Creation Date: May 19, 1998 Revision Date: October 2, 1998

PRELIMINARY

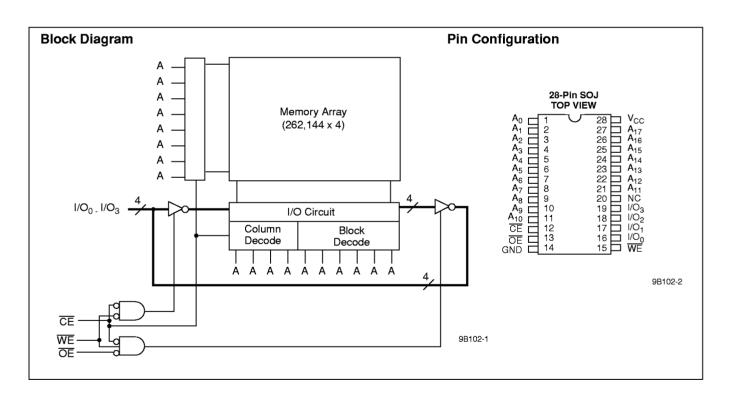
AP9B102/AP9B102L

3.3V, 256K x 4 Very High-Speed, Low-Power CMOS Static RAM with Optional 2V Data Retention

Features

- Fast access times: 8, 10, 12 and 15 ns
- Fast output enable (t_{DOE}) for cache applications
- Drives a 50 pF load vs. 30 pF industry-standard load
- 2V/100 μA data retention ("L" version)
- Low active power: 234 mW (Max.) at 15 ns
- Low standby current: 7.2 mW (Max.)
- Fully static operation, no clock or refresh required
- TTL and CMOS-compatible inputs and outputs
- Single 3.0 V to 3.6 V power supply
- Packaged in industry-standard 28-pin 400-Mil SOJ

Functional Description


The Aptos AP9B102/AP9B102L is a high-speed, low-power, 256K x 4, CMOS static RAM. It is fabricated using Aptos' high-performance CMOS, 0.35µ technology. This highly reli-

able process, coupled with innovative circuit design techniques, yields access times as fast as 8ns (Max).

When Chip Enable ($\overline{\text{CE}}$) is HIGH, the device assumes a standby mode at which the power dissipation can be reduced down to 7.2 mW (Max.) at CMOS input levels. At 2V V_{CC}, power is reduced to 0.2 mW (Max.) ("L" version).

Easy memory expansion is provided by using asserted LOW \overline{CE} and asserted LOW Output Enable inputs (\overline{OE}) . The asserted LOW Write Enable (\overline{WE}) controls both writing and reading of the memory.

The AP9B102/AP9B102L is pin-compatible with other 3.3V, 256K x 4 SRAMs in the SOJ package.

Selection Guide

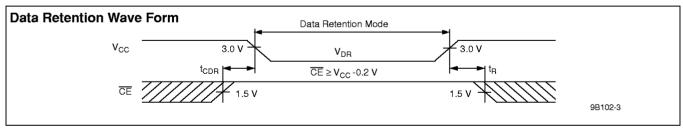
	AP9B102/L-8	AP9B102/L-10	AP9B102/L-12	AP9B102/L-15
Maximum Access Time (ns)	8	10	12	15
Maximum Operating Current (mA)	85	75	70	65
Maximum Standby Current (mA)	2	2	2	2

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature.....-65 °C to +150 °C **Ambient Temperature**

with Power Applied.....-55 °C to +125 °C

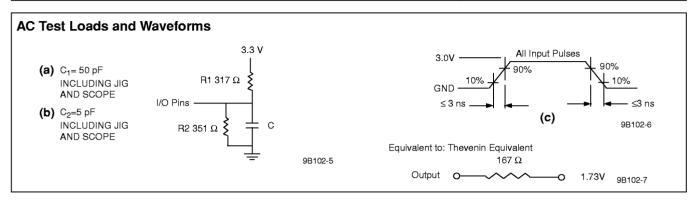

V _{CC} Supply Relative to GND0.5 V to	o +7.0 V
Voltage on Any Pin Relative to GND0.5 V to V _{Ce}	_C +0.5 V
Short Circuit Output Current ¹	±20 mA
Power Dissipation	1.0 W

Electrical Characteristics Over the Operating Range (0 °C \leq T_A \leq 70 °C, V_{CC} = 3.0V to 3.6V Max.)

			9B10	2/L-8	9B102	2/L-10	9B102	2/L-12	9B102	2/L-15	
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
I_{CC1}	Dynamic Operating Current ²	V_{CC} = Max., I_{OUT} = 0 mA, \overline{CE} = V_{IL} , f = fmax.		85		75		70		65	mA
I_{CC2}	Operating Current ²	$V_{CC} = Max., I_{OUT} = 0 \text{ mA},$ $\overline{CE} = V_{IL}, f = 0$		50		50		50		50	mA
I_{SB1}	TTL Standby Current -TTL Inputs	$V_{CC} = Max., V_{IN} = V_{IH} \text{ or } V_{IL}, \overline{CE} \ge V_{IH}, f = fmax.$		25		20		20		20	mA
I_{SB2}	CMOS Standby Current -CMOS Inputs	$\begin{split} &V_{CC} = \text{Max.}, \overline{\text{CE}} \geq V_{CC} \text{-} 0.2 \text{ V}, \\ &V_{IN} \geq V_{CC} \text{-} 0.2 \text{ V} \\ &\text{or } V_{IN} \leq 0.2 \text{ V}, \text{f} = 0 \end{split}$		2		2		2		2	mA
I_{LI}	Input Leakage Current	$GND \le V_{IN} \le V_{CC}$	-1	1	-1	1	-1	1	-1	1	μΑ
I_{LO}	Output Leakage Current	$\begin{aligned} &\text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ &\text{Output Disabled} \end{aligned}$	-1	1	-1	1	-1	1	-1	1	μΑ
V _{OH}	Output High Voltage	$V_{\rm CC}$ = Min., $I_{\rm OH}$ = - 4.0 mA	2.4		2.4		2.4		2.4		V
V_{OL}	Output Low Voltage	$V_{\rm CC}$ = Min., $I_{\rm OL}$ = 8.0 mA		0.4		0.4		0.4		0.4	V
V_{IH}	Input High Voltage ³		2.0	V _{CC} +0.3	2.0	V _{CC} +0.3	2.0	V _{CC} +0.3	2.0	V _{CC} +0.3	V
$V_{ m IL}$	Input Low Voltage ³		-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V

Data Retention Characteristics ("L" Version)

Symbol	Description	Test Conditions ⁴	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention	$\underline{V_{CC}} = V_{DR} = 2.0 \text{ V},$	2.0		V
I_{CCDR}	Data Retention Current	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2 \text{V}, \text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{V}$		100	μΑ
t _{CDR}	Chip Deselect to Data Retention Time	or $V_{IN} \le 0.2 \text{ V}$	0		ns
t _R	Operation Recovery Time		t_{RC}		ns


- 1. No more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- 2. I_{CC} is dependent upon output loading and cycle rates. Specified val- 5. Tested initially and after any design or process changes that may ues are with outputs open.
- 3. V_{IL} undershoot = -1.0V where t=t_{RC}/4 per cycle. V_{IH} overshoot = $V_{\rm CC}$ +1.0V where t=t_{RC}/4 per cycle.
- 4. No input may exceed V_{CC} +0.3V (DC).
 - effect these parameters.

AP9B102/AP9B102L

Capacitance 5

Symbol	Description	Max.	Unit
C _{IN}	Input Capacitance	5	pF
C _{IO}	I/O Capacitance	5	pF

AP9B102/AP9B102L

Switching Characteristics Over the Operating Range 6,7

		9B10	2/L-8	9B102	2/L-10	9B102	2/L-12	9B102	2/L-15	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle ⁸										
$t_{\rm RC}$	Read Cycle Time	8		10		12		15		ns
t _{AA}	Address Access Time		8		10		12		15	ns
t _{OHA}	Output Hold Time	3		3		3		3		ns
t _{ACE}	CE Access Time		8		10		12		15	ns
$t_{ m DOE}$	OE Access Time		3		4		5		7	ns
t _{LZOE} 9	OE to Low-Z Output	0		0		0		0		ns
t _{HZOE} 9	OE to High-Z Output		3		4		5		6	ns
t _{LZCE} 9	CE to Low-Z Output	3		3		3		3		ns
t _{HZCE} 9	CE to High-Z Output		3		4		6		8	ns
$t_{ m PU}$	CE to Power Up	0		0		0		0		ns
$t_{ m PD}$	CE to Power Down		8		10		12		15	ns
Write Cycle ¹⁰			•	•	•	•	•	•	•	
$t_{ m WC}$	Write Cycle Time	8		10		12		15		ns
t _{SCE}	CE to Write End	7		8		8		10		ns
t_{AW}	Address Set-up Time to Write End	7		8		8		10		ns
t _{HA}	Address Hold to Write End	0		0		0		0		ns
t_{SA}	Address Set-up Time to Write Start	0		0		0		0		ns
t _{PWE1} 11	WE Pulse Width (OE =HIGH)	7		8		8		10		ns
t _{PWE2}	WE Pulse Width (OE =LOW)	8		10		12		12		ns
t_{SD}	Data Set-up to Write End	5		6		6		7		ns
$t_{ m HD}$	Data Hold from Write End	0		0		0		0		ns
t _{HZWE} 9	WE LOW to High-Z Output		3		5		6		7	ns
t _{LZWE} 9	WE HIGH to Low-Z Output	2		2		2		2		ns

Notes:

- 6. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 V to 3.0 V and output loading specified in AC Test Loads and Waveforms Figure(a), unless otherwise noted.
- 7. I/O will assume the High-Z state if $\overline{OE} \ge V_{IH}$.
- 8. WE is HIGH for a Read Cycle.
- 9. Tested with the load in AC Test Loads and Waveforms Figure~(b). Transition is measured $\pm 500 \text{mV}$ from steady state voltage.
- 10. The internal write time is defined by the overlap of $\overline{\text{CE}}$ LOW and

WE LOW. All signals must be in valid states to initiate a Write, but any can be deasserted to terminate the Write. The Data Input Set-up and Hold timing is referenced to the rising or falling edge of the signal that terminates the write.

- 11. Tested with \overline{OE} HIGH for a minimum of 4 ns before \overline{WE} = LOW to place I/O in High-Z state.
- 12. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 13. Address is valid prior to, or coincident with, $\overline{\text{CE}}$ LOW transitions.
- 14. At any given temperature and voltage condition, $t_{\mbox{HZCE}}$ is less than $t_{\mbox{LZCE}}$ and $t_{\mbox{HZOE}}$ is less than $t_{\mbox{LZOE}}$.

AP9B102/AP9B102L

Pin Descriptions

A₀ - A₁₇: Address Inputs

These 18 address inputs select one of the 256K, 8-bit words in the RAM.

CE: Chip Enable Input

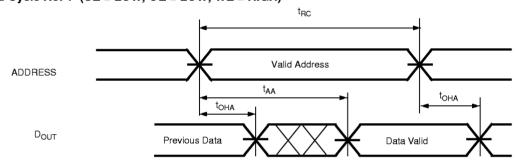
 $\overline{\text{CE}}$ is asserted LOW. The Chip Enable is asserted LOW to read from or write to the device. If Chip Enable is deasserted, the device is deselected and is in a standby power mode. The I/O pins will be in the High-Z state when the device is deselected.

OE: Output Enable Input

The Output Enable input is asserted LOW. If the Output Enable is asserted LOW while \overline{CE} is asserted (LOW) and

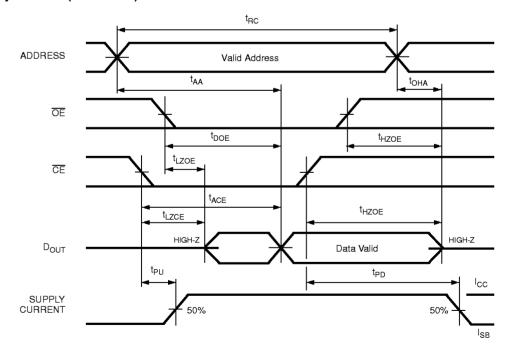
 $\overline{\text{WE}}$ is deasserted (HIGH), data from the SRAM will be present on the I/O pins. The I/O pins will be in the High-Z state when $\overline{\text{OE}}$ is deasserted.

WE: Write Enable Input


The Write Enable input is asserted LOW and controls read and write operations. When \overline{CE} and \overline{WE} are both asserted (LOW) input data present on the I/O pins will be written into the selected memory location.

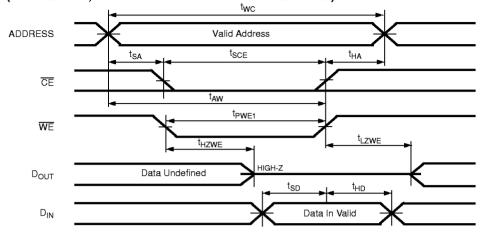
I/O₀ - I/O₃: Common Input/Output Pins

GND: Ground


Switching Waveforms

Read Cycle No. 1 (\overline{CE} = LOW, \overline{OE} = LOW, \overline{WE} = HIGH) $^{8, 12}$

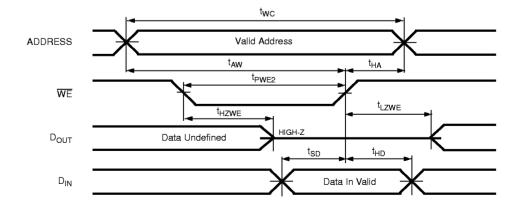
9B102-7


Read Cycle No. 2 (\overline{WE} = HIGH) $^{8, 13, 14}$

9B102-8

Switching Waveforms (continued)

Write Cycle No.1 ($\overline{\text{CE}}$ controlled, $\overline{\text{OE}}$ is HIGH or LOW: $\overline{\text{CE}}$ Terminates Write) 10



9B102-9

Write Cycle No.2 (WE controlled, OE is HIGH, CE is LOW: WE Terminates Write) 10

Write Cycle No.3 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ is LOW; $\overline{\text{CE}}$ is LOW: $\overline{\text{WE}}$ Terminates Write) ¹⁰

9B102-11

9B102-10

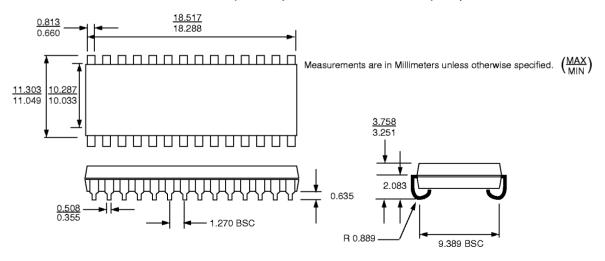
Truth Table

Mode	WE	CE	OE	I/O	I _{CC}
Not Selected (Power Down)	X	Н	X	High-Z	I_{SB1}, I_{SB2}
Output Disabled	Н	L	Н	High-Z	I_{CC1}, I_{CC2}
Read	Н	L	L	$D_{ m OUT}$	I_{CC1}, I_{CC2}
Write	L	L	X	D_{IN}	I_{CC1}, I_{CC2}

Ordering Information 15

Standard - AP9B102

Speed	Part Number	Package Name	Package Type	Temperature Range
8	AP9B102-8VC	V28.2	28-Pin (400-Mil) Small Outline J-Bend	Commercial
10	AP9B102-10VC	V28.2	28-Pin (400-Mil) Small Outline J-Bend	Commercial
12	AP9B102-12VC	V28.2	28-Pin (400-Mil) Small Outline J-Bend	Commercial
15	AP9B102-15VC	V28.2	28-Pin (400-Mil) Small Outline J-Bend	Commercial


With Optional 2V Data Retention - AP9B102L

Speed	Part Number	Package Name	Package Type	Temperature Range
8	AP9B102L-8VC	V28.2	28-Pin (400-Mil) Small Outline J-Bend	Commercial
10	AP9B102L-10VC	V28.2	28-Pin (400-Mil) Small Outline J-Bend	Commercial
12	AP9B102L-12VC	V28.2	28-Pin (400-Mil) Small Outline J-Bend	Commercial
15	AP9B102L-15VC	V28.2	28-Pin (400-Mil) Small Outline J-Bend	Commercial

Document # DS-00012-Rev B

Package Diagram

V28.2 - 28-Pin (400-Mil) Small Outline J-Bend (SOJ)

Note:

15. For additional package options, please contact factory.