

UTC UNISONIC TECHNOLOGIES CO., LTD

40N15 **Preliminary Power MOSFET**

40A, 150V N-CHANNEL POWER MOSFET

DESCRIPTION

The UTC 40N15 is an N-channel enhancement MOSFET, it uses UTC's advanced technology to provide the customers with perfect $R_{\text{DS}(\text{ON})}\!,$ high switching speed, high current capacity and low gate charge.

FEATURES

- * $R_{DS(ON)}$ <42m Ω @ V_{GS} =10V, I_D =20A
- * High Switching Speed
- * High Current Capacity
- * Low Gate Charge(typical 85nC)

TO-220F2

ORDERING INFORMATION

Ordering Number		Davis	Pin Assignment			Daalina	
Lead Free	Halogen Free	Package	1	2	3	Packing	
40N15L-TF2-T	40N15LG-TF2-T	TO-220F2	G	D	S	Tube	

Note: Pin Assignment: G: Gate D: Drain S: Source 40N15L-TF2-T (1) T: Tube - (1)Packing Type - (2)Package Type (2) TF2: TO-220F2 (3)Lead Free (3) G: Halogen Free, L: Lead Free

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V_{DSS}	150	V
Gate-Source Voltage		V_{GSS}	±25	V
Drain Current	Continuous	I_{D}	40	Α
	Pulsed	I_{DM}	180	Α
Avalanche Current		I_{AR}	45.6	Α
Avalanche Energy	Single Pulsed	E _{AS}	650	mJ
	Repetitive	E_{AR}	21	mJ
Peak Diode Recovery dv/dt		dv/dt	6	V/ns
Power Dissipation		P_D	210	W
Junction Temperature		T_J	-50~+150	°C
Storage Temperature Range		T_{STG}	-50~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL CHARACTERISTICS

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	62.5	°C/W
Junction to Case	θ_{JC}	0.7	°C/W

■ ELECTRICAL CHARACTERISTICS

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	V_{GS} =0V, I_D =250 μ A	150			V
Breakdown Voltage Temperature Coefficient		$\triangle BV_{DSS}/\triangle T_{J}$			0.16		V/°C
Drain-Source Leakage Current		I _{DSS}	V _{GS} =0V, V _{DS} =150V			900	nA
Gate-Source Leakage Current	Forward	1000	V_{GS} =+20V, V_{DS} =0V			+100	nA
	Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		$V_{GS(TH)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.2		3.8	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =20A	5		42	mΩ
Forward Transconductance		9 FS			33		S
DYNAMIC PARAMETERS							
Input Capacitance		C _{ISS}			2500	3250	pF
Output Capacitance		Coss			520	670	pF
Reverse Transfer Capacitance		C_{RSS}			100	130	pF
SWITCHING PARAMETERS							
Total Gate Charge		Q_G	V _{GS} =10V, V _{DD} =50V,		85	110	nC
Gate to Source Charge		Q_GS	I _D =1.3A, I _G =100μA		15		nC
Gate to Drain Charge		Q_GD	10-1.5A, 1G-100μA		41		nC
Turn-ON Delay Time		t _{D(ON)}			35	80	ns
Rise Time		t _R	V _{GS} =0~10V, V _{DD} =30V,		320	650	ns
Turn-OFF Delay Time		t _{D(OFF)}	I _D =0.5A, R _G =25Ω		210	430	ns
Fall-Time		t _F			200	410	ns
SOURCE- DRAIN DIODE RATIN	IGS AND CI	HARACTERIST	TICS				
Maximum Body-Diode Continuous Current		I _S				45.6	Α
Maximum Body-Diode Pulsed Current		I _{SM}				182.4	Α
Drain-Source Diode Forward Voltage		V_{SD}	I _S =40A, V _{GS} =0V	0.1		1.48	V
Body Diode Reverse Recovery Time		t _{RR}	V _{GS} =0V, I _S =45.6A		130		ns
Body Diode Reverse Recovery Charge		Q_{RR}	dI _F /d _t =100A/μs		0.55		μC

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

