

LS841 MONOLITHIC DUAL N-CHANNEL JFET

Linear Systems Ultra Low Leakage Low Drift Monolithic Dual JFET

The LS841 is a high-performance monolithic dual JFET featuring extremely low noise, tight offset voltage and low drift over temperature specifications, and is targeted for use in a wide range of precision instrumentation applications. The LS841 features a 10-mV offset and $10-\mu V/^{\circ}C$ drift.

The 8 Pin P-DIP and 8 Pin SOIC provide ease of manufacturing, and the symmetrical pinout prevents improper orientation.

(See Packaging Information).

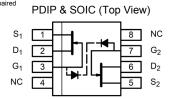
LS841 Applications:

- Wideband Differential Amps
- High-Speed,Temp-Compensated Single-Ended Input Amps
- High-Speed Comparators
- Impedance Converters and vibrations detectors.

FEATURES					
LOW DRIFT		V _{GS1-2} / T ≤10μV/°C			
LOW LEAKAGE		I _G = 10pA TYP.			
LOW NOISE		$e_n = 8nV/VHz TYP.$			
LOW OFFSET VOLTAGE		V _{GS1-2} ≤10mV			
ABSOLUTE MAXIMUM RATINGS @ 25°C (unless otherwise noted)					
Maximum Temperatures					
Storage Tem	perature	-65°C to +150°C			
Operating Ju	inction Temperature		+150°C		
Maximum Voltage and Current for Each Transistor – Note 1					
-V _{GSS}	Gate Voltage to Drain or Source		60V		
-V _{DSO}	Drain to Source Voltage		60V		
-I _{G(f)}	Gate Forward Current	50mA			
Maximum Power Dissipation					
Device Dissipation @ Free Air – Total 400mW @ +125°C					

MATCHING CHARACTERISTICS @ 25°C UNLESS OTHERWISE NOTED						
SYMBOL	CHARACTERISTICS VALUE		UNITS	CONDITIONS		
V _{GS1-2} / T max.	DRIFT VS.	10	μV/°C	V_{DG} =20V, I_{D} =200 μ A		
	TEMPERATURE			T _A =-55°C to +125°C		
V _{GS1-2} max.	OFFSET VOLTAGE	10	mV	V_{DG} =20V, $I_{D=}$ 200 μ A		

ELECTRICAL CHARACTERISTICS @) 25°C (unless c	otherwise noted)


SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
-		60	60		V	
BV _{GSS}	Breakdown Voltage				V	$V_{DS} = 0$ $I_D = 1nA$
BV _{GGO}	Gate-To-Gate Breakdown	60			V	$I_G = 1$ nA $I_D = 0$ $I_S = 0$
.,	TRANSCONDUCTANCE	1000				
Y _{fSS}	Full Conduction	1000		4000	μmho	V_{DG} = 20V V_{GS} = 0V f = 1kHz
Y _{fS}	Typical Operation	500		1000	μmho	V _{DG} = 20V I _D = 200μA
Y _{FS1-2} / Y _{FS}	M <mark>is</mark> match	7	0.6	3	%	
	DRAIN CURRENT					
I _{DSS}	Full C <mark>o</mark> nduc <mark>ti</mark> on	0.5	2	5	mA	$V_{DG} = 20V$ $V_{GS} = 0V$
$\left \left I_{DSS1-2}\right/\left I_{DSS}\right \right $	Mismatch at Full Conduction		1 —	5	%	
	GATE VOLTAGE					
$V_{GS}(off)$ or V_p	Pinchoff voltage	1	2	4.5	V	V_{DS} = 20V I_D = 1nA
V _{GS} (on)	Operating Range	0.5		4	V	V _{DS} =20V I _D =200μA
	GATE CURRENT					
-l _G max.	Operating		10	50	pA	$V_{DG} = 20V I_D = 200 \mu A$
-l _G max.	High Temperature			50	nA	T _A = +125°C
-l _G max.	Reduced V _{DG}		5		pA	$V_{DG} = 10V I_{D} = 200 \mu A$
-I _{GSS} max.	At Full Conduction			100	pA	V _{DG} = 20V , V _{DS} =0
033	OUTPUT CONDUCTANCE				'	50 7 53
Y _{oss}	Full Conduction			10	μmho	V_{DG} = 20V V_{GS} = 0V
Y _{OS}	Operating		0.1	1	μmho	V _{DG} = 20V I _D = 200μA
Y _{OS1-2}	Differential		0.01	0.1	μmho	1
1 00111	COMMON MODE REJECTION				·	
CMR	-20 log V _{GS1-2} / V _{DS}		100		dB	$\Delta V_{DS} = 10 \text{ to } 20V \qquad I_{D} = 200 \mu A$
	-20 log V _{GS1-2} / V _{DS}		75			$\Delta V_{DS} = 5 \text{ to } 10V$ $I_{D} = 200 \mu A$
	NOISE					$V_{DS} = 20V$ $V_{GS} = 0V$ $R_G = 10M\Omega$
NF	Figure			0.5	dB	f= 100Hz NBW= 6Hz
e _n	Voltage			10	nV/√Hz	V _{DS} =20V I _D =200μA f=1KHz NBW=1Hz
-11	0-			15	1 '	V _{DS} =20V I _D =200μA f=10Hz NBW=1Hz
	CAPACITANCE			10		- 103 - 1 - 10 - 20 part 1 - 20 12 11 21 12 12 12 12 12 12 12 12 12 12
C _{ISS}	Input		4			V _{DS} = 20V, I _D =200μA
C _{RSS}	Reverse Transfer		1.2	5	pF	νυς 200, ιη 200μι
	Drain-to-Drain		0.1		۲'	
C_{DD}	טו מווו־נט־טו מווו		0.1	I	1	

Note 1 – These ratings are limiting values above which the serviceability of any semiconductor may be impaired

Available Packages:

LS841 / LS841 in PDIP & SOIC LS841 / LS841 available as bare die

Please contact Micross for full package and die dimensions

Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution