FEATURES

Dual 14-bit SAR ADC

Simultaneous sampling
Throughput rate: 4.2 MSPS per channel
Specified for $V_{D D}$ of 2.5 V
Power dissipation: $\mathbf{3 5} \mathrm{mW}$ at 4.2 MSPS
On-chip reference: $\mathbf{2 . 0 4 8} \mathrm{V} \pm 0.25 \%, 6 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Dual conversion with read
High speed serial interface
SPI-/QSPI-/MICROWIRE-/DSP-compatible
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operation
Shutdown mode: $10 \mu \mathrm{~A}$ maximum
16-lead TSSOP package

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

1. Two Complete ADC Functions.

These functions allow simultaneous sampling and conversion of two channels. The conversion result of both channels is simultaneously available on separate data lines or in succession on one data line if only one serial port is available.
2. High Throughput with Low Power Consumption. The AD7357 offers a 4.2 MSPS throughput rate with 35 mW power consumption.
3. Simultaneous Sampling.

The part features two standard successive approximation ADCs with accurate control of the sampling instant via a $\overline{\mathrm{CS}}$ input and once off conversion control.

Table 1. Related Devices

Generic	Resolution	Throughput	Analog Input
AD7356	12 -bit	5 MSPS	Differential
AD7352	12 -bit	3 MSPS	Differential
AD7266	12 -bit	2 MSPS	Differential/Single-Ended
AD7866	12 -bit	1 MSPS	Single-Ended
AD7366	12 -bit	1 MSPS	Single-Ended Bipolar
AD7367	14 -bit	1 MSPS	Single-Ended Bipolar

${ }^{1}$ Protected by U.S. Patent No. 6,681,332.

Rev. PrF

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
Fax: 781.461.3113 02008 Analog D www.DataSheet4U.com

TABLE OF CONTENTS

Features 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Timing Specifications 5
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions. 7
Typical Performance Characteristics 8
Terminology 10
Theory of Operation 12
Circuit Information 12
Converter Operation 12
Analog Input Structure 12
Analog Inputs 13
Driving Differential Inputs 13
ADC Transfer Function. 14
Modes of Operation 15
Normal Mode. 15
Partial Power-Down Mode 15
Full Power-Down Mode 16
Power-Up Times 17
Power vs. Throughput Rate. 17
Serial Interface 18
Application Hints 19
Grounding and Layout 19
Evaluating the AD7357 Performance 19
Outline Dimensions 20
Ordering Guide 20

REVISION HISTORY

11/08-Revision PrF

SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=2.5 \pm 10 \% \mathrm{~V}, \mathrm{~V}_{\text {DRIVE }}=2.25 \mathrm{~V}$ to 3.6 V , internal reference $=2.048 \mathrm{~V}, \mathrm{f}_{\mathrm{SCLK}}=80 \mathrm{MHz}, \mathrm{f}_{\mathrm{SAMPLE}}=4.2 \mathrm{MSPS} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}{ }^{1}$, unless otherwise noted.

Table 2.

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
DYNAMIC PERFORMANCE Signal-to-Noise Ratio (SNR) Signal-to-Noise and Distortion (SINAD) Total Harmonic Distortion (THD) Spurious Free Dynamic Range (SFDR) Intermodulation Distortion (IMD) Second-Order Terms Third-Order Terms ADC-to-ADC Isolation CMRR	78 77	$\begin{aligned} & -84 \\ & -76 \\ & -100 \\ & -100 \end{aligned}$	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	dB dB	$\mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz}$ sine wave $\begin{aligned} & \mathrm{fa}=1 \mathrm{MHz}+50 \mathrm{kHz}, \mathrm{fb}=1 \mathrm{MHz}-50 \mathrm{kHz} \\ & \mathrm{fiN}_{\mathrm{IN}}=1 \mathrm{MHz}, \mathrm{f}_{\text {NOISE }}=100 \mathrm{kHz} \text { to } 2.5 \mathrm{MHz} \\ & \mathrm{f}_{\text {NOISE }}=100 \mathrm{kHz} \text { to } 2.5 \mathrm{MHz} \end{aligned}$
SAMPLE AND HOLD Aperture Delay Aperture Delay Match Aperture Jitter Full Power Bandwidth		$\begin{aligned} & 16 \\ & 110 \\ & 77 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 40 \end{aligned}$	ns ps ps MHz MHz	$\begin{aligned} & @ 3 \text { dB } \\ & @ 0.1 \text { dB } \end{aligned}$
DC ACCURACY Resolution Integral Nonlinearity Differential Nonlinearity Positive Full-Scale Error Positive Full-Scale Error Match Midscale Error Midscale Error Match Negative Full-Scale Error Negative Full-Scale Error Match	14	± 1 ± 1 ± 1	$\begin{aligned} & \pm 2 \\ & \pm 0.99 \\ & \pm 10 \\ & \pm 6 \\ & \pm 10 \\ & \pm 6 \\ & \pm 10 \\ & \pm 6 \end{aligned}$	$\begin{aligned} & \text { Bits } \\ & \text { LSB } \end{aligned}$	Guaranteed no missed codes to 14 bits
ANALOG INPUT Fully Differential Input Range ($\mathrm{V}_{\mathbb{N}+}$ and $\mathrm{V}_{\mathbb{N}-}$) Common-Mode Voltage Range DC Leakage Current Input Capacitance	0.5	$\begin{aligned} & \pm 0.5 \\ & 32 \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}} \pm \mathrm{V}_{\mathrm{REF}} / 2 \\ & 1.9 \\ & \pm 5 \end{aligned}$	V V $\mu \mathrm{A}$ pF pF	$\mathrm{V}_{\mathrm{CM}}=$ common-mode voltage, $\mathrm{V}_{\mathrm{IN}+}$ and V_{IN} - must remain within GND and V_{DD} The voltage around which $\mathrm{V}_{\mathrm{IN}_{+}}$and $\mathrm{V}_{\mathrm{IN}_{-}}$ are centered When in track mode When in hold mode
REFERENCE INPUT/OUTPUT $V_{\text {REF }}$ Input Voltage Range $V_{\text {ref }}$ Input Current $V_{\text {ReF }}$ Output Voltage $V_{\text {REF }}$ Temperature Coefficient $V_{\text {REF }}$ Long Term Stability $V_{\text {REF }}$ Thermal Hysteresis ${ }^{2}$ $V_{\text {Ref }}$ Noise $V_{\text {REF }}$ Output Impedance $V_{\text {REF }}$ Input Capacitance	$\begin{aligned} & 2.048+0.1 \\ & 2.038 \\ & 2.043 \end{aligned}$		$V_{D D}$ 0.45 2.058 2.053 20	V mA V V $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ ppm ppm $\mu \mathrm{V}$ rms Ω pF	When in reference overdrive mode $\begin{aligned} & \pm 2.048 \mathrm{~V} \pm 0.5 \% \max @ \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \% \\ & 2.048 \mathrm{~V} \pm 0.25 \% \max @ \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 5 \% \text { and } \\ & 25^{\circ} \mathrm{C} \end{aligned}$ For 1000 hours When in track

Parameter	Min	Typ	Max	Unit	Test Conditions/Comments
LOGIC INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current, In Input Capacitance, CIN	$0.6 \times V_{\text {DRIVE }}$		$\begin{aligned} & 0.3 \times V_{\text {DRIVE }} \\ & \pm 1 \end{aligned}$	V V $\mu \mathrm{A}$ pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {drive }}$
LOGIC OUTPUTS Output High Voltage, V 아 Output Low Voltage, VoL Floating-State Leakage Current Floating-State Output Capacitance Output Coding	$V_{\text {DRIVE }}-0.2$	$\begin{gathered} 5.5 \\ \text { ght B } \\ \hline \end{gathered}$	$\begin{aligned} & 0.2 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$	
CONVERSION RATE Conversion Time Track-and-Hold Acquisition Time Throughput Rate	$\mathrm{t}_{2}+15 \times \mathrm{tsclk}^{\text {che }}$		$\begin{aligned} & 30 \\ & 4.2 \end{aligned}$	ns ns MSPS	Full-scale step input
POWER REQUIREMENTS VD $V_{\text {DRIVE }}$ $I_{\text {total }}{ }^{3}$ Normal Mode (Operational) Normal Mode (Static) Partial Power-Down Mode Full Power-Down Mode Power Dissipation Normal Mode (Operational) Normal Mode (Static) Partial Power-Down Mode Full Power-Down Mode	$\begin{aligned} & 2.25 \\ & 2.25 \end{aligned}$	$\begin{aligned} & 14 \\ & 6 \\ & 3.5 \\ & 5 \\ & \\ & 36 \\ & 16 \\ & 9.5 \\ & 16 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 3.6 \\ & \\ & 20 \\ & 7.5 \\ & 4.5 \\ & 40 \\ & \\ & 59 \\ & 21 \\ & 11.5 \\ & 110 \end{aligned}$	V V mA mA mA $\mu \mathrm{A}$ mW mW mW $\mu \mathrm{W}$	Nominal $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ Digital inputs $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DRIVE }}$ SCLK on or off

[^0]
TIMING SPECIFICATIONS

$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{DRIVE}}=2.25 \mathrm{~V}$ to 3.6 V , internal reference $=2.048 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MAX}}$ to $\mathrm{T}_{\mathrm{MIN}}{ }^{1}$, unless otherwise noted.
Table 3.

Parameter	Limit at $\mathrm{T}_{\text {MIN, }} \mathrm{T}_{\text {MAX }}$	Unit	Description
$\mathrm{fscık}$	50	kHz min	
	80	MHz max	
tconvert	$\mathrm{t}_{2}+15 \times \mathrm{tsclk}$	ns max	$\mathrm{t}_{\text {ccik }}=1 / \mathrm{fsclu}$
teuiet	5	ns min	Minimum time between end of serial read and next falling edge of $\overline{C S}$
t_{2}	5	$n \mathrm{~ns}$ min	$\overline{\text { CS }}$ to SCLK setup time
$\mathrm{t}_{3}{ }^{\text {a }}$	6	ns max	Delay from $\overline{C S}$ until SDATA ${ }_{A}$ and SDATA $_{B}$ are three-state disabled
$\mathrm{t}_{4}{ }^{2,3}$			Data access time after SCLK falling edge
	12.5	ns max	$1.8 \mathrm{~V} \leq \mathrm{V}_{\text {drive }}<2.25 \mathrm{~V}$
	11	ns max	$2.25 \mathrm{~V} \leq \mathrm{V}_{\text {DRIVE }}<2.75 \mathrm{~V}$
	9.5	ns max	$2.75 \mathrm{~V} \leq \mathrm{V}_{\text {DRIVE }}<3.3 \mathrm{~V}$
	9	ns max	$3.3 \mathrm{~V} \leq \mathrm{V}_{\text {drive }} \leq 3.6 \mathrm{~V}$
t_{5}	5	$n s$ min	SCLK low pulse width
t_{6}	5	$n \mathrm{n}$ min	SCLK high pulse width
$\mathrm{t}_{7}{ }^{2}$	3.5	$n \mathrm{~ns}$ min	SCLK to data valid hold time
t_{8}	9.5	ns max	$\overline{C S}$ rising edge to SDATA ${ }_{A}$, SDATA $^{\text {B }}$, high impedance
t_{9}	5	$n \mathrm{~ns}$ min	$\overline{\text { CS }}$ rising edge to falling edge pulse width
$\mathrm{t}_{10}{ }^{2}$	4.5	$n s$ min	SCLK falling edge to SDATA A_{A}, SDATA 3, high impedance
	9.5	ns max	SCLK falling edge to SDATA A_{A}, SDATA $^{\text {, }}$, high impedance
Latency	1 conversion latency		

[^1]
ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
$V_{\text {DD }}$ to AGND, DGND, REFGND	-0.3 V to +3 V
V ${ }_{\text {drive }}$ to AGND, DGND, REFGND	-0.3 V to +5 V
$V_{\text {DD }}$ to $V_{\text {DRIVE }}$	-5 V to +3V
AGND to DGND to REFGND	-0.3 V to +0.3 V
Analog Input Voltages ${ }^{1}$ to AGND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Input Voltages ${ }^{2}$ to DGND	-0.3 V to $\mathrm{V}_{\text {drive }}+0.3 \mathrm{~V}$
Digital Output Voltages ${ }^{3}$ to DGND	-0.3 V to $\mathrm{V}_{\text {drive }}+0.3 \mathrm{~V}$
Input Current to Any Pin Except Supplies ${ }^{4}$	$\pm 10 \mathrm{~mA}$
Operating Temperature Range	
Y Grade	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
B Grade	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP Package	
$\theta_{\text {JA }}$ Thermal Impedance	$143^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$ Thermal Impedance	$45^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Reflow Temperature (10 to 30 sec)	$255^{\circ} \mathrm{C}$
ESD	2 kV

[^2]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2.
Table 5. Pin Function Descriptions

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \\ & \hline \end{aligned}$	Mnemonic	Description
1,2	$\mathrm{V}_{\text {INA-, }} \mathrm{V}_{\text {INA }}$	Analog Inputs of ADC A. These analog inputs form a fully differential pair.
3,6	$\mathrm{REF}_{\mathrm{A},} \mathrm{REF}_{\mathrm{B}}$	Reference Decoupling Capacitor Pins. Decoupling capacitors are connected between these pins and the REFGND pin to decouple the reference buffer for each respective ADC. It is recommended to decouple each reference pin with a $10 \mu \mathrm{~F}$ capacitor. Provided the output is buffered, the on-chip reference can be taken from these pins and applied externally to the rest of the system. The nominal internal reference voltage is 2.048 V and appears at these pins. These pins can also be overdriven by an external reference. The input voltage range for the external reference is $2.048 \mathrm{~V}+100 \mathrm{mV}$ to V_{DD}.
4	REFGND	Reference Ground. This is the ground reference point for the reference circuitry on the AD7357. Any external reference signal should be referred to this REFGND voltage. Decoupling capacitors must be placed between this pin and the $\mathrm{REF}_{\mathrm{A}}$ and $\mathrm{REF}_{\mathrm{B}}$ pins.
5,11	AGND	Analog Ground. This is the ground reference point for all analog circuitry on the AD7357. All analog input signals and should be referred to this AGND voltage. The AGND and DGND voltages should ideally be at the same potential and must not be more than 0.3 V apart, even on a transient basis.
7,8	$\mathrm{V}_{\text {INB },} \mathrm{V}_{\text {INB }+}$	Analog Inputs of ADC B. These analog inputs form a fully differential pair.
9	$V_{D D}$	Power Supply Input. The $V_{D D}$ range for the AD7357 is $2.5 \mathrm{~V} \pm 10 \%$. The supply should be decoupled to AGND with a $0.1 \mu \mathrm{~F}$ capacitor and a $10 \mu \mathrm{~F}$ tantalum capacitor.
10	$\overline{C S}$	Chip Select. Active low logic input. This input provides the dual function of initiating conversions on the AD7357 and framing the serial data transfer.
12	DGND	Digital Ground. This is the ground reference point for all digital circuitry on the AD7357. This pin should connect to the DGND plane of a system. The DGND and AGND voltages should ideally be at the same potential and must not be more than 0.3 V apart, even on a transient basis.
13, 14	SDATA $^{\text {, }}$, SDATA $_{A}$	Serial Data Outputs. The data output is supplied to each pin as a serial data stream. The bits are clocked out on the falling edge of the SCLK input. 16 SCLK falling edges are required to access the 14 bits of data from the AD7357. The data simultaneously appears on both data output pins from the simultaneous conversions of both ADCs. The data stream consists of one leading zero followed by the 14 bits of conversion data followed by a trailing zero. The data is provided MSB first. If $\overline{C S i s}$ held low for 18 SCLK cycles rather than 16, then two further trailing zeros appear after the 14 bits of data. If $\overline{C S i s}$ held low for a further 18 SCLK cycles on either SDATA A_{A} or SDATA $_{B}$, the data from the other ADC follows on the SDATA pin. This allows data from a simultaneous conversion on both ADCs to be gathered in serial format on either SDATA A_{A} or SDATA ${ }_{B}$.
15	SCLK	Serial Clock. Logic input. A serial clock input provides the SCLK for accessing the data from the AD7357. This clock is also used as the clock source for the conversion process.
16	$V_{\text {drive }}$	Logic Power Supply Input. The voltage supplied at this pin determines at what voltage the interface operates. This pin should be decoupled to DGND. The voltage at this pin may be different to that at $V_{D D}$.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Typical FFT

Figure 4. Typical DNL

Figure 5. Typical INL

Figure 6. Histogram of Codes

Figure 7. SNR vs. Analog Input Frequency

Figure 8. PSRR vs. Supply Ripple with No Supply Decoupling

Figure 9. VREF vs. Reference Output Current Drive

Figure 10. Linearity Error vs. SCLK Frequency

Figure 11. Linearity Error vs. External $V_{\text {REF }}$

TERMINOLOGY

Integral Nonlinearity (INL)

INL is the maximum deviation from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are zero scale (1 LSB below the first code transition) and full scale (1 LSB above the last code transition).

Differential Nonlinearity (DNL)

DNL is the difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC.

Negative Full-Scale Error

Negative full-scale error is the deviation of the first code transition ($00 \ldots 000$) to ($00 \ldots 001$) from the ideal (that is, $-\mathrm{V}_{\text {REF }}+0.5 \mathrm{LSB}$) after the midscale error has been adjusted out.

Negative Full-Scale Error Match

Negative full-scale error match is the difference in negative fullscale error between the two ADCs.

Midscale Error

Midscale error is the deviation of the midscale code transition ($011 \ldots 111$) to ($100 \ldots 000$) from the ideal (that is, 0 V).

Midscale Error Match

Midscale error match is the is the difference in midscale error between the two ADCs.

Positive Full-Scale Error

Positive full-scale error is the deviation of the last code transition (111 ... 110) to (111 ... 111) from the ideal (that is, $V_{\text {ref }}-1.5 \mathrm{LSB}$) after the midscale error has been adjusted out.

Positive Full-Scale Error Match

Positive full-scale error match is the difference in positive fullscale error between the two ADCs.

ADC-to-ADC Isolation

ADC-to-ADC isolation is a measure of the level of crosstalk between ADC A and ADC B. It is measured by applying a fullscale 1 MHz sine wave signal to one of the two ADCs and applying a full-scale signal of variable frequency to the other ADC. The ADC-to-ADC isolation is defined as the ratio of the power of the 1 MHz signal on the converted ADC to the power of the noise signal on the other ADC that appears in the FFT. The noise frequency on the unselected channel varies from 100 kHz to 2.5 MHz .

Power Supply Rejection Ratio (PSRR)

PSRR is defined as the ratio of the power in the ADC output at full-scale frequency, f, to the power of a 100 mV p-p sine wave applied to the $\mathrm{ADC} \mathrm{V}_{\mathrm{DD}}$ supply of frequency f. The frequency of the input varies from 5 kHz to 25 MHz .

$$
\operatorname{PSRR}(\mathrm{dB})=10 \log \left(P f / P f_{s}\right)
$$

where:
$P f$ is the power at frequency, f , in the ADC output.
$P f_{s}$ is the power at frequency, f_{s}, in the ADC output.

Common-Mode Rejection Ratio (CMRR)

CMRR is defined as the ratio of the power in the ADC output at full-scale frequency, f, to the power of a 100 mV p-p sine wave applied to the common-mode voltage of $\mathrm{V}_{\text {IN+ }}$ and $\mathrm{V}_{\text {IN- }}$ of frequency, f_{s}, as

$$
C M R R(\mathrm{~dB})=10 \log \left(P f / P f_{s}\right)
$$

where:
$P f$ is the power at frequency, f , in the ADC output.
$P f_{s}$ is the power at frequency, f_{s}, in the ADC output.
Track-and-Hold Acquisition Time
The track-and-hold amplifier returns to track mode at the end of a conversion. The track-and-hold acquisition time is the time required for the output of the track-and-hold amplifier to reach its final value, within $\pm 1 / 2 \mathrm{LSB}$, after the end of conversion.

Signal-to-(Noise + Distortion) Ratio (SINAD)
SINAD is the measured ratio of signal-to-(noise + distortion) at the output of the ADC. The signal is the rms amplitude of the fundamental. Noise is the sum of all nonfundamental signals up to half the sampling frequency ($\mathrm{f}_{\mathrm{s}} / 2$), excluding dc. The ratio is dependent on the number of quantization levels in the digitization process; the more levels, the smaller the quantization noise.
The theoretical SINAD for an ideal N-bit converter with a sine wave input is given by

$$
\operatorname{SINAD}=(6.02 N+1.76) \mathrm{dB}
$$

Thus, for a 12-bit converter, SINAD is 74 dB and for a 14-bit converter, SINAD is 86 dB .
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of harmonics to the fundamental. For the AD7357, it is defined as

$$
T H D(\mathrm{~dB})=-20 \log \frac{\sqrt{V_{2}^{2}+V_{3}^{2}+V_{4}^{2}+V_{5}^{2}+V_{6}^{2}}}{V_{1}}
$$

where:
V_{1} is the rms amplitude of the fundamental.
$V_{2}, V_{3}, V_{4}, V_{5}$, and V_{6} are the rms amplitudes of the second through the sixth harmonics.

Peak Harmonic or Spurious Noise

Peak harmonic or spurious noise is defined as the ratio of the rms value of the next largest component in the ADC output spectrum (up to $\mathrm{f}_{\mathrm{s}} / 2$ and excluding dc) to the rms value of the fundamental. Normally, the value of this specification is determined by the largest harmonic in the spectrum, but for ADCs where the harmonics are buried in the noise floor, it is a noise peak.

Intermodulation Distortion

With inputs consisting of sine waves at two frequencies, fa and fb , any active device with nonlinearities creates distortion products at sum and difference frequencies of $\mathrm{mfa} \pm \mathrm{nfb}$ where $\mathrm{m}, \mathrm{n}=0,1,2,3$, and so on. Intermodulation distortion terms are those for which neither m nor n are equal to zero. For example, the second-order terms include ($\mathrm{fa}+\mathrm{fb}$) and ($\mathrm{fa}-\mathrm{fb}$), while the third-order terms include $(2 \mathrm{fa}+\mathrm{fb}),(2 \mathrm{fa}-\mathrm{fb}),(\mathrm{fa}+$ 2 fb), and ($\mathrm{fa}-2 \mathrm{fb}$).

The AD7357 is tested using the CCIF standard where two input frequencies near the top end of the input bandwidth are used. In this case, the second-order terms are usually distanced in frequency from the original sine waves, while the third-order terms are usually at a frequency close to the input frequencies. As a result, the second- and third-order terms are specified separately. The calculation of the intermodulation distortion is as per the THD specification, where it is the ratio of the rms
sum of the individual distortion products to the rms amplitude of the sum of the fundamentals expressed in decibels.

Thermal Hysteresis

Thermal hysteresis is defined as the absolute maximum change of reference output voltage after the device is cycled through temperature from either

$$
\begin{aligned}
& T_{-} H Y S+=25^{\circ} \mathrm{C} \text { to } T_{M A X} \text { to } 25^{\circ} \mathrm{C} \\
& T_{-} H Y S-=25^{\circ} \mathrm{C} \text { to } T_{M I N} \text { to } 25^{\circ} \mathrm{C}
\end{aligned}
$$

It is expressed in ppm using the following equation:

$$
V_{H Y S}(p p m)=\left|\frac{V_{R E F}\left(25^{\circ} \mathrm{C}\right)-V_{R E F}\left(T_{-} H Y S\right)}{V_{R E F}\left(25^{\circ} \mathrm{C}\right)}\right| \times 10^{6}
$$

where:
$V_{\text {ReF }}\left(25^{\circ} \mathrm{C}\right)$ is $V_{\text {ref }}$ at $25^{\circ} \mathrm{C}$
$V_{\text {Ref }}\left(T_{-} H Y S\right)$ is the maximum change of $\mathrm{V}_{\text {ref }}$ at $\mathrm{T}_{-} \mathrm{HYS}+$ or T_HYS-.

THEORY OF OPERATION

CIRCUIT INFORMATION

The AD7357 is a high speed, dual, 14-bit, single-supply, successive approximation analog-to-digital converter. The part operates from a 2.5 V power supply and features throughput rates up to 4.2 MSPS.

The AD7357 contains two on-chip differential track-and-hold amplifiers, two successive approximation analog-to-digital converters, and a serial interface with two separate data output pins. The part is housed in a 16 -lead TSSOP package, offering the user considerable space-saving advantages over alternative solutions.
The serial clock input accesses data from the part, but also provides the clock source for each successive approximation ADC. The AD7357 has an on-chip 2.048 V reference. If an external reference is desired the internal reference can be overdriven with a reference of value ranging from $(2.048 \mathrm{~V}+$ 100 mV) to V_{DD}. If the internal reference is to be used elsewhere in the system, then the reference output needs to be buffered first. The differential analog input range for the AD7357 is V_{CM} $\pm \mathrm{V}_{\text {Ref }} / 2$.
The AD7357 features power-down options to allow power saving between conversions. The power-down feature is implemented via the standard serial interface, as described in the Modes of Operation section.

CONVERTER OPERATION

The AD7357 has two successive approximation ADCs, each based around two capacitive DACs. Figure 14 and Figure 15 show simplified schematics of one of these ADCs in acquisition and conversion phase, respectively. The ADC is comprised of control logic, a SAR, and two capacitive DACs. In Figure 14 (the acquisition phase), SW3 is closed, SW1 and SW2 are in Position A, the comparator is held in a balanced condition, and the sampling capacitor arrays may acquire the differential signal on the input.

Figure 14. ADC Acquisition Phase
When the ADC starts a conversion (Figure 15), SW3 opens and SW1 and SW2 move to Position B, causing the comparator to become unbalanced. Both inputs are disconnected once the conversion begins. The control logic and charge redistribution

DACs are used to add and subtract fixed amounts of charge from the sampling capacitor arrays to bring the comparator back into a balanced condition. When the comparator is rebalanced, the conversion is complete. The control logic generates the ADC output code. The output impedances of the sources driving the $\mathrm{V}_{\mathrm{IN}+}$ and $\mathrm{V}_{\mathrm{IN}-}$ pins must be matched, otherwise the two inputs have different settling times, resulting in errors.

Figure 15. ADC Conversion Phase

ANALOG INPUT STRUCTURE

Figure 16 shows the equivalent circuit of the analog input structure of the AD7357. The four diodes provide ESD protection for the analog inputs. Care must be taken to ensure that the analog input signals never exceed the supply rails by more than 300 mV . This causes these diodes to become forward-biased and start conducting into the substrate. These diodes can conduct up to 10 mA without causing irreversible damage to the part.
The C 1 capacitors in Figure 16 are typically 8 pF and can primarily be attributed to pin capacitance. The R1 resistors are lumped components made up of the on resistance of the switches. The value of these resistors is typically about 30Ω. The C2 capacitors are the ADC's sampling capacitors with a capacitance of 32 pF typically.

Figure 16.Equivalent Analog Input Circuit,
Conversion Phase—Switches Open, Track Phase—Switches Closed

For ac applications, removing high frequency components from the analog input signal is recommended by the use of an RC low-pass filter on the analog input pins. In applications where
harmonic distortion and signal-to-noise ratio are critical, the analog input should be driven from a low impedance source. Large source impedances significantly affect the ac performance of the ADC and may necessitate the use of an input buffer amplifier. The choice of the op amp is a function of the particular application.
When no amplifier is used to drive the analog input, the source impedance should be limited to low values. The maximum source impedance depends on the amount of THD that can be tolerated. The THD increases as the source impedance increases and performance degrades. Figure 17 shows a graph of the THD vs. the analog input signal frequency for various source impedances.

Figure 17. THD vs. Analog Input Frequency for Various Source Impedances
Figure 18 shows a graph of the THD vs. the analog input frequency while sampling at 4.2 MSPS. In this case, the source impedance is 33Ω.

Figure 18. THD vs. Analog Input Frequency

ANALOG INPUTS

Differential signals have some benefits over single-ended signals, including noise immunity based on the devices common-mode rejection and improvements in distortion
performance. Figure 19 defines the fully differential input of the AD7357.

Figure 19. Differential Input Definition
The amplitude of the differential signal is the difference between the signals applied to the $\mathrm{V}_{\text {IN }+}$ and $\mathrm{V}_{\text {IN- }}$ pins in each differential pair ($\mathrm{V}_{\text {IN }+}-\mathrm{V}_{\mathrm{IN}-}$). $\mathrm{V}_{\text {IN }+}$ and $\mathrm{V}_{\text {IN }-}$ should be simultaneously driven by two signals each of amplitude $\mathrm{V}_{\text {ref }}$ that are 180° out of phase. This amplitude of the differential signal is, therefore $-V_{\text {ref }}$ to $+V_{\text {ref }}$ peak-to-peak regardless of the common mode (CM).

The common mode is the average of the two signals and is therefore the voltage on which the two inputs are centered.

$$
C M=\left(V_{I N+}+V_{I N-}\right) / 2
$$

This results in the span of each input being $\mathrm{CM} \pm \mathrm{V}_{\text {ref }} / 2$. This voltage has to be set up externally. When setting up the CM, ensure that that $\mathrm{V}_{\text {IN }+}$ and $\mathrm{V}_{\text {IN- }}$ remain within GND/VDD. When a conversion takes place, common mode is rejected resulting in a virtually noise free signal of amplitude $-V_{\text {REF }}$ to $+V_{\text {ref }}$ corresponding to the digital codes of 0 to 16383 for the AD7357.

DRIVING DIFFERENTIAL INPUTS

Differential operation requires $\mathrm{V}_{\text {IN }+}$ and $\mathrm{V}_{\text {IN }-}$ to be driven simultaneously with two equal signals that are 180° out of phase. Because not all applications have a signal preconditioned for differential operation, there is often a need to perform a single-ended-to-differential conversions.

Differential Amplifier

An ideal method of applying differential drive to the AD7357 is to use a differential amplifier such as the AD8138. This part can be used as a single-ended-to-differential amplifier or as a differential-to-differential amplifier. The AD8138 also provides common-mode level shifting. Figure 20 shows how the AD8138 can be used as a single-ended-to-differential amplifier. The positive and negative outputs of the AD8138 are connected to the respective inputs on the ADC via a pair of series resistors to minimize the effects of switched capacitance on the front end of the ADC. The architecture of the AD8138 results in outputs that are very highly balanced over a wide frequency range without requiring tightly matched external components.

If the analog inputs source being used has zero impedance, all four resistors ($\mathrm{R}_{\mathrm{G}} 1, \mathrm{R}_{\mathrm{G}} 2, \mathrm{R}_{\mathrm{F}} 1$, and $\mathrm{R}_{\mathrm{F}} 2$) should be the same. If the source has a 50Ω impedance and a 50Ω termination, for example, the value of $\mathrm{R}_{\mathrm{G}} 2$ should be increased by 25Ω to balance this parallel impedance on the input and thus ensure that both the positive and negative analog inputs have the same gain. The outputs of the amplifier are perfectly matched balanced differential outputs of identical amplitude and are exactly 180° out of phase.

*MOUNT AS CLOSE TO THE AD7357 AS POSSIBLE
AND ENSURE HIGH PRECISION RS RESISTORS ARE USED.
$\mathrm{R}_{\mathrm{S}}-33 \Omega ; \mathrm{R}_{\mathrm{G}} 1=\mathrm{R}_{\mathrm{F}} 1=\mathrm{R}_{\mathrm{F}} 2=499 \Omega ; \mathrm{C}_{\mathrm{F}} 1=\mathrm{C}_{\mathrm{F}} 2=39 \mathrm{pF}$;
Figure 20. Using the AD8138 as a Single-Ended-to-Differential Amplifier

Op Amp Pair

An op amp pair can be used to directly couple a differential signal to one of the analog input pairs of the AD7357. The circuit configurations shown in Figure 21 and Figure 22 show how an op amp pair can be used to convert a single-ended signal into a differential signal for a bipolar and unipolar input signal, respectively. The voltage applied to Point A sets up the common-mode voltage. In both diagrams, it is connected in some way to the reference. The AD8022 is a suitable dual op amp that could be used in this configuration to provide differential drive to the AD7357.

*ADDITIONAL PINS OMITTED FOR CLARITY.
Figure 21. Dual Op Amp Circuit to Convert a Single-Ended Unipolar Signal

Figure 22. Dual Op Amp Circuit to Convert a Single-Ended Bipolar Signal into a Differential Unipolar Signal

ADC TRANSFER FUNCTION

The output coding for the AD7357 is straight binary. The designed code transitions occur at successive LSB values (such as, 1 LSB, 2 LSBs). The LSB size is $\left(2 \times \mathrm{V}_{\text {ref }}\right) / 16384$. The ideal transfer characteristic of the AD7357 is shown in Figure 23.

Figure 23. AD7357 Deal Transfer Characteristic

MODES OF OPERATION

The mode of operation of the AD7357 is selected by controlling the logic state of the $\overline{\mathrm{CS}}$ signal during a conversion. There are three possible modes of operation: normal mode, partial powerdown mode, and full power-down mode. After a conversion has been initiated, the point at which $\overline{\mathrm{CS}}$ is pulled high determines which power-down mode, if any, the device enters. Similarly, if already in a power-down mode, $\overline{\mathrm{CS}}$ can control whether the device returns to normal operation or remains in a power-down mode. These modes of operation are designed to provide flexible power management options. These options can be chosen to optimize the power dissipation/throughput rate ratio for the differing application requirements.

NORMAL MODE

Normal mode is intended for applications needing the fastest throughput rates. The user does not have to worry about any power-up times because the AD7357 remains fully powered at all times. Figure 24 shows the general diagram of the operation of the AD7357 in this mode.

The conversion is initiated on the falling edge of $\overline{\mathrm{CS}}$, as described in the Serial InterfaceError! Reference source not found. section. To ensure that the part remains fully powered up at all times, $\overline{\mathrm{CS}}$ must remain low until at least 10 SCLK falling edges have elapsed after the falling edge of $\overline{\mathrm{CS}}$. If $\overline{\mathrm{CS}}$ is brought high any time after the $10^{\text {th }}$ SCLK falling edge but before the $16^{\text {th }}$ SCLK falling edge, the part remains powered up, but the conversion is terminated and SDATA A_{A} and SDATA $_{B}$ go back into three-state. 16 serial clock cycles are required to complete the conversion and access the conversion result for the AD7357. The SDATA lines do not return to three-state after 16 SCLK cycles have elapsed, but instead do so when $\overline{\mathrm{CS}}$ is brought high again. If $\overline{\mathrm{CS}}$ is left low for another 2 SCLK cycles, two trailing zeros are clocked out after the data. If $\overline{\mathrm{CS}}$ is left low for a further 16 SCLK cycles, the result for the other ADC on board is also accessed on the same SDATA line as shown in Figure 31 (see the Serial Interface section).

Once 32 SCLK cycles have elapsed, the SDATA line returns to three-state on the $32^{\text {nd }}$ SCLK falling edge. If $\overline{\mathrm{CS}}$ is brought high prior to this, the SDATA line returns to three-state at that point. Thus, $\overline{\mathrm{CS}}$ may idle low after 32 SCLK cycles until it is brought high again sometime prior to the next conversion if so desired, because the bus still returns to three-state upon completion of the dual result read.

Once a data transfer is complete and SDATA A and SDATA $_{B}$ have returned to three-state, another conversion can be initiated after the quiet time, $\mathrm{t}_{\text {Quiet }}$, has elapsed by bringing $\overline{\mathrm{CS}}$ low again (assuming the required acquisition time has been allowed).

PARTIAL POWER-DOWN MODE

This mode is intended for use in applications where slower throughput rates are required. Either the ADC is powered down between each conversion, or a series of conversions may be performed at a high throughput rate and the ADC is then powered down for a relatively long duration between these bursts of several conversions. When the AD7357 is in partial power-down, all analog circuitry is powered down except for the on-chip reference and reference buffers.
To enter partial power-down mode, the conversion process must be interrupted by bringing $\overline{\mathrm{CS}}$ high anywhere after the second falling edge of SCLK and before the $10^{\text {th }}$ falling edge of SCLK, as shown in Figure 25. Once $\overline{\mathrm{CS}}$ has been brought high in this window of SCLKs, the part enters partial power-down mode, the conversion that was initiated by the falling edge of $\overline{\mathrm{CS}}$ is terminated, and SDATA A and SDATA ${ }_{B}$ go back into threestate. If $\overline{\mathrm{CS}}$ is brought high before the second SCLK falling edge, the part remains in normal mode and does not power down. This avoids accidental power-down due to glitches on the $\overline{\mathrm{CS}}$ line.

Figure 25. Entering Partial Power-Down Mode
To exit this mode of operation and power up the AD7357 again, perform a dummy conversion. On the falling of $\overline{\mathrm{CS}}$, the device begins to power up, and continues to power up as long as $\overline{\mathrm{CS}}$ is held low until after the falling edge of the $10^{\text {th }}$ SCLK. The device is fully powered up after approximately 200 ns has elapsed (or one full conversion), and valid data results from the next conversion, as shown in Figure 26. If $\overline{\mathrm{CS}}$ is brought high before the second falling edge of SCLK, the AD7357 again goes into partial power-down mode. This avoids accidental power-up due to glitches on the $\overline{\mathrm{CS}}$ line. Although the device may begin to power up on the falling edge of $\overline{\mathrm{CS}}$, it powers down again on the rising edge of $\overline{\mathrm{CS}}$. If the AD7357 is already in partial powerdown mode and $\overline{\mathrm{CS}}$ is brought high between the second and $10^{\text {th }}$ falling edges of SCLK, the device enters full power-down mode.

FULL POWER-DOWN MODE

This mode is intended for use in applications where throughput rates slower than those in the partial power-down mode are required, as power-up from a full power-down takes substantially longer than that from a partial power-down. This mode is more suited to applications where a series of conversions performed at a relatively high throughput rate are followed by a long period of inactivity and thus, power-down. When the AD7357 is in full power-down, all analog circuitry is powered down. Full power-down is entered in a similar way as partial power-down, except that the timing sequence shown in Figure 25 must be executed twice. The conversion process must be interrupted in a similar fashion by bringing $\overline{\mathrm{CS}}$ high anywhere after the second falling edge of SCLK and before the
$10^{\text {th }}$ falling edge of SCLK. The device enters partial power-down mode at this point.
To reach full power-down, the next conversion cycle must be interrupted in the same way, as shown in Figure 27. Once $\overline{\mathrm{CS}}$ has been brought high in this window of SCLKs, the part completely powers down.
Note that it is not necessary to complete the 16 SCLKs once $\overline{\mathrm{CS}}$ has been brought high to enter a power-down mode.
To exit full power-down mode and power-up the AD7357, perform a dummy conversion, such as powering up from partial power-down. On the falling edge of $\overline{\mathrm{CS}}$, the device begins to power up, as long as $\overline{\mathrm{CS}}$ is held low until after the falling edge of the $10^{\text {th }}$ SCLK. The required power-up time must elapse before a conversion can be initiated, as shown in Figure 28.

Figure 26. Exiting Partial Power-Down Mode

Figure 27. Entering Full Power-Down Mode

Figure 28. Exiting Full Power-Down Mode

POWER-UP TIMES

The AD7357 has two power-down modes: partial power-down and full power-down. There are described in detail in the Partial Power-Down Mode and Full Power-Down Mode sections. This section deals with the power-up time required when coming out of either of these modes. It should be noted that the power-up times apply with the recommended decoupling capacitors in place on the REF_{A} and $\mathrm{REF}_{\mathrm{B}}$ pins.
To power up from partial power-down mode, one dummy cycle is required. The device is fully powered up after approximately 200 ns from the falling edge of $\overline{C S}$ has elapsed. Once the partial power-up time has elapsed, the ADC is fully powered up and the input signal is acquired properly. The quiet time, tQuiet, must still be allowed from the point where the bus goes back into three-state after the dummy conversion to the next falling edge of $\overline{\mathrm{CS}}$.

To power up from full power-down, approximately 6 ms should be allowed from the falling edge of $\overline{\mathrm{CS}}$, shown in Figure 28 as
t ${ }_{\text {POWER-UP2. }}$
Note that during power-up from partial power-down mode, the track-and-hold, which is in hold mode while the part is powered down, returns to track mode after the first SCLK edge that the part receives after the falling edge of $\overline{\mathrm{CS}}$.
When power supplies are first applied to the AD7357, the ADC can power up in either of the power-down modes or in normal mode. Because of this, it is best to allow a dummy cycle to elapse to ensure that the part is fully powered up before attempting a valid conversion. Likewise, if the part is to be kept in partial power-down mode immediately after the supplies are applied, then two dummy cycles must be initiated. The first dummy cycle must hold $\overline{\mathrm{CS}}$ low until after the $10^{\text {th }}$ SCLK falling edge; in the second cycle, $\overline{\mathrm{CS}}$ must be brought high between the second and $10^{\text {th }}$ SCLK falling edges (see Figure 25).

Alternatively, if the part is to be placed into full power-down mode when the supplies are applied, three dummy cycles must be initiated. The first dummy cycle must hold $\overline{\mathrm{CS}}$ low until after the $10^{\text {th }}$ SCLK falling edge; the second and third dummy cycles place the part into full power-down mode (see Figure 27 and the Full Power-Down Mode section).

POWER vs. THROUGHPUT RATE

The power consumption of the AD7357 varies with the throughput rate. When using very slow throughput rates and as fast an SCLK frequency as possible, the various powerdown options can be used to make significant power savings. However, the AD7357 quiescent current is low enough that even without using the power-down options, there is a noticeable variation in power consumption with sampling rate. This is true whether a fixed SCLK value is used or if it is scaled with the sampling rate. Figure 29 shows a plot of power vs. throughput rate when operating in normal mode for a fixed maximum SCLK frequency and an SCLK frequency that scales with the sampling rate. The internal reference was used for Figure 29.

Figure 29. Power vs. Throughput Rate

SERIAL INTERFACE

Figure 30 shows the detailed timing diagram for serial interfacing to the AD7357. The serial clock provides the conversion clock and controls the transfer of information from the AD7357 during conversion.

The $\overline{\mathrm{CS}}$ signal initiates the data transfer and conversion process. The falling edge of $\overline{\mathrm{CS}}$ puts the track and hold into hold mode at which point the analog input is sampled and the bus is taken out of three-state. The conversion is also initiated at this point and requires a minimum of 16 SCLKs to complete. Once 15 SCLK falling edges have elapsed, the track and hold goes back into track on the next SCLK rising edge, as shown in Figure 30 at Point B. On the rising edge of $\overline{\mathrm{CS}}$, the conversion will be terminated and SDATA A and SDATA $_{B}$ go back into three-state. If $\overline{\mathrm{CS}}$ is not brought high, but is instead held low for a further 16 SCLK cycles on SDATA A, the data from the conversion on $A D C B$ are output on SDATA $_{A}$.
Likewise, if $\overline{\mathrm{CS}}$ is held low for a further 16 SCLK cycles on SDATA $_{A}$, the data from the conversion on ADC A is output on SDATA $_{B}$ (see Figure 31). In this case, the SDATA line in use
goes back into three-state on the $32^{\text {nd }}$ SCLK falling edge or the rising edge of $\overline{\mathrm{CS}}$, whichever occurs first.

A minimum of 16 serial clock cycles are required to perform the conversion process and to access data from one conversion on either data line of the AD7357. $\overline{\mathrm{CS}}$ going low provides the leading zero to be read in by the microcontroller or DSP. The remaining data is then clocked out by subsequent SCLK falling edges, beginning with a second leading zero. Thus, the first falling clock edge on the serial clock has the leading zero provided and also clocks out the second leading zero. The 14-bit result then follows with the final bit in the data transfer valid on the $16^{\text {th }}$ falling edge, having being clocked out on the previous ($15^{\text {th }}$) falling edge. In applications with a slower SCLK, it may be possible to read in data on each SCLK rising edge depending on the SCLK frequency. The first rising edge of SCLK after the $\overline{\mathrm{CS}}$ falling edge would have the second leading zero provided, and the $15^{\text {th }}$ rising SCLK edge would have DB0 provided.

Figure 30. Serial Interface Timing Diagram

Figure 31. Reading Data from Both ADCs on One SDATA Line with 32 SCLKs

APPLICATION HINTS

GROUNDING AND LAYOUT

The analog and digital supplies to the AD7357 are independent and separately pinned out to minimize coupling between the analog and digital sections of the device. The printed circuit board (PCB) that houses the AD7357 should be designed so that the analog and digital sections are separated and confined to certain areas of the board. This design facilitates the use of ground planes that can be easily separated.
To provide optimum shielding for ground planes, a minimum etch technique is generally best. The two AGND pins of the AD7357 should be sunk in the AGND plane. Digital and analog ground plans should be joined in only one place. If the AD7357 is in a system where multiple devices require an AGND and DGND connection, the connection should still be made at one point only. A star ground point that should be established as close as possible to the ground pins on the AD7357.
Avoid running digital lines under the device because this couples noise onto the die. The analog ground planes should be allowed to run under the AD7357 to avoid noise coupling. The power supply lines to the AD7357 should use as large a trace as possible to provide low impedance paths and reduce the effects of glitches on the power supply line.

To avoid radiating noise to other sections of the board, fast switching signals such as clocks, should be shielded with digital ground, and clock signals should never run near the analog inputs. Avoid crossover of digital and analog signals. To reduce the effects of feedthrough within the board, traces on opposite sides of the board should run at right angles to each other. A
microstrip technique is the best method, but is not always possible with a double-sided board. In this technique, the component side of the board is dedicated to ground planes, while signals are placed on the solder side.
Good decoupling is important; all supplies should be decoupled with $10 \mu \mathrm{~F}$ tantalum capacitors in parallel with $0.1 \mu \mathrm{~F}$ capacitors to GND. To achieve the best results from these decoupling components, they must be placed as close as possible to the device, ideally right up against the device. The $0.1 \mu \mathrm{~F}$ capacitor should have low effective series resistance (ESR) and effective series inductance (ESI), such as the common ceramic types or surface-mount types. These low ESR and ESI capacitors provide a low impedance path to ground at high frequencies to handle transient currents due to logic switching.

EVALUATING THE AD7357 PERFORMANCE

The recommended layout for the AD7357 is outlined in the evaluation board documentation. The evaluation board package includes a fully assembled and tested evaluation board, documentation, and software for controlling the board from the PC via the converter evaluation and development board (CED). The CED can be used in conjunction with the AD7357 evaluation board (as well as many other evaluation boards ending in the ED designator from Analog Devices, Inc.) to demonstrate/evaluate the ac and dc performance of the AD7357.

The software allows the user to perform ac (fast Fourier transform) and dc (linearity) tests on the AD7357. The software and documentation are on a CD shipped with the evaluation board.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB
Figure 32. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD7357BRUZ 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead TSSOP	RU-16
AD7357BRUZ-500RL7 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead TSSOP	RU-16
AD7357BRUZ-RL 1	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead TSSOP	RU-16
AD7357YRUZ 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead TSSOP	RU-16
AD7357YRUZ-500RL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead TSSOP	RU-16
AD7357YRUZ-RL 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead TSSOP	RU-16

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ Temperature ranges are as follows: Y grade: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, B grade: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ See the Terminology section.
 ${ }^{3} I_{\text {total }}$ is the total current flowing in V_{DD} and $\mathrm{V}_{\text {drive. }}$

[^1]: ${ }^{1}$ Temperature ranges are as follows: Y grade: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, B grade: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Specified with a load capacitance of 10 pF on SDATA $_{A}$ and SDATA $_{B}$.
 ${ }^{3}$ The time required for the output to cross 0.4 V or 2.4 V .

[^2]: ${ }^{1}$ Analog input voltages are $\mathrm{V}_{\mathbb{I N A}+}, \mathrm{V}_{\mathbb{I N A},}, \mathrm{V}_{\mathbb{I N B}+}, \mathrm{V}_{\mathbb{I N B},}, \mathrm{REF}_{\mathrm{A},}$ and $\mathrm{REF}_{\mathrm{B}}$.
 ${ }^{2}$ Digital input voltages are CS and SCLK.
 ${ }^{3}$ Digital output voltages are SDATA A and SDATA $_{B}$.
 ${ }^{4}$ Transient currents of up to 100 mA do not cause SCR latch up.

