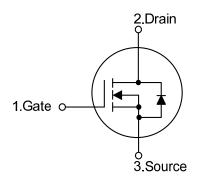


UNISONIC TECHNOLOGIES CO., LTD

12N25V **Power MOSFET**

12A, 250V N-CHANNEL POWER MOSFET

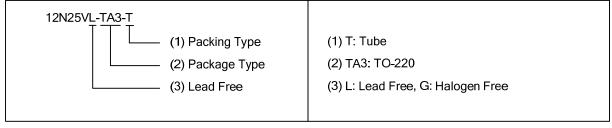
DESCRIPTION


The UTC 12N25V is an N-channel mode power MOSFET using UTC's advanced technology to provide customers with planar stripe and DMOS technology. This technology specializes in allowing a minimum on-state resistance and superior switching performance. It also can withstand high energy pulse in the avalanche and commutation mode.

The UTC 12N25V is universally applied in electronic lamp ballast based on half bridge topology and high efficient switched mode power supply.

FEATURES

- * I_D=12A
- * $V_{DS} = 250V$
- * $R_{DS(ON)}$ =0.34 Ω @ V_{GS} =10V
- * High switching speed
- * 100% avalanche tested


SYMBOL

ORDERING INFORMATION

Ordering Number		Dookono	Pin	Assignn	Doolsing		
Lead Free	Halogen Free	Package	1	2	3	Packing	
12N25VL-TA3-T	12N25VG-TA3-T	TO-220	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

TO-220

www.unisonic.com.tw 1 of 5 12N25V Power MOSFET

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

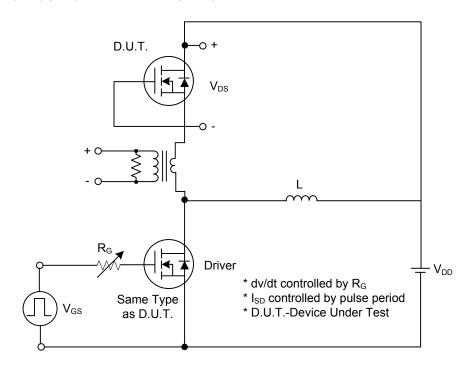
PARAM	METER	SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	250	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Dunin Cumunt	Continuous (T _C =25°C)	I_D	12	Α	
Drain Current	Pulsed (Note 2)	I _{DM}	48	Α	
Single Pulsed Avalanche Ene	ergy	E _{AS}	474	mJ	
Power Dissipation		_	192	W	
Derate above 25°C Junction Temperature		P_{D}	1.53	W/°C	
		TJ	+150	°C	
Storage Temperature Range		T_{STG}	-55~+150	°C	

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

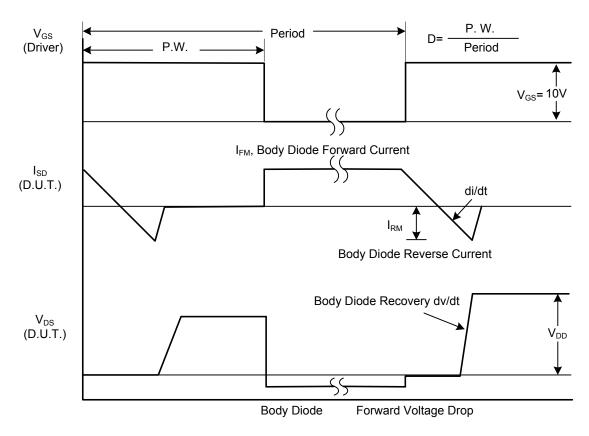
■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{JC}	0.65	°C/W	

■ ELECTRICAL CHARACTERISTICS (T_C=25°C, unless otherwise noted)

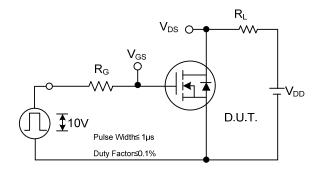

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS			•				
Drain-Source Breakdown Voltage		BV _{DSS}	$I_D = 250 \mu A, V_{GS} = 0V$ 250				V
Drain-Source Leakage Current		I_{DSS}	V _{DS} =250V, V _{GS} =0V			1	μΑ
Cata Cauraa Laakaga Current	Forward	I _{GSS}	V_{GS} =+20V, V_{DS} =0V			+100	nA
Gate- Source Leakage Current	Reverse		V_{GS} =-20V, V_{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.0		2.5	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =12A		0.34	0.5	Ω
DYNAMIC PARAMETERS							
Input Capacitance		C_{ISS}	V _{GS} =0V, V _{DS} =25V, f=1.0MHz			3000	pF
Output Capacitance		Coss				900	pF
Reverse Transfer Capacitance		C_{RSS}				400	pF
SWITCHING PARAMETERS							
Turn-ON Delay Time		t _{D(ON)}	V _{DD} =200V, I _D =12A, R _G =25Ω (Note 1, 2)		14	50	ns
Rise Time		t_R			80	150	ns
Turn-OFF Delay Time		$t_{D(OFF)}$			90	200	ns
Fall-Time		t_{F}			80	170	ns
SOURCE- DRAIN DIODE RATII	NGS AND C	CHARACTERI	STICS				
Drain-Source Diode Forward Voltage		V_{SD}	I _S =12A, V _{GS} =0V			1.4	V
Maximum Body-Diode Continuou	us Current	Is				12	Α
Maximum Body-Diode Pulsed Cu	urrent	I _{SM}				48	Α

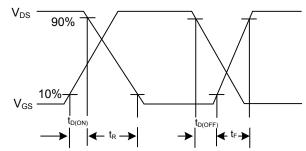
Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%


2. Essentially independent of operating temperature

^{2.} Repetitive Rating: Pulse width limited by maximum junction temperature

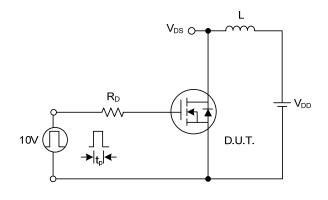
■ TEST CIRCUITS AND WAVEFORMS

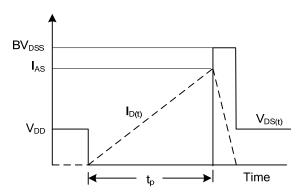

Peak Diode Recovery dv/dt Test Circuit



Peak Diode Recovery dv/dt Waveforms

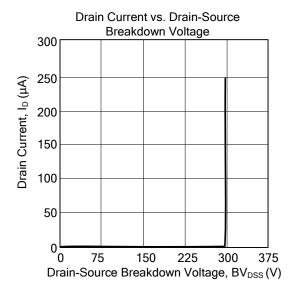
12N25V Power MOSFET

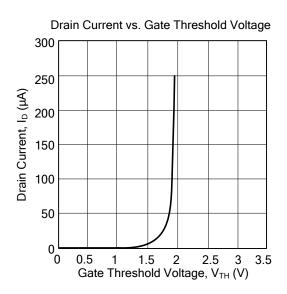

■ TEST CIRCUITS AND WAVEFORMS (Cont.)

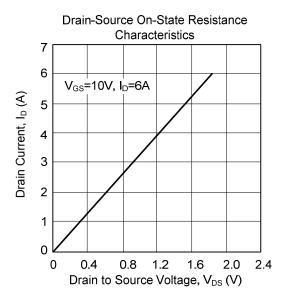


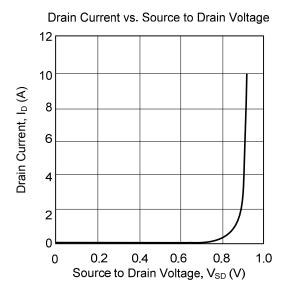
Switching Test Circuit

Switching Waveforms




Unclamped Inductive Switching Test Circuit


Unclamped Inductive Switching Waveforms


12N25V Power MOSFET

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.