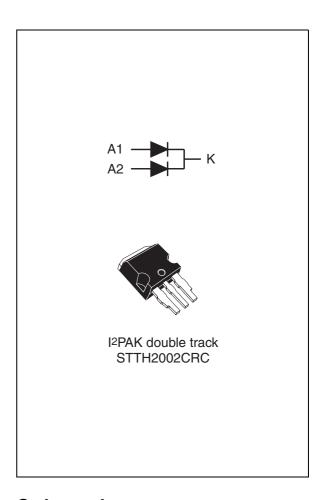


STTH2002CRC

High efficiency ultrafast diode

Main product characteristics

I _{F(AV)}	2 x 10 A
V _{RRM}	200 V
T _j (max)	175° C
V _F (typ)	0.76 V
t _{rr} (typ)	20 ns


Features and benefits

- Suited for SMPS
- Low losses
- Low forward and reverse recovery times
- High surge current capability
- High junction temperature

Description

Dual center tab rectifier suited for switch mode power supplies and high frequency DC to DC converters.

Packaged in I²PAK double track, this device is intended for use in low voltage, high frequency inverters, free wheeling and polarity protection

Order codes

Part Number	Marking
STTH2002CRC	STTH2002C
STTH2002CRC-TR	STTH2002C

Characteristics STTH2002CRC

Characteristics 1

Absolute ratings (limiting values at T_j = 25° C, unless otherwise specified) Table 1.

Symbol	Parameter			Unit
V _{RRM}	Repetitive peak reverse voltage	Repetitive peak reverse voltage		V
I _{F(RMS)}	RMS forward current Per diode		32	Α
,	Average few yeard average \$ 0.5	Per diode T _c = 150° C	10	
$I_{F(AV)}$ Average forward current, $\delta = 0.5$	Per device T _c = 145° C	20	Α	
I _{FSM}	Surge non repetitive forward current t _p = 10 ms Sinusoidal		100	Α
T _{stg}	Storage temperature range			° C
T _j	Maximum operating junction temperature			° C

Table 2. **Thermal parameters**

Symbol	Parameter		Value	Unit
В	D. Junction to cook	Per diode	2.5	
R _{th(j-c)} Junction to case	Total	1.4	° C/W	
R _{th(c)}	Coupling		0.25	

When the two diodes 1 and 2 are used simultaneously:

 $\Delta Tj(\text{diode 1}) = P \text{ (diode 1) } X \text{ R}_{th(j\text{-}c)} \text{ (Per diode)} + P \text{ (diode 2) } x \text{ R}_{th(c)}$

Table 3. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур	Max.	Unit
I _P ⁽¹⁾ Reverse leakage current	T _j = 25° C	$V_R = V_{RRM}$			10		
	T _j = 125° C			10	100	μA	
		T _j = 150° C	I _F = 10 A		0.76	0.85	
V _F ⁽²⁾ Forward voltage drop	T _j = 25° C	I _F = 20 A			1.2	V	
	T _j = 150° C			0.90	1.02		

^{1.} Pulse test: t_p = 5 ms, δ < 2 %

2/8

To evaluate the conduction losses use the following equation: P = 0.68 x $I_{F(AV)}$ + 0.017 $I_{F}^{2}_{(RMS)}$

$$P = 0.68 \times I_{F(AV)} + 0.017 I_{F^2(RMS)}$$

^{2.} Pulse test: t_p = 380 μ s, δ < 2 %

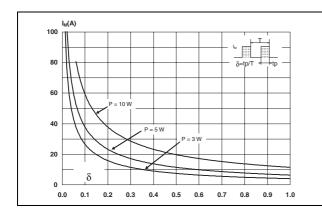
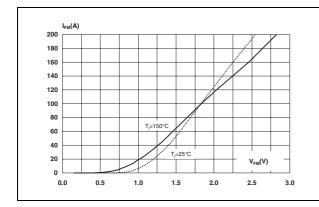
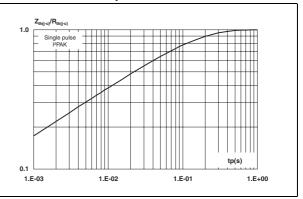

STTH2002CRC Characteristics

Table 4. Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур	Max.	Unit
+	Payarsa racayary tima	$I_F = 1 \text{ A, } dI_F/dt = -100 \text{ A/}\mu\text{s,}$ $V_R = 30 \text{ V, } T_j = 25 \text{ °C}$		20	25	ns
t _{rr} Reverse recovery time	$I_F = 1 \text{ A, } dI_F/dt = -50 \text{ A/}\mu\text{s,}$ $V_R = 30 \text{ V, } T_j = 25 \text{ °C}$		28	35	115	
I _{RM}	Reverse recovery current	$I_F = 10 \text{ A}, dI_F/dt = 200 \text{ A/}\mu\text{s}, \ V_R = 160 \text{ V}, T_j = 125 ^{\circ}\text{C}$		5.8	7.5	Α
t _{fr}	Forward recovery time	$I_F = 10 \text{ A}, dI_F/dt = 50 \text{ A/}\mu\text{s}$ $V_{FR} = 1.1 \text{ x } V_{Fmax}, T_j = 25 \text{ °C}$		180		ns
V _{FP}	Forward recovery voltage	$I_F = 10 \text{ A}, \text{ d}I_F/\text{d}t = 50 \text{ A/}\mu\text{s},$ $V_{FR} = 1.1 \text{ x } V_{Fmax}, T_j = 25 \text{ °C}$		1.6		٧

Figure 1. Peak current versus duty cycle

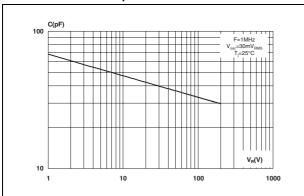

Figure 2. Forward voltage drop versus forward current (typical values)



180
160
140
120
100
80
60
40
20
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Figure 3. Forward voltage drop versus forward current (maximum values)

Figure 4. Relative variation of thermal impedance, junction to case, versus pulse duration



Characteristics STTH2002CRC

Figure 5. Junction capacitance versus reverse applied voltage (typical values)

Figure 6. Reverse recovery charges versus dl_F/dt (typical values)

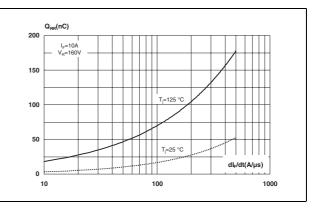
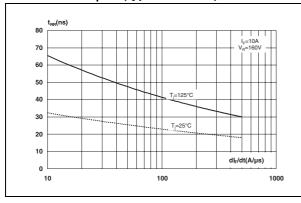



Figure 7. Reverse recovery time versus dl_F/dt (typical values)

Figure 8. Peak reverse recovery current versus dl_F/dt (typical values)

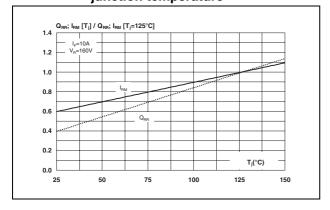
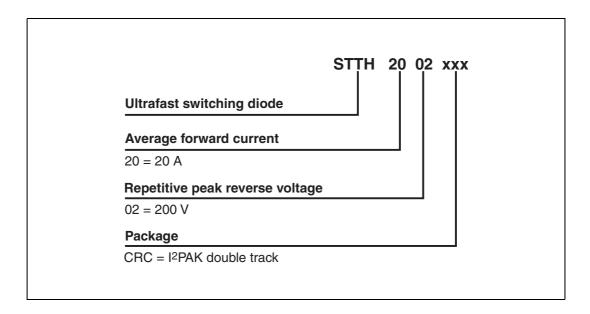
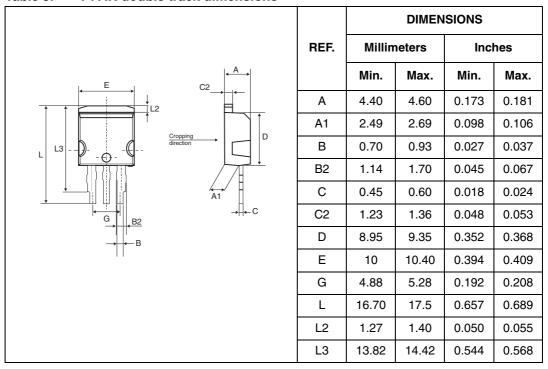




Figure 9. Dynamic parameters versus junction temperature

4/8

2 Ordering information scheme


Package information STTH2002CRC

3 Package information

Epoxy meets UL94, V0

Cooling method: by conduction (C)

Table 5. I²PAK double track dimensions

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

6/8

4 Ordering information

Part Number	Marking	Package	Weight	Base qty	Delivery mode
STTH2002CRC	STTH2002C	I ² PAK DT	1.48 g	50	Tube
STTH2002CRC-TR	STTH2002C	I ² PAK DT	1.48 g	1000	Tape and reel

5 Revision history

Date	Revision	Description of Changes
05-Apr-2006	1	First issue

577

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577