h	0000h~00FDh	64KB
Block134	0086h	0000h~00FDh	64KB	Block166	00A6h	0000h~00FDh	64KB
Block135	0087h	0000h~00FDh	64KB	Block167	00A7h	0000h~00FDh	64KB
Block136	0088h	0000h~00FDh	64KB	Block168	00A8h	0000h~00FDh	64KB
Block137	0089h	0000h~00FDh	64KB	Block169	00A9h	0000h~00FDh	64KB
Block138	008Ah	0000h~00FDh	64KB	Block170	00AAh	0000h~00FDh	64KB
Block139	008Bh	0000h~00FDh	64KB	Block171	00ABh	0000h~00FDh	64KB
Block140	008Ch	0000h~00FDh	64KB	Block172	00ACh	0000h~00FDh	64KB
Block141	008Dh	0000h~00FDh	64KB	Block173	00ADh	0000h~00FDh	64KB
Block142	008Eh	0000h~00FDh	64KB	Block174	00AEh	0000h~00FDh	64KB
Block143	008Fh	0000h~00FDh	64KB	Block175	00AFh	0000h~00FDh	64KB
Block144	0090h	0000h~00FDh	64KB	Block176	00B0h	0000h~00FDh	64KB
Block145	0091h	0000h~00FDh	64KB	Block177	00B1h	0000h~00FDh	64KB
Block146	0092h	0000h~00FDh	64KB	Block178	00B2h	0000h~00FDh	64KB
Block147	0093h	0000h~00FDh	64KB	Block179	00B3h	0000h~00FDh	64KB
Block148	0094h	0000h~00FDh	64KB	Block180	00B4h	0000h~00FDh	64KB
Block149	0095h	0000h~00FDh	64KB	Block181	00B5h	0000h~00FDh	64KB
Block150	0096h	0000h~00FDh	64KB	Block182	00B6h	0000h~00FDh	64KB
Block151	0097h	0000h~00FDh	64KB	Block183	00B7h	0000h~00FDh	64KB
Block152	0098h	0000h~00FDh	64KB	Block184	00B8h	0000h~00FDh	64KB
Block153	0099h	0000h~00FDh	64KB	Block185	00B9h	0000h~00FDh	64KB
Block154	009Ah	0000h~00FDh	64KB	Block186	00BAh	0000h~00FDh	64KB
Block155	009Bh	0000h~00FDh	64KB	Block187	00BBh	0000h~00FDh	64KB
Block156	009Ch	0000h~00FDh	64KB	Block188	00BCh	0000h~00FDh	64KB
Block157	009Dh	0000h~00FDh	64KB	Block189	00BDh	0000h~00FDh	64KB
Block158	009Eh	0000h~00FDh	64KB	Block190	00BEh	0000h~00FDh	64KB
Block159	009Fh	0000h~00FDh	64KB	Block191	00BFh	0000h~00FDh	64KB

NOTE 1) 2nd bit of Page and Sector address is Don't care. So the address range is bigger than the real range. Even though 2nd bit is set to "1", this bit is always considered "0". Please refer to Start Address 8 register.

Block	Block Address	Page and Sector Address ⁽¹⁾	Size	Block	Block Address	Page and Sector Address ⁽¹⁾	Size
Block192	00C0h	0000h~00FDh	64KB	Block224	00E0h	0000h~00FDh	64KB
Block193	00C1h	0000h~00FDh	64KB	Block225	00E1h	0000h~00FDh	64KB
Block194	00C2h	0000h~00FDh	64KB	Block226	00E2h	0000h~00FDh	64KB
Block195	00C3h	0000h~00FDh	64KB	Block227	00E3h	0000h~00FDh	64KB
Block196	00C4h	0000h~00FDh	64KB	Block228	00E4h	0000h~00FDh	64KB
Block197	00C5h	0000h~00FDh	64KB	Block229	00E5h	0000h~00FDh	64KB
Block198	00C6h	0000h~00FDh	64KB	Block230	00E6h	0000h~00FDh	64KB
Block199	00C7h	0000h~00FDh	64KB	Block231	00E7h	0000h~00FDh	64KB
Block200	00C8h	0000h~00FDh	64KB	Block232	00E8h	0000h~00FDh	64KB
Block201	00C9h	0000h~00FDh	64KB	Block233	00E9h	0000h~00FDh	64KB
Block202	00CAh	0000h~00FDh	64KB	Block234	00EAh	0000h~00FDh	64KB
Block203	00CBh	0000h~00FDh	64KB	Block235	00EBh	0000h~00FDh	64KB
Block204	00CCh	0000h~00FDh	64KB	Block236	00ECh	0000h~00FDh	64KB
Block205	00CDh	0000h~00FDh	64KB	Block237	00EDh	0000h~00FDh	64KB
Block206	00CEh	0000h~00FDh	64KB	Block238	00EEh	0000h~00FDh	64KB
Block207	00CFh	0000h~00FDh	64KB	Block239	00EFh	0000h~00FDh	64KB
Block208	00D0h	0000h~00FDh	64KB	Block240	00F0h	0000h~00FDh	64KB
Block209	00D1h	0000h~00FDh	64KB	Block241	00F1h	0000h~00FDh	64KB
Block210	00D2h	0000h~00FDh	64KB	Block242	00F2h	0000h~00FDh	64KB
Block211	00D3h	0000h~00FDh	64KB	Block243	00F3h	0000h~00FDh	64KB
Block212	00D4h	0000h~00FDh	64KB	Block244	00F4h	0000h~00FDh	64KB
Block213	00D5h	0000h~00FDh	64KB	Block245	00F5h	0000h~00FDh	64KB
Block214	00D6h	0000h~00FDh	64KB	Block246	00F6h	0000h~00FDh	64KB
Block215	00D7h	0000h~00FDh	64KB	Block247	00F7h	0000h~00FDh	64KB
Block216	00D8h	0000h~00FDh	64KB	Block248	00F8h	0000h~00FDh	64KB
Block217	00D9h	0000h~00FDh	64KB	Block249	00F9h	0000h~00FDh	64KB
Block218	00DAh	0000h~00FDh	64KB	Block250	00FAh	0000h~00FDh	64KB
Block219	00DBh	0000h~00FDh	64KB	Block251	00FBh	0000h~00FDh	64KB
Block220	00DCh	0000h~00FDh	64KB	Block252	00FCh	0000h~00FDh	64KB
Block221	00DDh	0000h~00FDh	64KB	Block253	00FDh	0000h~00FDh	64KB
Block222	00DEh	0000h~00FDh	64KB	Block254	00FEh	0000h~00FDh	64KB
Block223	00DFh	0000h~00FDh	64KB	Block255	00FFh	0000h~00FDh	64KB

NOTE 1) 2nd bit of Page and Sector address is Don't care. So the address range is bigger than the real range. Even though 2nd bit is set to "1", this bit is always considered "0". Please refer to Start Address 8 register.

Block	Block Address	Page and Sector Address ⁽¹⁾	Size	Block	Block Address	Page and Sector Address ⁽¹⁾	Size
Block256	0100h	0000h~00FDh	64KB	Block288	0120h	0000h~00FDh	64KB
Block257	0101h	0000h~00FDh	64KB	Block289	0121h	0000h~00FDh	64KB
Block258	0102h	0000h~00FDh	64KB	Block290	0122h	0000h~00FDh	64KB
Block259	0103h	0000h~00FDh	64KB	Block291	0123h	0000h~00FDh	64KB
Block260	0104h	0000h~00FDh	64KB	Block292	0124h	0000h~00FDh	64KB
Block261	0105h	0000h~00FDh	64KB	Block293	0125h	0000h~00FDh	64KB
Block262	0106h	0000h~00FDh	64KB	Block294	0126h	0000h~00FDh	64KB
Block263	0107h	0000h~00FDh	64KB	Block295	0127h	0000h~00FDh	64KB
Block264	0108h	0000h~00FDh	64KB	Block296	0128h	0000h~00FDh	64KB
Block265	0109h	0000h~00FDh	64KB	Block297	0129h	0000h~00FDh	64KB
Block266	010Ah	0000h~00FDh	64KB	Block298	012Ah	0000h~00FDh	64KB
Block267	010Bh	0000h~00FDh	64KB	Block299	012Bh	0000h~00FDh	64KB
Block268	010Ch	0000h~00FDh	64KB	Block300	012Ch	0000h~00FDh	64KB
Block269	010Dh	0000h~00FDh	64KB	Block301	012Dh	0000h~00FDh	64KB
Block270	010Eh	0000h~00FDh	64KB	Block302	012Eh	0000h~00FDh	64KB
Block271	010Fh	0000h~00FDh	64KB	Block303	012Fh	0000h~00FDh	64KB
Block272	0110h	0000h~00FDh	64KB	Block304	0130h	0000h~00FDh	64KB
Block273	0111h	0000h~00FDh	64KB	Block305	0131h	0000h~00FDh	64KB
Block274	0112h	0000h~00FDh	64KB	Block306	0132h	0000h~00FDh	64KB
Block275	0113h	0000h~00FDh	64KB	Block307	0133h	0000h~00FDh	64KB
Block276	0114h	0000h~00FDh	64KB	Block308	0134h	0000h~00FDh	64KB
Block277	0115h	0000h~00FDh	64KB	Block309	0135h	0000h~00FDh	64KB
Block278	0116h	0000h~00FDh	64KB	Block310	0136h	0000h~00FDh	64KB
Block279	0117h	0000h~00FDh	64KB	Block311	0137h	0000h~00FDh	64KB
Block280	0118h	0000h~00FDh	64KB	Block312	0138h	0000h~00FDh	64KB
Block281	0119h	0000h~00FDh	64KB	Block313	0139h	0000h~00FDh	64KB
Block282	011Ah	0000h~00FDh	64KB	Block314	013Ah	0000h~00FDh	64KB
Block283	011Bh	0000h~00FDh	64KB	Block315	013Bh	0000h~00FDh	64KB
Block284	011Ch	0000h~00FDh	64KB	Block316	013Ch	0000h~00FDh	64KB
Block285	011Dh	0000h~00FDh	64KB	Block317	013Dh	0000h~00FDh	64KB
Block286	011Eh	0000h~00FDh	64KB	Block318	013Eh	0000h~00FDh	64KB
Block287	011Fh	0000h~00FDh	64KB	Block319	013Fh	0000h~00FDh	64KB

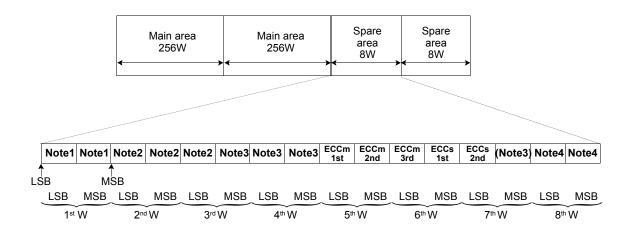
NOTE 1) 2nd bit of Page and Sector address is Don't care. So the address range is bigger than the real range. Even though 2nd bit is set to "1", this bit is always considered "0". Please refer to Start Address 8 register.

Block	Block Address	Page and Sector Address ⁽¹⁾	Size	Block	Block Address	Page and Sector Address ⁽¹⁾	Size
Block320	0140h	0000h~00FDh	64KB	Block352	0160h	0000h~00FDh	64KB
Block321	0141h	0000h~00FDh	64KB	Block353	0161h	0000h~00FDh	64KB
Block322	0142h	0000h~00FDh	64KB	Block354	0162h	0000h~00FDh	64KB
Block323	0143h	0000h~00FDh	64KB	Block355	0163h	0000h~00FDh	64KB
Block324	0144h	0000h~00FDh	64KB	Block356	0164h	0000h~00FDh	64KB
Block325	0145h	0000h~00FDh	64KB	Block357	0165h	0000h~00FDh	64KB
Block326	0146h	0000h~00FDh	64KB	Block358	0166h	0000h~00FDh	64KB
Block327	0147h	0000h~00FDh	64KB	Block359	0167h	0000h~00FDh	64KB
Block328	0148h	0000h~00FDh	64KB	Block360	0168h	0000h~00FDh	64KB
Block329	0149h	0000h~00FDh	64KB	Block361	0169h	0000h~00FDh	64KB
Block330	014Ah	0000h~00FDh	64KB	Block362	016Ah	0000h~00FDh	64KB
Block331	014Bh	0000h~00FDh	64KB	Block363	016Bh	0000h~00FDh	64KB
Block332	014Ch	0000h~00FDh	64KB	Block364	016Ch	0000h~00FDh	64KB
Block333	014Dh	0000h~00FDh	64KB	Block365	016Dh	0000h~00FDh	64KB
Block334	014Eh	0000h~00FDh	64KB	Block366	016Eh	0000h~00FDh	64KB
Block335	014Fh	0000h~00FDh	64KB	Block367	016Fh	0000h~00FDh	64KB
Block336	0150h	0000h~00FDh	64KB	Block368	0170h	0000h~00FDh	64KB
Block337	0151h	0000h~00FDh	64KB	Block369	0171h	0000h~00FDh	64KB
Block338	0152h	0000h~00FDh	64KB	Block370	0172h	0000h~00FDh	64KB
Block339	0153h	0000h~00FDh	64KB	Block371	0173h	0000h~00FDh	64KB
Block340	0154h	0000h~00FDh	64KB	Block372	0174h	0000h~00FDh	64KB
Block341	0155h	0000h~00FDh	64KB	Block373	0175h	0000h~00FDh	64KB
Block342	0156h	0000h~00FDh	64KB	Block374	0176h	0000h~00FDh	64KB
Block343	0157h	0000h~00FDh	64KB	Block375	0177h	0000h~00FDh	64KB
Block344	0158h	0000h~00FDh	64KB	Block376	0178h	0000h~00FDh	64KB
Block345	0159h	0000h~00FDh	64KB	Block377	0179h	0000h~00FDh	64KB
Block346	015Ah	0000h~00FDh	64KB	Block378	017Ah	0000h~00FDh	64KB
Block347	015Bh	0000h~00FDh	64KB	Block379	017Bh	0000h~00FDh	64KB
Block348	015Ch	0000h~00FDh	64KB	Block380	017Ch	0000h~00FDh	64KB
Block349	015Dh	0000h~00FDh	64KB	Block381	017Dh	0000h~00FDh	64KB
Block350	015Eh	0000h~00FDh	64KB	Block382	017Eh	0000h~00FDh	64KB
Block351	015Fh	0000h~00FDh	64KB	Block383	017Fh	0000h~00FDh	64KB

NOTE 1) 2nd bit of Page and Sector address is Don't care. So the address range is bigger than the real range. Even though 2nd bit is set to "1", this bit is always considered "0". Please refer to Start Address 8 register.

Block	Block Address	Page and Sector Address ⁽¹⁾	Size	Block	Block Address	Page and Sector Address ⁽¹⁾	Size
Block384	0180h	0000h~00FDh	64KB	Block416	01A0h	0000h~00FDh	64KB
Block385	0181h	0000h~00FDh	64KB	Block417	01A1h	0000h~00FDh	64KB
Block386	0182h	0000h~00FDh	64KB	Block418	01A2h	0000h~00FDh	64KB
Block387	0183h	0000h~00FDh	64KB	Block419	01A3h	0000h~00FDh	64KB
Block388	0184h	0000h~00FDh	64KB	Block420	01A4h	0000h~00FDh	64KB
Block389	0185h	0000h~00FDh	64KB	Block421	01A5h	0000h~00FDh	64KB
Block390	0186h	0000h~00FDh	64KB	Block422	01A6h	0000h~00FDh	64KB
Block391	0187h	0000h~00FDh	64KB	Block423	01A7h	0000h~00FDh	64KB
Block392	0188h	0000h~00FDh	64KB	Block424	01A8h	0000h~00FDh	64KB
Block393	0189h	0000h~00FDh	64KB	Block425	01A9h	0000h~00FDh	64KB
Block394	018Ah	0000h~00FDh	64KB	Block426	01AAh	0000h~00FDh	64KB
Block395	018Bh	0000h~00FDh	64KB	Block427	01ABh	0000h~00FDh	64KB
Block396	018Ch	0000h~00FDh	64KB	Block428	01ACh	0000h~00FDh	64KB
Block397	018Dh	0000h~00FDh	64KB	Block429	01ADh	0000h~00FDh	64KB
Block398	018Eh	0000h~00FDh	64KB	Block430	01AEh	0000h~00FDh	64KB
Block399	018Fh	0000h~00FDh	64KB	Block431	01AFh	0000h~00FDh	64KB
Block400	0190h	0000h~00FDh	64KB	Block432	01B0h	0000h~00FDh	64KB
Block401	0191h	0000h~00FDh	64KB	Block433	01B1h	0000h~00FDh	64KB
Block402	0192h	0000h~00FDh	64KB	Block434	01B2h	0000h~00FDh	64KB
Block403	0193h	0000h~00FDh	64KB	Block435	01B3h	0000h~00FDh	64KB
Block404	0194h	0000h~00FDh	64KB	Block436	01B4h	0000h~00FDh	64KB
Block405	0195h	0000h~00FDh	64KB	Block437	01B5h	0000h~00FDh	64KB
Block406	0196h	0000h~00FDh	64KB	Block438	01B6h	0000h~00FDh	64KB
Block407	0197h	0000h~00FDh	64KB	Block439	01B7h	0000h~00FDh	64KB
Block408	0198h	0000h~00FDh	64KB	Block440	01B8h	0000h~00FDh	64KB
Block409	0199h	0000h~00FDh	64KB	Block441	01B9h	0000h~00FDh	64KB
Block410	019Ah	0000h~00FDh	64KB	Block442	01BAh	0000h~00FDh	64KB
Block411	019Bh	0000h~00FDh	64KB	Block443	01BBh	0000h~00FDh	64KB
Block412	019Ch	0000h~00FDh	64KB	Block444	01BCh	0000h~00FDh	64KB
Block413	019Dh	0000h~00FDh	64KB	Block445	01BDh	0000h~00FDh	64KB
Block414	019Eh	0000h~00FDh	64KB	Block446	01BEh	0000h~00FDh	64KB
Block415	019Fh	0000h~00FDh	64KB	Block447	01BFh	0000h~00FDh	64KB

NOTE 1) 2nd bit of Page and Sector address is Don't care. So the address range is bigger than the real range. Even though 2nd bit is set to "1", this bit is always considered "0". Please refer to Start Address 8 register.


Block	Block Address	Page and Sector Address ⁽¹⁾	Size	Block	Block Address	Page and Sector Address ⁽¹⁾	Size
Block448	01C0h	0000h~00FDh	64KB	Block480	01E0h	0000h~00FDh	64KB
Block449	01C1h	0000h~00FDh	64KB	Block481	01E1h	0000h~00FDh	64KB
Block450	01C2h	0000h~00FDh	64KB	Block482	01E2h	0000h~00FDh	64KB
Block451	01C3h	0000h~00FDh	64KB	Block483	01E3h	0000h~00FDh	64KB
Block452	01C4h	0000h~00FDh	64KB	Block484	01E4h	0000h~00FDh	64KB
Block453	01C5h	0000h~00FDh	64KB	Block485	01E5h	0000h~00FDh	64KB
Block454	01C6h	0000h~00FDh	64KB	Block486	01E6h	0000h~00FDh	64KB
Block455	01C7h	0000h~00FDh	64KB	Block487	01E7h	0000h~00FDh	64KB
Block456	01C8h	0000h~00FDh	64KB	Block488	01E8h	0000h~00FDh	64KB
Block457	01C9h	0000h~00FDh	64KB	Block489	01E9h	0000h~00FDh	64KB
Block458	01CAh	0000h~00FDh	64KB	Block490	01EAh	0000h~00FDh	64KB
Block459	01CBh	0000h~00FDh	64KB	Block491	01EBh	0000h~00FDh	64KB
Block460	01CCh	0000h~00FDh	64KB	Block492	01ECh	0000h~00FDh	64KB
Block461	01CDh	0000h~00FDh	64KB	Block493	01EDh	0000h~00FDh	64KB
Block462	01CEh	0000h~00FDh	64KB	Block494	01EEh	0000h~00FDh	64KB
Block463	01CFh	0000h~00FDh	64KB	Block495	01EFh	0000h~00FDh	64KB
Block464	01D0h	0000h~00FDh	64KB	Block496	01F0h	0000h~00FDh	64KB
Block465	01D1h	0000h~00FDh	64KB	Block497	01F1h	0000h~00FDh	64KB
Block466	01D2h	0000h~00FDh	64KB	Block498	01F2h	0000h~00FDh	64KB
Block467	01D3h	0000h~00FDh	64KB	Block499	01F3h	0000h~00FDh	64KB
Block468	01D4h	0000h~00FDh	64KB	Block500	01F4h	0000h~00FDh	64KB
Block469	01D5h	0000h~00FDh	64KB	Block501	01F5h	0000h~00FDh	64KB
Block470	01D6h	0000h~00FDh	64KB	Block502	01F6h	0000h~00FDh	64KB
Block471	01D7h	0000h~00FDh	64KB	Block503	01F7h	0000h~00FDh	64KB
Block472	01D8h	0000h~00FDh	64KB	Block504	01F8h	0000h~00FDh	64KB
Block473	01D9h	0000h~00FDh	64KB	Block505	01F9h	0000h~00FDh	64KB
Block474	01DAh	0000h~00FDh	64KB	Block506	01FAh	0000h~00FDh	64KB
Block475	01DBh	0000h~00FDh	64KB	Block507	01FBh	0000h~00FDh	64KB
Block476	01DCh	0000h~00FDh	64KB	Block508	01FCh	0000h~00FDh	64KB
Block477	01DDh	0000h~00FDh	64KB	Block509	01FDh	0000h~00FDh	64KB
Block478	01DEh	0000h~00FDh	64KB	Block510	01FEh	0000h~00FDh	64KB
Block479	01DFh	0000h~00FDh	64KB	Block511	01FFh	0000h~00FDh	64KB

NOTE 1) 2nd bit of Page and Sector address is Don't care. So the address range is bigger than the real range. Even though 2nd bit is set to "1", this bit is always considered "0". Please refer to Start Address 8 register.

2.7.2 Internal Memory Spare Area Assignment

The figure below shows the assignment of the spare area in the Internal Memory NAND Array.

Spare Area Assignment in the Internal Memory NAND Array Information

Word	Byte	Note	Description					
1	LSB	1	Invalid Block information in 1st and 2nd page of an invalid block					
'	MSB	'	Invalid Block information in 1st and 2nd page of an invalid block					
2	LSB							
	MSB	2	Managed by internal ECC logic for Logical Sector Number data					
3	LSB							
3	MSB							
4	LSB	3	Reserved for future use					
7	MSB							
5	LSB		Dedicated to internal ECC logic. Read Only. ECCm 1st for main area data					
5	MSB		Dedicated to internal ECC logic. Read Only. ECCm 2nd for main area data					
6	LSB		Dedicated to internal ECC logic. Read Only. ECCm 3rd for main area data					
0	MSB		Dedicated to internal ECC logic. Read Only. ECCs 1st for 2nd word of spare area data					
7	LSB		Dedicated to internal ECC logic. Read Only. ECCs 2nd for 3rd word of spare area data					
	MSB	3	Reserved for future use					
8	LSB	4	Available to the user					
0	MSB		Available to the user					

2.7.3 External Memory (BufferRAM) Address Map

The following table shows the External Memory address map in Word and Byte Order. Note that the data output is unknown while host reads a register bit of reserved area.

Division	Address (word order)	Address (byte order)	Size (total 128K	(B)	Usage	Description
Main area	0000h~00FFh	00000h~001FEh	512B	1KB	BootM 0	BootRAM Main sector0
(64KB)	0100h~01FFh	00200h~003FEh	512B	IND	BootM 1	BootRAM Main sector1
	0200h~02FFh	00400h~005FEh	512B		DataM 0_0	DataRAM Main page0/sector0
	0300h~03FFh	00600h~007FEh	512B	2KB	DataM 0_1	DataRAM Main page0/sector1
	0400h~04FFh	00800h~009FEh	512B	ZND	DataM 1_0	DataRAM Main page1/sector0
	0500h~05FFh	00A00h~00BFEh	512B		DataM 1_1	DataRAM Main page1/sector1
	0600h~7FFFh	00C00h~0FFFEh	61KB	61KB	Reserved	Reserved
Spare area	8000h~8007h	10000h~1000Eh	16B	32B	BootS 0	BootRAM Spare sector0
(8KB)	8008h~800Fh	10010h~1001Eh	16B	326	BootS 1	BootRAM Spare sector1
	8010h~8017h	10020h~1002Eh	16B		DataS 0_0	DataRAM Spare page0/sector0
	8018h~801Fh	10030h~1003Eh	16B	64B	DataS 0_1	DataRAM Spare page0/sector1
	8020h~8027h	10040h~1004Eh	16B	046	DataS 1_0	DataRAM Spare page1/sector0
	8028h~802Fh	10050h~1005Eh	16B		DataS 1_1	DataRAM Spare page1/sector1
	8030h~8FFFh	1006Eh~11FFEh	8096B	8096B	Reserved	Reserved
Reserved (24KB)	9000h~BFFFh	12000h~17FFEh	24KB	24KB	Reserved	Reserved
Reserved (8KB)	C000h~CFFFh	18000h~19FFEh	8KB	8KB	Reserved	Reserved
Reserved (16KB)	D000h~EFFFh	1A000h~1DFFEh	16KB	16KB	Reserved	Reserved
Registers (8KB)	F000h~FFFFh	1E000h~1FFFEh	8KB	8KB	Registers	Registers

2.7.4 External Memory Map Detail Information

The tables below show Word Order Address Map information for the BootRAM and DataRAM main and spare areas.

• BootRAM(Main area)

-0000h~01FFh: 2(sector) x 512byte(NAND main area) = 1KB

0000h~00FFh(512B)	0100h~01FFh(512B)
BootM 0	BootM 1
(sector 0 of page 0)	(sector 1 of page 0)

• DataRAM(Main area)

-0200h~05FFh: 4(sector) x 512byte(NAND main area) = 2KB

0200h~02FFh(512B)	0300h~03FFh(512B)	0400h~04FFh(512B)	0500h~05FFh(512B)
DataM 0_0	DataM 0_1	DataM 1_0	DataM 1_1
(sector 0 of page 0)	(sector 1 of page 0)	(sector 0 of page 1)	(sector 1 of page 1)

• BootRAM(Spare area)

-8000h~800Fh: 2(sector) x 16byte(NAND spare area) = 32B

8000h~8007h(16B)	8008h~800Fh(16B)
BootS 0	BootS 1
(sector 0 of page 0)	(sector 1 of page 0)

• DataRAM(Spare area)

-8010h~802Fh: 4(sector) x 16byte(NAND spare area) = 64B

8010h~8017h(16B)	8018h~801Fh(16B)	8020h~8027h(16B)	8028h~802Fh(16B)
DataS 0_0	DataS 0_1	DataS 1_0	DataS 1_1
(sector 0 of page 0)	(sector 1 of page 0)	(sector 0 of page 1)	(sector 1 of page 1)

^{*}NAND Flash array consists of 1KB page size and 64KB block size.

2.7.5 External Memory Spare Area Assignment

Equivalent to 1word of NAND Flash

			~	Equivalent to 1word of NAND Flash														
Buf.	Word Address	Byte Address	F	E	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
BootS 0	8000h	10000h								E	31							
	8001h	10002h						Ма	naged	by In	ternal	ECC I	ogic					
	8002h	10004h		F	Reserv	ed for	the fu	iture us	e			Ма	naged	by In	ternal	ECC I	ogic	
	8003h	10006h					ı	Reserv	ed for	the cu	irrent a	and fut	ture us	se				
	8004h	10008h		ECC	ECC Code for Main area data (2 nd) ECC Code for Main area data (1 st)													
	8005h	1000Ah		ECC	Code	for Sp	oare a	rea dat	a (1 st)			ECC	Code	for M	ain are	ea dat	a (3 rd)	
	8006h	1000Ch		FFh	(Rese	rved f	for the	future	use)			ECC	Code	for Sp	are ar	ea dat	a (2 nd)	
	8007h	1000Eh			Free Usage													
BootS 1	8008h	10010h			ВІ													
	8009h	10012h			Managed by Internal ECC logic													
	800Ah	10014h		F	Reserv	ed for	the fu	iture us	e			Ма	naged	by In	ternal	ECC I	ogic	
	800Bh	10016h					ı	Reserv	ed for	the cu	irrent a	and fut	ture us	se				
	800Ch	10018h		ECC	Code	for M	lain ar	ea data	(2 nd)			ECC	Code	for M	ain are	ea dat	a (1 st)	
	800Dh	1001Ah		ECC	Code	for Sp	oare a	rea dat	a (1 st)			ECC	Code	for M	ain are	ea dat	a (3 rd)	
	800Eh	1001Ch		FFh	(Rese	rved f	for the	future	use)			ECC	Code	for Sp	are ar	ea dat	a (2 nd)	
	800Fh	1001Eh								Free	Usage	!						
DataS	8010h	10020h								E	31							
0_0	8011h	10022h						Ма	naged	by In	ternal	ECC I	ogic					
	8012h	10024h		F	Reserv	ed for	the fu	iture us	e			Ма	naged	by In	ternal	ECC I	ogic	
	8013h	10026h					ı	Reserv	ed for	the cu	irrent a	and fut	ture us	se				
	8014h	10028h		ECC	Code	for M	lain ar	ea data	(2 nd)			ECC	Code	for M	ain are	ea dat	a (1st)	
	8015h	1002Ah		ECC	Code	for Sp	oare a	rea dat	a (1 st)			ECC	Code	for M	ain are	ea dat	a (3 rd)	
	8016h	1002Ch		FFh	(Rese	rved f	for the	future	use)			ECC	Code	for Sp	are ar	ea dat	a (2 nd)	
	8017h	1002Eh								Free	Usage	!						
DataS	8018h	10030h								E	31							
0_1	8019h	10032h		Managed by Internal ECC logic														
	801Ah	10034h		F	Reserv	ed for	the fu	iture us	e			Ма	naged	by In	ternal	ECC I	ogic	
	801Bh	10036h					ı	Reserv	ed for	the cu	irrent a	and fut	ture us	se				
	801Ch	10038h		ECC	Code	for M	lain ar	ea data	(2 nd)			ECC	Code	for M	ain are	ea dat	a (1st)	
	801Dh	1003Ah		ECC	Code	for Sp	oare a	rea dat	a (1 st)			ECC	Code	for M	ain are	ea dat	a (3 rd)	
	801Eh	1003Ch		FFh	(Rese	rved f	for the	future	use)			ECC	Code	for Sp	are ar	ea dat	a (2 nd)	
	801Fh	1003Eh								Free	Usage							

			-	Equivalent to 1word of NAND Flash										→				
Buf.	Word Address	Byte Address	F	Е	D	С	В	Α	9	8	7	6	5	4	3	2	1	0
DataS 1_0	8020h	10040h		BI														
	8021h	10042h		Managed by Internal ECC logic														
	8022h	10044h		Reserved for the future use Managed by Internal ECC logic														
	8023h	10046h					F	Reserv	ed for	the cu	urrent a	and fu	ture u	se				
	8024h	10048h		ECC	Code	for M	ain are	ea data	a (2 nd)			ECC	Code	for M	ain ar	ea dat	a (1 st)	
	8025h	1004Ah		ECC	Code	for Sp	oare ar	ea dat	a (1st)			ECC	Code	for M	ain ar	ea data	a (3 rd)	
	8026h	1004Ch		FFh	(Rese	rved f	or the	future	use)			ECC	Code	for Sp	are ar	ea dat	a (2 nd)	
	8027h	1004Eh								Free	Usage							
DataS 1_1	8028h	10050h									ВΙ							
	8029h	10052h						Ма	naged	by In	ternal	ECC I	ogic					
	802Ah	10054h		F	Reserv	ed for	the fu	ture u	se			Ма	naged	by Int	ternal	ECC I	ogic	
	802Bh	10056h					F	Reserv	ed for	the cu	urrent a	and fu	ture u	se				
	802Ch	10058h		ECC	Code	for M	ain are	ea data	a (2 nd)			ECC	Code	for M	ain ar	ea dat	a (1 st)	
	802Dh	1005Ah		ECC	Code	for Sp	oare ar	ea dat	a (1st)			ECC	Code	for M	ain are	ea data	a (3 rd)	
	802Eh	1005Ch		FFh	(Rese	rved f	or the	future	use)			ECC	Code	for Sp	are ar	ea dat	a (2 nd)	
	802Fh	1005Eh								Free	Usage	!						

NOTE:

⁻ BI: Invalid block Information

>Host can use complete spare area except BI and ECC code area. For example,

Host can write data to Spare area buffer except for the area controlled by ECC logic at program operation.

>In case of 'with ECC' mode, OneNAND automatically generates ECC code for both main and spare data of memory during program operation, but does not update ECC code to spare bufferRAM during load operation.

>When loading/programming spare area, spare area BufferRAM address(BSA) and BufferRAM sector count(BSC) is chosen via Start buffer register as it is.

2.8 Registers

Section 2.8 of this specification provides information about the OneNAND registers.

2.8.1 Register Address Map

This map describes the register addresses, register name, register description, and host accessibility.

Address (word order)	Address (byte order)	Name	Host Access	Description
F000h	1E000h	Manufacturer ID	R	Manufacturer identification
F001h	1E002h	Device ID	R	Device identification
F002h	1E004h	Version ID	R	N/A
F003h	1E006h	Data Buffer size	R	Data buffer size
F004h	1E008h	Boot Buffer size	R	Boot buffer size
F005h	1E00Ah	Amount of buffers	R	Amount of data/boot buffers
F006h	1E00Ch	Technology	R	Info about technology
F007h~F0FFh	1E00Eh~1E1FEh	Reserved	-	Reserved for user
F100h	1E200h	Start address 1	R/W	NAND Flash Block address
F101h	1E202h	Start address 2	R/W	N/A
F102h	1E204h	Start address 3	R/W	Destination Block address for Copy back program
F103h	1E206h	Start address 4	R/W	Destination Page & Sector address for Copy back program
F104h	1E208h	Start address 5	-	N/A
F105h	1E20Ah	Start address 6	-	N/A
F106h	1E20Ch	Start address 7	-	N/A
F107h	1E20Eh	Start address 8	R/W	NAND Flash Page & Sector address
F108h~F1FFh	1E210h~1E3FEh	Reserved	-	Reserved for user
F200h	1E400h	Start Buffer	R/W	Buffer Number for the page data transfer to/from the memory and the start Buffer Address The meaning is with which buffer to start and how many buffers to use for the data transfer
F201h~F207h	1E402h~1E40Eh	Reserved	-	Reserved for user
F208h~F21Fh	1E410h~1E43Eh	Reserved	-	Reserved for vendor specific purposes
F220h	1E440h	Command	R/W	Host control and memory operation commands
F221h	1E442h	System Configuration 1	R, R/W	Memory and Host Interface Configuration
F222h	1E444h	System Configuration 2	-	N/A
F223h~F22Fh	1E446h~1E45Eh	Reserved	-	Reserved for user
F230h~F23Fh	1E460h~1E47Eh	Reserved	-	Reserved for vendor specific purposes
F240h	1E480h	Controller Status	R	Controller Status and result of memory operation
F241h	1E482h	Interrupt	R/W	Memory Command Completion Interrupt Status
F242h~F24Bh	1E484h~1E496h	Reserved	-	Reserved for user
F24Ch	1E498h	Start Block Address	R/W	Start memory block address in Write Protection mode

Address (word order)	Address (byte order)	Name	Host Access	Description
F24Dh	1E49Ah	Reserved	R/W	Reserved for user
F24Eh	1E49Ch	Write Protection Status	R	Current memory Write Protection status (unlocked/locked/tight-locked)
F24Fh~FEFFh	1E49Eh~1FDFEh	Reserved	-	Reserved for user
FF00h	1FE00h	ECC Status Register	R	ECC status of sector
FF01h	1FE02h	ECC Result of main area data	R	ECC error position of Main area data error for first selected Sector
FF02h	1FE04h	ECC Result of spare area data	R	ECC error position of Spare area data error for first selected Sector
FF03h	1FE06h	ECC Result of main area data	R	ECC error position of Main area data error for second selected Sector
FF04h	1FE08h	ECC Result of spare area data	R	ECC error position of Spare area data error for second selected Sector
FF05h~FFFFh	1FE0Ah~1FFFEh	Reserved	-	Reserved for vendor specific purposes

2.8.2 Manufacturer ID Register F000h (R)

This Read register describes the manufacturer's identification. Samsung Electronics Company manufacturer's ID is 00ECh.

F000h, default = 00ECh

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ManuflD															

2.8.3 Device ID Register F001h (R)

This Read register describes the device.

F001h, see table for default.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	DeviceID														

Device Identification

Device Identification	Description
DeviceID [1:0] Vcc	00 = 1.8V, 01 = 3.3V, 10/11 = reserved
DeviceID [2] Muxed/Demuxed	0 = Muxed, 1 = Demuxed
DeviceID [3] Single/DPP	0 = Single, 1 = DDP
DeviceID [7:4] Density	0000 = 128Mb, 0001 = 256Mb, 0010 = 512Mb, 0011 = 1Gb, 0100 = 2Gb, 0101=4Gb
DeviceID [8] Top/Bottom Boot	0 = Bottom Boot, 1 = Top Boot

Device ID Default

Device	DeviceID[15:0]
KFG5616Q1A	0014h
KFG5616U1A	0015h

2.8.4 Version ID Register F002h

This register is reserved for manufacturer

2.8.5 Data Buffer Size Register F003h (R)

This Read register describes the size of the Data Buffer.

F003h, default = 0400h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DataBufSize															

Data Buffer Size Information

Version Identification	Description
DataBufSize	Total data buffer size in Words equal to 2 buffers of 512 Words each $(2 \times 512 = 2^{10})$ in the memory interface

2.8.6 Boot Buffer Size Register F004h (R)

This Read register describes the size of the Boot Buffer.

F004h, default = 0200h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BootBufSize															

Register Information	Description
BootBufSize	Total boot buffer size in Words equal to 1 buffer of 512 Words $(1 \times 512 = 2^9)$ in the memory interface

2.8.7 Number of Buffers Register F005h (R)

This Read register describes the number of each Buffer.

F005h, default = 0201h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DataBufAmount										BootBu	fAmount				

Number of Buffers Information

Register Information	Description
DataBufAmount	The number of data buffers = 2 (2 ^N , N=1)
BootBufAmount	The number of boot buffers = 1 (2 ^N , N=0)

2.8.8 Technology Register F006h (R)

This Read register describes the internal NAND array technology.

F006h, default = 0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Tech															

Technology Information

Technology	Register Setting
NAND SLC	0000h
NAND MLC	0001h
Reserved	0002h ~ FFFFh

2.8.9 Start Address1 Register F100h (R/W)

This Read/Write register describes the NAND Flash block address which will be loaded, programmed, or erased.

F100h, default = 0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved(0000000)									•	FBA	,	•	•		

Device	Number of Block	FBA			
256Mb	512	FBA[8:0]			

Start Address1 Information

Register Information	Description
FBA	NAND Flash Block Address

2.8.10 Start Address2 Register F101h (R/W)

This register is reserved for future use.

2.8.11 Start Address3 Register F102h (R/W)

This Read/Write register describes the NAND Flash destination block address which will be copy back programmed.

F102h, default = 0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved(0000000)							FCBA								

Device	Number of Block	FBA			
256Mb	512	FCBA[8:0]			

Start Address3 Information

Register Information	Description
FCBA	NAND Flash Copy Back Block Address

2.8.12 Start Address4 Register F103h (R/W)

This Read/Write register describes the NAND Flash destination page address in a block and the NAND Flash destination sector address in a page for copy back programming.

F103h, default = 0000h

Ī	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved(00000000) FCPA										Reserved	FCSA					

Start Address4 Information

Item	Description	Default Value	Range			
FCPA	NAND Flash Copy Back Page Address	000000	000000 ~ 111111, 6 bits for 64 pages			
FCSA	NAND Flash Copy Back Sector Address	0	0 ~ 1, 1 bit for 2 sectors			

2.8.13 Start Address5 Register F104h

This register is reserved for future use.

2.8.14 Start Address6 Register F105h

This register is reserved for future use.

2.8.15 Start Address7 Register F106h

This register is reserved for future use.

2.8.16 Start Address8 Register F107h (R/W)

This Read/Write register describes the NAND Flash start page address in a block for a page load, copy back program, or program operation and the NAND Flash start sector address in a page for a load, copy back program, or program operation.

F107h, default = 0000h

1		14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved (00000000)							FI	PA			Reserved	FSA			

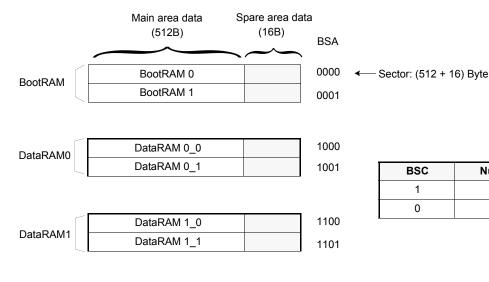
Start Address8 Information

Item	Description	Default Value	Range
FPA	NAND Flash Page Address	000000	000000 ~ 111111, 6 bits for 64 pages
FSA	NAND Flash Sector Address	0	0 ~ 1, 1 bit for 2 sectors

2.8.17 Start Buffer Register F200h (R/W)

This Read/Write register describes the BufferRAM Sector Count (BSC) and BufferRAM Sector Address (BSA).

The BufferRAM Sector Count (BSC) field specifies the number of sectors to be loaded, programmed, or copy back programmed. At 0 value (the default value), the number of sector is "2". For example, if BSA = 1000, BSC = 0, then the selected BufferRAM will count up from '1000 \rightarrow 1001', if BSA = 1101, BSC = 0, then the selected BufferRAM will count up from 1101 --> 1100.


The BufferRAM Sector Address (BSA) is the sector 0~1 address in the internal BootRAM and DataRAM where data is placed.

F200h, default = 0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserve	ed(0000)			BS	SA			•	Rese	rved(000	00000)	,		BSC

Start Buffer Register Information

Item	Description
BSA[3]	Selection bit between BootRAM and DataRAM
BSA[2]	Selection bit between DataRAM0 and DataRAM1
BSA[0]	Selection bit between Sector0 and Sector1 in the internal BootRAM Selection bit between Sector0 and Sector1 in the internal DataRAM

BSC	Number of Sectors
1	1 sector
0	2 sectors

2.8.18 Command Register F220h (R/W)

This Read/Write register describes the operation of the OneNAND interface.

Note that all command should be issued when INT is turned to busy from ready state, by writing 0 to INT register. After any command is issued, INT goes back to ready state as the corresponding operation is completed. (00F0h and 00F3h may be issued during busy at certain cases. Refer to command register table below)

F220h, default = 0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Command														

CMD	Operation	Acceptable command during busy
0000h	Load single/multiple sector data unit into buffer	00F0h, 00F3h
0013h	Load single/multiple spare sector into buffer	00F0h, 00F3h
0080h	Program single/multiple sector data unit from buffer ¹⁾	00F0h, 00F3h
001Ah	Program single/multiple spare data unit from buffer	00F0h, 00F3h
001Bh	Copy back Program operation	00F0h, 00F3h
0023h	Unlock NAND array a block	-
002Ah	Lock NAND array a block	-
002Ch	Lock-tight NAND array a block	-
0071h	Erase Verify Read	00F0h, 00F3h
0094h	Block Erase	00F0h, 00F3h
0095h	Multi-Block Erase	00F0h, 00F3h
00B0h	Erase Suspend	-
0030h	Erase Resume	00F0h, 00F3h
00F0h	Reset NAND Flash Core	-
00F3h	Reset OneNAND ²⁾	-
0065h	OTP Access	00F0h, 00F3h

NOTE:

^{1) 0080}h programs both main and spare area, while 001Ah programs only spare area. Refer to chapter 5.8 for NOP limits in issuing these commands. When using 0080h and 001Ah command, Read-only part in spare area must be masked by FF. (Refer to chapter 2.7.2)

^{2)&#}x27;Reset OneNAND'(=Hot reset) command makes the registers and NAND Flash core into default state as the warm reset(=reset by RP pin).

2.8.19 System Configuration 1 Register F221h (R, R/W)

This Read/Write register describes the system configuration.

F221h, default = 40C0h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R/W		R/W			R/W		R/W	R/W	R/W	R/W	R/W		R		R
RM		BRL			BL		ECC	RDY pol	INT pol	IOBE	RDY Conf	Res	served((000)	BWPS

Read Mode (RM)

RM	Read Mode					
0	Asynchronous read(default)					
1	Synchronous read					

Read Mode Information[15]

Item	Definition	Description
RM	Read Mode	Selects between asynchronous read mode and synchronous read mode

Burst Read Latency (BRL)

BRL	Latency Cycles
000	8(N/A)
001	9(N/A)
010	10(N/A)
011	3(up to 40MHz)
100	4(default, min.)
101	5
110	6
111	7

Burst Read Latency (BRL) Information[14:12]

Item	Definition	Description
BRL	Burst Read Latency	Specifies the access latency in the burst read transfer for the initial access

Burst Length (BL)

BL	Burst Length(Main) Burst Length(Spare)				
000	Continuous(default)				
001	4 words				
010	8 words				
011	16 words				
100	32 words N/A				
101~111	Reserved				

Burst Length (BL) Information[11:9]

Item	Definition	Description
BL	Burst Length	Specifies the size of the burst length during a synchronous read, wrap around and linear burst read

Error Correction Code (ECC) Information[8]

ltem	Definition	Description
ECC	Error Correction Code Operation	0 = with correction (default) 1 = without correction (bypassed)

RDY Polarity (RDYpol) Information[7]

Item	Definition	Description
RDYpol	RDY signal polarity	1 = high for ready (default) 0 = low for ready

INT Polarity (INTpol) Information[6]

INTpol	INT bit of Interrupt Status Register	INT Pin output
0	0 (busy)	High
	1 (ready)	Low
1 (default)	0 (busy)	Low
	1 (ready)	High

I/O Buffer Enable (IOBE)

IOBE is the I/O Buffer Enable for the INT and RDY signals. At startup, INT and RDY outputs are High-Z. Bits 6 and 7 become valid after IOBE is set to "1". IOBE can be reset by a Cold Reset or by writing "0" to bit 5 of System Configuration1 Register.

I/O Buffer Enable Information[5]

Item	Definition	Description
IOBE	I/O Buffer Enable for INT and RDY signals	0 = disable (default) 1 = enable

RDY Configuration (RDY conf)

RDY Configuration Information[4]

ltem	Definition	Description
RDY conf	RDY configuration	0=active one clock before valid data(default) 1=active with valid data active

Boot Buffer Write Protect Status (BWPS)

Boot Buffer Write Protect Status Information[0]

Item	Definition	Description
BWPS	Boot Buffer Write Protect Status	0 = locked (fixed)

2.8.20 System Configuration 2 Register F222h

This register is reserved for future use.

2.8.21 Controller Status Register F240h (R)

This Read register shows the overall internal status of the OneNAND and the controller.

F240h, default = 0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OnG	Lock	Load	Prog	Erase	Error	Sus	Reserv ed(0)	RSTB	OTPL		Rese	erved(00	0000)		TO (0)

OnGo

This bit shows the overall internal status of the OneNAND device.

OnGo Information[15]

ltem	Definition	Description
OnGo	Internal Device Status	0 = ready 1 = busy

Lock

This bit shows whether the host is loading data from the NAND Flash array into the locked BootRAM or whether the host is performing a program/erase of a locked block of the NAND Flash array.

Lock Information[14]

Lock	Locked/Unlocked Check Result
0	Unlocked
1	Locked

Load

This bit shows the Load Operation status.

Load Information[13]

Item	Definition	Description
Load	Load Operation status	0 = ready (default) 1 = busy or error (see controller status output modes)

Program

This bit shows the Program Operation status.

Program Information[12]

Item	Definition	Description
Prog	Program Operation status	0 = ready (default) 1 = busy or error (see controller status output modes)

Erase

This bit shows the Erase Operation status.

Erase Information[11]

Item	Definition	Description
Erase	Erase Operation status	0 = ready (default) 1 = busy or error (see controller status output modes)

Error

This bit shows the overall Error status, including Load Reset, Program Reset, and Erase Reset status.

Error Information[10]

Error	Current Sector/Page Load/Program/CopyBack. Program/ Erase Result and Invalid Command Input
0	Pass
1	Fail

Erase Suspend (Sus)

This bit shows the Erase Suspend status.

Sus Information[9]

Sus	Erase Suspend Status				
0	Erase Resume(Default)				
1	Erase Suspend, Program Ongoing(Susp.), Load Ongoing(Susp.), Program Fail(Susp.), Load Fail(Susp.), Invalid Command(Susp.)				

Reset / Busy (RSTB)

This bit shows the Reset Operation status.

RSTB Information[7]

Item	Definition	Description
RSTB	Reset Operation Status	0 = ready (default) 1 = busy (see controller status output modes)

OTP Lock Status (OTP_L)

This bit shows whether the OTP block is locked or unlocked. Locking the OTP has the effect of a 'write-protect' to guard against accidental re-programming of data stored in the OTP block.

The $\mathsf{OTP}_{\boldsymbol{\mathsf{L}}}$ status bit is automatically updated at power-on.

OTP Lock Information[6]

OTPL	OTP Locked/Unlocked Status				
0	OTP Block Unlock Status(Default)				
1	OTP Block Lock Status(Disable OTP Program/Erase)				

Time Out (TO)

This bit determines if there is a time out for load, program, copy back program, and erase operations. It is fixed at 'no time out'.

TO Information[0]

Item	Definition	Description
ТО	Time Out	0 = no time out

Controller Status Register Output Modes

	Controller Status Register [15:0]													
Mode	[15]	[14]	[13]	[12]	[11]	[10]	[9]	[8]	[7]	[6]	[5:1]	[0]		
	OnGo	Lock	Load	Prog	Erase	Error	Sus	Reserved(0)	RSTB	OTPL	Reserved(0)	то		
Load Ongoing	1	0	1	1 0 0 0 0 0 0 0/1 0000		00000	0							
Program Ongoing	1	0	0	1	0	0	0	0	0	0/1	00000	0		
Erase Ongoing	1	0	0	0	1	0	0	0	0	0/1	00000	0		
Reset Ongoing	1	0	0	0	0	0	0	0	1	0/1	00000	0		
Multi-Block Erase Ongoing	1	0	0	0	1	0	0	0	0	0/1	00000	0		
Erase Verify Read Ongoing	1	0	0	0	0	0	0	0	0	0/1	00000	0		
Load OK	0	0	0	0	0	0	0	0	0	0/1	00000	0		
Program OK	0	0	0	0	0	0	0	0	0	0/1	00000	0		
Erase OK	0	0	0	0	0	0	0	0	0	0/1	00000	0		
Erase Verify Read OK ³⁾	0	0	0	0	0	0	0	0	0	0/1	00000	0		
Load Fail ¹⁾	0	0	1	0	0	1	0	0	0	0/1	00000	0		
Program Fail	0	0	0	1	0	1	0	0	0	0/1	00000	0		
Erase Fail	0	0	0	0	1	1	0	0	0	0/1	00000	0		
Erase Verify Read Fail ³⁾	0	0	0	0	1	1	0	0	0	0/1	00000	0		
Load Reset ²⁾	0	0	1	0	0	1	0	0	1	0/1	00000	0		
Program Reset	0	0	0	1	0	1	0	0	1	0/1	00000	0		
Erase Reset	0	0	0	0	1	1	0	0	1	0/1	00000	0		
Erase Suspend	0	0	0	0	1	0	1	0	0	0/1	00000	0		
Program Lock	0	1	0	1	0	1	0	0	0	0/1	00000	0		
Erase Lock	0	1	0	0	1	1	0	0	0	0/1	00000	0		
Load Lock(Buffer Lock)	0	1	1	0	0	1	0	0	0	0/1	00000	0		
OTP Program Fail(Lock)	0	1	0	1	0	1	0	0	0	1	00000	0		
OTP Program Fail	0	0	0	1	0	1	0	0	0	0	00000	0		
OTP Erase Fail	0	1	0	0	1	1	0	0	0	0/1	00000	0		
Program Ongo- ing(Susp.)	1	0	0	1	1	0	1	0	0	0/1	00000	0		
Load Ongoing(Susp.)	1	0	1	0	1	0	1	0	0	0/1	00000	0		
Program Fail(Susp.)	0	0	0	1	1	1	1	0	0	0/1	00000	0		
Load Fail(Susp.)	0	0	1	0	1	1	1	0	0	0/1	00000	0		
Invalid Command	0	0	0	0	0	1	0	0	0	0/1	00000	0		
Invalid Com- mand(Susp.)	0	0	0	0	1	1	1	0	0	0/1	00000	0		

NOTE

- 1. ERm and/or ERs bits in ECC status register at Load Fail case is 10. (2bits error uncorrectable)
- 2. ERm and ERs bits in ECC status register at Load Reset case are 00. (No error)
- 3. Multi Block Erase status should be checked by Erase Verify Read operation.

2.8.22 Interrupt Status Register F241h (R/W)

This Read/Write register shows status of the OneNAND interrupts.

F241h, defaults = 8080h after Cold Reset; 8010h after Warm/Hot Reset

1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	INT	Reserved(0000000)							RI	WI	EI	RSTI		Reserve	ed(0000))

Interrupt (INT)

This is the master interrupt bit. The INT bit is wired directly to the INT pin on the chip. Upon writing '0' to the INT bit, the INT pin goes low if INTpol is high and goes high if INTpol is low.

INT Interrupt [15]

Status	Conditions	Defau	It State	Valid	interrupt	
Status	Conditions	Cold	Warm/hot	State	Function	
		1	1	0	off	
sets itself to '1'	One or more of RI, WI, RSTI and EI is set to '1', or 0065h, 0023h, 0071h, 002A and 002C commands are completed			0→1	Pending	
clears to '0'	'0' is written to this bit, or Cold/Warm/Hot reset is being performed			1→0	off	

Read Interrupt (RI)

This is the Read interrupt bit.

RI Interrupt [7]

Status	Conditions	Defau	It State	Valid	Interrupt	
Status	Conditions	Cold	Warm/hot	State	Function	
		1	0	0	off	
sets itself to '1'	At the completion of a Load Operation (0000h, 0013h, Load Data into Buffer, or boot is done)			0→1	Pending	
clears to '0'	'0' is written to this bit, or Cold/Warm/Hot reset is being performed			1→0	off	

Write Interrupt (WI)

This is the Write interrupt bit.

WI Interrupt [6]

Status	Conditions	Defau	It State	Valid	interrupt	
Status	Conditions	Cold	Warm/hot	State	Function	
		0	0	0	off	
sets itself to '1'	At the completion of a Program Operation (0080h, 001Ah, 001Bh)			0→1	Pending	
clears to '0'	'0' is written to this bit, or Cold/Warm/Hot reset is being performed			1→0	off	

Erase Interrupt (EI)

This is the Erase interrupt bit.

El Interrupt [5]

Status	Conditions	Defau	It State	Valid	Interrupt
Status	Conditions	Cold	Warm/hot	State	Function
		0	0	0	off
sets itself to '1'	At the completion of an Erase Operation (0094h, 0095h, 0030h)			0→1	Pending
clears to '0'	'0' is written to this bit, or Cold/Warm/Hot reset is being performed			1→0	off

Reset Interrupt (RSTI)

This is the Reset interrupt bit.

RSTI Interrupt [4]

Status	Conditions	Defau	It State	Valid	interrupt
Status	Conditions	Cold	Warm/hot	State	Function
		0	1	0	off
sets itself to '1'	At the completion of a Reset Operation (00B0h, 00F0h, 00F3h or warm reset is released)			0→1	Pending
clears to '0'	'0' is written to this bit			1→0	off

2.8.23 Start Block Address Register F24Ch (R/W)

This Read/Write register shows the NAND Flash block address in the Write Protection mode. Setting this register precedes a 'Lock Block' command, 'Unlock Block' command, or 'Lock-Tight' Command.

F24Ch, default = 0000h

Ī	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ĭ	Reserved(0000000)											SBA				

Device	Number of Block	SBA
256Mb	512	[8:0]

SBA Information[9:0]

Item	Definition	Description
SBA	Start Block Address	Precedes Lock Block, Unlock Block, or Lock-Tight commands

2.8.24 End Block Address Register F24Dh

This register is reserved for future use.

2.8.25 NAND Flash Write Protection Status Register F24Eh (R)

This Read register shows the Write Protection Status of the NAND Flash memory array. To read the write protection status, FBA has to be set before reading the register.

F24Eh, default = 0002h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved(000000000000)											US	LS	LTS		

Write Protection Status Information[2:0]

Item	Bit	Definition	Description
US	2	Unlocked Status	1 = current NAND Flash block is unlocked
LS	1	Locked Status	1 = current NAND Flash block is locked
LTS	0	Locked-Tight Status	1 = current NAND Flash block is locked-tight

2.8.26 ECC Status Register FF00h (R)

This Read register shows the Error Correction Status. The OneNAND can detect 1- or 2-bit errors and correct 1-bit errors. 3-bit or more error detection and correction is not supported.

ECC can be performed on the NAND Flash main and spare memory areas. The ECC status register can also show the number of errors in a sector as a result of an ECC check in during a load operation. ECC status bits are also updated during a boot loading operation.

FF00h, default = 0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved(0000000)							ER	m1	EF	Rs1	ER	m0	EF	Rs0	

Error Status

ERm, ERs	ECC Status
00	No Error
01	1-bit error(correctable)
10	2 bits error (uncorrectable)
11	Reserved

ECC Information[7:0]

Item	Definition	Description
ERm0	1st selected sector of the main BufferRAM	Status of errors in the 1st selected sector of the main BufferRAM as a result of an ECC check during a load operation. Also updated during a Bootload operation.
ERm1	2nd selected sector of the main BufferRAM	Status of errors in the 2nd selected sector of the main BufferRAM as a result of an ECC check during a load operation. Also updated during a Bootload operation.
ERs0	1st selected sector of the spare BufferRAM	Status of errors in the 1st selected sector of the spare BufferRAM as a result of an ECC check during a load operation. Also updated during a Bootload operation.
ERs1	2nd selected sector of the spare BufferRAM	Status of errors in the 2nd selected sector of the spare BufferRAM as a result of an ECC check during a load operation. Also updated during a Bootload operation.

2.8.27 ECC Result of 1st Selected Sector, Main Area Data Register FF01h (R)

This Read register shows the Error Correction result for the 1st selected sector of the main area data. ECCposWord0 is the error position address in the Main Area data of 256 words. ECCposIO0 is the error position address which selects 1 of 16 DQs. ECCposWord0 and ECCposIO0 are also updated at boot loading.

FF01h, default = 0000h

ĺ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved(0000) ECCposWord0										ECCp	oslO0					

2.8.28 ECC Result of 1st Selected Sector, Spare Area Data Register FF02h (R)

This Read register shows the Error Correction result for the 1st selected sector of the spare area data. ECClogSector0 is the error position address for 1.5 words of 2nd and 3rd words in the spare area. ECCposIO0 is the error position address which selects 1 of 16 DQs. ECClogSector0 and ECCposIO0 are also updated at boot loading.

FF02h, default = 0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved(000000000)										ECClog	Sector0		ECCp	ooslO0	

2.8.29 ECC Result of 2nd Selected Sector, Main Area Data Register FF03h (R)

This Read register shows the Error Correction result for the 2nd selected sector of the main area data. ECCposWord1 is the error position address in the Main Area data of 256 words. ECCposIO1 is the error position address which selects 1 of 16 DQs. ECCposWord1 and ECCposIO1 are also updated at boot loading.

FF03h, default = 0000h

ĺ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ĺ		Reserve	d(0000)		ECCposWord1							ECCp	oslO1			

2.8.30 ECC Result of 2nd Selected Sector, Spare Area Data Register FF04h (R)

This Read register shows the Error Correction result for the 2nd selected sector of the spare area data. ECClogSector1 is the error position address for 1.5 words of 2nd and 3rd words in the spare area. ECCposIO1 is the error position address which selects 1 of 16 DQs. ECClogSector1 and ECCposIO1 are also updated at boot loading.

FF04h, default = 0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved(000000000)							ECClogSector1		ECCposIO1					

ECC Log Sector

ECClogSector0~ECClogSector1 indicates the error position in the 2nd word and LSB of 3rd word in the spare area. Refer to note 2 in chapter 2.7.2

ECClogSector Information [5:4]

ECClogSector	Error Position
00	2nd word
01	3rd word
10, 11	Reserved

3.0 DEVICE OPERATION

This section of the datasheet discusses the operation of the OneNAND device. It is followed by AC/DC Characteristics and Timing Diagrams which may be consulted for further information.

The OneNAND supports a limited command-based interface in addition to a register-based interface for performing operations on the device.

3.1 Command Based Operation

The command-based interface is active in the boot partition. Commands can only be written with a boot area address. Boot area data is only returned if no command has been issued prior to the read.

The entire address range, except for the boot area, can be used for the data buffer. All commands are written to the boot partition. Writes outside the boot partition are treated as normal writes to the buffers or registers.

The command consists of one or more cycles depending on the command. After completion of the command the device starts its execution. Writing incorrect information including address and data to the boot partition or writing an improper command will terminate the previous command sequence and make the device enter the ready status.

The defined valid command sequences are stated in Command Sequences Table.

Command Sequences

Command Definition	า	Cycles	1st cycle	2nd cycle
Read Data from Buffer	Add	1	DP¹)	
Read Data IIOIII Bullet	Data	I	Data	
Write Data to Buffer	Add	1	DP	
write Data to Bullet	Data	I	Data	
Reset OneNAND	Add	1	BP ²⁾	
Neset Offenand	Data	I	00F0h	
Load Data into Buffer³)	Add	2	BP	BP
Load Data Into Bullet	Data	2	00E0h	0000h ⁴⁾
Read Identification Data ⁶⁾	Add	2	BP	XXXXh ⁵⁾
Neau Identification Data 9	Data	2	0090h	Data

NOTE

- 1) DP(Data Partition) : DataRAM Area
- 2) BP(Boot Partition): BootRAM Area [0000h ~ 01FFh, 8000h ~ 800Fh].
- 3) Load Data into Buffer operation is available within a block(64KB)
- 4) Load 1KB unit into DataRAM0. Current Start address(FPA) is automatically incremented by 1KB unit after the load.
- 5) 0000h -> Data is Manufacturer ID
- 0001h -> Data is Device ID
- 0002h -> Current Block Write Protection Status
- 6) WE toggling can terminate 'Read Identification Data' operation.

3.1.1 Reading Data From Buffer

The buffer memory can be read by addressing a Read to the desired buffer area.

3.1.2 Writing Data to Buffer

The buffer memory can be written to by addressing a Write to a desired buffer area.

3.1.3 Reset OneNAND Command

The Reset command is given by writing 00F0h to the boot partition address. Reset will return all default values into the device.

3.1.4 Load Data Into Buffer Command

Load Data into Buffer command is a two-cycle command. Two sequential designated command activates this operation. Sequentially writing 00E0h and 0000h to the boot partition [0000h~01FFh, 8000h~800Fh] will load one page to DataRAM0. This operation refers to FBA and FPA. FSA, BSA, and BSC are not considered.

At the end of this operation, FPA will be automatically increased by 1. So continuous issue of this command will sequentially load data in next page to DataRAM0. This page address increment is restricted within a block.

The default value of FBA and FPA is 0. Therefore, initial issue of this command after power on will load the first page of memory, which is usually boot code.

3.1.5 Read Identification Data Command

The Read Identification Data command consists of two cycles. It gives out the devices identification data according to the given address. The first cycle is 0090h to the boot partition address and second cycle is read from the addresses specified in Identification Data Description Table.

Identification Data Description

Address	Data Out
0000h	Manufacturer ID : 00ECh
0001h	Device ID : refer to chapter 2.8.3
0002h	Current Block Write Protection Status 1)

Note 1) To read the write protection status, FBA has to be set before issuing this command.

3.2 Device Bus Operation

The device bus operations are shown in the table below.

Operation	CE	OE	WE	ADQ0~15	RP	CLK	AVD
Standby	Н	Х	Х	High-Z	Н	Х	Х
Warm Reset	Х	Х	Х	High-Z	L	Х	Х
Asynchronous Write	L	Н	L	Add. In / Data In	Н	L	
Asynchronous Read	L	L	Н	Add. In / Data Out	Н	L	
Load Initial Burst Read	L	Н	Н	Add. In	Н		
Burst Read	L	L	н	Burst Data Out	Н		Н
Terminate Burst Read Cycle	Н	Х	Н	High-Z	Н	Х	Х
Terminate Burst Read Cycle via RP	х	X	Х	High-Z	L	Х	Х
Terminate Current Burst Read Cycle and Start New Burst Read Cycle		Н	Н	Add In	Н		

Note: L=VIL (Low), H=VIH (High), X=Don't Care.

3.3 Reset Mode Operation

The One NAND has 4 reset modes: Cold/Warm/Hot Reset, and NAND Flash Core Reset. Section 3.3 discusses the operation of these reset modes.

The Register Reset Table shows the which registers are affected by the various types or Reset operations.

Internal Register Reset Table

	Internal Registers	Default	Cold Reset	War <u>m R</u> eset (RP)	Hot Reset (00F3h)	Hot Reset (BP-F0)	NAND Flash Core Reset (00F0h)
F000h	Manufacturer ID Register (R)	00ECh	N/A	N/A	N	/A	N/A
F001h	Device ID Register (R): OneNAND	(Note 3)	N/A	N/A	N	/A	N/A
F002h	Version ID Register (R): N/A	N/A	N/A	N/A	N	/A	N/A
F003h	Data Buffer size Register (R)	0400h	N/A	N/A	N	/A	N/A
F004h	Boot Buffer size Register (R)	0200h	N/A	N/A	N	/A	N/A
F005h	Amount of Buffers Register (R)	0201h	N/A	N/A	N	/A	N/A
F006h	Technology Register (R)	0000h	N/A	N/A	N	/A	N/A
F100h	Start Address1 Register (R/W): FBA	0000h	0000h	0000h	000	00h	N/A
F101h	Start Address2 Register (R/W): Reserved	0000h	0000h	0000h	000	00h	N/A
F102h	Start Address3 Register (R/W): FCBA	0000h	0000h	0000h	000	00h	N/A
F103h	Start Address4 Register (R/W): FCPA, FCSA	0000h	0000h	0000h	000	00h	N/A
F107h	Start Address8 Register (R/W): FPA, FSA	0000h	0000h	0000h	000	00h	N/A
F200h	Start Buffer Register (R/W): BSA, BSC	0000h	0000h	0000h	000	00h	N/A
F220h	Command Register (R/W)	0000h	0000h	0000h	000	00h	N/A
F221h	System Configuration 1 Register (R/W)	40C0h	40C0h	(Note1)	(No	te1)	N/A
F240h	Controller Status Register (R)	0000h	0000h	0000h	000	00h	N/A
F241h	Interrupt Status Register (R/W)	-	8080h	8010h	80	10h	N/A
F24Ch	Start Block Address (R/W)	0000h	0000h	0000h	N	/A	N/A
F24Dh	End Block Address: N/A	N/A	N/A	N/A	N	/A	N/A
F24Eh	NAND Flash Write Protection Status (R)	0002h	0002h	0002h	N	/A	N/A
FF00h	ECC Status Register (R) (Note2)	0000h	0000h	0000h	000	00h	0000h
FF01h	ECC Result of Sector 0 Main area data Register(R)	0000h	0000h	0000h	000	00h	0000h
FF02h	ECC Result of Sector 0 Spare area data Register (R)	0000h	0000h	0000h	000	00h	0000h
FF03h	ECC Result of Sector 1 Main area data Register(R)	0000h	0000h	0000h	000	00h	0000h
FF04h	ECC Result of Sector 1 Spare area data Register (R)	0000h	0000h	0000h	000	00h	0000h

NOTE: 1) RDYpol, INTpol, IOBE are reset by Cold reset. The other bits except OTPL are reset by cold/warm/hot reset.

OTPL is updated by cold reset, referring to the specified OTP area.

- 2) ECC Status Register & ECC Result Registers are reset when any command is issued.
- 3) Refer to Device ID Register F001h.

3.3.1 Cold Reset Mode Operation

See Timing Diagram 6.9

At system power-up, the voltage detector in the device detects the rising edge of Vcc and releases an internal power-up reset signal. This triggers bootcode loading. Bootcode loading means that the boot loader in the device copies designated sized data (1KB) from the beginning of memory into the BootRAM. This sequence is the Cold Reset of OneNAND.

The POR(Power On Reset) triggering level is typically 1.5V. Boot code copy operation activates 400us after POR.

Therefore, the system power should reach 1.7V within 400us from the POR triggering level for bootcode data to be valid.

For 3.3V device, POR level is typically 1.8V and system power should reach 2.2V within 400us.

It takes approximately 70us to copy 1KB of bootcode. Upon completion of loading into the BootRAM, it is available to be read by the host. The INT pin is not available until after IOBE = 1 and IOBE bit can be changed by host.

3.3.2 Warm Reset Mode Operation

See Timing Diagrams 6.10

A Warm Reset means that the host resets the device by using the \overline{RP} pin. When the a \overline{RP} low is issued, the device logic stops all current operations and executes internal reset operation and resets current NAND Flash core operation synchronized with the falling edge of \overline{RP} .

During an Internal Reset Operation, the device initializes internal registers and makes output signals go to default status. The BufferRAM data is kept unchanged after Warm/Hot reset operations.

The device guarantees the logic reset operation in case \overline{RP} pulse is longer than tRP min. (200ns). The device may reset if tRP < tRP min(200ns), but this is not guaranteed.

Warm reset will abort the current NAND Flash core operation. During a warm reset, the content of memory cells being altered is no longer valid as the data will be partially programmed or erased.

Warm reset has no effect on contents of BootRAM and DataRAM.

3.3.3 Hot Reset Mode Operation

See Timing Diagram 6.11

A Hot Reset means that the host resets the device by Reset command. The reset command can be either Command based or Register Based. Upon receiving the Reset command, the device logic stops all current operation and executes an internal reset operation and resets the current NAND Flash core operation.

During an Internal Reset Operation, the device initializes internal registers and makes output signals go to default status. The BufferRAM data is kept unchanged after Warm/Hot reset operations.

Hot reset will abort the current NAND Flash core operation. During a Hot reset, the content of memory cells being altered is no longer valid as the data will be partially programmed or erased.

Hot reset has no effect on contents of BootRAM and DataRAM.

3.3.4 NAND Flash Core Reset Mode Operation

See Timing Diagram 6.12

The Host can reset the NAND Flash Core operation by issuing a NAND Flash Core reset command. NAND Flash core reset will abort the current NAND Flash core operation. During a NAND Flash core reset, the content of memory cells being altered is no longer valid as the data will be partially programmed or erased.

NAND Flash Core Reset has an effect on neither contents of BootRAM, DataRAM nor register values.

3.4 Write Protection Operation

The OneNAND can be write-protected to prevent re-programming or erasure of data. The areas of write-protection are the BootRAM, and the NAND Flash Array.

3.4.1 BootRAM Write Protection Operation

At system power-up, voltage detector in the device detects the rising edge of Vcc and releases the internal power-up reset signal which triggers bootcode loading. And the designated size data(1KB) is copied from the first page of the first block in the NAND flash array to the BootRAM.

After the bootcode loading is completed, the BootRAM is always locked to protect the boot code from the accidental write.

3.4.2 NAND Flash Array Write Protection Operation

The device has both hardware and software write protection of the NAND Flash array.

Hardware Write Protection Operation

The hardware write protection operation is implemented by executing a Cold or Warm Reset. On power up, the NAND Flash Array is in its default, locked state. The entire NAND Flash array goes to a locked state after a Cold or Warm Reset.

Software Write Protection Operation

The software write protection operation is implemented by writing a Lock command (002Ah) or a Lock-tight command (002Ch) to command register (F220h).

Lock (002Ah) and Lock-tight (002Ch) commands write protects the block defined in the Start Block Address Register F24Ch.

3.4.3 NAND Array Write Protection States

There are three lock states in the NAND Array: unlocked, locked, and locked-tight.

OneNAND supports lock/unlock/lock-tight by **one block**, so each block should be locked/unlocked/locked-tight individually.

Write Protection Status

The current block Write Protection status can be read in NAND Flash Write Protection Status Register(F24Eh). There are three bits - US, LS, LTS -, which are not cleared by hot reset. These Write Protection status registers are updated when FBA is set, and when Write Protection command is entered.

The followings summarize locking status.

example)

In default, [2:0] values are 010.

- -> If host executes unlock block operation, then [2:0] values turn to 100.
- -> If host executes lock-tight block operation, then [2:0] values turn to 001.

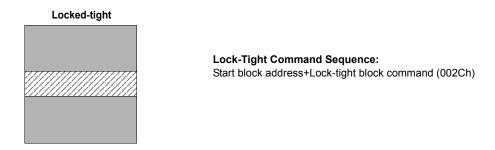
3.4.3.1 Unlocked NAND Array Write Protection State

An Unlocked block can be programmed or erased. The status of an unlocked block can be changed to locked or locked-tight using the appropriate software command. (locked-tight state can be achieved via lock-tight command which follows lock command)

Only one block can be released from lock state to unlock state with Unlock command and addresses. The unlocked block can be changed with new lock command. Therefore, each block has its own lock/unlock/lock-tight state.

3.4.3.2 Locked NAND Array Write Protection State

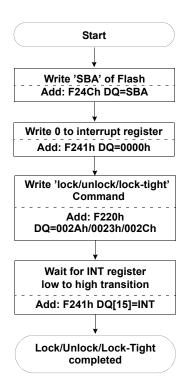
A Locked block cannot be programmed or erased. All blocks default to a locked state following a Cold or Warm Reset. Unlocked blocks can be changed to locked using the Lock block command. The status of a locked block can be changed to unlocked or locked-tight using the appropriate software command.



3.4.3.3 Locked-tight NAND Array Write Protection State

A block that is in a locked-tight state can only be changed to lock state after a Cold or Warm Reset. Unlock and Lock command sequences will not affect its state. This is an added level of write protection security.

A block must first be set to a locked state before it can be changed to locked-tight using the Lock-tight command. locked-tight blocks will revert to a locked state following a Cold or Warm Reset.



3.4.4 NAND Flash Array Write Protection State Diagram

Data Protection Operation Flow Diagram

Note) Samsung strongly recommend to follow the above flow chart

3.5 Data Protection During Power Down Operation

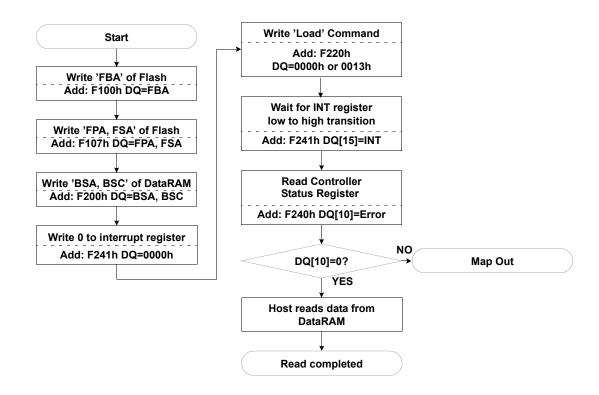
See Timing Diagram 6.13

The device is designed to offer protection from any involuntary program/erase during power-transitions.

An internal voltage detector disables all functions whenever Vcc is below POR level, about 1.3V. It is recommended that the $\overline{\mathsf{RP}}$ pin, which provides hardware protection, should be kept at VIL before power-down.

3.6 Load Operation

The Load operation is initiated by setting up the start address from which the data is to be loaded. The Load command is issued in order to initiate the load.


During a Load operation, the device:

- -Transfers the data from NAND Flash array into the BufferRAM
- -ECC is checked and any detected and corrected error is reported in the status response as well as any unrecoverable error.

Once the BufferRAM has been filled, an interrupt is issued to the host so that the contents of the BufferRAM can be read. The read from the BufferRAM can be an asynchronous read mode or synchronous read mode. The status information related to load operation can be checked by the host if required.

The device has a dual data buffer memory architecture (DataRAM0, DataRAM1), each 1KB in size. Each DataRAM buffer has 2 Sectors. The device is capable of independent and simultaneous data-read operation from one data buffer and data-load operation to the other data buffer. Refer to the information for more details in section 3.12.1, "Read-While-Load Operation".

Load Operation Flow Chart Diagram

3.7 Read Operation

See Timing Diagrams 6.1, 6.2, 6.3 and 6.4

The device has two read modes; Asynchronous Read and Synchronous Burst Read.

The initial state machine automatically sets the device into the Asynchronous Read Mode (RM=0) to prevent the spurious altering of memory content upon device power up or after a Hardware reset. No commands are required to retrieve data in Asynchronous Read Mode.

The Synchronous Read Mode is enabled by setting RM bit of System Configuration1 Register (F221h) to Synchronous Read Mode (RM=1). See Section 2.8.19 for more information about System Configuration1 Register.

3.7.1 Asynchronous Read Mode Operation (RM=0)

See Timing Diagrams 6.3 and 6.4

In an Asynchronous Read Mode, data is output with respect to a logic input, $\overline{\text{AVD}}$. Output data will appear on $\overline{\text{DQ15-DQ0}}$ in when a valid address is asserted on A15-A0 while driving $\overline{\text{AVD}}$ and $\overline{\text{CE}}$ to VIL. / WE is held at VIH. The function of the $\overline{\text{AVD}}$ signal is to latch the valid address.

Address access time from $\overline{\text{AVD}}$ low (tAA) is equal to the delay from valid addresses to valid output data.

The Chip Enable access time (tCE) is equal to the delay from the falling edge of $\overline{\text{CE}}$ to valid data at the outputs.

The Output Enable access time (tOE) is the delay from the falling edge of OE to valid data at the output.

3.7.2 Synchronous Read Mode Operation (RM=1)

See Timing Diagrams 6.1 and 6.2

In a Synchronous Read Mode, data is output with respect to a clock input.

The device is capable of a continuous linear burst operation and a fixed-length linear burst operation of a preset length. Burst address sequences for continuous and fixed-length burst operations are shown in the table below.

Burst Address Sequences

	Start	Burst Address Sequence(Decimal)								
	Addr.	Continuous Burst	4-word Burst	8-word Burst	16-word Burst	32-word Burst				
	0	0-1-2-3-4-5-6	0-1-2-3-0	0-1-2-3-4-5-6-7-0	0-1-2-3-413-14-15-0	0-1-2-3-429-30-31-0				
Wrap	1	1-2-3-4-5-6-7	1-2-3-0-1	1-2-3-4-5-6-7-0-1	1-2-3-4-514-15-0-1	1-2-3-4-530-31-0-1				
around	2	2-3-4-5-6-7-8	2-3-0-1-2	2-3-4-5-6-7-0-1-2	2-3-4-5-615-0-1-2	2-3-4-5-631-0-1-2				
			•	•		•				

In the burst mode, the initial word will be output asynchronously, regardless of BRL. While the following words will be determined by BRL value.

The latency is determined by the host based on the BRL bit setting in the System Configuration 1 Register. The default BRL is 4 latency cycles. At clock frequencies of 40MHz or lower, latency cycles can be reduced to 3. BRL can be set up to 7 latency cycles.

3.7.2.1 Continuous Linear Burst Read Operation

See Timing Diagram 6.2

First Clock Cycle

The initial word is output at tIAA after the rising edge of the first CLK cycle. The RDY output indicates the initial word is ready to the system by pulsing high. If the device is accessed synchronously while it is set to Asynchronous Read Mode, the first data can still be read out.

Subsequent Clock Cycles

Subsequent words are output (Burst Access Time from Valid Clock to Output) tBA after the rising edge of each successive clock cycle, which automatically increments the internal address counter.

Terminating Burst Read

The device will continue to output sequential burst data until the system asserts $\overline{\mathsf{CE}}$ high, or $\overline{\mathsf{RP}}$ low, wrapping around until it reaches the designated address (see Section 2.7.3 for address map information). Alternately, a Cold/Warm/Hot Reset, asserting $\overline{\mathsf{CE}}$ high, or a $\overline{\mathsf{WE}}$ low pulse will terminate the burst read operation.

Synchronous Read Boundary

Division	Add.map(word order)	
BootRAM Main(0.5Kw)	0000h~01FFh	Not Support
BufferRAM0 Main(0.5Kw)	0200h~03FFh	
BufferRAM1 Main(0.5Kw)	0400h~05FFh	Not Support
Reserved Main	0600h~7FFFh	
BootRAM Spare(16w)	8000h~800Fh	Not Support
BufferRAM0 Spare(16w)	8010h~801Fh	Not Support
BufferRAM1 Spare(16w)	8020h~802Fh	Not Support
Reserved Spare	8030h~8FFFh	
Reserved Register	9000h~EFFFh	
Register(4Kw)	F000h~FFFFh	

^{*} Reserved area is not available on Synchronous read

3.7.2.2 4-, 8-, 16-, 32-Word Linear Burst Read Operation

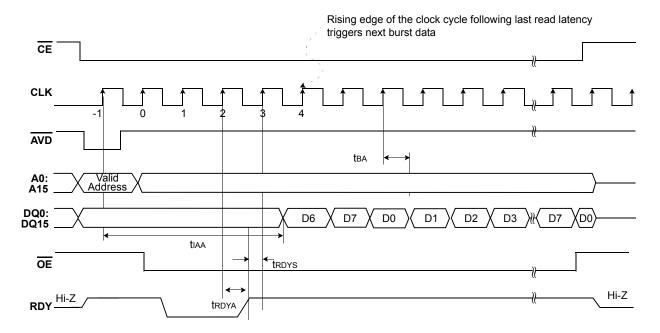
See Timing Diagram 6.1

An alternate Burst Read Mode enables a fixed number of words to be read from consecutive address.

The device supports a burst read from consecutive addresses of 4-, 8-, 16-, and 32-words with a linear-wrap around. When the last word in the burst has been reached, assert \overline{CE} and \overline{OE} high to terminate the operation.

In this mode, the start address for the burst read can be any address of the address map with one exception. The device does not support a 32-word linear burst read on the spare area of the BufferRAM.

3.7.2.3 Programmable Burst Read Latency Operation


See Timing Diagrams 6.1 and 6.2

Upon power up, the number of initial clock cycles from Valid Address (AVD) to initial data defaults to four clocks.

The number of clock cycles (n) which are inserted after the clock which is latching the address. The host can read the first data with the (n+1)th rising edge.

The number of total initial access cycles is programmable from three to seven cycles. After the number of programmed burst clock cycles is reached, the rising edge of the next clock cycle triggers the next burst data.

Four Clock Burst Read Latency (default condition)

3.7.3 Handshaking Operation

The handshaking feature allows the host system to simply monitor the RDY signal from the device to determine when the initial word of burst data is ready to be read.

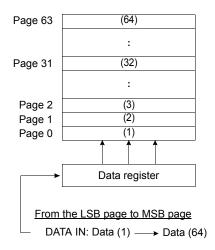
To set the number of initial cycles for optimal burst mode, the host should use the programmable burst read latency configuration (see Section 2.8.19, "System Configuration1 Register").

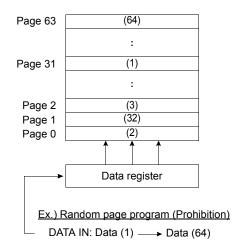
The rising edge of RDY which is derived at the same cycle of data fetch clock indicates the initial word of valid burst data.

3.7.4 Output Disable Mode Operation

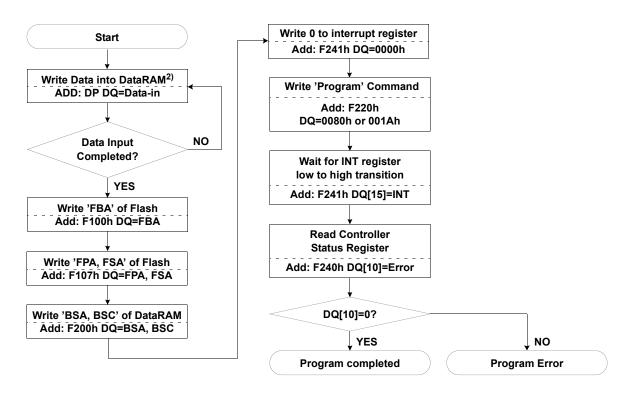
When the $\overline{\text{CE}}$ or $\overline{\text{OE}}$ input is at V_{IH} , output from the device is disabled. The outputs are placed in the high impedance state.

3.8 Program Operation


The Program operation is used to program data from the on-chip BufferRAMs into the NAND FLASH memory array.


The device has two 1KB data buffers, each 1 Page (1KB + 32B) in size. Each page has 2 sectors of 512B each main area and 16B spare area. The device can be programmed in units of 1~2 sectors.

The architecture of the DataRAMs permits a simultaneous data-write operation from the Host to one of data buffers and a program operation from the other data buffer to the NAND Flash Array memory. Refer to Section 3.12.2, "Write While Program Operation", for more information.


Addressing for program operation

Within a block, the pages must be programmed consecutively from the LSB (least significant bit) page of the block to MSB (most significant bit) pages of the block. Random page address programming is prohibited.

Program Operation Flow Diagram

* : If program operation results in an error, map out the block including the page in error and copy the target data to another block.

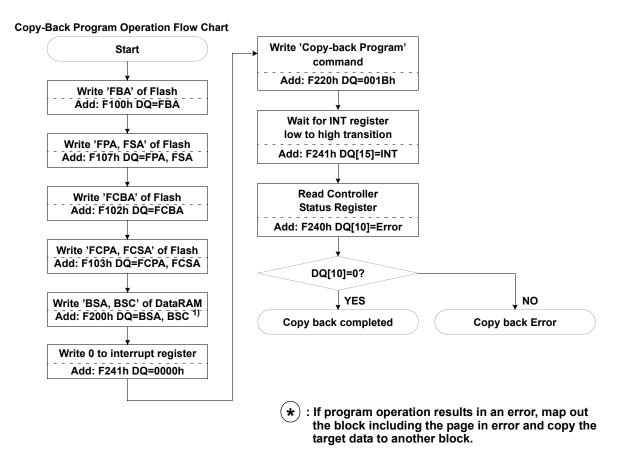
Note 1) This must happen before data input

2) Data input could be done anywhere between "Start" and "Write Program Command".

During the execution of the Internal Program Routine, the host is not required to provide any further controls or timings. Furthermore, all commands, except a Reset command, will be ignored. A reset during a program operation will cause data corruption at the corresponding location.

If a program error is detected at the completion of the Internal Program Routine, map out the block, including the page in error, and copy the target data to another block. An error is signaled if DQ10 = "1" of Controller Status Register(F240h).

Data input from the Host to the DataRAM can be done at any time during the Internal Program Routine after "Start" but before the "Write Program Command" is written.



3.9 Copy-Back Program Operation

The Copy-Back program is configured to quickly rewrite data stored in one page without utilizing memory other than OneNAND. Since the time-consuming cycles of serial access and re-loading cycles are removed, the system performance is improved. The benefit is especially obvious when a portion of block is updated and the rest of the block also need to be copied to the newly assigned free block.

Data from the source page is saved in one of the on-chip DataRAM buffers and then programmed directly into the destination page. The DataRAM overwrites the previous data using the Buffer Sector Address (BSA) and Buffer Sector Count (BSC).

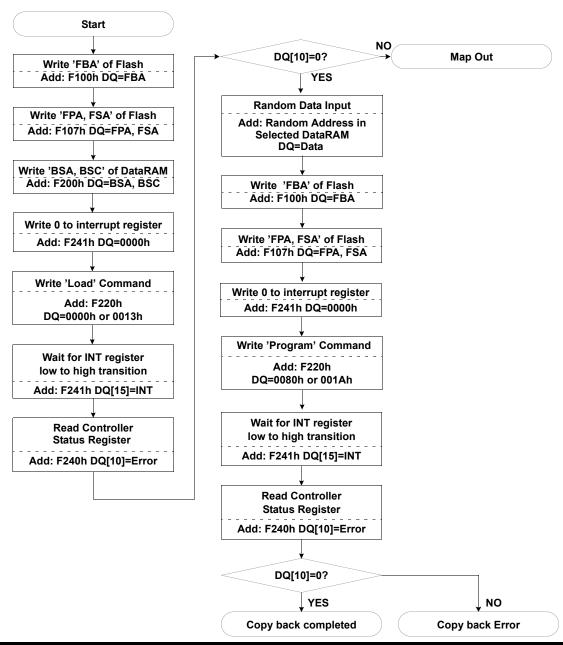
The Copy-Back Program Operation does this by performing sequential page-reads without a serial access and executing a copy-program using the address of the destination page.

Note 1) Selected DataRAM by BSA & BSC is used for Copy back operation, so previous data is overwritten.
2) FBA, FPA and FSA should be input prior to FCBA, FCPA and FCSA.

The Copy-Back steps shown in the flow chart are:

- Data is read from the NAND Array using Flash Block Address (FBA), Flash Page Address (FPA) and Flash Sector Address (FSA). FBA, FPA, and FSA identify the source address to read data from NAND Flash array.
- The BufferRAM Sector Count (BSC) and BufferRAM Sector Address (BSA) identifies how many sectors and the location of the sectors in DataRAM that are used.
- The destination address in the NAND Array is written using the Flash Copy-Back Block Address (FCBA), Flash Copy-Back Page Address (FCPA), and Flash Copy-Back Sector Address (FCSA).
- The Copy-Back Program command is issued to start programming.
- Upon completion of copy-back programming to the destination page address, the Host checks the status to see if the operation was successfully completed. If there was an error, map out the block including the page in error and copy the target data to another block.

3.9.1 Copy-Back Program Operation with Random Data Input


See Timing Diagram 6.7

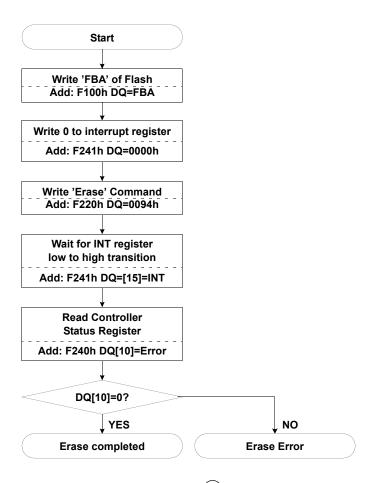
The Copy-Back Program Operation with Random Data Input in OneNAND consists of 2 phase, Load data into DataRAM, Modify data and program into designated page. Data from the source page is saved in one of the on-chip DataRAM buffers and modified by the host, then programmed into the destination page.

As shown in the flow chart, data modification is possible upon completion of load operation. ECC is also available at the end of load operation. Therefore, using hardware ECC of OneNAND, accumulation of 1 bit error can be avoided.

Copy-Back Program Operation with Random Data Input will be effectively utilized at modifying certain bit, byte, word, or sector of source page to destination page while it is being copied.

Copy-Back Program Operation with Random Data Input Flow Chart

3.10 Erase Operation


There are multiple methods for erasing data in the device including Block Erase and Multi-Block Erase.

3.10.1 Block Erase Operation

See Timing Diagram 6.8

The device can be erased one block at a time. To erase a block is to write all 1's into the desired memory block by executing the Internal Erase Routine. All previous data is lost.

Block Erase Operation Flow Chart

* : If erase operation results in an error, map out the failing block and replace it with another block.

In order to perform the Internal Erase Routine, the following command sequence is necessary.

- The Host sets the block address of the memory location.
- The Erase Command initiates the Internal Erase Routine. During the execution of the Routine, the host is not required to provide further controls or timings. During the Internal erase routine, all commands, except the Reset command and Erase Suspend Command, written to the device will be ignored.

A reset during an erase operation will cause data corruption at the corresponding location.

3.10.2 Multi-Block Erase Operation

See Timing Diagram 6.8

Using Multi-Block Erase, the device can erase up to 64 multiple blocks simultaneously.

Multiple blocks can be erased by issuing a Multi-Block Erase command and writing the block address of the memory location to be erased. The final Flash Block Address (FBA) and Block Erase command initiate the internal multi block erase routine. During a Multi-Block Erase, the OnGo bit of the Controller Status Register is set to '1'(busy) from the time first block address to be latched is written until the actual erase has finished.

During block address latch sequence, issuing of other commands except Block Erase and Multi Block Erase at INT=High will abort the current operation. So to speak, It will cancel the previously latched addresses of Multi Block Erase Operation. On the other hand, Other command issue at INT=low will be ignored.

A reset during an erase operation will cause data corruption at the address location being operated on during the reset.

Despite a failed block during Multi-Block Erase operation, the device will continue the erase operation until all other specified blocks are erased.

Erase Suspend Command issue during Multi Block Erase Address latch sequence is prohibited.

Locked Blocks

If there are locked blocks in the specified range, the Multi-Block Erase operation works as the follows.

Case 1: All specified blocks except BA(2) will be erased.

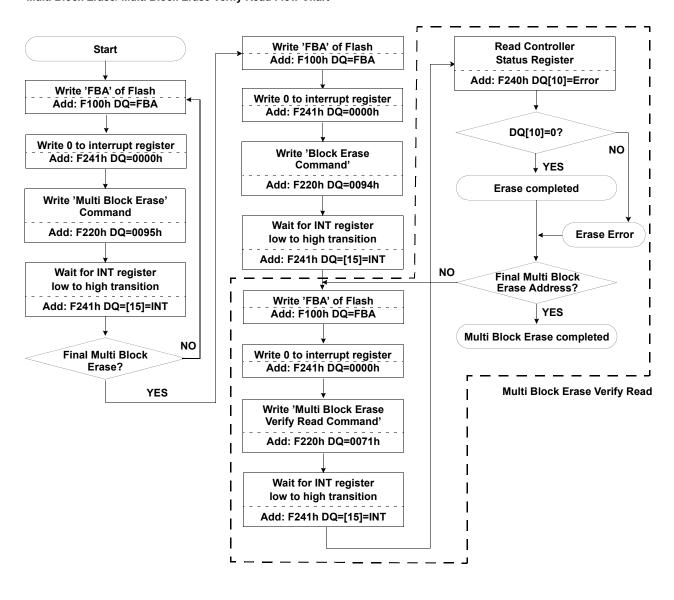
[BA(1)+0095h] + [BA((2), locked)+0095h] + ... + [BA(N-1)+0095h] + [BA(N)+0094h]

Case 2: Multi-Block Erase Operation is suspended and fails to start if the last Block Erase command is put together with the locked block address until right command and address input are issued.

[BA(1)+0095h] + [BA(2)+0095h] + ... + [BA(N-1)+0095h] + [BA((N), locked)+0094h]

Case 3: All specified blocks except BA(N) are erased.

[BA(1)+0095h] + [BA(2)+0095h] + ... + [BA(N-1)+0095h] + [BA((N), locked)+0094h] + [BA(N+1)+0094h]



3.10.3 Multi-Block Erase Verify Read Operation

After a Multi-Block Erase Operation, verify Erase Operation result of each block with Multi-Block Erase Verify Command combined with address of each block.

If a failed address is identified, it must be managed in firmware.

Multi Block Erase/ Multi Block Erase Verify Read Flow Chart

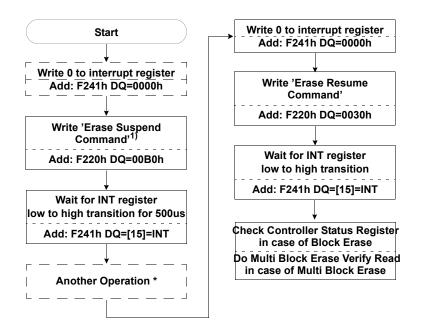
3.10.4 Erase Suspend / Erase Resume Operation

The Erase Suspend/Erase Resume Commands interrupt and restart a Block Erase or Multi-Block Erase operation so that user may perform another urgent operation on the block that is not being designated by Erase/Multi-Block Erase Operation.

Erase Suspend During a Block Erase Operation

When Erase Suspend command is written during a Block Erase or Multi-Block Erase operation, the device requires a maximum of 500us to suspend erase operation. Erase Suspend Command issue during Block Address latch sequence is prohibited.

After the erase operation has been suspended, the device is ready for the next operation including a load, program, copy-back program, Lock, Unlock, Lock-tight, Hot Reset, NAND Flash Core Reset, Command Based Reset, Multi-Block Erase Read Verify, or OTP Access.


The subsequent operation can be to any block that was NOT being erased.

A special case arises pertaining Erase Suspend to the OTP. A Reset command is used to exit from the OTP Access mode. If the Reset-triggered exit from the OTP Access Mode happens during an Erase Suspend Operation, the erase routine could fail. Therefore to exit from the OTP Access Mode without suspending the erase operation stop, a 'NAND Flash Core Reset' command should be issued.

For the duration of the Erase Suspend period the following commands are not accepted:

• Block Erase/Multi-Block Erase/Erase Suspend

Erase Suspend and Erase Resume Operation Flow Chart

* Another Operation; Load, Program Copy-back Program, OTP Access²⁾, Hot Reset, Flash Reset, CMD Reset, Multi Block Erase Verify, Lock, Lock-tight, Unlock

Note 1) Erase Suspend command input is prohibited during Multi Block Erase address latch period.
2) If OTP access mode exit happens with Reset operation during Erase Suspend mode,
Reset operation could hurt the erase operation. So if a user wants to exit from OTP access mode without the erase operation stop, Reset NAND Flash Core command should be used.

Erase Resume

When the Erase Resume command is executed, the Block Erase will restart. The Erase Resume operation does not actually resume the erase, but starts it again from the beginning.

When an Erase Suspend or Erase Resume command is executed, the addresses are in Don't Care state.

For Multi Block Erase, Erase suspend/Resume can be operated after final Erase command (0094h) is issued. Therefore, Erase Resume operation does not actually resume from the erased block. But resumes the multi block erase from the begging.

3.11 OTP Operation

One Block of the NAND Flash Array memory is reserved as a One-Time Programmable Block memory area.

The OTP block can be read, programmed and locked using the same operations as any other NAND Flash Array memory block. OTP block cannot be erased.

OTP block is fully-guaranteed to be a valid block.

Entering the OTP Block

The OTP block is separately accessible from the rest of the NAND Flash Array by using the OTP Access command instead of the Flash Block Address (FBA).

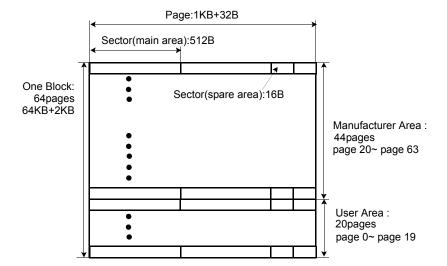
Exiting the OTP Block

To exit the OTP Access Mode, a Cold-, Warm-, Hot-, or NAND Flash Core Reset operation is performed.

Exiting the OTP Block during an Erase Operation

If the Reset-triggered exit from the OTP Access Mode happens during an Erase Suspend Operation, the erase routine could fail. Therefore to exit from the OTP Access Mode without suspending the erase operation stop, a 'NAND Flash Core Reset' command should be issued.

The OTP Block Page Assignments

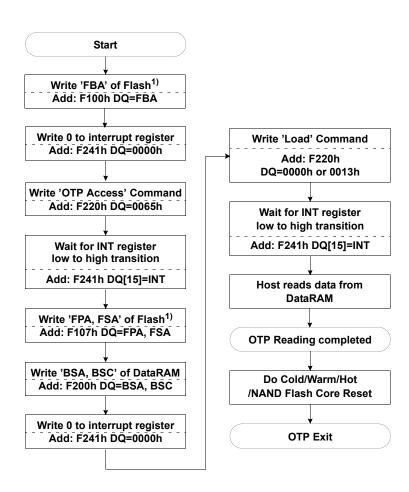

OTP area is one block size ((64K+2K)B, 64 Pages) and is divided into two areas. The 20-page User Area is available as an OTP storage area. The 44-page Manufacturer Area is programmed by the manufacturer prior to shipping the device to the user.

OTP Block Page Allocation Information

Area	Page	Use		
User	0 ~ 19 (20 pages)	Designated as user area		
Manufacturer	20 ~ 63 (44 pages)	Used by the device manufacturer		

OTP Area Structure

3.11.1 OTP Load Operation


An OTP Load Operation accesses the OTP area and transfers identified content from the OTP to the DataRAM on-chip buffer, thus making the OTP contents available to the Host.

The OTP area is a separate part of the NAND Flash Array memory. It is accessed by issuing OTP Access command(65h) instead of a Flash Block Address (FBA) command.

After being accessed with the OTP Access Command, the contents of OTP memory area are loaded using the same operations as a normal load operation to the NAND Flash Array memory (see section 3.6 for more information).

To exit the OTP access mode following an OTP Load Operation, a Cold-, Warm-, Hot-, or NAND Flash Core Reset operation is performed.

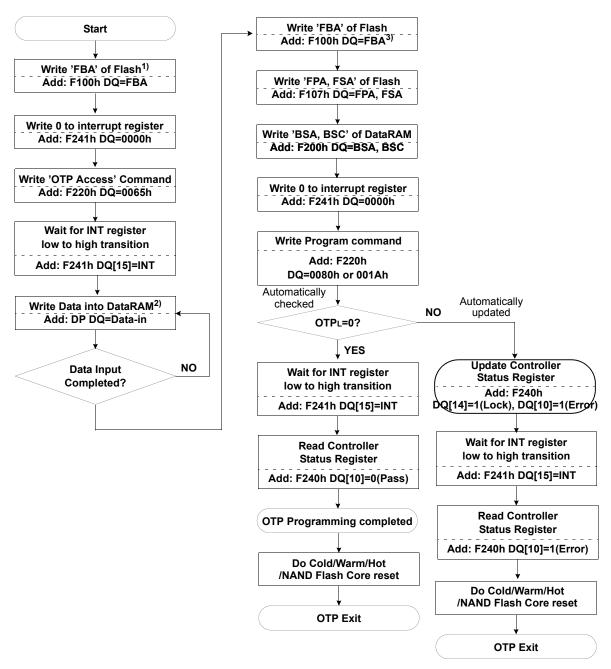
OTP Read Operation Flow Chart

Note 1) FBA(NAND Flash Block Address) could be omitted or could be any address.

3.11.2 OTP Program Operation

An OTP Program Operation accesses the OTP area and programs content from the DataRAM on-chip buffer to the designated page(s) of the OTP.

A memory location in the OTP area can be programmed only one time (no erase operation permitted).


The OTP area is programmed using the same sequence as normal program operation after being accessed by the command (see section 3.8 for more information).

Programming the OTP Area

- Issue the OTP Access Command
- Write data into the DataRAM (data can be input at anytime between the "Start" and "Write Program" commands)
- Issue a Flash Block Address (FBA) which is unlocked area address of NAND Flash Array address map.
- Issue a Write Program command to program the data from the DataRAM into the OTP
- When the OTP programming is complete, do a Cold-, Warm-, Hot-, NAND Flash Core Reset to exit the OTP Access mode.

OTP Program Operation Flow Chart

Note 1) FBA(NAND Flash Block Address) could be omitted or any address.

- 2) Data input could be done anywhere between "Start" and "Write Program Command".
- 3) FBA should point the unlocked area address among NAND Flash Array address map.

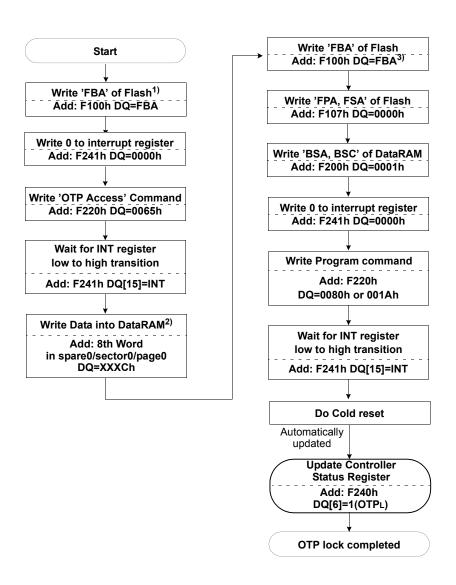
3.11.3 OTP Lock Operation

Even though the OTP area can only be programmed once without erase capability, it can be locked when the device starts up to prevent any changes from being made.

Unlike the main area of the NAND Flash Array memory, once the OTP block is locked, it cannot be unlocked.

Locking the OTP

Programming to the OTP area can be prevented by locking the OTP area. Locking the OTP area is accomplished by programming XXXCh to 8th word of sector0 of page0 of the spare0 memory area.

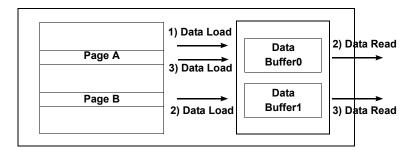

At device power-up, this word location is checked and if XXXCh is found, the OTPL bit of the Controller Status Register is set to "1", indicating the OTP is locked. When the Program Operation finds that the status of the OTP is locked, the device updates the Error Bit of the Controller Status Register as "1" (fail).

OTP Lock Operation Steps

- Issue the OTP Access Command
- Fill data to be programmed into DataRAM (data can be input at anytime between the "Start" and "Write Program" commands)
- Write 'XXXCH' data into the 8th word of sector0 of page0 of the spare0 memory area of the DataRAM.
- Issue a Flash Block Address (FBA) to unlocked address in the NAND Flash Array address map.
- Issue a Program command to program the data from the DataRAM into the OTP
- When the OTP lock is complete, do a Cold Reset to exit the OTP Access mode and update OTP lock bit[6].
- OTP lock bit[6] of the Controller Status Register will be set to "1" and the OTP will be locked.

OTP Lock Operation Flow Chart

Note 1) FBA(NAND Flash Block Address) could be omitted or any address.

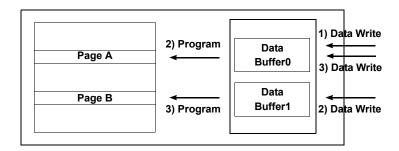

- 2) Data input could be done anywhere between "Start" and "Write Program Command".
- 3) FBA should point the unlocked area address among NAND Flash Array address map.

3.12 **Dual Operations**

The device has independent dual data buffers on-chip (except during the Boot Load period) that enables higher performance read and program operation.

3.12.1 Read-While-Load Operation

This operation accelerates the read performance of the device by enabling data to be read out by the host from one DataRAM buffer while the other DataRAM buffer is being loaded with data from the NAND Flash Array memory.

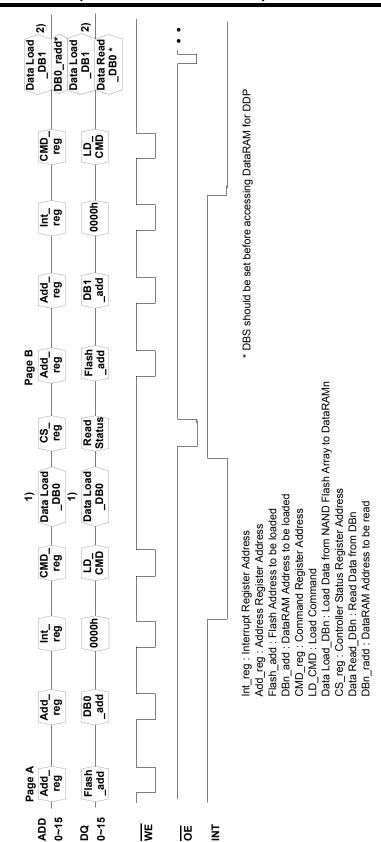


The dual data buffer architecture provides the capability of executing a data-read operation from one of DataRAM buffers during a simultaneous data-load operation from Flash to the other buffer. Simultaneous load and read operation to same data buffer is prohibited. See sections 3.6 and 3.7 for more information on Load and Read Operations.

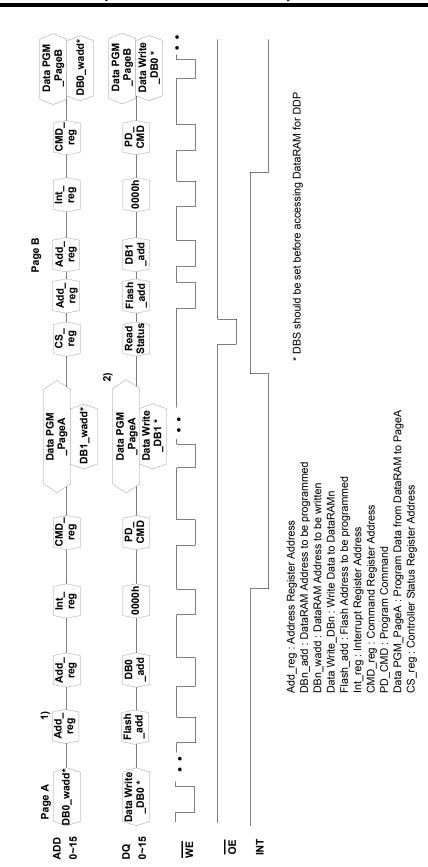
If host sets FBA, FSA, or FPA while loading into designated page, it will fail the internal load operation. Address registers should not be updated until internal operation is completed.

3.12.2 Write-While-Program Operation

This operation accelerates the programming performance of the device by enabling data to be written by the host into one DataRAM buffer while the NAND Flash Array memory is being programmed with data from the other DataRAM buffer.



The dual data buffer architecture provides the capability of executing a data-write operation to one of DataRAM buffers during simultaneous data-program operation to Flash from the other buffer. Simultaneous program and write operation to same data buffer is prohibited. See sections 3.8 for more information on Program Operation.


If host sets FBA, FSA, or FPA while programming into designated page, it will fail the internal program operation. Address registers should not be updated until internal operation is completed.

Write While Program Diagram

3.13 ECC Operation

The OneNAND device has on-chip ECC with the capability of detecting 2 bit errors and correcting 1-bit errors in the NAND Flash Array memory main and spare areas.

As the device transfers data from a BufferRAM to the NAND Flash Array memory Page Buffer for Program Operation, the device initiates a background operation which generates an Error Correction Code (ECC) of 24bits for each sector main area data and 10bits for 2nd and 3rd word data of each sector spare area.

During a Load operation from the NAND Flash Array memory Page, the on-chip ECC engine generates a new ECC. The 'Load ECC result' is compared to the originally 'Program ECC' thus detecting the number and position of errors. Single-bit error is corrected.

ECC is updated by the device automatically. After a Load Operation, the Host can determine whether there was error by reading the 'ECC Status Register' (refer to section 2.8.26).

Error types are divided into 'no error', '1bit correctable error', and '2bit error uncorrectable error'.

OneNAND supports 2bit EDC even though 2bit error seldom or never occurs. Hence, it is not recommeded for Host to read 'ECC Status Register' for checking ECC error because the built-in Error Correction Logic of OneNAND automatically corrects ECC error.

When the device reads the NAND Flash Array memory main and spare area data with an ECC operation, the device doesn't place the newly generated ECC for main and spare area into the buffer. Instead it places the ECC which was generated and written during the program operation into the buffer.

An ECC operation is also done during the Boot Loading operation.

3.13.1 ECC Bypass Operation

In an ECC bypass operation, the device does not generate ECC as a background operation. The result does not indicate error position (refer to the ECC Result Table).

In a Program Operation the ECC code to NAND Flash Array memory spare area is not updated.

During a Load operation, the on-chip ECC engine does not generate a new ECC internally. Also the ECC Status & Result to Registers are invalid. The error is not corrected and detected by itself, so that ECC bypass operation is not recommended for host.

ECC bypass operation is set by the 9bit of System Configuration 1 Register (see section 2.8.19)

ECC Code and ECC Result by ECC Operation

	Program operation	Load operation				
Operation	ECC Code Update to NAND Flash Array Spare Area	ECC Code at BufferRAM Spare Area	ECC Status & Result Update to Registers	1bit Error		
ECC operation	Update	Pre-written ECC code ⁽¹⁾ loaded	Update	Correct		
ECC bypass	Not update	Pre-written code ⁽¹⁾ loaded	Invalid	Not correct		

NOTE:

1. Pre-written ECC code: ECC code which is previously written to NAND Flash Spare Area in program operation.

3.14 Invalid Block Operation

Invalid blocks are defined as blocks in the device's NAND Flash Array memory that contain one or more invalid bits whose reliability is not guaranteed by Samsung.

The information regarding the invalid block(s) is called the Invalid Block Information. Devices with invalid block(s) have the same quality level as devices with all valid blocks and have the same AC and DC characteristics.

An invalid block(s) does not affect the performance of valid block(s) because it is isolated from the bit line and the common source line by a select transistor.

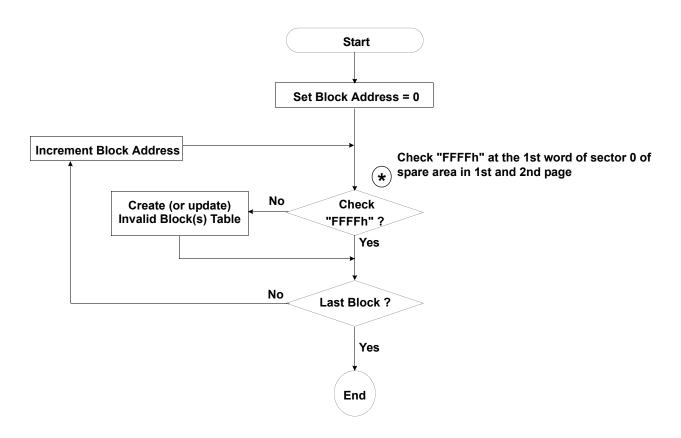
The system design must be able to mask out the invalid block(s) via address mapping. The 1st block, which is placed on 00h block address, is always fully guaranteed to be a valid block.

Due to invalid marking, during load operation for identifying invalid block, a load error may occur.

3.14.1 Invalid Block Identification Table Operation

A system must be able to recognize invalid block(s) based on the original invalid block information and create an invalid block table.

Invalid blocks are identified by erasing all address locations in the NAND Flash Array memory except locations where the invalid block(s) information is written prior to shipping.


An invalid block(s) status is defined by the 1st word in the spare area. Samsung makes sure that either the 1st or 2nd page of every invalid block has non-FFFh data at the 1st word of sector0.

Since the invalid block information is also erasable in most cases, it is impossible to recover the information once it has been erased. Any intentional erase of the original invalid block information is prohibited.

The following suggested flow chart can be used to create an Invalid Block Table.

Invalid Block Table Creation Flow Chart

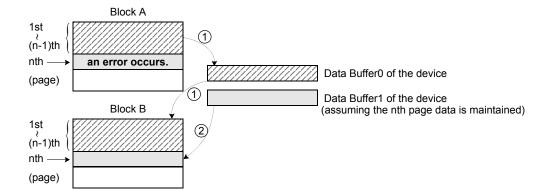
3.14.2 Invalid Block Replacement Operation

Within its life time, additional invalid blocks may develop with NAND Flash Array memory. Refer to the device's qualification report for the actual data.

The following possible failure modes should be considered to implement a highly reliable system.

In the case of a status read failure after erase or program, a block replacement should be done. Because program status failure during a page program does not affect the data of the other pages in the same block, a block replacement can be executed with a page-sized buffer by finding an erased empty block and reprogramming the current target data and copying the rest of the replaced block.

Block Failure Modes and Countermeasures


Failure Mode	Detection and Countermeasure sequence
Erase Failure	Status Read after Erase> Block Replacement
Program Failure	Status Read after Program> Block Replacement
Single Bit Failure in Load Operation	Error Correction by ECC mode of the device

Referring to the diagram for further illustration, when an error happens in the nth page of block 'A' during program operation, copy the data in the 1st ~ (n-1)th page to the same location of block 'B' via data buffer0.

Then copy the nth page data of block 'A' in the data buffer1 to the nth page of block 'B' or any free block. Do not further erase or program block 'A' but instead complete the operation by creating an 'Invalid Block Table' or other appropriate scheme.

Block Replacement Operation Sequence

4.0 DC CHARACTERISTICS

4.1 **Absolute Maximum Ratings**

Parameter	Parameter		Rating	Unit
	Vcc	Vcc (for 1.8V)	-0.5 to + 2.45	
Valtaga an any nin relativa ta Vas	VCC	Vcc (for 3.3V)	-0.5 to + 4.6	V
Voltage on any pin relative to Vss	All Ding	V _{IN} (for 1.8V)	-0.5 to + 2.45	V
	All Pins	V _{IN} (for 3.3V)	-0.5 to + 4.6	
Temperature Under Bias	Extended	Thias	-30 to +125	°C
Temperature Orider Bias	Industrial	Ibias	-40 to +125	
Storage Temperature		Tstg	-65 to +150	°C
Short Circuit Output Curre	Short Circuit Output Current		5	mA
Recommended Operating Temperature		TA (Extended Temp.)	-30 to +85	°C
		TA (Industrial Temp.)	-40 to +85	C

Operating Conditions 4.2

Voltage reference to GND

Parameter	Symbol	1.8V Device			3.3V Device			Unit
	Symbol	Min	Тур.	Max	Min	Тур.	Max	Unit
Supply Voltage	Vcc-core / Vcc	1.7	1.8	1.95	2.7	3.3	3.6	W
	Vcc-IO / Vccq		1.0					v
	Vss	0	0	0	0	0	0	V

Minimum DC voltage is -0.5V on Input/ Output pins. During transitions, this level should not fall to POR level(typ. 1.5V@1.8V device, 1.8V@3.3V device). Maximum DC voltage is Vcc+0.6V on input / output pins which, during transitions, may overshoot to Vcc+2.0V for periods <20ns.
 Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{1.} The system power should reach 1.7V after POR triggering level(typ. 1.5V) within 400us. For 3.3V device, the system power should reach 2.2V after POR triggering level(typ. 1.8V) within 400us.

^{2.} Vcc-Core (or Vcc) should reach the operating voltage level prior to or at the same time as Vcc-IO (or Vccq).

4.3 DC Characteristics

				RMS Value						Unit
Parameter	Symbol	Test Conditions		1.8V device			3.3V device			
				Min	Тур	Max	Min	Тур	Max	
Input Leakage Current	ILI	VIN=VSS to VCC, VCC=VCCmax		- 1.0	-	+ 1.0	- 1.0	-	+ 1.0	μА
Output Leakage Current	ILO	VOUT=Vss to Vcc, Vcc=Vccmax, CE or OE=ViH(Note 1)		- 1.0	-	+ 1.0	- 1.0	-	+ 1.0	μА
Active Asynchronous Read Current (Note 2)	ICC1	CE=VIL, OE=VIH		-	8	15	-	14	20	mA
Active Burst Read	ICC2	CE=VIL, OE=VIH	66Mhz	-	15	25	-	20	30	mA
Current (Note 2)	1002	CE-VIL, OE-VIH	1MHz	-	3	4	-	5	7	mA
Active Write Current (Note 2)	lcc3	CE=VIL, OE=VIH		-	8	15	-	17	22	mA
Active Load Current (Note 3)	ICC4	CE=VIL, OE=VIH, WE=VIH		-	30	40	-	30	40	mA
Active Program Current (Note 3)	ICC5	CE=VIL, OE=VIH, WE=VIH	CE=VIL, OE=VIH, WE=VIH		25	30	-	28	35	mA
Active Erase Current (Note 3)	Icc6	CE=VIL, OE=VIH, WE=VIH		-	20	25	-	23	30	mA
Multi Block Erase Current (Note 3)	ICC7	CE=VIL, OE=VIH, WE=VIH, 64blo	ocks	-	20	25	-	23	30	mA
Standby Current	IsB	CE= RP=Vcc ± 0.2V		-	10	50	-	25	80	μА
Input Low Voltage	VIL	-		-0.5	-	0.4	0	-	8.0	V
Input High Voltage (Note 4)	VIH	-		VCCq- 0.4	-	Vccq+ 0.4	0.7*V CCq	-	Vccq	V
Output Low Voltage	Vol	IoL = 100 μA , Vcc=Vccmin , Vccq=Vccqmin		-	-	0.2	-	-	0.22* Vccq	V
Output High Voltage	Vон	IOH = -100 μA , VCC=VCCmin , VCC	Cq=VCCqmin	VCCq- 0.1	-	-	0.8*V CCq	-	-	V

Note 1. $\overline{\text{CE}}$ should be VIH for RDY. IOBE should be '0' for INT.

Note 2. Icc active for Host access

Note 3. ICC active for Internal operation. (without host access)

Note 4. Vccq is equivalent to Vcc-IO

5.0 AC CHARACTERISTICS

5.1 AC Test Conditions

Parameter		Value
Input Pulse Levels		0V to Vcc
Innut Disc and Fall Times	CLK	3ns
Input Rise and Fall Times	other inputs	5ns
Input and Output Timing Levels		Vcc/2
Output Load		CL = 30pF

5.2 Device Capacitance

CAPACITANCE(TA = 25 °C, Vcc = 1.8V, f = 1.0MHz)

ltem	Symbol	Test Condition	Sir	Unit		
item	Symbol	rest Condition	Min	Max		
Input Capacitance	CIN1	VIN=0V	-	10		
Control Pin Capacitance	CIN2	V _{IN} =0V	-	10	,	
Output Capacitance	Соит	Vout=0V	-	10	- pF	
INT Capacitance	CINT	Vout=0V	-	15		

NOTE: Capacitance is periodically sampled and not 100% tested.

5.3 Valid Block Characteristics

Parameter	Symbol	Min	Тур.	Max	Unit
Valid Block Number	N∨B	502	-	512	Blocks

NOTES

^{1.} The device may include invalid blocks when first shipped. Additional invalid blocks may develop while being used. The number of valid blocks is presented with both cases of invalid blocks considered. Invalid blocks are defined as blocks that contain one or more bad bits. Do not erase or program factory-marked bad blocks.

^{2.} The 1st block, which is placed on 00h block address, is fully guaranteed to be a valid block.

AC Characteristics for Synchronous Burst Read 5.4

See Timing Diagrams 6.1, 6.2

Paramata a	0	KFG56	11-24	
Parameter	Symbol	Min	Max	Unit
Clock	CLK	1	66	MHz
Clock Cycle	tclk	15	-	ns
Initial Access Time	tiaa	-	70	ns
Burst Access Time Valid Clock to Output Delay	tBA	-	11.5	ns
AVD Setup Time to CLK	tavds	5	-	ns
AVD Hold Time from CLK	tavdh	6	-	ns
Address Setup Time to CLK	tacs	5	-	ns
Address Hold Time from CLK	tach	6	-	ns
Data Hold Time from Next Clock Cycle	tвон	4	-	ns
Output Enable to Data	toe	-	20	ns
CE Disable to Output High Z	tcez ¹⁾	-	20	ns
OE Disable to Output High Z	toez ¹⁾	-	15	ns
CE Setup Time to CLK	tces	6	-	ns
CLK High or Low Time	tclkh/L	tclk/3	-	ns
CLK ²⁾ to RDY valid	trdyo	-	11.5	ns
CLK to RDY Setup Time	trdya	-	11.5	ns
RDY Setup Time to CLK	trdys	3.5	-	ns
CE low to RDY valid	tcer	-	15	ns

^{2.} It is the following clock of address fetch clock.

5.5 AC Characteristics for Asynchronous Read

See Timing Diagrams 6.3, 6.4, 6.5 and 6.6

Dovometer	Symbol	KFG56	616x1A	Unit
Parameter	Symbol	Min	Max	Unit
Access Time from CE Low	tce	-	76	ns
Asynchronous Access Time from AVD Low	taa	-	76	ns
Asynchronous Access Time from address valid	tacc	-	76	ns
Read Cycle Time	trc	76	-	ns
AVD Low Time	tavdp	12	-	ns
Address Setup to rising edge of AVD	taavds	7	-	ns
Address Hold from rising edge of AVD	taavdh	7	-	ns
Output Enable to Output Valid	toE	-	20	ns
WE disable to OE enable	toeh	0	-	ns
CE Setup to AVD falling edge	tca	0	-	ns
CE Disable to Output & RDY High Z ¹⁾	tcez	-	20	ns
OE Disable to Output High Z ¹⁾	toez	-	15	ns
WE Disable to AVD Enable	twea	15	-	ns

NOTE

5.6 AC Characteristics for Warm Reset (RP), Hot Reset and NAND Flash Core Reset

See Timing Diagrams 6.12, 6.13 and 6.14

Parameter	Symbol	Min	Max	Unit
RP & Reset Command Latch to BootRAM Access	tReady1 (BufferRAM)	-	5	μS
RP & Reset Command Latch(During Load Routines) to INT High (Note1)	tReady2 (NAND Flash Array)	-	10	μS
RP & Reset Command Latch(During Program Routines) to INT High (Note1)	tReady2 (NAND Flash Array)	-	20	μS
RP & Reset Command Latch(During Erase Routines) to INT High (Note1)	tReady2 (NAND Flash Array)	-	500	μS
RP & Reset Command Latch(NOT During Internal Routines) to INT High (Note1)	tReady2 (NAND Flash Array)	-	10	μS
RP Pulse Width (Note2)	tRP	200	-	ns

Note

^{1.} If \overline{OE} is disabled at the same time or before \overline{CE} is disabled, the output will go to high-z by tOEZ.

If <u>CE</u> is disabled at the same time or before <u>OE</u> is disabled, the output will go to high-z by tCEZ.

If $\overline{\text{CE}}$ and $\overline{\text{OE}}$ are disabled at the same time, the output will go to high-z by tOEZ.

These parameters are not 100% tested.

^{1.} These parameters are tested based on INT bit of interrupt register. Because the time on INT pin is related to the pull-up and pull-down resistor value.

^{2.} The device may reset if tRP < tRP min(200ns), but this is not guaranteed.

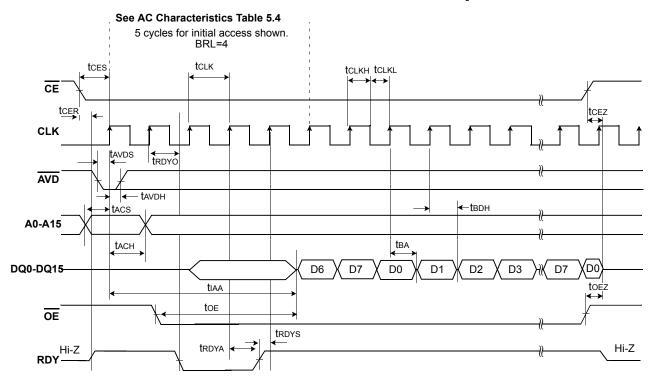
5.7 AC Characteristics for Asynchronous Write/Load/ Program/Erase Operation

See Timing Diagrams 6.7, 6.8 and 6.9

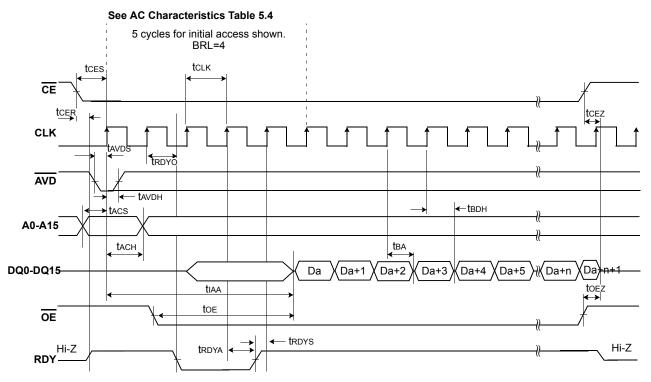
Parameter	Symbol	Min	Тур	Max	Unit
WE Cycle Time	twc	70	-	-	ns
AVD low pulse width	tavdp	12	-	-	ns
Address Setup Time	tawes	0	-	-	ns
Address Hold Time	tан	30	-	-	ns
Data Setup Time	tos	25	-	-	ns
Data Hold Time	toн	0	-	-	ns
CE Setup Time	tcs	0	-	-	ns
CE Hold Time	tсн	10	-	-	ns
WE Pulse Width Low	twpl	40	-	-	ns
WE Pulse Width High	twpн	30	-	-	ns
AVD Disable to WE Disable	t∨LWH	15	-	-	ns
WE Disable to AVD Enable	twea	15	-	-	ns

5.8 AC Characteristics for Load/Program/Erase Performance

See Timing Diagrams 6.8, 6.9, and 6.10

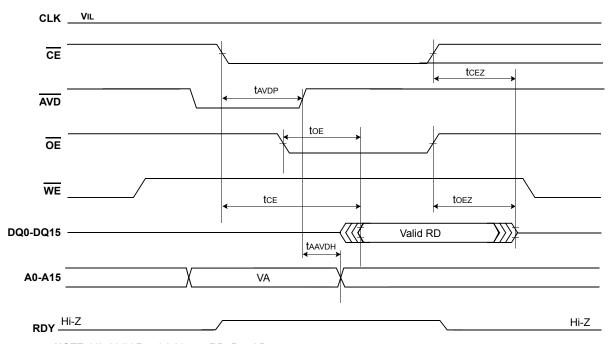

Parameter		Symbol	Min	Тур	Max	Unit
Sector Load time(Note 1)		tRD1	-	23	35	μS
Page Load time(Note 1)		tRD2	-	25	40	μS
Sector Program time(Note 1)		tpgm1	-	205	720	μS
Page Program time(Note 1)		tpgM2	-	220	750	μS
OTP Access Time(Note 1)		tотр	-	500	700	ns
Lock/Unlock/Lock-tight Time(Note 1)		tLOCK	-	500	700	ns
Erase Suspend Time(Note 1)		tesp	-	400	500	μS
Erase Resume Time(Note 1)	1 Block	ters1	-	2	3	ms
	2~64 Blocks	ters2		4	6	ms
Number of Partial Program Cycles in the sector (Including main and spare area)		NOP	-	-	2	cycles
Block Erase time (Note 1)	1 Block	tBERS1	-	2	3	ms
	2~64 Blocks	tBERS2	-	4	6	ms
Multi BlocK Erase Verify Read time(Note 1)		t _{RD3}	-	70	100	μS

Note 1) These parameters are tested based on INT bit of interrupt register. Because the time on INT pin is related to the pull-up and pull-down resistor value.

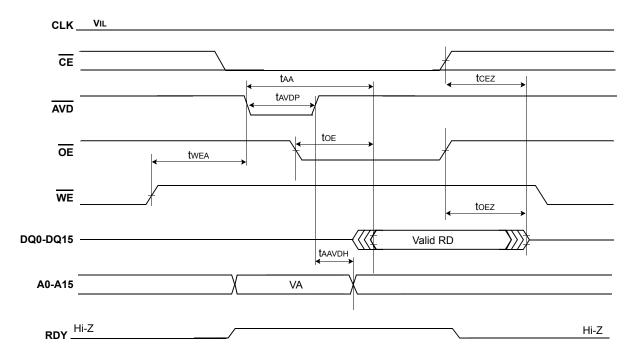


6.0 TIMING DIAGRAMS

6.1 8-Word Linear Burst Mode with Wrap Around

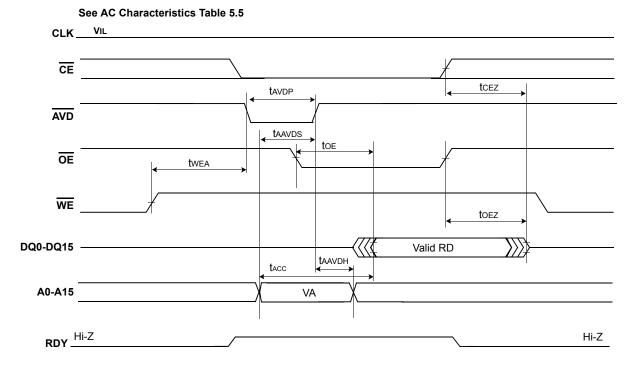

6.2 Continuous Linear Burst Mode with Wrap Around

Asynchronous Read (VA and AVD Transition Before CE Low) 6.3

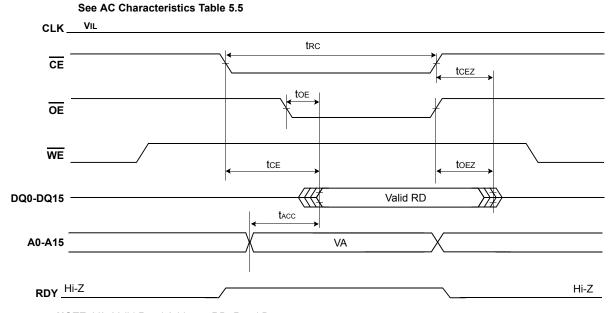

See AC Characteristics Table 5.5

NOTE: VA=Valid Read Address, RD=Read Data.

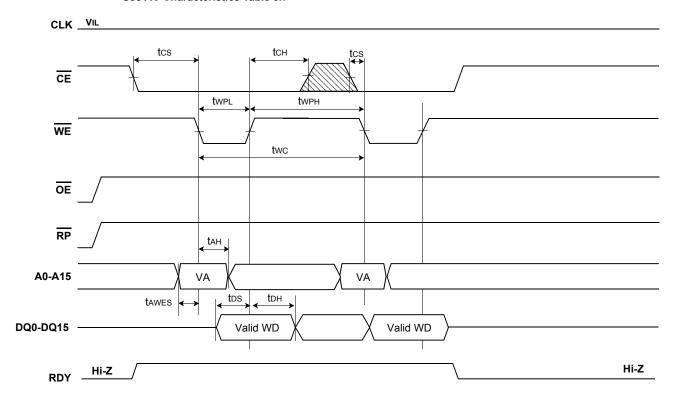
6.4 Asynchronous Read (VA and AVD Transition After CE Low)


See AC Characteristics Table 5.5

NOTE: VA=Valid Read Address, RD=Read Data.

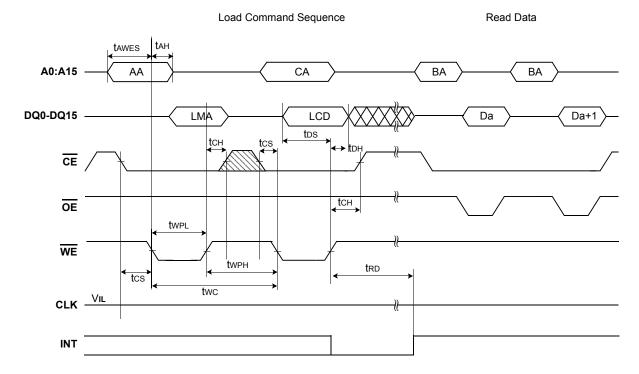


6.5 Asynchronous Read (VA and AVD Transition After CE Low)


NOTE: VA=Valid Read Address, RD=Read Data.

6.6 Asynchronous Read (AVD is tied to CE)

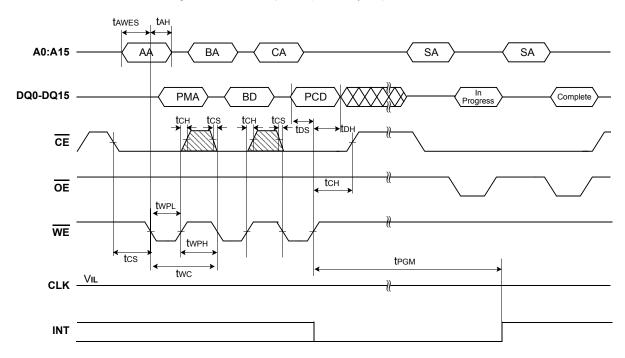
6.7 Asynchronous Write


See AC Characteristics Table 5.7

NOTE: VA=Valid Read Address, WD=Write Data.

6.8 Load Operation Timing

See AC Characteristics Tables 5.7 and 5.8


NOTES

- 1. AA = Address of address register
 - CA = Address of command register
 - LCD = Load Command
 - LMA = Address of memory to be loaded
 - BA = Address of BufferRAM to load the data
 - BD = Program Data
 - SA = Address of status register
- 2. "In progress" and "complete" refer to status register
- 3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.

6.9 Program Operation Timing

See AC Characteristics Tables 5.7 and 5.8

Program Command Sequence (last two cycles) Read Status Data

NOTES:

1. AA = Address of address register

CA = Address of command register

PCD = Program Command

PMA = Address of memory to be programmed

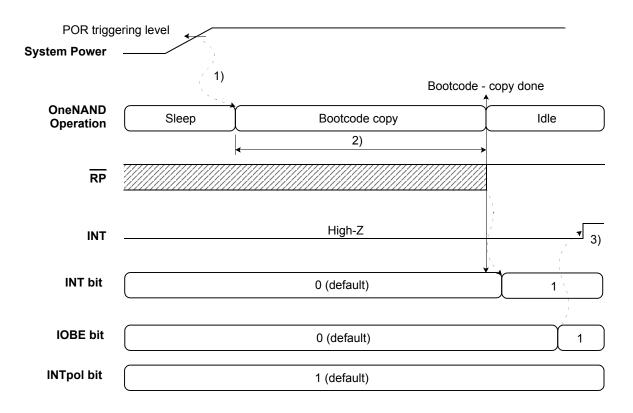
BA = Address of BufferRAM to load the data

BD = Program Data

SA = Address of status register

- 2. "In progress" and "complete" refer to status register
- 3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.

6.10 Block Erase Operation Timing


See AC Characteristics Tables 5.7 and 5.8

Erase Command Sequence (last two cycles) Read Status Data tawes A0:A15 AΑ CA SA SA DQ0-DQ15 EMA **ECD** Complete tos CE tсн OE **t**WPL WE twph **t**BERS tcs twc V_{IL} CLK INT

NOTES:

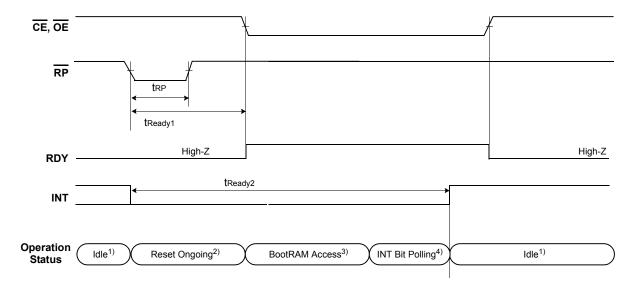
- 1. AA = Address of address register
 - CA = Address of command register
 - ECD = Erase Command
 - EMA = Address of memory to be erased
 - SA = Address of status register
- 2. "In progress" and "complete" refer to status register
- 3. Status reads in this figure is asynchronous read, but status read in synchronous mode is also supported.

6.11 Cold Reset Timing

Note: 1) Bootcode copy operation starts 400us later than POR activation.

The system power should reach Vcc after POR triggering level(typ. 1.5V) within 400us for valid boot code data.

For 3.3V device, The system power should reach Vcc after POR triggering level(typ. 1.8V) within 400us for valid boot code data.

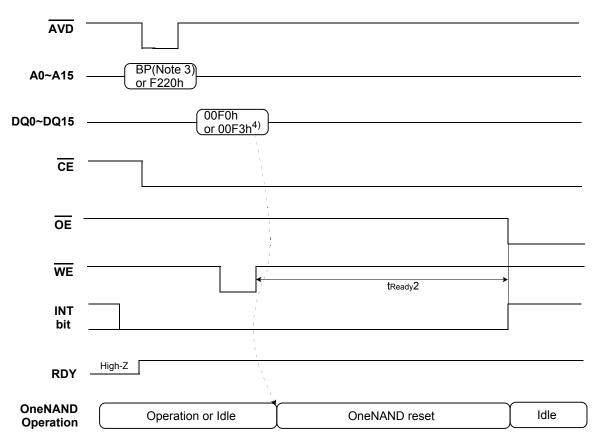

2) 1K bytes Bootcode copy takes 70us(estimated) from sector0 and sector1/page0/block0 of NAND Flash array to BootRAM. Host can read Bootcode in BootRAM(1K bytes) after Bootcode copy completion.

3) INT register goes 'Low' to 'High' on the condition of 'Bootcode-copy done' and $\overline{\mathsf{RP}}$ rising edge.

If RP goes 'Low' to 'High' before 'Bootcode-copy done', INT register goes to 'Low' to 'High' as soon as 'Bootcode-copy done'

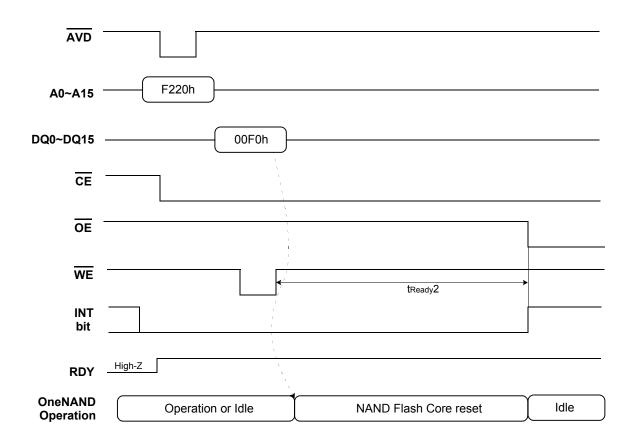
6.12 Warm Reset Timing

See AC Characteristics Tables 5.6



NOTES:

- 1. The status which can accept any register based operation(Load, Program, Erase command, etc).
- 2. The status where reset is ongoing.
- 3. The status allows only BootRAM(BL1) read operation for Boot Sequence.(refer to 7.2.2 Boot Sequence)
- 4. To read BL2 of Boot Sequence, Host should wait INT until becomes ready. and then, Host can issue load command. (refer to 7.2.2 Boot Sequence, 7.1 Methods of Determing Interrupt status)


6.13 Hot Reset Timing

NOTE:

- 1. Internal reset operation means that the device initializes internal registers and makes output signals go to default status and bufferRAM data are kept unchanged after Warm/Hot reset operations.
- 2. Reset command : Command based reset or Register based reset
- 3. BP(Boot Partition): BootRAM area [0000h~01FFh, 8000h~800Fh]
- 4. 00F0h for BP, and 00F3h for F220h

6.14 NAND Flash Core Reset Timing

6.15 Data Protection Timing During Power Down

The device is designed to offer protection from any involuntary program/erase during power-transitions. An internal voltage detector disables all functions whenever Vcc is below about 1.3V. $\overline{\text{RP}}$ pin provides hardware protection and is recommended to be kept at VIL before power-down.

7.0 TECHNICAL AND APPLICATION NOTES

From time-to-time supplemental technical information and application notes pertaining to the design and operation of the device in a system are included in this section. Contact your Samsung Representative to determine if additional notes are available.

7.1 Methods of Determining Interrupt Status

There are two methods of determining Interrupt Status on the OneNAND. Using the INT pin or monitoring the Interrupt Status Register Bit.

The OneNAND INT pin is an output pin function used to notify the Host when a command has been completed. This provides a hardware method of signaling the completion of a program, erase, or load operation.

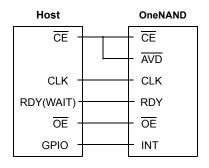
In its normal state, the INT pin is high if the INT polarity bit is default. Before a command is written to the command register, the INT bit must be written to '0' so the INT pin transitions to a low state indicating start of the operation. Upon completion of the command operation by the OneNAND's internal controller, INT returns to a high state.

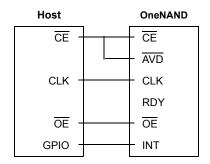
INT is an open drain output allowing multiple INT outputs to be Or-tied together. INT does not float to a hi-Z condition when the chip is deselected or when outputs are disabled. Refer to section 2.8 for additional information about INT.

INT can be implemented by tying INT to a host GPIO or by continuous polling of the Interrupt status register.

7.1.1 The INT Pin to a Host General Purpose I/O

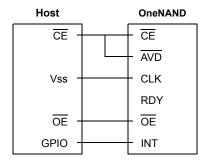
INT can be tied to a Host GPIO to detect the rising edge of INT, signaling the end of a command operation.




This can be configured to operate either synchronously or asynchronously as shown in the diagrams below.

Synchronous Mode Using the INT Pin

When operating synchronously, INT is tied directly to a Host GPIO. RDY could be connected as one of following guides.

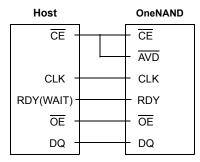


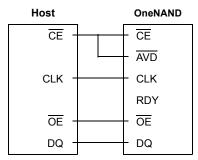
Handshaking Mode

Non-Handshaking Mode

Asynchronous Mode Using the INT Pin

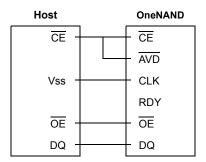
When configured to operate in an asynchronous $\overline{\text{MOD}}$ of the OneNAND are tied to $\overline{\text{CE}}$ of the Host. CLK is tied to the Host Vss (Ground). RDY is tied to a no-connect. $\overline{\text{OE}}$ of the OneNAND and Host are tied together and INT is tied to a GPIO.


7.1.2 Polling the Interrupt Register Status Bit


An alternate method of determining the end of an operation is to continuously monitor the Interrupt Status Register Bit instead of using the INT pin.

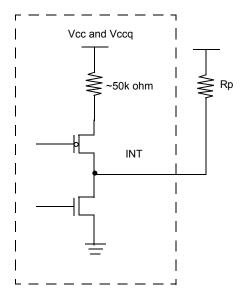
This can be configured in either a synchronous mode or an asynchronous mode.

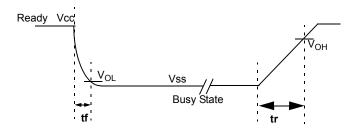
Synchronous Mode Using Interrupt Status Register Bit Polling When operating synchronously, $\overline{\text{CE}}$ and $\overline{\text{AVD}}$ of the OneNAND are tied to $\overline{\text{CE}}$ of the Host. CLK, $\overline{\text{OE}}$, and DQ pins on the host and OneNAND are tied together. RDY could be connected as one of following guides.

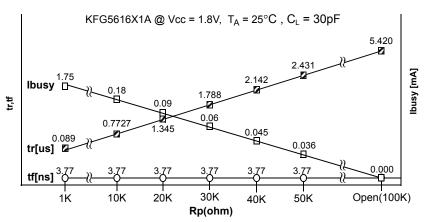


Handshaking Mode

Non-Handshaking Mode

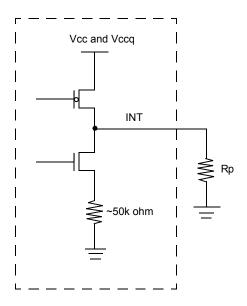

Asynchronous Mode Using Interrupt Status Register Bit Polling
When configured to operate in an asynchronous \underline{mode} , \overline{CE} and \overline{AVD} of the OneNAND are tied to \overline{CE} of the Host. CLK is tied to the Host Vss (Ground). RDY is tied to a no-connect. OE and DQ of the OneNAND and Host are tied together.

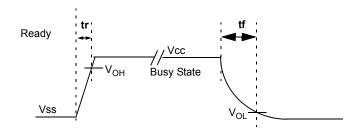


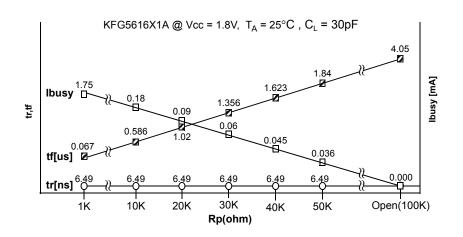

7.1.3 Determining Rp Value

Because the pull-up resistor value is related to tr(INT) an appropriate value can obtained with the following reference charts.

INT pol = 'High'







INT pol = 'Low'

7.2 Boot Sequence

One of the best features OneNAND has is that it can be a booting device itself since it contains an internally built-in boot loader despite the fact that its core architecture is based on NAND Flash. Thus, OneNAND does not make any additional booting device necessary for a system, which imposes extra cost or area overhead on the overall system.

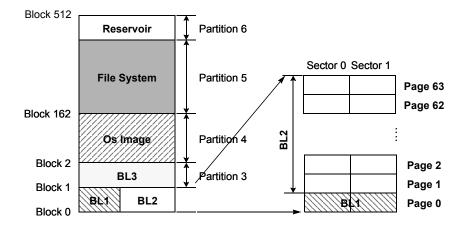
As the system power is turned on, the boot code originally stored in NAND Flash Arrary is moved to BootRAM automatically and then fetched by CPU through the same interface as SRAM's or NOR Flash's if the size of the boot code is less than 1KB. If its size is larger than 1KB and less than or equal to 2KB, only 1KB of it can be moved to BootRAM automatically and fetched by CPU, and the rest of it can be loaded into one of the DataRAMs whose size is 1KB by Load Command and CPU can take it from the DataRAM after finishing the code-fetching job for BootRAM. If its size is larger than 2KB, the 1KB portion of it can be moved to BootRAM automatically and fetched by CPU, and its remaining part can be moved to DRAM through two DataRAMs using dual buffering and taken by CPU to reduce CPU fetch time.

A typical boot scheme usually used to boot the system with OneNAND is explained at Patition of NAND Flash Array and OneNAND Boot Sequence. In this boot scheme, boot code is comprised of BL1, where BL stands for Boot Loader, BL2, and BL3. Moreover, the size of the boot code is larger than 3KB (the 3rd case above). BL1 is called primary boot loader in other words. Here is the table of detailed explanations about the function of each boot loader in this specific boot scheme.

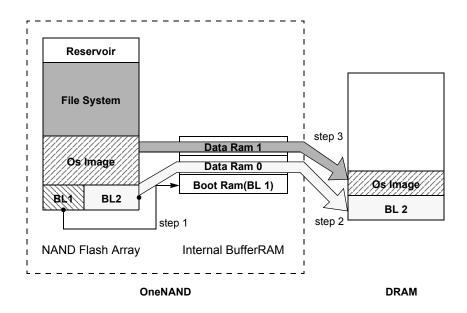
7.2.1 Boot Loaders in OneNAND

Boot Loaders in OneNAND

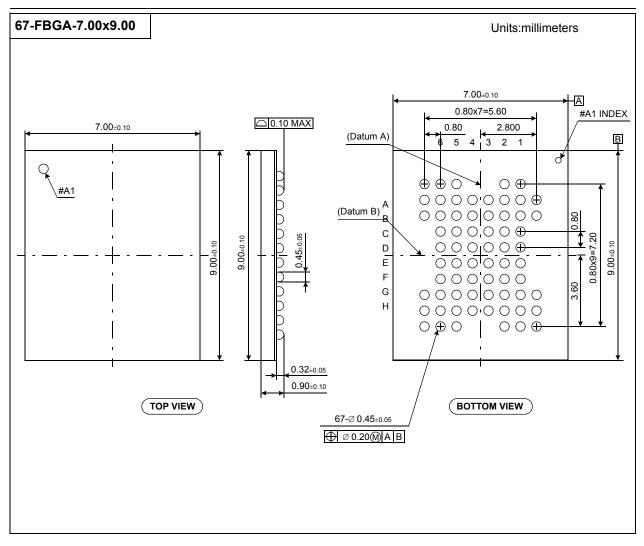
Boot Loader	Description		
BL1	Moves BL2 from NAND Flash Array to DRAM through two DataRAMs using dual buffering		
BL2	Moves OS image (or BL3 optionally) from NAND Flash Array to DRAM through two DataRams using dual buffering		
BL3 (Optional)	Moves or writes the image through USB interface		


NAND Flash Array of OneNAND is divided into the partitions as described at Partition of NAND Flash Array to show where each component of code is located and how much portion of the overall NAND Flash Array each one occupies. In addition, the boot sequence is listed below and depicted at Boot Sequence.

7.2.2 Boot Sequence

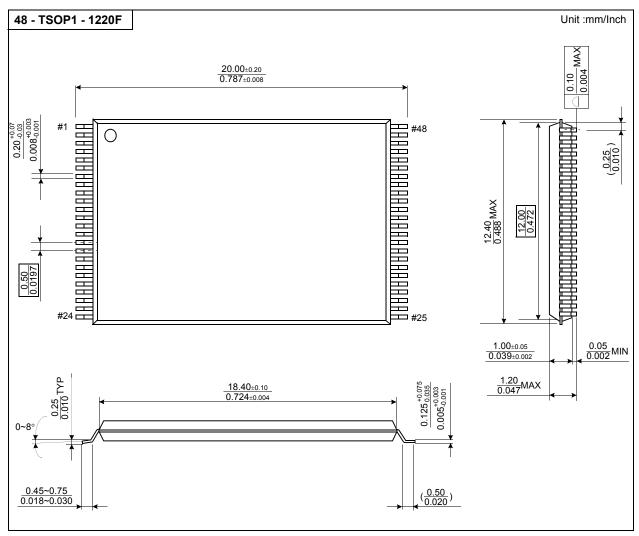

Boot Sequence:

- Power is on BL1 is loaded into BootRAM
- BL1 is executed in BootRAM
 BL2 is loaded into DRAM through two DataRams using dual buffering by BL1
- BL2 is executed in DRAM
 OS image is loaded into DRAM through two DataRams using dual buffering by BL2
- 4. OS is running


Partition of NAND Flash array

NOTE: Step 2 and Step 3 can be copied into DRAM through two DataRAMs using dual buffering

OneNAND Boot Sequence


8.0 PACKAGE DIMENSIONS

256Mb product (KFG5616x1A)

48-PIN LEAD/LEAD FREE PLASTIC THIN SMALL OUT-LINE PACKAGE TYPE(I)

256Mb product (KFG5616x1A)