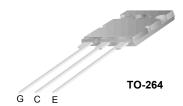


SGL50N60RUFD 600 V, 50 A Short Circuit Rated IGBT

General Description


Fairchild[®]'s RUFD series of Insulated Gate Bipolar Transistors (IGBTs) provide low conduction and switching losses as well as short circuit ruggedness. The RUFD series is designed for applications such as motor control, uninterrupted power supplies (UPS) and general inverters where short circuit ruggedness is a required feature.

Features

- 50 A, 600 V, T_C = 100°C
- Low Saturation Voltage: V_{CE}(sat) = 2.2 V @ I_C = 50 A
- High Speed Switching
- · High Input Impedance
- · Short Circuit Rating

Applications

Motor control, UPS, General Inverter.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Description		SGL50N60RUFD	Unit
V _{CES}	Collector-Emitter Voltage		600	V
V_{GES}	Gate-Emitter Voltage		± 20	V
	Collector Current	@ T _C = 25°C	80	Α
С	Collector Current	@ T _C = 100°C	50	Α
CM (1)	Pulsed Collector Current		150	Α
F	Diode Continuous Forward Current	@ T _C = 100°C	30	Α
FM	Diode Maximum Forward Current		90	Α
Γ _{SC}	Short Circuit Withstand Time	@ T _C = 100°C	10	us
D	Maximum Power Dissipation	@ T _C = 25°C	250	W
	Maximum Power Dissipation	@ T _C = 100°C	100	W
Γ _J	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
Γ _L	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds		300	°C

Notes

(1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction-to-Case		0.5	°C/W
$R_{\theta JC}(DIODE)$	DE) Thermal Resistance, Junction-to-Case		1.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		25	°C/W

Electrical Characteristics of the IGBT $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 250uA	600			V
ΔB _{VCES} / ΔΤ _J	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0V, I _C = 1mA		0.6		V/°C
ces	Collector Cut-Off Current	V _{CE} = V _{CES} , V _{GE} = 0V			250	uA
GES	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Chai	racteristics					
V _{GE(th)}	G-E Threshold Voltage	Ic = 50mA, V _{CE} = V _{GE}	5.0	6.0	8.5	V
	Collector to Emitter	I _C = 50A, V _{GE} = 15V		2.2	2.8	V
V _{CE(sat)}	Saturation Voltage	I _C = 80A, V _{GE} = 15V		2.5		V
-	c Characteristics					
C _{ies}	Input Capacitance	V _{CE} =30V, V _{GE} = 0V,		3311		pF
C _{oes}	Output Capacitance	f = 1MHz		399		pF
C _{res}	Reverse Transfer Capacitance	1 - 11/11/12		139		pF
Switchir t _{d(on)}	ng Characteristics Turn-On Delay Time			26		ns
t _r	Rise Time			89		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, I_{C} = 50\text{A},$		66	100	ns
t _f	Fall Time	$R_G = 5.9\Omega$, $V_{GE} = 15V$,		118	200	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C		1.68		mJ
E _{off}	Turn-Off Switching Loss			1.03		mJ
Ets	Total Switching Loss	1		2.71	3.8	mJ
t _{d(on)}	Turn-On Delay Time			28		ns
r	Rise Time			91		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, I_{C} = 50 \text{A},$		68	110	ns
t _f	Fall Time	$R_G = 5.9\Omega, V_{GE} = 15V,$		261	400	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 125°C		1.7		mJ
E _{off}	Turn-Off Switching Loss			2.31		mJ
E _{ts}	Total Switching Loss			4.01	5.62	mJ
T _{sc}	Short Circuit Withstand Time	V _{CC} = 300 V, V _{GE} = 15V @ T _C = 100°C	10			us
Q_g	Total Gate Charge	$V_{CE} = 300 \text{ V}, I_{C} = 50\text{A},$		145	210	nC
Q _{ge}	Gate-Emitter Charge	$V_{CE} = 300 \text{ V, } I_{C} = 50\text{A},$ $V_{GE} = 15\text{V}$		25	35	nC
Q _{gc}	Gate-Collector Charge	VGE - 13V		70	100	nC
Le	Internal Emitter Inductance	Measured 5mm from PKG		18		nΗ

Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{FM}	Diode Forward Voltage	$T_{\rm C} = 2$	$T_C = 25^{\circ}C$		1.9	2.8	V
		I _F = 30A	T _C = 100°C		1.8	V	V
t _{rr}	t _{rr} Diode Reverse Recovery Time Diode Peak Reverse Recovery Current		T _C = 25°C		70	100	ns
			T _C = 100°C		140		
		I _F = 30A,	T _C = 25°C		6	7.8	۸
'rr		$di/dt = 200 \text{ A/us}$ T_C	T _C = 100°C		8		Α
Q _{rr}	Diode Reverse Recovery Charge		T _C = 25°C		200	360	nC
	blode Reverse Recovery Charge		T _C = 100°C		580		20

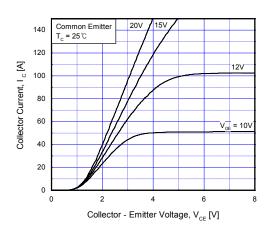


Fig 1. Typical Output Characteristics

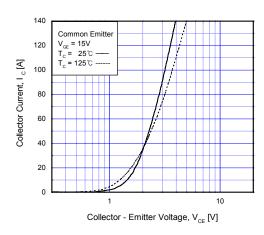


Fig 2. Typical Saturation Voltage Characteristics

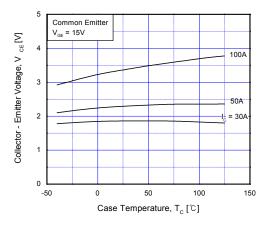


Fig 3. Saturation Voltage vs. Case
Temperature at Variant Current Level

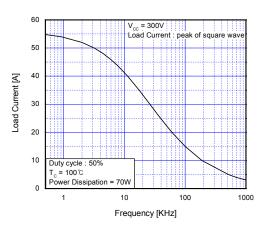


Fig 4. Load Current vs. Frequency

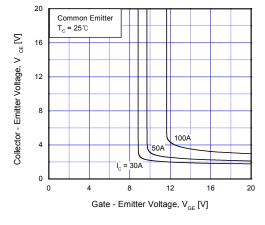


Fig 5. Saturation Voltage vs. V_{GE}

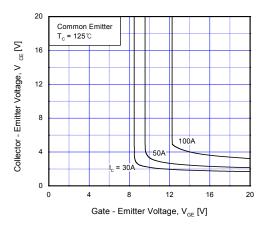


Fig 6. Saturation Voltage vs. V_{GE}

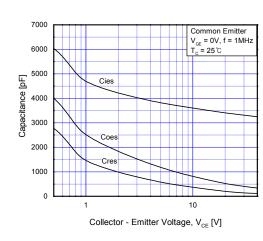


Fig 7. Capacitance Characteristics

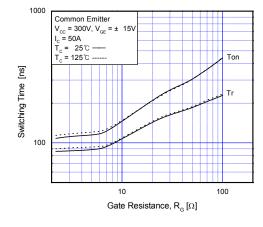


Fig 8. Turn-On Characteristics vs.
Gate Resistance

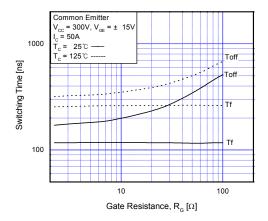


Fig 9. Turn-Off Characteristics vs. Gate Resistance

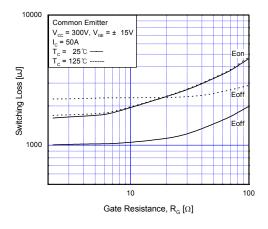


Fig 10. Switching Loss vs. Gate Resistance

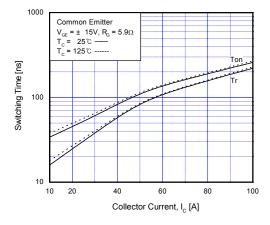
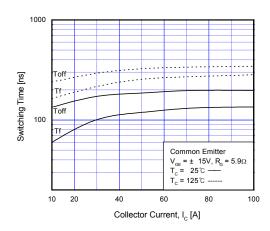
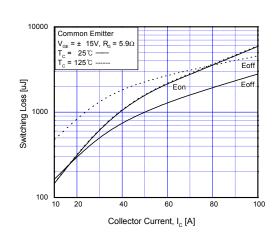
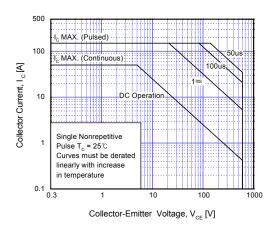


Fig 11. Turn-On Characteristics vs. Collector Current


Fig 12. Turn-Off Characteristics vs.
Collector Current

15 Common Emitte $R_L = 6\Omega$ T_ = 25°C 12 Gate - Emitter Voltage, $V_{GE}[V]$ 300 V 200 V 6 0 30 60 90 120 150 180 0 Gate Charge, Q_{α} [nC]

Fig 13. Switching Loss vs. Collector Current

Fig 14. Gate Charge Characteristics

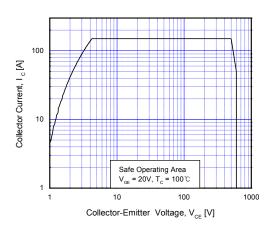


Fig 15. SOA Characteristics

Fig 16. Turn-Off SOA Characteristics

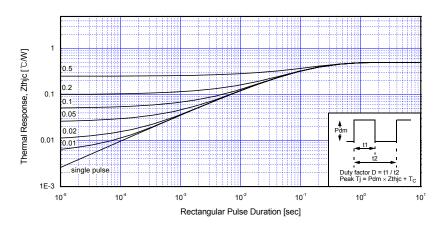


Fig 17. Transient Thermal Impedance of IGBT

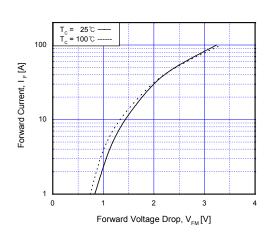


Fig 18. Forward Characteristics

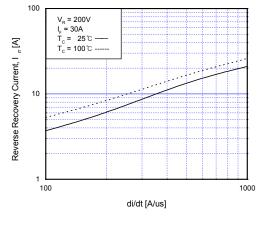


Fig 19. Reverse Recovery Current

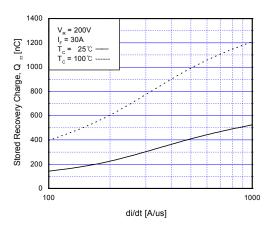


Fig 20. Stored Charge

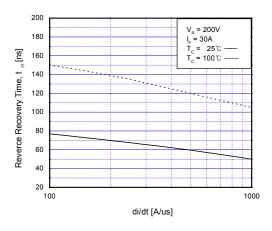
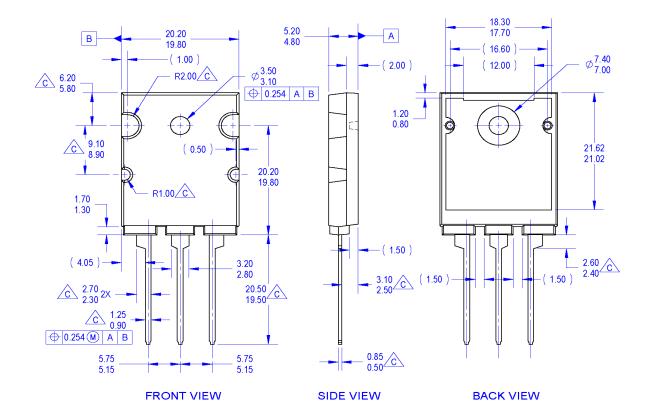
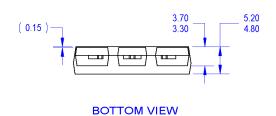




Fig 21. Reverse Recovery Time

Mechanical Dimensions

TO-264A03

NOTES:

- A. PACKAGE REFERENCE: JEDEC TO264 VARIATION AA. B. ALL DIMENSIONS ARE IN MILLIMETERS.
- OUT OF JEDEC STANDARD VALUE.

 D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-1994.

 E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

 F. THIS PACKAGE IS INTENDED ONLY FOR "FS PKG CODE AR"

 G. DRAWING FILE NAME: TO264A03REV1

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

®

2Cool™ AccuPower™ AX-CAP®* BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ $CROSSVOLT^{\text{TM}}$ CTL™

Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK® EfficentMax™ ESBC™

Fairchild[®] Fairchild Semiconductor®

FACT Quiet Series™ FACT® $\mathsf{FAST}^{\mathbb{R}}$ FastvCore™ FETBench™

FPS™ F-PFS™ FRFET®

Global Power ResourceSM Green Bridge™ Green FPS™ Green FPS™ e-Series™

 $\mathsf{G} max^{\mathsf{TM}}$ GTO™ IntelliMAX™ ISOPLANAR™

Marking Small Speakers Sound Louder and Better™

MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ OPTOLOGIC®

OPTOPLANAR®

PowerTrench® PowerXS™

Programmable Active Droop™

QFET[®] QS™ Quiet Series™ RapidConfigure ™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM[®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SvncFET™

Sync-Lock™ SYSTEM ®*

GENERAL

TINKES TinyBoost™ TinyBuck™ TinyCalc™ $\mathsf{TinyLogic}^{\mathbb{B}}$ TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* μSerDes™

LIHC Ultra FRFET™ UniFFT™ **VCX™** VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification Product Status		Definition		
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specification may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev 164