

SSM6N09FU

High Speed Switching Applications

Unit: mm

- Small package
- Low Drain-Source ON resistance.
 - : $R_{on} = 0.7 \Omega \text{ (max) } (@V_{GS} = 10 \text{ V})$
 - : $R_{on} = 1.2 \Omega \text{ (max) } (@V_{GS} = 4 \text{ V})$

Maximum Ratings (Ta = 25°C) (Q1, Q2 Common)

Characteristics		Symbol	Rating	Unit	
Drain-Source voltage		V_{DS}	30	V	
Gate-Source voltage		V_{GSS}	±20	V	
Drain current	DC	I _D	400	mA	
	Pulse	I _{DP}	800		
Drain power dissipation (Ta = 25°C)		P _D (Note1)	300	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	

Weight: 6.8 mg (typ.)

Handling Precaution

When handling individual devices (which are not yet mounting on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.

SSM6N09FU

Marking

Equivalent Circuit (top view)

Figure 1: 25.4 mm \times 25.4 mm \times 1.6 t, Cu Pad: 0.32 mm² \times 6

Electrical Characteristics (Ta = 25°C) (Q1, Q2 common)

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit	
Gate leakage current		I _{GSS}	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0$	_	_	±1	μΑ	
Drain-Source breakdown voltage		V (BR) DSS	$I_D = 1 \text{ mA}, V_{GS} = 0$	30	_	_	V	
Drain cut-off current		I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0$	_	_	1	μΑ	
Gate threshold voltage		V _{th}	$V_{DS} = 5 \text{ V}, I_D = 0.1 \text{ mA}$	1.1	_	1.8	V	
Forward transfer admit	ttance	Y _{fs}	$V_{DS} = 5 \text{ V}, I_D = 200 \text{ mA}$ (Note2)	270	_	_	mS	
Drain-Source ON resistance		R _{DS (ON)}	$I_D = 200 \text{ mA}, V_{GS} = 10 \text{ V}$ (Note2)	_	0.53	0.7	Ω	
			$I_D = 200 \text{ mA}, V_{GS} = 4 \text{ V}$ (Note2)	_	0.8	1.2		
			$I_D = 200 \text{ mA}, V_{GS} = 3.3 \text{ V}$ (Note2)	_	1.0	1.7		
Input capacitance		C _{iss}	V _{DS} = 5 V, V _{GS} = 0, f = 1 MHz	_	20	_	pF	
Reverse transfer capacitance		C _{rss}	V _{DS} = 5 V, V _{GS} = 0, f = 1 MHz	_	7	_	pF	
Output capacitance		C _{oss}	V _{DS} = 5 V, V _{GS} = 0, f = 1 MHz		16		pF	
Switching time	Turn-on time	t _{on}	$V_{DD} = 5 \text{ V}, I_D = 200 \text{ mA},$		72	_		
	Turn-off time	t _{off}	V _{GS} = 0~4 V	_	68	_	ns	

Note2: Pulse test

Switching Time Test Circuit (Q1, Q2 Common)

(a) Test circuit

 $(Z_{out} = 50 \Omega)$ Common Source $Ta = 25^{\circ}C$

(b) V_{IN}

(c) V_{OUT}

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is I_D = 100 μA for this product. For normal switching operation, V_{GS} (on) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} . (Relationship can be established as follows: V_{GS} (off) < V_{th} < V_{GS} (on))

Please take this into consideration for using the device. VGS recommended voltage of 4 V or higher to turn on this product.