# Thyristors

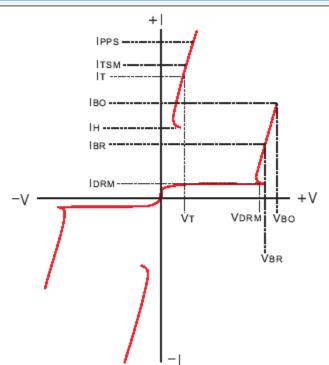
The Protection Products Group of World Products Inc., specializing in protection components for telecommunication and AC and DC circuits, is proud to feature World Products complete line of Thyristors.

At World Products Inc. we keep our promises. It's just that simple. You will see for yourself when you buy a World Products Thyristor that you have not only purchased a fine component, but that we will also provide the finest customer service in today's marketplace.

### The main features of these Thyristors are:

- Bidirectional transient voltage protection.
- Nanosecond clamping response.
- No performance degradation under service life.
- Glass passivated junction.

### **Providing the following benefits:**


- Excellent voltage protection levels.
- Primary or secondary protection levels.
- Never needs replacement (no maintenance cost).
- Highest level of quality and reliability.
- Low cost auto-assembly.

# Discover why the first choice in Thyristors is World Products.

# **Table of Contents**

| Definitions                                                                                          |                                                                                                                                      |  |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Application Notes                                                                                    | Features, Selection Guide,<br>Maximum Thermal Ratings,<br>Thermal Characteristics,<br>Electrical Characteristics,<br>Mechanical Data |  |
| Maximum Surge Ratings                                                                                |                                                                                                                                      |  |
| Thyristor Electrical<br>CharacteristicsAxial Lead and Surface<br>Mount Electrical<br>Characteristics |                                                                                                                                      |  |
| Device Part Marking                                                                                  | Marking Codes,<br>Order and Packing<br>Information                                                                                   |  |
| Rating and Characteristic<br>Curves                                                                  | Specifications                                                                                                                       |  |
| Circuit Examples                                                                                     | Demonstration Circuits for<br>Product Use                                                                                            |  |

# Thyristors - Definitions



| SYMBOL           | CHARACTERISTIC                                 | VALUE                                                                                                                                         |
|------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| V <sub>BO</sub>  | Max Breakover Voltage                          | The maximum voltage across the device in or at breakdown measured under<br>a specified voltage and current rate of rise.                      |
| V <sub>BR</sub>  | Min Breakover Voltage                          | The minimum voltage at which the device switch-on begins and significant current flows.                                                       |
| I <sub>BO</sub>  | Breakover Current                              | The instantaneous current flowing at the breakover voltage. $(V_{ m BO})$                                                                     |
| I <sub>H</sub>   | Holding Current                                | The minimum current required to maintain the device in the on-state.                                                                          |
| I                | On-state Current                               | The current through the device in the on-state condition.                                                                                     |
| V <sub>T</sub>   | On-state Voltage                               | The voltage across the device in the on-state condition at a specified current. $(I_T)$                                                       |
| V <sub>DRM</sub> | Rated Repetitive Peak<br>Off-state Voltage     | Rated maximum (peak) continuous voltage that may be applied in the off-state condition.                                                       |
| I <sub>DRM</sub> | Repetitive Peak<br>Off-state Current           | The maximum (peak) value of the current that results from the application of $(V_{\text{DRM}})$                                               |
| I <sub>PPS</sub> | Non-Repetitive<br>Peak Pulse Current           | Rated maximum value of peak impulse current of specified amplitude and waveshape that may be applied without damage to the device under test. |
| I <sub>TSM</sub> | Non-Repetitive Surge<br>Peak On-state Current  | Rated maximum value of AC current, at a given frequency, which may be applied for specified time or number of cycles.                         |
| di/dt            | Critical Rate of Rise of<br>On-state Current.  | Rated value of the rate of rise of current that the device can withstand without damage.                                                      |
| dv/dt            | Critical Rate of Rise of<br>Off-state Voltage. | The maximum rate of rise of voltage (below V <sub>DRM</sub> ) that will not cause<br>switching from the off-state to the on-state             |

# **Thyristors** - Application Notes

# FEATURES

- Protects by Limiting voltages and shunting surge currents away from sensitive circuits.
- Designed for telecommunications applications such as line cards, modems, PBX, FAX, LAN, VHDSL.
- Helps meet standards such as GR1089, ITU K.20, IEC950, UL1459&50, FCC part 68.
- Low capacitance, High surge (A, B, C rating available), precise voltage limiting, Long life.

# SELECTION GUIDE

Follow these steps to select the proper Thyristor surge protector for your application: **1.** Define the operating parameters for the circuit:

- Ambient operating temperature range
- Maximum telephone line operating current (highest battery and shortest copper loop)
- Maximum operating voltage: (Maximum DC bias + peak ringing voltage)
- Maximum surge current
- System voltage damage threshold

**2.** Select device with an off-state voltage rating (VDRM) above the maximum operating voltage at the minimum operating temperature

**3.** Select surge current ratings ( $I_{PPS}$  and  $I_{TSM}$ )  $\geq$  those which the application must withstand

**4.** Verify that the minimum holding current of the device at the maximum ambient temperature is above the maximum dc current of the system

5. Verify that the maximum breakover voltage of the device is below the system damage threshold.

6. Verify that the circuit's ambient operating temperatures are within the device's operating temperature range.

7. Verify that the device's dimensions fit the application's space considerations.

8. Independently evaluate and test the suitability and performance of the device in the application

| MAXIMUM THERMAL RATINGS              |        |            |      |
|--------------------------------------|--------|------------|------|
| Rating                               | Symbol | Value      | Unit |
| Storage Junction Temperature Range   | Tstg   | -50 to 150 | °C   |
| Operating Junction Temperature Range | TJ     | -40 to 150 | °C   |
| Operating Ambient Temperature Range  | ТА     | -40 to 65  | °C   |

Notes:

PCB board mounted on minimum foot print.

# THERMAL CHARACTERISTICS

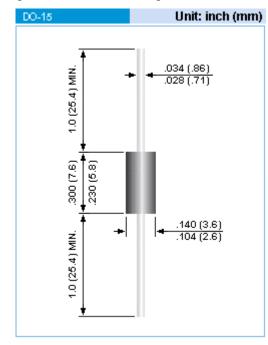
| Characteristic                                                      | Symbol | Value | Unit |
|---------------------------------------------------------------------|--------|-------|------|
| Thermal Resistance Junction to leads TL on tab adjacent to plastic. |        |       |      |

Both leads soldered to identical pad sizes.

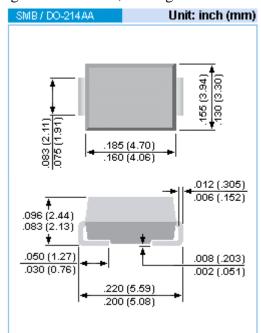
| Røjl | Max. | 20 | $^{\circ}C$ / W |  |
|------|------|----|-----------------|--|
| ,    |      | -  |                 |  |

Notes:

The junction to lead thermal resistance represents a minimum limiting value with both leads soldered to a large near-infinite heatsink. The junction to ambient thermal resistance depends strongly on board mounting conditions and typically is 3 to 6 times higher than the junction to lead resistance. The data shown is to be used as guideline values for preliminary engineering.


| Thyristors - Application Notes - (Continued) |                                                                 |        |      |      |      |  |  |  |
|----------------------------------------------|-----------------------------------------------------------------|--------|------|------|------|--|--|--|
| ELECTRICAL C                                 | HARACTERISTICS (Tc = 25 °C UNLESS OTHERWISE NOTED)              |        |      |      |      |  |  |  |
| Parameters                                   | Test Conditions                                                 | Symbol | Min. | Max. | Unit |  |  |  |
| On-State Current                             | $V_D = rated V_{DRM}$                                           | Idrm   |      | 5    | μA   |  |  |  |
| Breakover Current                            | f = 60 Hz, Isc = 1Arms, Vac = 1 KVrms, RL = 1Kohm, 1/2 AC cycle | Іво    |      | 800  | mA   |  |  |  |
| Holding Current                              | $10/1000\mu$ s waveform, Isc = 10A, Voc = 62 V, RL = 400 ohms   | Ін     | 150  |      | mA   |  |  |  |
|                                              | $IT = 1 A, Tw = 300 \mu s, 1 pulse$                             | VT     |      | 5    | V    |  |  |  |

### Notes:


Specific I<sub>H</sub> values are available by request.

# **MECHANICAL DATA**

- Case: JEDEC DO-15 molded plastic
- Terminals: Plated Axial leads, Solder per MIL-STD-750, Method 2026
- Polarity: Bi-directional
- Weight: 0.015 ounce, 0.4 gram



- Case: JEDEC DO-214AA molded plastic
- Terminals: Solder plated, Solderable per MIL-STD-750, Method 2026
- Polarity: Bi-directional Standard packaging: 12mm tape (EIA-481)
- Weight: 0.003 ounce, 0.093 gram



# (T<sub>J</sub> = 25 °C UNLESS OTHERWISE NOTED)

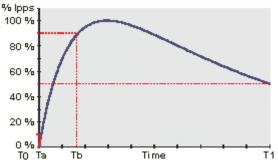
| Rating                        |         | Non-Repetitive Peak Pulse Current |           |                  |           |            |                  |  |
|-------------------------------|---------|-----------------------------------|-----------|------------------|-----------|------------|------------------|--|
| Symbol                        |         |                                   | -         | I <sub>PPS</sub> |           |            | I <sub>TSM</sub> |  |
| Short-Circuit<br>Current Wave | 2/10 µs | 8/20 µs                           | 10/160 µs | 5/310 µs         | 10/560 µs | 10/1000 µs |                  |  |
| Open-Circuit<br>Voltage Wave  | 2/10 µs | 1.2/50 μs                         | 10/160 µs | 10/700 μs        | 10/560 µs | 10/1000 µs |                  |  |
| Value A and SA Series         | 175 A   | 150 A                             | 100 A     | 85 A             | 70 A      | 50 A       | 20 A             |  |
| Value B and SB Series         | 300 A   | 225 A                             | 150 A     | 115 A            | 100 A     | 80 A       | 30 A             |  |
| Value C and SC Series         | 500 A   | 350 A                             | 200 A     | 150 A            | 125 A     | 100 A      | 60 A             |  |
| Notes                         |         | (1,2,4,5,6)                       |           |                  |           |            |                  |  |

### Notes:

**1.** Thermal accumulation between successive surge tests is not allowed.

**2.** The device under test initially must be in thermal equilibrium with  $T_J = 25 \ ^{\circ}C$ .

**3.** Test at 1 cycle, 60 Hz.


**4.** Surge ratings are non-repetitive because instantaneous junction temperatures may exceed the maximum rated T<sub>J</sub>. Nevertheless, devices will survive many surge applications without degradation. Surge capability will not degrade over a device's typical operating life.

**5.** Adjust the surge generator for optimum current-wave accuracy when both voltage and current wave specifications cannot be exactly met. The current wave is more important than the voltage wave for accurate surge evaluation.

6. The waveform is defined as A/B ms where:

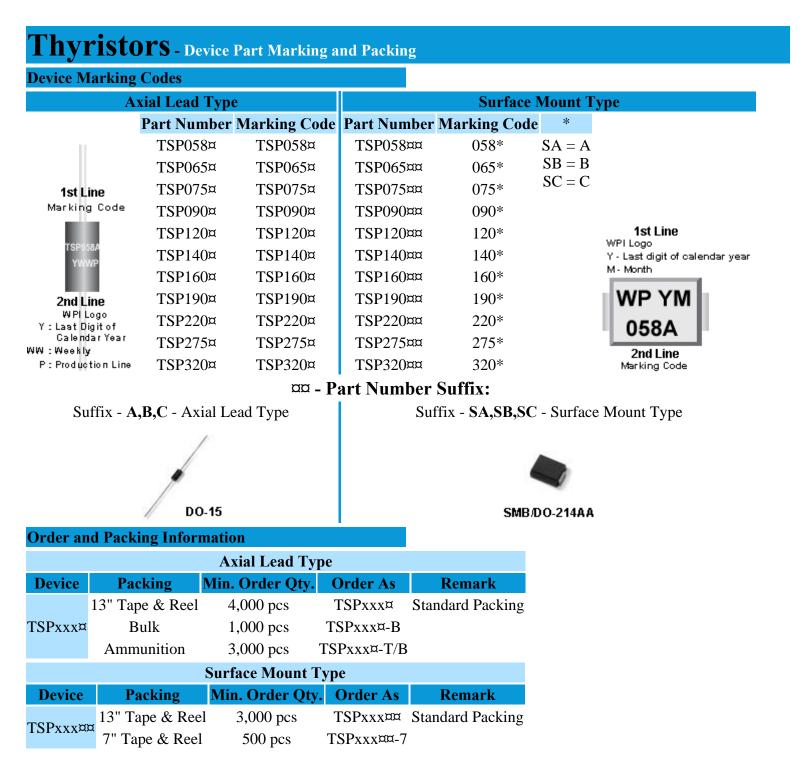
A: (Virtual front time) = 1.25 X Rise time = 1.25 X (T<sub>b</sub> - T<sub>a</sub>)

B: (Duration time to 50% level of  $I_{PPS}$ ) = T<sub>1</sub> - T<sub>0</sub>



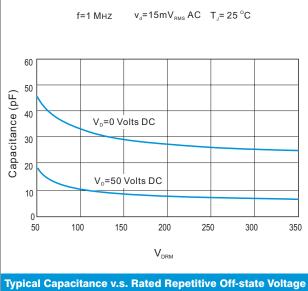
| Thyr     | Thyristors - Electrical Characteristics          |                         |                     |                                            |                      |                    |                                                                        |         |           |  |  |
|----------|--------------------------------------------------|-------------------------|---------------------|--------------------------------------------|----------------------|--------------------|------------------------------------------------------------------------|---------|-----------|--|--|
|          | Rated Repetitive<br>Peak<br>Off-State<br>Voltage | Breakover<br>Voltage    | On-state<br>Voltage | Repetitive<br>Peak<br>Off-State<br>Current | Breakover<br>Current | Holding<br>Current | Off-State<br>Capacitance<br>$(f = 1MHz, V_{ac} = 15 \text{ mV}_{rms})$ |         | nce<br>z, |  |  |
|          | Max.                                             | Max.                    | Max.                | Max.                                       | Max.                 | Min.               |                                                                        | Тур.    |           |  |  |
| Part     | V <sub>DRM</sub>                                 | $V_{\rm BO}@I_{\rm BO}$ | $V_T@1A$            | I <sub>drm</sub>                           | I <sub>BO</sub>      | I <sub>H</sub>     | C <sub>0</sub> @ 2Vdc                                                  |         | 'dc       |  |  |
| Number   | V                                                | V                       | V                   | μA                                         | mA                   | mA                 |                                                                        | pF      |           |  |  |
| Series   |                                                  | A ar                    | nd SA, B ai         | nd SB, C and SC                            | 2                    |                    | A<br>SA                                                                | B<br>SB | C<br>SC   |  |  |
| TSP058¤¤ | 58                                               | 77                      | 5.0                 | 5.0                                        | 800                  | 150                | 36                                                                     | 53      | 69        |  |  |
| TSP065¤¤ | 65                                               | 88                      | 5.0                 | 5.0                                        | 800                  | 150                | 31                                                                     | 52      | 65        |  |  |
| TSP075¤¤ | 75                                               | 98                      | 5.0                 | 5.0                                        | 800                  | 150                | 29                                                                     | 49      | 59        |  |  |
| TSP090¤¤ | 90                                               | 130                     | 5.0                 | 5.0                                        | 800                  | 150                | 26                                                                     | 42      | 52        |  |  |
| TSP120¤¤ | 120                                              | 160                     | 5.0                 | 5.0                                        | 800                  | 150                | 24                                                                     | 38      | 47        |  |  |
| TSP140¤¤ | 140                                              | 180                     | 5.0                 | 5.0                                        | 800                  | 150                | 21                                                                     | 36      | 45        |  |  |
| TSP160¤¤ | 160                                              | 220                     | 5.0                 | 5.0                                        | 800                  | 150                | 21                                                                     | 34      | 43        |  |  |
| TSP190¤¤ | 190                                              | 260                     | 5.0                 | 5.0                                        | 800                  | 150                | 20                                                                     | 33      | 42        |  |  |
| TSP220¤¤ | 220                                              | 300                     | 5.0                 | 5.0                                        | 800                  | 150                | 19                                                                     | 32      | 42        |  |  |
| TSP275¤¤ | 275                                              | 350                     | 5.0                 | 5.0                                        | 800                  | 150                | 19                                                                     | 32      | 42        |  |  |
| TSP320¤¤ | 320                                              | 400                     | 5.0                 | 5.0                                        | 800                  | 150                | 19                                                                     | 32      | 41        |  |  |
| Notes    | (1,3)                                            | (3,5,6)                 | (3)                 | (3)                                        | (3)                  | (2,3)              | (3)                                                                    | (3)     | (3)       |  |  |

# ¤¤ Part Number Suffix:

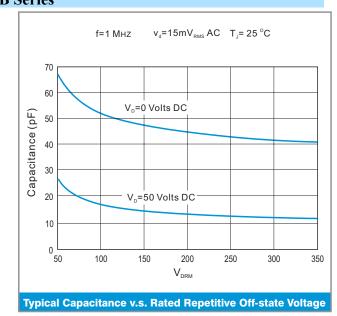

Suffix - **A,B,C** Axial Lead Type Suffix - SA,SB,SC Surface Mount Type



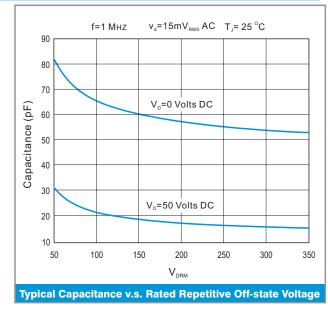
SMB/DO-214AA

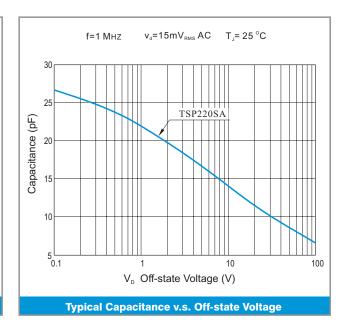

# Notes:

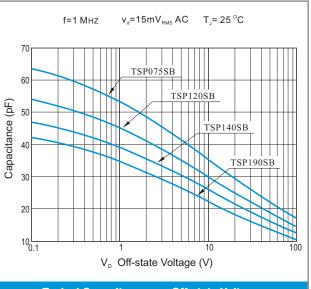
- 1. Specific VDRM values are available by request.
- 2. Specific In values are available by request.
- **3.** All ratings and characteristics are at 25 °C unless otherwise specified.
- 4. VDRM applies for the life of the device. IDRM will be in spec during and following operation of the device.
- 5. VBO1 is at 100V/msec, Isc = $10A_{pk}$ , Voc= $1KV_{pk}$ , 10/1000 Waveform.
- 6. VB02 is at f = 60 Hz, Isc = 1 A(RMS), Vac = 1KV(RMS), RL = 1 Kohm, 1/2 AC cycle.



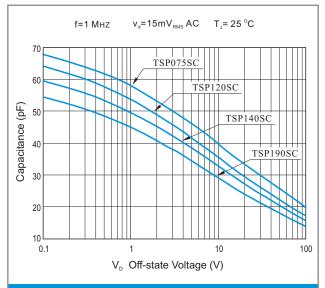

# Thyristors - Rating and Characteristic Curves


### A and SA Series



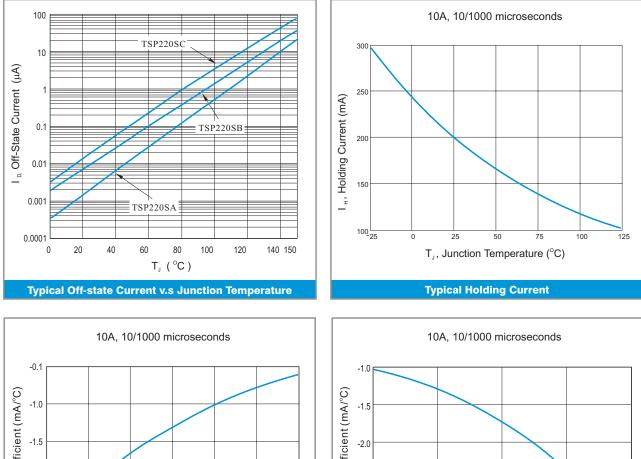


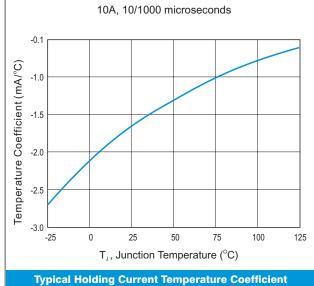





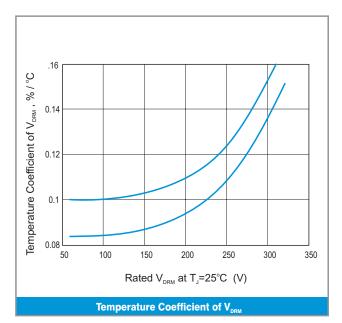




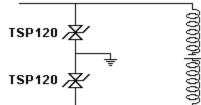




Typical Capacitance v.s. Off-state Voltage

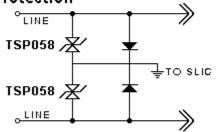

# Thyristors - Rating and Characteristic Curves

### A and SA Series - B and SB Series - C and SC Series

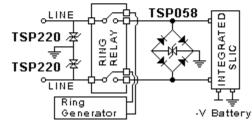




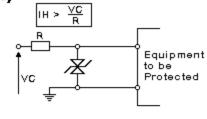

10A, 10/1000 microseconds

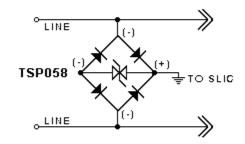



# **Thyristors** - Circuit Examples


# **PABX** Protection




# **SLIC Protection**




# Complete PC Board Operation Prot<u>ectio</u>n



# DC Supply



