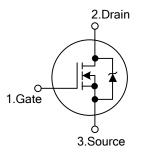


UNISONIC TECHNOLOGIES CO., LTD

20N15V Preliminary Power MOSFET

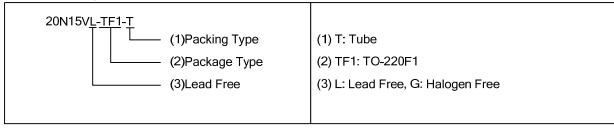
20A, 150V N-CHANNEL POWER MOSFET

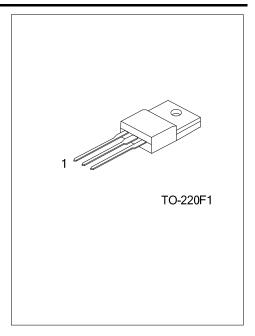

■ DESCRIPTION

The UTC **20N15V** is an N-Channel POWER MOSFET, it uses UTC's advanced technology to provide customers with high switching speed and low gate charge.

The UTC **20N15V** is suitable for bridge circuits, power converters and PWM motor controls.

■ FEATURES


- * $R_{DS(on)}$ <0.13 Ω @ V_{GS} =10V, I_{D} =10A
- * High switching speed
- * Low gate charge
- SYMBOL



ORDERING INFORMATION

Ordering Number		Daalaasa	Pin	Daaliaa			
Lead Free	Halogen Free	Package	1	2	3	Packing	
20N15VL-TF1-T	20N15VLG-TF1-T	TO-220F1	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise noted)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	150	V	
Gate-Source Voltage	Continuous	V_{GSS}	±20	V	
Drain Current	Continuous	I _D	20	Α	
	Single Pulsed (tp≤10µs)	I _{DM}	60	Α	
Single Drain-to-Source Avalanche Energy	Starting T _J =25°C (V _{DD} =120V, V _{GS} =10V, I _L =20A, L=0.3mH)	E _{AS}	60	mJ	
Power Dissipation		Б	50	W	
Derate above 25°C		P _D	0.4	W/°C	
Operating Temperature		T_J	+150	°C	
Storage Temperature Range		T _{STG}	-55~+150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	62.5	°C/W	
Junction to Case	θ_{JC}	2.5	°C/W	

■ ELECTRICAL CHARACTERISTICS (T_J=25°C, unless otherwise noted)

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS	•			•			
Drain-Source Breakdown Voltage		BV _{DSS}	I _D =0.25mA, V _{GS} =0V 150				V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =150V, V _{GS} =0V			10	μΑ
			V _{DS} =150V, V _{GS} =0V, T _J =125°C			100	μA
Gate-Source Leakage Current	orward		V _{GS} =+20V, V _{DS} =0V			100	nA
	Reverse	I_{GSS}	V _{GS} =-20V, V _{DS} =0V			100	nA
ON CHARACTERISTICS (Note 1)							
Gate Threshold Voltage		$V_{GS(TH)}$	V _{DS} =V _{GS} , I _D =0.25mA 1.0			2.5	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =10A		0.12	0.13	Ω
Drain-Source On-Voltage		$V_{DS(ON)}$	V _{GS} =10V, I _D =20A			2.8	V
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			1133	1627	pF
Output Capacitance		Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		332	474	pF
Reverse Transfer Capacitance		C _{RSS}			105	174	рF
SWITCHING PARAMETERS (No	ote 2)				-		
		Q_G			39.1	55.9	nC
Gate Charge		Q_GS	V _{GS} =10V, V _{DS} =75V, I _D =20A		7.5		nC
		Q_GD			22		nC
Turn-ON Delay Time		$t_{D(ON)}$	V_{DD} =75V, V_{GS} =10V, I_{D} =20A, R_{G} =9.1 Ω		11	25	ns
Rise Time		t_R			77	153	ns
Turn-OFF Delay Time		$t_{D(OFF)}$			33	67	ns
Fall-Time		t⊧			49	97	ns
SOURCE- DRAIN DIODE RATIN	IGS AND	CHARACTE	RISTICS				
Drain-Source Diode Forward Voltage		V _{SD}	I _S =20A, V _{GS} =0V			1.5	V
(Note 1)			15-20/1, VG5-0V			1.5	v
Maximum Continuous Drain-Source Diode Forward Current		Is				20	Α
Pulsed Drain-Source Current		I _{SM}				60	Α
Body Diode Reverse Recovery Time		t _{RR}	I _S =20A, V _{GS} =0V, dI _S /dt=100A/μs		160		ns
Body Diode Reverse Recovery Charge		Q_{RR}			1.1		μC

Notes: 1. Pulse Test: Pulse Width≤300µs, Duty Cycle≤2%.

^{2.} Switching characteristics are independent of operating junction temperature.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

