

Design Example Report

Title	3.9W CV/CC Charger using TNY266P with < 100 mW standby
Specification	Input: 85 – 265 VAC Output: 6.5V / 0.6A
Application	Cell Phone Charger
Author	Power Integrations Applications Department
Document Number	DER-33
Date	April 1, 2004
Revision	1.0

Summary and Features

This document is an engineering report describing a 6.5 VDC, 600 mA CV/CC Charger utilizing a TNY266P featuring:

- No load power consumption ~69 mW @ 230V
- Achieves cable-drop compensation with no TL431
- Uses TNY266P
- Low cost, low parts count
- No Y-cap needed to meet CISPR-22 EMI even with artificial hand
- Very low AC leakage current

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.

Table Of Contents

1	Intro	oduction	3
2		tograph	
3		ver Supply Specification	
4		ematic	
5	Circ	uit Description	6
;	5.1	Input Rectification, Bulk Capacitance and EMI Filtering	6
;	5.2	Primary DRAIN Voltage Clamp Circuit	6
;	5.3	Auxiliary Bias Supply	
;	5.4	Output Rectification and Filtering	6
;	5.5	Output Voltage Sensing and Feedback	
6		3 Layout	
7		Of Materials	
8		nsformer Specification	
	8.1	Electrical Diagram	
	8.2	Electrical Specifications	
	8.3	Materials	
	8.4	Transformer Build Diagram	
	8.5	Transformer Construction	
9		nsformer Spreadsheets	
10		erformance Data	
	10.1	Output Characteristic	
	10.2	Efficiency	
	10.3	No-load Input Power	
	10.4	Load and Line Regulation in CV mode	
11		hermal Performance	
12		/aveforms	
	12.1	Drain Voltage Normal Operation	
	12.2	Output Voltage Start-up Profile	
	12.3	Drain Voltage Start-up Profile	
	12.4 12.4	Output Ripple Measurements	
		4.2 Measurement Results	
13		onducted EMI	
10		ovicion History	∠∠

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built.

1 Introduction

This document is an engineering report describing a 6.5 VDC, 600 mA CV/CC Charger utilizing a TNY266P.

The TNY266P is implemented as both a switch and controller into a Flyback converter. Cancellation techniques are adopted in the transformer design to make the power supply meet EMI without Y capacitors.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

2 Photograph

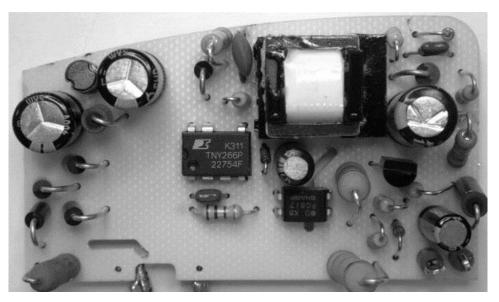


Figure 1 – Populated Circuit Board Photograph.

Power Supply Specification

Description	Symbol	Min	Тур	Max	Units	Comment
Input						
Voltage	V_{IN}	85		265	VAC	2 Wire – no P.E.
Frequency	f _{LINE}	47	50/60	64	Hz	
No-load Input Power (230 VAC)				0.1	W	
Output						
Output Voltage 1	V_{OUT1}		6.5		V	±7%
Output Ripple Voltage 1	V _{RIPPLE1}			100	mV	20 MHz Bandwidth
Output Current 1	I _{OUT1}			0.6	Α	
Efficiency	η		62		%	Measured at P _{OUT} (3.9 W), 25 °C
Environmental						
Conducted EMI		Meets CISPR22B / EN55022B				
Safety		Desigr	ned to mee Cla	et IEC950, ass II	UL1950	
Ambient Temperature	T _{AMB}	0		40	°C	Free convection, sea level

4 Schematic

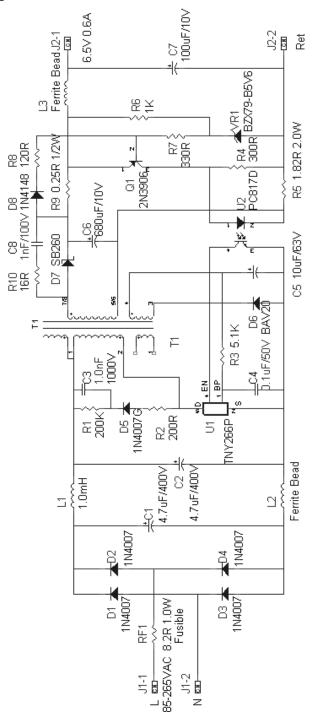


Figure 2 – Schematic.

Circuit Description 5

This circuit is configured as a Flyback operating in both continuous and discontinuous conduction mode. The low standby consumption is achieved by using a high gain optocoupler, using a bias winding that provides about 10V during no-load, and by designing a low-capacitance transformer.

5.1 Input Rectification, Bulk Capacitance and EMI Filtering

AC input power is rectified by a full bridge, consisting of D1 through D4. The rectified DC is then filtered by the bulk storage capacitors C1 and C2. Inductor L1 and Ferrite bead L2 separate C1 and C2 from each other. L1, C1 and C2 form a pi (π) filter, which attenuates conducted differential-mode EMI noise. Fusible resistor RF1 has multiple functions. It is a fuse, an in-rush current limiting device, a final low pass filter stage (with C1) for conducted EMI attenuation and an initial stage of input surge voltage attenuation.

5.2 Primary DRAIN Voltage Clamp Circuit

The DRAIN voltage clamp circuit is comprised of C3, R1, R2 and diode D5. D5 and C3 clamp the amplitude of the voltage spike that the transformer leakage inductance generates, at switch turn-off, to keep it beneath the device's maximum DRAIN to SOURCE voltage rating (700 V). R2 damps the high frequency ringing caused by leakage inductance, which improves the conducted EMI performance of the circuit.

5.3 Auxiliary Bias Supply

The TinySwitch-II normally does not need a bias supply because it has a high voltage current source to supply the internal chip consumption. If an external current is applied to the BP pin (which is the internal power supply of the chip), it turns off the HV current source and regulates the voltage on the BP pin like a zener. The power dissipated in the HV current source is saved. This power savings is on the order of 50-100 mW. This is needed to achieve a <100mW standby consumption.

The auxiliary bias supply circuit is made up of the primary-side transformer bias winding, diode D6 and capacitor C5. D6 rectifies the output of the winding and C5 filters it. The winding was given just enough turns so that its minimum output voltage stays at 10V at no-load to minimize power consumption. C4 is the standard BP pin decoupling capacitor, which should always be a 50 V 0.1µF ceramic capacitor that is located close to the IC. R3 is used to regulate the current into the BP pin.

5.4 Output Rectification and Filtering

Output rectification and filtering are accomplished by Schottky diode D7, capacitors C6 and C7. D7 rectifies the output of the transformer, T1. R10 and C8 dampen out the high frequency interaction between D7, T1 and U1, to reduce conducted EMI noise generation. C6 filters the initial rectified output, while L3 and C7 serve as a secondary low-pass filter stage, which further reduce the output ripple voltage.

5.5 Output Voltage Sensing and Feedback

Transistor Q1, resistors R4, R5, R6, R7, R8, R9, diode D8, Zener diode VR2 and opto-isolator U2 form the CV, CC, and cable drop compensation circuit. Q1, R6, R7, R8, R9, VR2, D8 and U2 comprise the Constant Voltage (CV) mode control loop and cable compensation control loop while R4, R5 and U2 make up the Constant Current (CC) mode control loop.

CC Mode Operation

The CC mode set-point is determined by the voltage drop on the optocoupler LED and the voltage drop on R5. The voltage drop on R4 is quite small and can be ignored. The TinySwitch-II has an EN pin current that is very constant with power delivery, so therefore the current in the optocoupler LED is very constant. For this reason the CC set-point does not change with load voltage.

CV Mode and Cable Drop Compensation Operation

The CV mode set-point is set by the voltage drops on VR1, R7, and the Vbe of Q1. The voltage on R7 depends on the operation of the cable drop compensation circuit. In order to have a regulated voltage at the end of the cable, the load current produces a voltage drop on R9 which feeds to the Base of Q1, through R8. The net effect is that the voltage set-point increases as the load increases, canceling the voltage drop in the output cable. D6 provides temperature compensation for the temperature coefficient of Q1.

6 PCB Layout

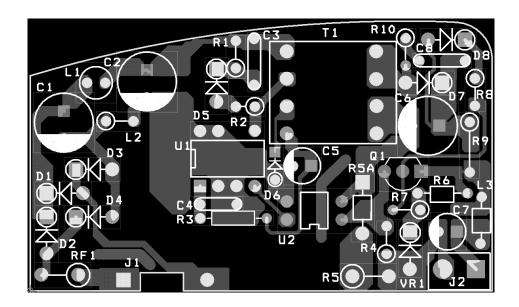


Figure 3 – Printed Circuit Layout.

Note: The total value of R5 and R5A is the value shown in schematic.

7 Bill Of Materials

Item	Qty	Ref	Description	P/N	Mfg
1	2	C1, C2	4.7uF 400V, electrolytic capacitor	KMG400VB4R7M	Nippon Chemi-Con
2	1	C3	1.0nF, 1 kV, ceramic Z5U dielectric		Any
3	1	C4	0.1 μF, 50 V, ceramic X7R dielectric		Any
4	1	C8	1nF, 100 V, ceramic X7R dielectric		Any
5	1	C5	10 μF, 63 V	KMG63VB10RM	Nippon Chemi-Con
6	1	C6	680uF, 10V, low esr	KZE10VB681M	Nippon Chemi-Con
7	1	C7	100 μF, 10 V, low esr	KZE10VB101M	Nippon Chemi-Con
8	4	D1, D2, D3, D4	1 A, 1000 V	1N4007	Any
9	1	D5	1 A, 1000 V, Glass Passivated	1N4007G	Any
10	1	D6	200V, 200mA, Fast	BAV20	Any
11	1	D7	60V, 2A, Schottky	SB260	Any
12	1	D8	75V, 150mA, Fast	1N4148	Any
13	1	J1,	AC Input Connector		Any
14	1	J2	DC output Connector		Any
15	1	L1	1.0mH		Any
16	2	L2, L3	Ferrite Bead		Any
17	1	Q1	40V, 200mA, PNP	2N3906	Any
18	1	RF1	8.2R, 1.0W		Any
19	1	R1	200K, 1/2W		Any
20	1	R2	200R, 1/4W		Any
21	1	R3	5.1K, 1/4W		Any
22	1	R4	300R, 1/4W		Any
23	1	R5	1.82R, 2.0W		Any
24	1	R6	1K, 1/4W		Any
25	1	R7	330R, 1/4W		Any
26	1	R8	120R, 1/4W		Any
27	1	R9	0.25R, 1/2W		Any
28	1	R10	16R, 1/4W		Any
29	1	T1	EE13 Transformer	Custom	Any
30	1	U1	TinySwitch-II	TNY266P	Power Integrations
31	1	U2	Opto-coupler	PC817D	Isocom / Any
32	1	VR1	5.6V, 1/4 W, 2%	BZX79-B5V6	Any

8 Transformer Specification

8.1 Electrical Diagram

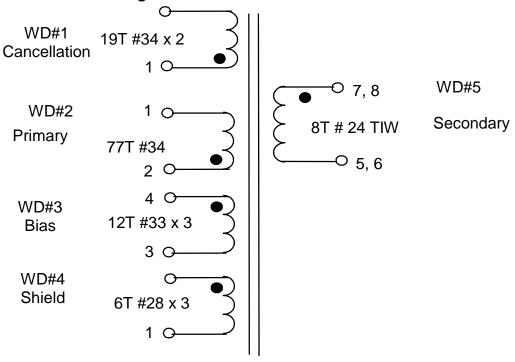
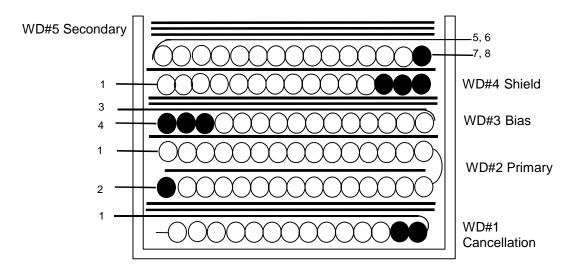


Figure 4 - Transformer Electrical Diagram


8.2 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from Pins 1 - 4 to Pins 5 -8	3000 VAC
Primary Inductance	Pins 1-2, all other windings open, measured at	1.11 mH, -
Filliary inductance	132 kHz, 0.4 VRMS	10/+10%
Resonant Frequency	Pins 1-2, all other windings open	600 kHz (Min.)
Drimary Laskage Industance	Pins 1-2, with Pins 6-7 shorted, measured at	FOL. (Mays)
Primary Leakage Inductance	132 kHz, 0.4 VRMS	50 μH (Max.)

8.3 Materials

Item	Description
[1]	Core: PC40EE13-Z, TDK or equivalent Gapped for AL of 187 nH/T ²
[2]	Bobbin: Horizontal 8 pins
[3]	Magnet Wire: #34 AWG
[4]	Magnet Wire: #33 AWG
[5]	Magnet Wire: #28 AWG
[6]	Triple Insulated Wire: #24 AWG.
[7]	Tape: 3M 1298 Polyester Film, 2.0 mils thick, 7.6 mm wide
[8]	Varnish

8.4 Transformer Build Diagram

Figure 5 – Transformer Build Diagram.

8.5 Transformer Construction

Bobbin Preparation	Primary pin side of the bobbin orients to the left hand side.
WD#1 Cancellation	Start on Pin 8 temporarily. Wind 19 turns bifilar of item [3] from right to left. Wind with tight tension across entire bobbin evenly. Cut the wire after finishing 19 th turn. Fold the starting lead back and finish it on Pin 1.
Insulation	2 Layers of tape [7] for insulation
WD#2 Primary	Start on pin 2, wind 38 turns of item [3] from left to right. Apply one layer of type [7]. Wind another 39 turns from right to left and finish it on pin 1. Apply one layer of type [7].
Insulation	1 Layers of tape [7] for insulation.
WD#3 Bias	Start on Pin 4, wind 12 trifilar turns of item [4]. Wind from left to right with tight tension. Wind uniformly, in a single layer across entire width of bobbin. Fold back the wire and finish on Pin 3.
Insulation	2 Layers of tape [7] for insulation.
WD #4 Shield	Start at Pin 8 temporarily, wind 6 trifilar turns of item [5]. Wind from right to left with tight tension. Wind uniformly, in a single layer across entire width of bobbin. Finish on Pin 1. Cut the starting lead.
Insulation	1 Layers of tape [7] for insulation.
WD #5	Start at pin 7, wind 8 turns of item [6] from right to left. Wind uniformly, in a single layer across entire bobbin evenly. Bring the wire back and finish on pin 6
Insulation	3 Layers of tape [7] for insulation.
Finish	Grind the core to get 1.11mH. Secure the core with tape. Vanish the transformer

Transformer Spreadsheets

II_Rev1_1_032701 Copyright Power Integrations Inc. 2001	INPUT	INFO	OUTPU T	UNIT	ACDC_TNYII_Rev1_1_032701.xls: TinySwitch-II Continuous/Discontinuous Flyback Transformer Design Spreadsheet
ENTER APPLICATION VARIAB	BLES				Customer
VACMIN	85			Volts	Minimum AC Input Voltage
/ACMAX	265			Volts	Maximum AC Input Voltage
L	50			Hertz	AC Mains Frequency
/0	7.8			Volts	Output Voltage
20	5.26			Watts	Output Power
1	0.7				Efficiency Estimate
7	0.5				Loss Allocation Factor
C	3			mSecon ds	Bridge Rectifier Conduction Time Estimate
CIN	9.4			uFarads	Input Filter Capacitor
ENTER TinySwitch-II /ARIABLES					
ΓNY-II	TNY266			Univers al	115 Doubled/230V
Chosen Device		TNY266	Out	9.5W	15W
LIMITMIN				Amps	TINYSwitch Minimum Current Limit
LIMITMAX			0.375	Amps	TINYSwitch Maximum Current Limit
S			132000	Hertz	TINYSwitch Switching Frequency
Smin			120000		TINYSwitch Minimum Switching Frequency (inc. jitter)
Smax			144000		TINYSwitch Maximum Switching Frequency (inc. jitter)
OR	80			Volts	Reflected Output Voltage
/DS	7.9			Volts	TINYSwitch on-state Drain to Source Voltage
	0.5			Volts	Output Winding Diode Forward Voltage Drop
,, ,				VUILS	Output Williamy Diode Forward Voltage Diop
VD KP	0.5		0.69		Ripple to Peak Current Ratio (0.6 <krp<1.0: 1.0<kdp<6.0)<="" th=""></krp<1.0:>
(P ENTER TRANSFORMER CORE Core Type		RUCTION #N/A		LES P/N:	Ripple to Peak Current Ratio (0.6 <krp<1.0:< td=""></krp<1.0:<>
ENTER TRANSFORMER CORE Core Type Core	E/CONSTI	#N/A		P/N:	Ripple to Peak Current Ratio (0.6 <krp<1.0: 1.0<kdp<6.0)<="" td=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin	E/CONSTI	#N/A #N/A	I VARIAB	P/N: P/N:	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" 1.0<kdp<6.0)="" a="" a<="" td=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin	E/CONSTI	#N/A #N/A 0.171	I VARIAB 0.171	P/N: P/N: cm^2	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" 1.0<kdp<6.0)="" a="" area<="" core="" cross="" effective="" sectional="" td=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE LE	E/CONSTI	#N/A #N/A 0.171 3.02	0.171 3.02	P/N: P/N: cm^2 cm	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" 1.0<kdp<6.0)="" a="" area="" core="" cross="" effective="" length<="" path="" sectional="" td=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE LE	E/CONSTI	#N/A #N/A 0.171 3.02 1130	0.171 3.02 1130	P/N: P/N: cm^2 cm nH/T^2	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" 1.0<kdp<6.0)="" a="" area="" core="" cross="" effective="" inductance<="" length="" path="" sectional="" td="" ungapped=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE LE AL	E/CONSTI	#N/A #N/A 0.171 3.02	0.171 3.02 1130	P/N: P/N: cm^2 cm	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" bobbin="" core="" cross="" effective="" inductance="" length="" margin="" path="" physical="" primary="" safety="" secondary<="" sectional="" td="" the="" to="" ungapped="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE LE AL	E/CONSTI ee13	#N/A #N/A 0.171 3.02 1130	0.171 3.02 1130	P/N: P/N: cm^2 cm nH/T^2 mm	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" bobbin="" core="" creepage="" cross="" distance)<="" effective="" inductance="" length="" margin="" path="" physical="" primary="" safety="" secondary="" sectional="" td="" the="" to="" ungapped="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE LE AL BW	E/CONSTI	#N/A #N/A 0.171 3.02 1130	0.171 3.02 1130	P/N: P/N: cm^2 cm nH/T^2 mm	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" bobbin="" core="" cross="" effective="" inductance="" length="" margin="" path="" physical="" primary="" safety="" secondary<="" sectional="" td="" the="" to="" ungapped="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE LE AL BW M	ee13	#N/A #N/A 0.171 3.02 1130	0.171 3.02 1130	P/N: P/N: cm^2 cm nH/T^2 mm	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" bobbin="" core="" creepage="" cross="" distance)="" effective="" inductance="" layers="" length="" margin="" number="" of="" path="" physical="" primary="" safety="" secondary="" sectional="" td="" the="" to="" turns<="" ungapped="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE LE AL BW M L NS DC INPUT VOLTAGE PARAME	ee13	#N/A #N/A 0.171 3.02 1130	0.171 3.02 1130 7.4	P/N: P/N: cm^2 cm nH/T^2 mm mm	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" bobbin="" core="" creepage="" cross="" distance)="" effective="" inductance="" layers="" length="" margin="" number="" of="" path="" physical="" primary="" safety="" secondary="" sectional="" td="" the="" to="" turns<="" ungapped="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE LE AL BW W L NS DC INPUT VOLTAGE PARAME	ee13	#N/A #N/A 0.171 3.02 1130	0.171 3.02 1130 7.4	P/N: P/N: cm^2 cm nH/T^2 mm	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" bobbin="" core="" creepage="" cross="" distance)="" effective="" inductance="" layers<="" length="" margin="" number="" of="" path="" physical="" primary="" safety="" secondary="" sectional="" td="" the="" to="" ungapped="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE .E AL BW M - NS DC INPUT VOLTAGE PARAME /MIN /MAX	ee13 2 8	#N/A #N/A 0.171 3.02 1130 7.4	0.171 3.02 1130 7.4	P/N: P/N: cm^2 cm nH/T^2 mm mm	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" bobbin="" core="" creepage="" cross="" dc="" distance)="" effective="" inductance="" input="" layers="" length="" margin="" minimum="" number="" of="" path="" physical="" primary="" safety="" secondary="" sectional="" td="" the="" to="" turns="" ungapped="" voltage<="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE LE AL BW M L SU OC INPUT VOLTAGE PARAME //MAX CURRENT WAVEFORM SHAP	ee13 2 8	#N/A #N/A 0.171 3.02 1130 7.4	0.171 3.02 1130 7.4 57 375	P/N: P/N: cm^2 cm nH/T^2 mm mm Volts	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" bobbin="" core="" creepage="" cross="" dc="" distance)="" effective="" inductance="" input="" layers="" length="" margin="" minimum="" number="" of="" path="" physical="" primary="" safety="" secondary="" sectional="" td="" the="" to="" turns="" ungapped="" voltage<="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Sobbin AE AL BW M CURPUT VOLTAGE PARAME //MIN //MAX CURRENT WAVEFORM SHAPI	ee13 2 8	#N/A #N/A 0.171 3.02 1130 7.4	0.171 3.02 1130 7.4 57 375	P/N: P/N: cm^2 cm nH/T^2 mm mm Volts	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" bobbin="" core="" creepage="" cross="" cycle<="" dc="" distance)="" duty="" effective="" inductance="" input="" layers="" length="" margin="" maximum="" minimum="" number="" of="" path="" physical="" primary="" safety="" secondary="" sectional="" td="" the="" to="" turns="" ungapped="" voltage="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE AL BW M CONTRACTOR OF THE PARAME MIN MAX CURRENT WAVEFORM SHAPE DMAX AVG	ee13 2 8	#N/A #N/A 0.171 3.02 1130 7.4	0.171 3.02 1130 7.4 57 375	P/N: P/N: cm^2 cm nH/T^2 mm mm Volts Volts	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" average="" bobbin="" core="" creepage="" cross="" current<="" cycle="" dc="" distance)="" duty="" effective="" inductance="" input="" layers="" length="" margin="" maximum="" minimum="" number="" of="" path="" physical="" primary="" safety="" secondary="" sectional="" td="" the="" to="" turns="" ungapped="" voltage="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE AE AL BW M COR INPUT VOLTAGE PARAME MIN MAX CURRENT WAVEFORM SHAPE DMAX AVG P	ee13 2 8	#N/A #N/A 0.171 3.02 1130 7.4	0.171 3.02 1130 7.4 57 375 0.62 0.13 0.33	P/N: P/N: cm^2 cm nH/T^2 mm mm Volts Volts Amps Amps	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" average="" bobbin="" core="" creepage="" cross="" current="" current<="" cycle="" dc="" distance)="" duty="" effective="" inductance="" input="" layers="" length="" margin="" maximum="" minimum="" number="" of="" path="" peak="" physical="" primary="" safety="" secondary="" sectional="" td="" the="" to="" turns="" ungapped="" voltage="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE AL BW M - NS DC INPUT VOLTAGE PARAME //MIN //MAX CURRENT WAVEFORM SHAPI DMAX AVG P R	ee13 2 8	#N/A #N/A 0.171 3.02 1130 7.4	0.171 3.02 1130 7.4 57 375 0.62 0.13 0.33 0.22	P/N: P/N: cm^2 cm nH/T^2 mm mm Volts Volts	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" average="" bobbin="" core="" creepage="" cross="" current<="" cycle="" dc="" distance)="" duty="" effective="" inductance="" input="" layers="" length="" margin="" maximum="" minimum="" number="" of="" path="" physical="" primary="" safety="" secondary="" sectional="" td="" the="" to="" turns="" ungapped="" voltage="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE AL BW M	ee13 2 8 ETERS	#N/A #N/A 0.171 3.02 1130 7.4	0.171 3.02 1130 7.4 57 375 0.62 0.13 0.33 0.22 0.17	P/N: P/N: cm^2 cm nH/T^2 mm mm Volts Volts Volts Amps Amps Amps	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" average="" bobbin="" core="" creepage="" cross="" current="" current<="" cycle="" dc="" distance)="" dty="" effective="" inductance="" input="" layers="" length="" margin="" maximum="" minimum="" number="" of="" path="" peak="" physical="" primary="" ripple="" safety="" secondary="" sectional="" td="" the="" to="" turns="" ungapped="" voltage="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE LE AL BW M - NS DC INPUT VOLTAGE PARAME //MIN //MAX CURRENT WAVEFORM SHAPI DMAX AVG P R RMS RMS FRANSFORMER PRIMARY DE	ee13 2 8 ETERS	#N/A #N/A 0.171 3.02 1130 7.4	0.171 3.02 1130 7.4 57 375 0.62 0.13 0.33 0.22 0.17	P/N: P/N: cm^2 cm nH/T^2 mm mm Volts Volts Amps Amps Amps Amps	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" average="" bobbin="" core="" creepage="" cross="" current="" current<="" cycle="" dc="" distance)="" duty="" effective="" inductance="" input="" layers="" length="" margin="" maximum="" minimum="" number="" of="" path="" peak="" physical="" primary="" ripple="" rms="" safety="" secondary="" sectional="" td="" the="" to="" turns="" ungapped="" voltage="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE LE AL BW W L NS DC INPUT VOLTAGE PARAME WMIN WMAX CURRENT WAVEFORM SHAPI DMAX AVG P R RMS RMS	ee13 2 8 ETERS	#N/A #N/A 0.171 3.02 1130 7.4	0.171 3.02 1130 7.4 57 375 0.62 0.13 0.33 0.22 0.17	P/N: P/N: cm^2 cm nH/T^2 mm mm Volts Volts Volts Amps Amps Amps Amps UHenrie	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" average="" bobbin="" core="" creepage="" cross="" current="" current<="" cycle="" dc="" distance)="" dty="" effective="" inductance="" input="" layers="" length="" margin="" maximum="" minimum="" number="" of="" path="" peak="" physical="" primary="" ripple="" safety="" secondary="" sectional="" td="" the="" to="" turns="" ungapped="" voltage="" width="" winding=""></krp<1.0:>
	ee13 2 8 ETERS	#N/A #N/A 0.171 3.02 1130 7.4	0.171 3.02 1130 7.4 57 375 0.62 0.13 0.33 0.22 0.17	P/N: P/N: cm^2 cm nH/T^2 mm mm Volts Volts Amps Amps Amps Amps	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" average="" bobbin="" core="" creepage="" cross="" current="" cycle="" dc="" distance)="" dty="" effective="" inductance="" inductance<="" input="" layers="" length="" margin="" maximum="" minimum="" number="" of="" path="" peak="" physical="" primary="" ripple="" rms="" safety="" secondary="" sectional="" td="" the="" to="" turns="" ungapped="" voltage="" width="" winding=""></krp<1.0:>
ENTER TRANSFORMER CORE Core Type Core Bobbin AE LE AL BW W I I I I I I I I I I I I I I I I I	ee13 2 8 ETERS	#N/A #N/A 0.171 3.02 1130 7.4	0.171 3.02 1130 7.4 57 375 0.62 0.13 0.33 0.22 0.17 ERS	P/N: P/N: cm^2 cm nH/T^2 mm mm Volts Volts Volts Amps Amps Amps Amps UHenrie	Ripple to Peak Current Ratio (0.6 <krp<1.0: #n="" (half="" 1.0<kdp<6.0)="" a="" area="" average="" bobbin="" core="" creepage="" cross="" current="" current<="" cycle="" dc="" distance)="" duty="" effective="" inductance="" input="" layers="" length="" margin="" maximum="" minimum="" number="" of="" path="" peak="" physical="" primary="" ripple="" rms="" safety="" secondary="" sectional="" td="" the="" to="" turns="" ungapped="" voltage="" width="" winding=""></krp<1.0:>

BAC		950	Gauss	AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)		
ur		1588		Relative Permeability of Ungapped Core		
LG	Warning			!!!!!!!!! INCREASE GAP>>0.1 (increase NS, decrease		
				VOR,bigger Core		
BWE		14.8	mm	Effective Bobbin Width		
OD		0.19		Maximum Primary Wire Diameter including insulation		
INS		0.04	mm	Estimated Total Insulation Thickness (= 2 * film thickness)		
DIA		0.15	mm	Bare conductor diameter		
AWG		35	AWG	Primary Wire Gauge (Rounded to next smaller standard AWG value)		
CM		32	Cmils	Bare conductor effective area in circular mils		
CMA	Warning		Cmils/A	!!!!!!!!! INCREASE CMA>200 (increase L(primary		
	,		mp	layers),decrease NS,larger Core)		
	ARY DESIGN PARAM	IETERS (S	INGLE O	UTPUT / SINGLE OUTPUT EQUIVALENT)		
Lumped parameters						
ISP			Amps	Peak Secondary Current		
ISRMS			Amps	Secondary RMS Current		
IO			Amps	Power Supply Output Current		
IRIPPLE			Amps	Output Capacitor RMS Ripple Current		
CMS			Cmils	Secondary Bare Conductor minimum circular mils		
AWGS			AWG	Secondary Wire Gauge (Rounded up to next larger standard AWG value)		
DIAS		0.46		Secondary Minimum Bare Conductor Diameter		
ODS		0.93	mm	Secondary Maximum Outside Diameter for Triple Insulated Wire		
INSS		0.23	mm	Maximum Secondary Insulation Wall Thickness		
VOLTAGE STRESS PARA	METERS					
VDRAIN		563	Volts	Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance)		
PIVS		47	Volts	Output Rectifier Maximum Peak Inverse Voltage		
			7 0.10	output recentled maximum reactions remaye		
TRANSFORMER SECOND	ARY DESIGN PARAM	IETERS (N	ULTIPLE	OUTPUTS)		
1st output				,		
VO1	11.0		Volts	Output Voltage		
IO1	0.010		Amps	Output DC Current		
PO1		0.11	Watts	Output Power		
VD1	0.7		Volts	Output Diode Forward Voltage Drop		
NS1		11.28		Output Winding Number of Turns		
ISRMS1		0.020	Amps	Output Winding RMS Current		
IRIPPLE1			Amps	Output Capacitor RMS Ripple Current		
PIVS1		00	Volts	Output Rectifier Maximum Peak Inverse Voltage		

10 Performance Data

All measurements performed at room temperature, 60 Hz input frequency.

10.1 Output Characteristic

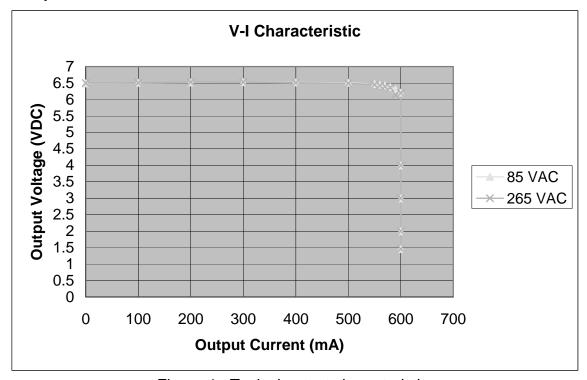


Figure 4 - Typical output characteristic.

10.2 Efficiency

Measured at 0.6A load.

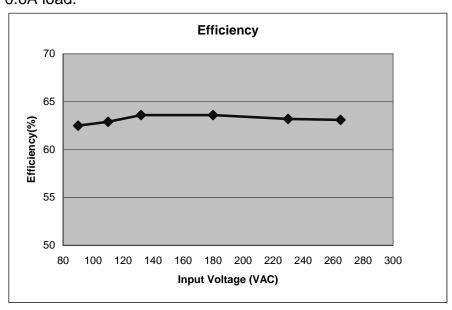


Figure 6- Efficiency vs. Input Voltage at full load, Room Temperature, 60 Hz.

10.3 No-load Input Power

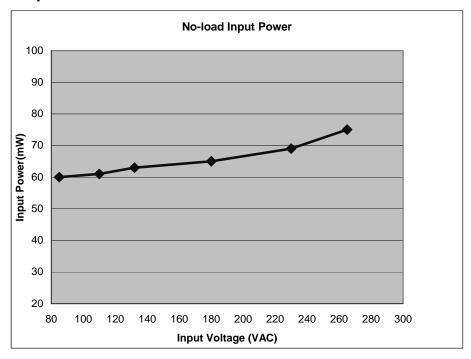


Figure 7- Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz.

10.4 Load and Line Regulation in CV mode

Measured at the end of a cable with 0.25 Ω resistance. Note the very flat voltage characteristic because of the cable drop compensation.

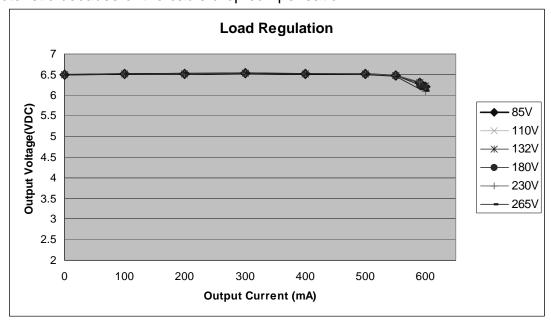


Figure 8 –Load Regulation, Room Temperature.

11 Thermal Performance

Test Condition: Open Air, 0.6A load

Temperature (°C)					
Item	85 VAC	265 VAC			
Ambient (Deg.C)	25	25			
Transformer (T1)	38	40			
TinySwitch-II (U1)	53	53			
Rectifier (D7)	56	59			

12 Waveforms

12.1 Drain Voltage Normal Operation

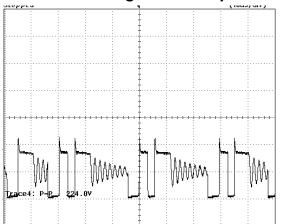


Figure 9 - 85 VAC, Full Load. Lower: V_{DRAIN} , 100 V, 10 μs / div

12.2 Output Voltage Start-up Profile

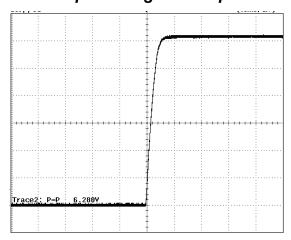


Figure 11 - Start-up Profile, 85VAC 1 V, 10 ms / div.

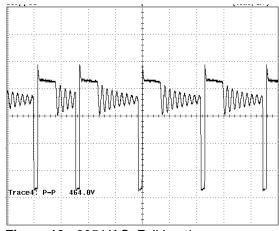


Figure 10 - 265 VAC, Full Load $$V_{DRAIN},\,100$ V, $10~\mu s$ / div

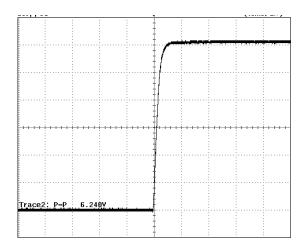


Figure 12 - Start-up Profile, 265 VAC 1 V, 10 ms / div.

12.3 Drain Voltage Start-up Profile

Figure 13 - 85 VAC Input and Maximum Load. V_{DRAIN}, 100 V & 2 ms / div.

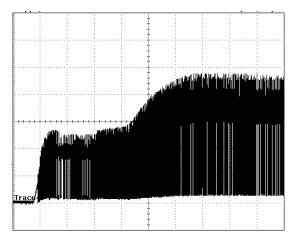


Figure 14 - 265 VAC Input and Maximum Load. $V_{DRAIN},\,100$ V & 1 ms / div.

12.4 Output Ripple Measurements

12.4.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 19 and Figure 20.

The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 μ F/50 V ceramic type and one (1) 1.0 μ F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

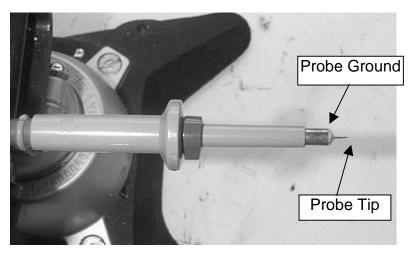


Figure 15 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

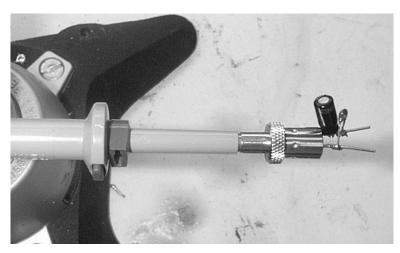


Figure 16 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added)

12.4.2 Measurement Results

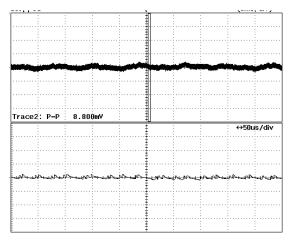
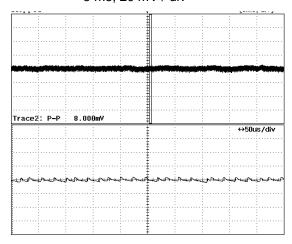



Figure 17 - Ripple, 85 VAC, Full Load. 5 ms, 20 mV / div

Figure 19 - Ripple, 230 VAC, Full Load. 5 ms, 20 mV /div

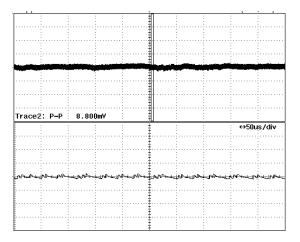
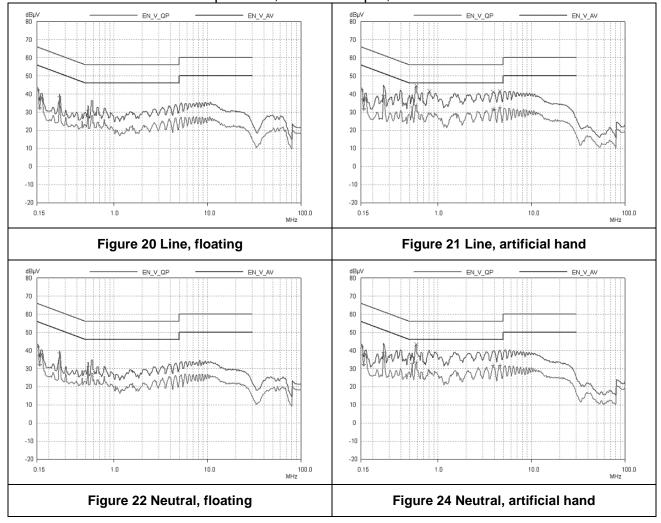



Figure 18 - 5 V Ripple, 110 VAC, Full Load. 5 ms, 20 mV / div

13 Conducted EMI

EMI was tested at room temperature, 230 VAC input, full load

14 Revision History

Date	Author	Revision	Description & changes	Reviewed
April 1, 2004	DZ	1.0	First Release	VC /AM

For the latest updates, visit our Web site: www.powerint.com

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others.

The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.

The PI Logo, **TOPSwitch, TinySwitch**, **LinkSwitch**, and **EcoSmart** are registered trademarks of Power Integrations. **PI Expert** and **DPA-Switch** are trademarks of Power Integrations. © Copyright 2003, Power Integrations.

WORLD HEADQUARTERS

Power Integrations

5245 Hellyer Avenue, San Jose, CA 95138, USA Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail:

usasales @powerint.com

Power Integrations, Inc.

AMERICAS

e-mail:

4335 South Lee Street, Suite G, Buford, GA 30518, USA Phone: +1-678-714-6033 Fax: +1-678-714-6012

usasales@powerint.com

CHINA (SHANGHAI)

Power Integrations
International Holdings, Inc.
Rm 807, Pacheer,
Commercial Centre,
555 Nanjing West Road,
Shanghai, 200041, China
Phone: +86-21-6215-5548
Fax: +86-21-6215-2468
e-mail:
chinasales @powerint.com

APPLICATIONS HOTLINE

World Wide +1-408-414-9660

CHINA (SHENZHEN)

Power Integrations International Holdings, Inc. Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu, Shenzhen, Guangdong, 518031, China

Phone: +86-755-8367-5143 Fax: +86-755-8377-9610 e-mail: chinasales @powerint.com

GERMANY

Power Integrations, GmbH Rueckerstrasse 3, D-80336, Munich, Germany Phone: +49-895-527-3910 Fax: +49-895-527-3920 e-mail: eurosales @powerint.com

INDIA (TECHNICAL SUPPORT)

Innovatech #1, (New #42) 8th Main Road, Vasanthnagar, Bangalore, India, 560052 Phone: +91-80-226-6023 Fax: +91-80-228-9727 e-mail: indiasales @powerint.com

APPLICATIONS FAX

World Wide +1-408-414-9760

ITALY

Power Integrations s.r.l. Via Vittorio Veneto 12, Bresso, Milano, 20091, Italy Phone: +39-028-928-6001 Fax: +39-028-928-6009 e-mail: eurosales @powerint.com

JAPAN

Power Integrations, K.K. Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama, 2-Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033, Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales @powerint.com

KOREA

Power Integrations
International Holdings, Inc.
8th Floor, DongSung Bldg.
17-8 Yoido-dong,
Youngdeungpo-gu,
Seoul, 150-874, Korea
Phone: +82-2-782-2840
Fax: +82-2-782-4427
e-mail:
koreasales @powerint.com

SINGAPORE (ASIA PACIFIC HEADQUARTERS)

Power Integrations, Singapore 51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: singaporesales@powerint.com

TAIWAN

Power Integrations International Holdings, Inc. 17F-3, No. 510, Chung Hsiao E. Rd., Sec. 5, Taipei, Taiwan 110, R.O.C. Phone: +886-2-2727-1221 Fax: +886-2-2727-1223 e-mail: taiwansales @powerint.com

UK (EUROPE & AFRICA HEADQUARTERS)

Power Integrations (Europe) Ltd.
Centennial Court,
Easthampstead Road,
Bracknell, Berkshire RG12 1YQ,
United Kingdom
Phone: +44-1344-462-300

Phone: +44-1344-462-300 Fax: +44-1344-311-732 e-mail: eurosales @powerint.com

