

General Information

Features

- Companion to the IBM PowerPRS[™] 64Gu Packet Routing Switch chip
- CSIX interface attachment to the PowerPRS 64Gu switch core
- CSIX-L1 interface: OC-48 adapter, compliant with the Common Switch Interface Specification - L1
- Dual-switch attachment for redundant switchplane operation, including programmable scheduled switchover (packet lossless) and hot standby switchover
- Redundant switch port attachment at 4 Gbps using 2.5-Gbps serial links compatible with InfiniBand[™] physical layer standards
- Supports 8 \times 8, 16 \times 16, 32 \times 32, and 64 \times 64 switch fabrics
- PowerPRS 64Gu interface: 16- to 20-byte logical unit (LU) packet processing
- Shared buffer capacity of up to 1024 ingress packets (512 per switch plane) and up to 256 egress packets (shared between switch planes)
- Configurable number of traffic priorities (from one to four)

- · Packet header parity generation and checking
- End-to-end packet payload protection, with optional cyclic redundancy check (CRC) insertion
- Programmable generation and detection of linkliveness messages in service packets
- Eight-bit parallel processor interface to access all registers for control and error reporting
- Internal loopback support for both the CSIX interface and switch interface
- Internal logic built-in self-test (BIST) and memory BIST
- IEEE[®] Standard 1149.1 boundary scan to facilitate circuit-board testing
- CMOS 7SF (SA-27E) technology (L_{drawn} = 0.18 μ m, L_{eff} = 0.11 μ m):
 - 1.8-V core voltage
 - 2.5-V LVCMOS-compatible (3.3-V tolerant) I/Os for the CSIX-L1 and microprocessor interfaces
- 25-mm, 360-ball ceramic ball grid array (CBGA) package

Description

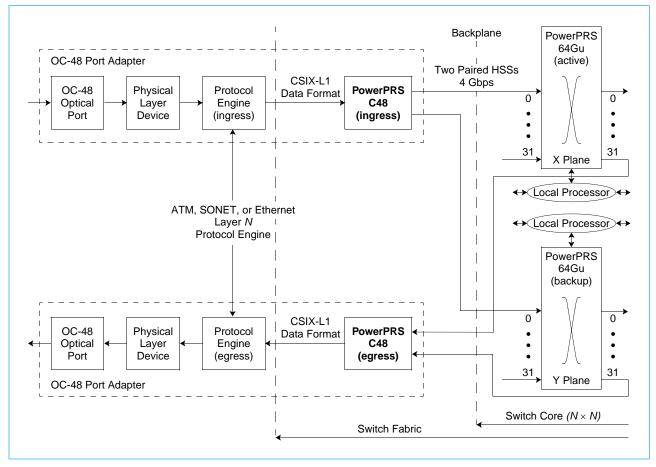
The IBM PowerPRS C48 Common Switch Interface is a companion device to the IBM PowerPRS 64Gu Packet Routing Switch. It functions as the switch core access layer between the protocol engine's OC-48 CSIX interface and the switch core.

The PowerPRS C48 switch interface is comprised of two 2.5-Gbps high-speed serializer/deserializer (HSS) pairs that provide a total throughput of 5 Gbps. The switch port payload throughput is only 4 Gbps because of the Fibre Channel Standard 8b/10b encoding on the HSS links.

The PowerPRS C48 attaches directly to the HSScompatible 64Gu. When connected to the Power-PRS 64Gu, the C48 packet length is programmable from 64 to 80 bytes, in 4-byte increments. Ingress and egress packets are divided into four LUs of 16 to 20 bytes each.

The PowerPRS C48 provides attachment to a redundant switch fabric. Two independent data paths (X and Y) can be clocked, reset, and controlled separately to activate or deactivate each switch plane independently. PowerPRS C48 hardware-assist functions perform scheduled switchover without packet loss as well as asynchronous (or hot standby) switchover.

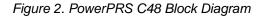
The PowerPRS C48 processes data traffic using one to four priorities, depending on register configuration. An in-band flow control mechanism, carried in the packet header, controls the traffic flow. In-band flow control is performed per priority and destination. When PowerPRS C48 ingress traffic congestion occurs, flow control information is propagated through the CSIX interface to the protocol engine on the egress path. When protocol engine egress traffic congestion occurs, flow control information is transmitted in band to the PowerPRS C48 CSIX interface according to the *CSIX-L1 Specification*. The PowerPRS C48 also features an optional out-of-band flow control mechanism. Activation of either the in-band or out-of-band flow control mechanism is selected during PowerPRS C48 configuration.

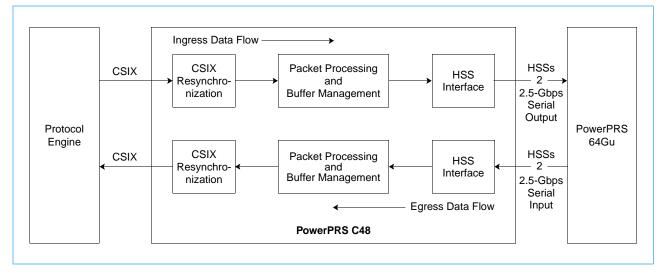

Ordering Information

Part Number	Description	Throughput
IBM3247P4448	IBM Common Switch Interface	2.5 Gbps

Architecture

Figure 1 illustrates the integration of a PowerPRS C48 in a 32-port 64Gu redundant switching system. An integrated high-speed SerDes (HSS) interface enables the PowerPRS C48 to directly connect to the 64Gu switch core. The PowerPRS C48 supports the 64Gu packet length of 64, 72, or 80 bytes. When attached to a PowerPRS 64Gu master/slave pair, the C48 is used to build a 32-port switching system. With a 64-port destination capability, the PowerPRS C48 will be able to accommodate next-generation PowerPRS switching systems.


Figure 1. System View of the PowerPRS C48 with the 64Gu (configured with redundant 128-Gbps switch planes)


The attachment of a PowerPRS C48 to a redundant switch core allows the balancing of traffic loads between two switch planes. In addition, the PowerPRS C48 and the 64Gu can jointly execute scheduled switchover without packet loss.

The PowerPRS C48 CSIX-L1 interface enables direct attachment to a 2.5-Gbps protocol engine (32 bits wide). PowerPRS C48 ingress *and* egress data paths provide end-to-end flow control as well as access to a 64-K entry multicast table. The PowerPRS C48 multicast table is updated by either the switch local processor (in 64Gu applications) or the C48 eight-bit parallel processor.

The internal structure of the PowerPRS C48 is presented in *Figure 2* on page 4.

Ingress Data Flow

Ingress packets received from the protocol engine are color-coded and queued for transmission on either the X or Y switch path. The PowerPRS C48 ingress buffer stores up to 1024 incoming packets (512 per switch plane), and implements programmable filtering to prevent packet duplication and wasted buffer space. Packets are queued (or dequeued) using a first-in-first-out (FIFO) mechanism per priority. The destination queue status (empty or occupied), packet priority, and target switch output queue status flow control information are reported to the ingress scheduler. The ingress scheduler uses a flywheel mechanism to select the next packet for transmission to the switch interface. The highest-priority packets of granted destinations are generally transmitted first. However, an ingress credit table can be programmed at system initialization to guarantee minimum bandwidth to low-priority packets. When activated via the corresponding register, the credit table alters the scheduler selection. Alternatively, a flywheel weighted in favor of the low-priority packets can be used to offset the transmission of higher-priority packets.

Egress Data Flow

Egress packets received from the switch are queued by switch plane in up to eight output queues (4 priorities × 2 switch planes) for transmission to the CSIX interface. The PowerPRS C48 egress buffer is shared between the X and Y switch paths, and can store up to 256 outgoing packets. The egress queue status, packet priority, and CSIX port destination flow control information are reported to the egress scheduler. The egress scheduler uses a flywheel mechanism to select the next packet for transmission to the CSIX interface. The highest-priority packets of granted destinations are generally transmitted first, unless the egress credit table has been programmed to guarantee minimum bandwidth to low-priority packets.

Programming Interface and Registers

The PowerPRS C48 employs an eight-bit parallel processor programming interface. This interface provides read/write access to all PowerPRS C48 internal registers and diagnostic functions, such as online error detection and reporting, and built-in self-test (BIST).

Table 1 summarizes the registers that provide the mechanism for PowerPRS C48 configuration specification and status reporting.

Table 1.	Reaister	Summary	(Page 1	of 3)
10010 11	, logicitor	Carriery	(i ago i	0,0,

Devictor Nove	Add	Address				
Register Name	X Plane	Y Plane	Access			
CSIX Interface Control Registers						
CSIX Mode Control Register	xʻ	00'	Read/Write			
CSIX Checking Enable Register	xʻ	01'	Read/Write			
CSIX Interface Error/Status Register	xʻ	02'	Read/Write			
CSIX Interface Error/Status Interrupt Register	xʻ	06'	Read/Write			
Switch Interface Configuration Registers	·		·			
Switch Interface System Configuration 1 Register	x'74'	x'B4'	Read/Write			
Switch Interface System Configuration 2 Register	x'64'	x'A4'	Read/Write			
Switchover Control Register	xʻ	09'	Read/Write			
HSS Synchronization 1 Register	x'C2'	x'E2'	Read Only			
HSS Synchronization 3 Register	x'C4'	x'E4'	Read/Write			
Ingress Data Count Register	x'62'	x'A2'	Read/Clear			
Egress Data Count Register	x'63'	x'A3'	Read/Clear			
HSS Control Register	x'C0'	x'E0'	Read/Write			
Switch Interface Event/Error Register	x'61'	x'A1'	Read/Clear			
Switch Interface Interrupt Register	x'5A'	x'9A'	Read/Write			
Switch Interface Checking Enable Register	x'5B'	x'9B'	Read/Write			
Payload CRC Error Counter Register	x'40'	x'80'	Read/Clear			
Yellow Packet Transmit Counter Register	x'41'	x'81'	Read/Write			
Yellow Packet Receive Counter Register	x'42'	x'82'	Read/Write			
HSS Debug Control Register	x'75'	x'B5'	Read/Write			
HSS Test Register	x'76'	x'B6'	Read/Write			
HSS Error 1 Register	x'C7'	x'E7'	Read/Write			
HSS Error 2 Register	x'C8'	x'E8'	Read/Write			

Table 1. Register Summary (Page 2 of 3)

	Add	Address		
Register Name	X Plane	Y Plane	Access	
Ingress Byte-Shuffling Table Register	Xʻ1	x'1C'		
Ingress Byte-Shuffling Table Byte Location Register	Xʻ1	x'1D'		
Egress Byte-Shuffling Table Register	x'44'	x'84'	Read/Write	
Egress Byte-Shuffling Table Byte Location Register	x'45'	x'85'	Read/Write	
Flow Control and Packet Scheduling Control Registers			1	
Ingress Credit Table Access Register	x'46'	x'86'	Read/Write	
Egress Credit Table Access Register	x'()3'	Read/Write	
Ingress Buffer Flow Control High Threshold Registers	x'04' t	o x'05'	Read/Write	
Ingress Buffer Flow Control Low Threshold Registers	x'07' t	o x'08'	Read/Write	
Ingress VOQ Flow Control High Threshold Registers	x'1E' t	o x'20'	Read/Write	
Ingress VOQ Flow Control Low Threshold Registers	x'21' t	o x'23'	Read/Write	
Egress Buffer Flow Control Threshold Registers	xʻ0A' t	o x'0B'	Read/Write	
Ingress Filter 1 Registers	x'47' to x'48'	x'87' to x'88'	Read/Write	
Ingress Filter 2 Registers	x'49' to x'4A'	x'89' to x'8A'	Read/Write	
Ingress Filter Command Register	x'4B'	x'8B'	Read/Write	
Internal Status Registers			1	
Ingress Queue Status 1 Register	x'4C'	x'8C'	Read/Write	
Ingress Queue Status 2 Register (PowerPRS 64Gu only)	x'4D'	x'8D'	Read/Write	
Ingress Queue Status Selection Register	x'4E'	x'8E'	Read/Write	
Egress Queue Status Register	x'4F'	x'8F'	Read/Write	
Local Multicast Table Access Registers			1	
Multicast Table Access 1 Register	X''	10'	Read/Write	
Multicast Table Access 2 Register	X''	x'11'		
Multicast Table Access 3 Register (PowerPRS 64Gu only)	x''	12'	Read/Write	
Internal Resource Monitoring Registers				
Ingress Free Buffer List Register	x'50'	x'90'	Read/Write	
Egress Free Buffer List Register	x'13'		Read/Write	
Ingress Link List Register	x'51'	x'91'	Read/Write	
Ingress First-Last Table Access Register	x'52'	x'92'	Read/Write	
Egress Link List 1 Register	x"	14'	Read/Write	
Egress Link List 2 Register	X''	15'	Read/Write	

Table 1. Register Summary (Page 3 of 3)

De sister Norma	Ado	Address		
Register Name	X Plane	Y Plane	Access	
gress First-Last Table Access Register x'16'			Read/Write	
Ingress Flow Control Register	x,	17'	Read/Write	
Egress Flow Control Register	x,	18'	Read/Write	
Switch Fabric Environment Status Registers				
Card/Slot ID Register	x'70'	x'B0'	Read/Write	
Remote Card Availability 1 Register	x'71'	x'B1'	Read Only	
Remote Card Availability 2 Register (PowerPRS 64Gu only)	x'72'	x'B2'	Read Only	
Clock Configuration Registers		·		
Switch Clock PLL Register	x'73'	x'B3'	Read/Write	
Switch Clock PLL Observe Register	x'CA'	x'EA'	Read Only	
Local Clock PLL Register x'78'			Read/Write	
Local Clock PLL Observe Register	xʻ	x'1A'		
Reset and Test Registers	·			
Reset Control Register	x'54'	x'94'	Read/Write	
Memory BIST Status Register	xʻ	Read/Write		
Chip ID Register	x,	24'	Read Only	
Logic BIST 1 Register	x,	79'	Read/Write	
Test Configuration Register	x'55'	x'95'	Read/Write	
Internal Hardware Checking Registers				
Event 1 Register	x'56'	x'96'	Read Only	
Event 1 Mask Register	x'57'	x'97'	Read/Write	
Event 1 Interrupt Enable Register	x'5E'	x'9E'	Read/Write	
Event 2 Register	x'58'	x'98'	Read Only	
Event 2 Mask Register	x'59'	x'99'	Read/Write	
Event 2 Interrupt Enable Register	x'5F'	x'9F'	Read/Write	

Electrical Information

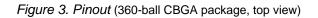
Table 2. Absolute Maximum Ratings

Symbol	Parameter		Units		
Symbol	Falallet	Minimum	Typical	Maximum	Units
V _{DD} (1.8 V)	Power supply voltage		1.8	1.95	V
V _{DD} (2.5 V)	Power supply voltage for LVCMOS-level signals		2.5	2.75	V
T _A	Operating ambient temperature	-40		100	°C
Т _Ј	Operating junction temperature	0		125	°C
T _S Storage temperature		-65		150	°C
	Electrostatic discharge		3000		V

Note: Permanent device damage may occur if the above absolute maximum ratings are exceeded. Extended exposure to absolute maximum rating conditions may affect device reliability.

Table 3. Recommended Operating Conditions

Symbol	Symbol Parameter		Rating			
Symbol Parameter		Minimum	Typical	Maximum	Units	
V _{DD} (1.8 V)	Power supply voltage	1.71	1.8	1.89	V	
V _{DD} (2.5 V)	Power supply voltage for LVCMOS-level signals	2.375	2.5	2.625	V	


Table 4. Total Power Requirements

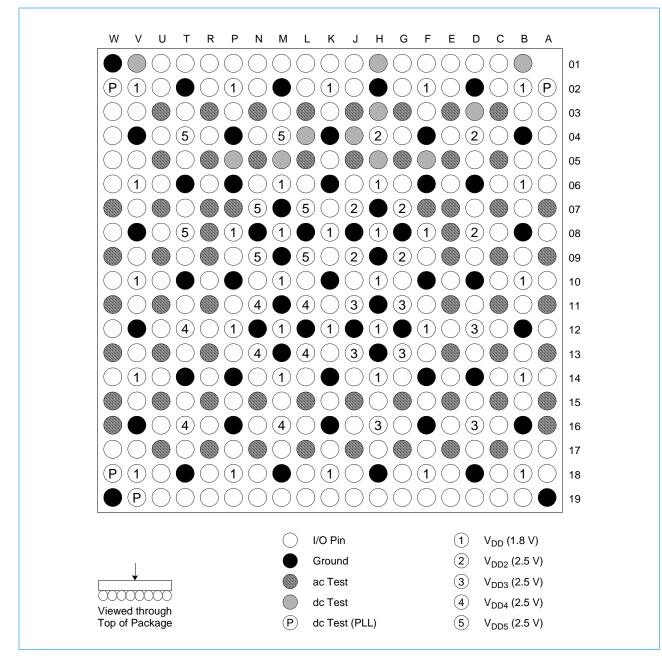
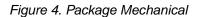
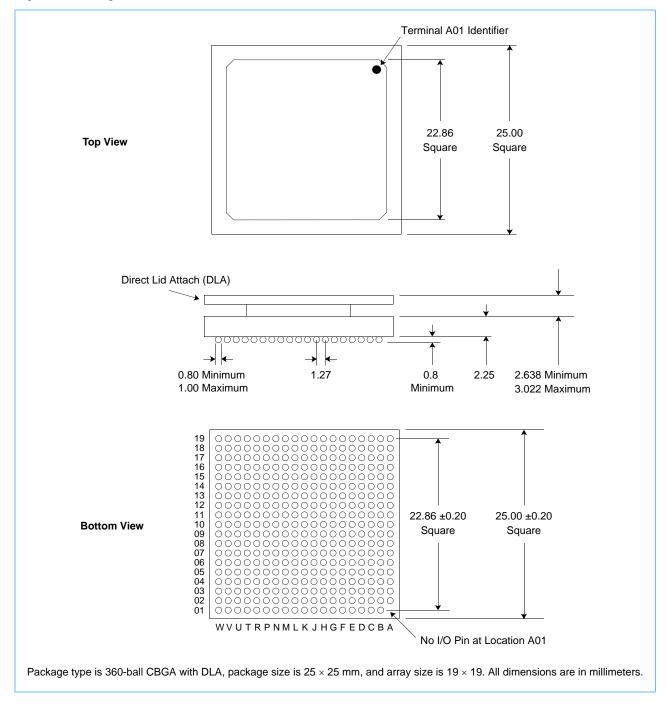

Bower (M)		or (141)		Curre	ent (A)	
Core Clock Frequency (MHz)	Power (W)				2.5 V (LVCMOS)	
· · ·	Typical	Maximum	Typical	Maximum	Typical	Maximum
166	10.3	12.0	4.95	5.76	0.52	0.60

Table 5. Thermal Performance

Thermal Resi	istance (°C/W)	Thermal Resistance θ_{JA} (°C/W) at Air Flow Rate					
θ _{JC}	θ_{JB}	0 LFPM	100 LFPM	200 LFPM	300 LFPM	400 LFPM	600 LFPM
0.51	3.5	14.1	12.7	11.5	10.4	9.6	8.5
Notes: θ_{JA} = Junction-to-ambient thermal resistance θ_{JB} = Junction-to-board thermal resistance				θ_{JC} = Junction-to- LFPM = Linear fe		sistance	





Mechanical Information

Note: This document contains information on products in the design, sampling and/or initial production phases of development. This information is subject to change without notice. Verify with your IBM field applications engineer that you have the latest version of this document before finalizing a design.

Revision Log

Revision Date	Contents of Modification	
Sept. 9, 2002	Initial release (00).	

© Copyright International Business Machines Corporation 2002

All Rights Reserved Printed in the United States of America September 2002

The following are trademarks of the International Business Machines Corporation in the United States, or other countries, or both.

IBM PowerPRS IBM Logo

IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers (IEEE).

InfiniBand is a trademark of the InfiniBand Trade Association.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this documents, and is presented as an illustration. The results obtained in other operating environments may vary.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

Note: This document contains information on products in the design, sampling and/or initial production phases of development. This information is subject to change without notice. Verify with your IBM field applications engineer that you have the latest version of this document before finalizing a design.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will IBM be liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Microelectronics Division 1580 Route 52, Bldg. 504 Hopewell Junction, NY 12533-6351

The IBM home page can be found at http://www.ibm.com

The IBM Microelectronics Division home page can be found at http://www.ibm.com/chips

prsC48sds.00.fm September 9, 2002