

LS840 MONOLITHIC DUAL N-CHANNEL JFET

Linear Systems Ultra Low Leakage Low Drift Monolithic Dual JFET

The LS840 is a high-performance monolithic dual JFET featuring extremely low noise, tight offset voltage and low drift over temperature specifications, and is targeted for use in a wide range of precision instrumentation applications. The LS840 features a 5-mV offset and $5-\mu\text{V/°C}$ drift.

The 6 Pin SOT-23 package provides ease of manufacturing, and a lower cost assembly option.

(See Packaging Information).

LS840 Applications:

- Wideband Differential Amps
- High-Speed,Temp-Compensated Single-Ended Input Amps
- High-Speed Comparators
- Impedance Converters and vibrations detectors.

FEATURES								
LOW DRIFT		V _{GS1-2} / T ≤5μV/°C						
LOW LEAK	AGE	I _G = 10pA TYP.						
LOW NOISE		$e_n = 8nV/VHz TYP.$						
LOW OFFS	ET VOLTAGE	V _{GS1-2} = 2mV TYP.						
ABSOLUTE MAXIMUM RATINGS @ 25°C (unless otherwise noted)								
Maximum Temperatures								
Storage Te	emperature		-65°C to +150°C					
Operating	Junction Temperature		+150°C					
Maximum Voltage and Current for Each Transistor – Note 1								
-V _{GSS}	Gate Voltage to Drain or Source		60V					
-V _{DSO}	Drain to Source Voltage	60V						
-I _{G(f)}	Gate Forward Current	50mA						
Maximum Power Dissipation								
Device Dissipation @ Free Air – Total 400mW @ +125°C								

MATCHING CHARACTERISTICS @ 25°C UNLESS OTHERWISE NOTED									
SYMBOL	CHARACTERISTICS	VALUE	UNITS	CONDITIONS					
V _{GS1-2} / T max.	DRIFT VS.	5	μV/°C	V _{DG} =20V, I _D =200μA					
	TEMPERATURE			T _A =-55°C to +125°C					
V _{GS1-2} max.	OFFSET VOLTAGE	5	mV	V _{DG} =20V, I _{D=} 200μA					

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV _{GSS}	Breakdown Voltage	60	60		V	$V_{DS} = 0$ $I_D = 1nA$
BV_GGO	Gate-To-Gate Breakdown	60			V	$I_G = 1$ nA $I_D = 0$ $I_S = 0$
	TRANSCONDUCTANCE					
Y_{fSS}	Full Conduction	1000		<u>40</u> 00	μmho	V_{DG} = 20V V_{GS} = 0V f = 1kHz
Y _{fS}	Typical Operation	500		10 <mark>00</mark>	μmho	V _{DG} = 20V I _D = 200μA
Y _{FS1-2} / Y _{FS}	M <mark>is</mark> match	7	0.6	3	%	
	DRAIN CURRENT					
I _{DSS}	Full C <mark>o</mark> nduc <mark>ti</mark> on	0.5	2	5	mA	$V_{DG} = 20V$ $V_{GS} = 0V$
$\left \left I_{DSS1-2}\right/\left I_{DSS}\right \right $	Mismatch at Full Conduction		1 —	5	%	
	GATE VOLTAGE					
$V_{GS}(off)$ or V_p	Pinchoff voltage	1	2	4.5	V	V_{DS} = 20V I_D = 1nA
V _{GS} (on)	Operating Range	0.5		4	V	V _{DS} =20V I _D =200μA
	GATE CURRENT					
-I _G max.	Operating		10	50	pA	V _{DG} = 20V I _D = 200μA
-I _G max.	High Temperature			50	nA	T _A = +125°C
-I _G max.	Reduced V _{DG}		5		pA	$V_{DG} = 10V I_{D} = 200 \mu A$
-I _{GSS} max.	At Full Conduction			100	pA	V_{DG} = 20V , V_{DS} =0
	OUTPUT CONDUCTANCE					
Y _{OSS}	Full Conduction			10	μmho	$V_{DG} = 20V$ $V_{GS} = 0V$
Y _{OS}	Operating		0.1	1	μmho	V_{DG} = 20V I_D = 200 μ A
Y _{OS1-2}	Differential		0.01	0.1	μmho	
	COMMON MODE REJECTION					
CMR	-20 log V _{GS1-2} / V _{DS}		100		dB	$\Delta V_{DS} = 10 \text{ to } 20V \qquad I_{D} = 200 \mu A$
	-20 log V _{GS1-2} / V _{DS}		75			$\Delta V_{DS} = 5 \text{ to } 10V \qquad I_D = 200 \mu A$
	<u>NOISE</u>					V_{DS} = 20V V_{GS} = 0V R_{G} = 10M Ω
NF	Figure			0.5	dB	f= 100Hz NBW= 6Hz
e _n	Voltage			10	nV/√Hz	V _{DS} =20V I _D =200μA f=1KHz NBW=1Hz
				15		V_{DS} =20V I_D =200 μ A f=10Hz NBW=1Hz
	<u>CAPACITANCE</u>			10		
C _{ISS}	Input		4			$V_{DS} = 20V, I_D = 200 \mu A$
C_{RSS}	Reverse Transfer	-	1.2	5	pF	
C_{DD}	Drain-to-Drain		0.1			

Note 1 – These ratings are limiting values above which the serviceability of any semiconductor may be impaired

Available Packages:

LS840 / LS840 in SOT-23

LS840 / LS840 available as bare die

Please contact Micross for full package and die dimensions

Tel: +44 1603 788967

Email: chipcomponents@micross.com Web: http://www.micross.com/distribution