Data Sheet

FEATURES

12-bit 2.0 GSPS ADC, no missing codes
SFDR $=\mathbf{8 0} \mathbf{~ d B c}$, AIN up to $\mathbf{1 ~ G H z}$ at $-\mathbf{1} \mathbf{d B F S}, 2.0 \mathrm{GSPS}$
SFDR $=76 \mathrm{dBC}$, AIN up to 1.8 GHz at $-1 \mathrm{dBFS}, 2.0 \mathrm{GSPS}$
SNR = 59 dBFS , AIN up to 1 GHz at $\mathbf{- 1} \mathrm{dBFS}$, 2.0 GSPS
SNR $=58 \mathrm{dBFS}$, AIN up to 1.8 GHz at $\mathbf{- 1} \mathrm{dBFS}$, 2.0 GSPS
Noise floor $=\mathbf{- 1 4 9 . 5 ~ d B F S / H z}$ at 2.0 GSPS
Power consumption: 3.5 W at 2.0 GSPS
Differential analog input: 1.1 V p-p
Differential clock input
High speed 6- or 8-lane JESD204B serial output
Subclass 1: 5.0 Gbps at 2.0 GSPS
Two independent decimate by 8 or decimate by 16 filters with 10-bit NCOs
Supply voltages: 1.3 V , 2.5 V
Serial port control
Flexible digital output modes
Built-in selectable digital test patterns

APPLICATIONS

Spectrum analyzers

Military communications

Radar

High performance digital storage oscilloscopes
Active jamming/antijamming
Electronic surveillance and countermeasures

GENERAL DESCRIPTION

The AD9625 is a 12 -bit monolithic sampling analog-to-digital converter (ADC) that operates at conversion rates of up to 2.0 giga samples per second (GSPS). This product is designed for sampling wide bandwidth analog signals up to the second Nyquist zone. The combination of wide input bandwidth, high sampling rate, and excellent linearity of the AD9625 is ideally suited for spectrum analyzers, data acquisition systems, and a wide assortment of military electronics applications, such as radar and jamming/antijamming measures.
The analog input, clock, and SYSREF \pm signals are differential inputs. The JESD204B-based high speed serialized output is configurable in a variety of one-, two-, four-, six-, or eight-lane configurations. The product is specified over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Technical Support
© 2014 Analog Devices, Inc. All rights reserved. www.analog.com

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
DC Specifications 3
AC Specifications 4
Digital Specifications 4
Switching Specifications 6
Timing Specifications 6
Absolute Maximum Ratings 8
Thermal Characteristics 8
ESD Caution 8
Pin Configuration and Function Descriptions 9
Typical Performance Characteristics 15
Equivalent Test Circuits 18
Theory of Operation 19
ADC Architecture 19
Fast Detect 19
Gain Threshold Operation 19
Test Modes 20
Digital Downconverters (DDC) 21
Frequency Synthesizer and Mixer 21
High Bandwidth Decimator 21
Low Bandwidth Decimator 22
Analog Input Considerations 23
Clock Input Considerations 23
DC Coupling 23
Calibration 23
Digital Outputs 24
Introduction to JESD204B Interface 24
Functional Overview 24
JESD204B Link Establishment 25
Physical Layer Output. 29
Scrambler 29
Tail Bits 29
DDC Modes (Single and Dual) 29
CheckSum 30
8-Bit/10-Bit Encoder Control 30
Initial Lane Alignment Sequence (ILAS) 30
Lane Synchronization 30
JESD204B Application Layers 31
Frame Alignment Character Insertion 33
Thermal Considerations 33
Power Supply Considerations 33
Serial Port Interface (SPI) 35
Configuration Using the SPI 35
Hardware Interface. 35
Memory Map 36
Reading the Memory Map Register 36
Memory Map Registers 36
Outline Dimensions 54
Ordering Guide 54

REVISION HISTORY

5/14—Revision 0: Initial Version

AD9625

SPECIFICATIONS

DC SPECIFICATIONS

$\mathrm{AVDD} 1=\mathrm{DVDD} 1=\mathrm{DRVDD} 1=1.3 \mathrm{~V}, \mathrm{AVDD} 2=\mathrm{DVDD} 2=\mathrm{DRVDD} 2=2.5 \mathrm{~V}$, specified maximum sampling rate, 1.2 V internal reference, $\operatorname{AIN}=-1.0 \mathrm{dBFS}$, default SPI settings, dc-coupled output data, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Temperature ${ }^{1}$	Min	Typ Max	Unit
SPEED GRADE				2.0	GSPS
RESOLUTION			12		Bits
ACCURACY No Missing Codes Offset Error Gain Error Differential Nonlinearity (DNL) Integral Nonlinearity (INL)		Full Full Full Full Full		$\begin{array}{ll} \text { Guaranteed } & \\ \quad \pm 0.5 & \\ \pm 8 & \\ \pm 0.3 & \pm 0.3 \\ \pm 0.9 & \pm 3.6 \end{array}$	$\begin{aligned} & \text { LSB } \\ & \text { \%FSR } \\ & \text { LSB } \\ & \text { LSB } \end{aligned}$
ANALOG INPUTS Differential Input Voltage Range Resistance Capacitance Internal Common-Mode Voltage (V_{Cm}) Analog Full Power Bandwidth Input Referred Noise	Internal $\mathrm{V}_{\text {REF }}=1.2 \mathrm{~V}$ 100Ω differential termination	Full $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$ Full $25^{\circ} \mathrm{C}$ $25^{\circ} \mathrm{C}$	493	$\begin{array}{ll} 1.1 & \\ 100 & \\ 1.5 & \\ 525 & 564 \\ & \\ 2.0 & \\ 3.5 & \\ \hline \end{array}$	V p-p Ω pF mV GHz LSBrms
POWER SUPPLIES AVDD1 AVDD2 DRVDD1 DRVDD2 DVDD1 DVDD2 DVDDIO SPI_VDDIO Iavddi lavdD2 IDRVDD1 IDRVDD2 lovDD1 lovdD2 IdvDDIo ISPI_vDDIO Power Dissipation		Full Full	$\begin{aligned} & 1.26 \\ & 2.4 \\ & 1.26 \\ & 2.4 \\ & 1.26 \\ & 2.4 \\ & 2.4 \\ & 2.4 \end{aligned}$	1.3 1.32 2.5 2.6 1.3 1.32 2.5 2.6 1.3 1.32 2.5 2.6 2.5 2.6 2.5 2.6 1120 1222 383 460 456 490 9 10 430 410 <1 <1 <1 3.48 3.80	V mA W

[^0]
AC SPECIFICATIONS

$\mathrm{AVDD} 1=\mathrm{DVDD} 1=\mathrm{DRVDD} 1=1.3 \mathrm{~V}, \mathrm{AVDD} 2=\mathrm{DVDD} 2=\mathrm{DRVDD} 2=2.5 \mathrm{~V}$, specified maximum sampling, 1.2 V internal reference, AIN $=-1.0 \mathrm{dBFS}$, sample clock input $=1.65 \mathrm{~V}$ p-p differential, default SPI settings, unless otherwise noted.

Table 2.

Parameter	Test Conditions/Comments	Temperature	Min	Typ	Max	Unit
SPEED GRADE					2.0	GSPS
ANALOG INPUT	Full scale	Full		1.1		Vp-p
NOISE DENSITY		$25^{\circ} \mathrm{C}$		-149.5		$\mathrm{dBFS} / \mathrm{Hz}$
SIGNAL-TO-NOISE RATIO (SNR) $\begin{aligned} & \mathrm{f}_{\mathrm{N}}=100 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N}}=500 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{IN}}=1000 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$	55.4	$\begin{aligned} & 59.5 \\ & 59.4 \\ & 59.0 \\ & 58.2 \end{aligned}$		dBFS dBFS dBFS dBFS
SIGNAL-TO-NOISE AND DISTORTION (SINAD) $\begin{aligned} & \mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=500 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=1000 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$	54.1	$\begin{aligned} & 58.4 \\ & 58.4 \\ & 58.0 \\ & 57.2 \\ & \hline \end{aligned}$		dBc $d B c$ dBc dBc
$\begin{aligned} & \text { EFFECTIVE NUMBER OF BITS (ENOB) } \\ & \mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{N}}=500 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{IN}}=1000 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz} \\ & \hline \end{aligned}$		$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$	8.7	$\begin{aligned} & 9.4 \\ & 9.4 \\ & 9.3 \\ & 9.2 \end{aligned}$		Bits Bits Bits Bits
SPURIOUS FREE DYNAMIC RANGE (SFDR) $\begin{aligned} & \mathrm{fiN}_{\mathrm{IN}}=100 \mathrm{MHz} \\ & \mathrm{fiN}^{\mathrm{I}}=500 \mathrm{MHz} \\ & \mathrm{fi}_{\mathrm{IN}}=1000 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=1800 \mathrm{MHz} \end{aligned}$	Including second or third harmonic	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$		$\begin{aligned} & 80 \\ & 81 \\ & 80 \\ & 76 \end{aligned}$		dBc dBc dBc dBc
WORST OTHER SPUR $\begin{aligned} & \mathrm{fiN}=100 \mathrm{MHz} \\ & \mathrm{fiN}^{\mathrm{N}}=500 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{IN}}=1000 \mathrm{MHz} \\ & \mathrm{fiN}_{\mathrm{IN}}=1800 \mathrm{MHz} \end{aligned}$	Excluding second or third harmonic	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & \text { Full } \end{aligned}$		$\begin{aligned} & 80 \\ & 86 \\ & 83 \\ & 85 \end{aligned}$		dBc dBc dBc dBc
TWO-TONE INTERMODULATION DISTORTION (IMD) $\begin{aligned} & f_{\mathrm{IN}_{1}}=728.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{N} 2}=731.5 \mathrm{MHz} \\ & \mathrm{f}_{\mathrm{N} 1}=1805.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=1808.5 \mathrm{MHz} \end{aligned}$	At -7 dBFS per tone	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 82.8 \\ & 77.6 \end{aligned}$		dBc dBc

DIGITAL SPECIFICATIONS

AVDD1 $=$ DVDD1 $=$ DRVDD1 $=1.3 \mathrm{~V}, \mathrm{AVDD} 2=\mathrm{DVDD} 2=\mathrm{DRVDD} 2=2.5 \mathrm{~V}$, specified maximum sampling rate, 1.2 V internal reference, AIN $=-1.0 \mathrm{dBFS}$, default SPI settings, unless otherwise noted.

Table 3.

Parameter	Temperature	Min	Typ	Max	Unit
CLOCK INPUTS (CLK+, CLK-) Differential Input Voltage Common-Mode Input Voltage Input Resistance (Differential) Input Capacitance	Full Full Full Full	250	$\begin{aligned} & 0.88 \\ & 57 \\ & 1.5 \end{aligned}$	1800	$\begin{aligned} & m \vee p-p \\ & V \\ & k \Omega \\ & p F \end{aligned}$
SYSREF INPUTS (SYSREF+, SYSREF-) Differential Input Voltage Common-Mode Input Voltage	Full Full	250	0.88	1800	$\begin{aligned} & m V p-p \\ & V \end{aligned}$

Parameter	Temperature	Min	Typ	Max	Unit
Input Resistance (Differential)	Full		100		
Input Capacitance	Full		1.5		pF
LOGIC INPUTS (SDIO, SCLK, CSB)					
Logic Compliance			CMOS		
Voltage					
Logic 1	Full	$0.8 \times$ SPI_DVDDIO			V
Logic 0	Full			0.5	V
Input Resistance	Full		30		$\mathrm{k} \Omega$
Input Capacitance	Full		0.5		pF
SYNCB+/SYNCB- INPUT (SYNCINB+, SYNCINB-)					
Logic Compliance	Full		LVDS		
Input Voltage					
Differential	Full	250		1200	mV p-p
Common Mode	Full		1.2		
Input Resistance (Differential)	Full		20		$\mathrm{k} \Omega$
Input Capacitance	Full		2.5		pF
LOGIC OUTPUT (SDIO)					
Logic Compliance			CMOS		
Voltage					
Logic 1 (Іон $=800 \mu \mathrm{~A}$)	Full		$0.8 \times$ SPI_VDDIO		V
Logic 0 (lol $=50 \mu \mathrm{~A})$	Full		0.3		V
DIGITAL OUTPUTS (SERDOUT[x] \pm)					
Compliance	Full		CML		
Output Voltage					
Differential	Full	360	700	800	mV p-p
Offset	Full		DRVDD/2		mVp-p
Differential Return Loss ($\left.\mathrm{RL}_{\text {difF }}\right)^{1}$	$25^{\circ} \mathrm{C}$	8			dB
Common-Mode Return Loss (RLcm) ${ }^{1}$	$25^{\circ} \mathrm{C}$	6			dB
Differential Termination Impedance	Full			100	Ω
RESET (RSTB)					
Voltage					
Logic 1	Full	$0.8 \times$ DVDDIO			V
Logic 0	Full			0.5	V
Input Resistance (Differential)	Full		20		$k \Omega$
Input Capacitance	Full		2.5		
FAST DETECT (FD) AND INTERRUPT (IRQ)					
Logic Compliance			CMOS		
Voltage					
Logic 1	Full	$0.8 \times$ DVDDIO			V
Logic 0	Full			0.5	V
Input Resistance (Differential)	Full		20		$\mathrm{k} \Omega$
Input Capacitance	Full		2.5		pF

[^1]
SWITCHING SPECIFICATIONS

$\mathrm{AVDD} 1=\mathrm{DVDD} 1=\mathrm{DRVDD} 1=1.3 \mathrm{~V}, \mathrm{AVDD} 2=\mathrm{DVDD} 2=\mathrm{DRVDD} 2=2.5 \mathrm{~V}$, specified maximum sampling rate, 1.2 V internal reference, $\operatorname{AIN}=-1.0 \mathrm{dBFS}$, default SPI settings, unless otherwise noted.

Table 4.

Parameter	Test Conditions/Comments	Temperature	Min	Typ	Max	Unit
CLOCK (CLK \pm) Maximum Clock Rate Minimum Clock Rate Clock Pulse Width High Clock Pulse Width Low		Full Full Full Full	$\begin{aligned} & 330^{1} \\ & 50 \pm 5 \\ & 50 \pm 5 \end{aligned}$		2000	MSPS MSPS \% duty cycle \% duty cycle
$\begin{gathered} \hline \text { SYSREF (SYSREF } \pm)^{2} \\ \text { Setup Time (} \mathrm{tsu} \text { _SR } \text {) } \\ \text { Hold Time (} \left.\mathrm{t}_{-} \text {_R }\right) \\ \hline \end{gathered}$		$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & +200 \\ & -100 \end{aligned}$		$\begin{aligned} & \mathrm{ps} \\ & \mathrm{ps} \\ & \hline \end{aligned}$
FAST DETECT OUTPUT (FD) Latency		Full		82		Clock cycles
OUTPUT PARAMETERS (SERDOUT[x] \pm) Rise Time Fall Time Pipeline Latency	Generic 8-lane mode	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \\ & 25^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 226 \end{aligned}$		ps ps Clock cycles
APERTURE Delay Uncertainty (Jitter) Out-of-Range Recovery Time		Full Full Full		$\begin{aligned} & 180 \\ & 55 \\ & 2 \end{aligned}$		ps $\mathrm{f}_{\mathrm{s}} \mathrm{rms}$ Clock cycles

${ }^{1}$ Must use a two-lane, generic output lane configuration for minimum sample rate. For more information, see the lane table in the JESD204B specification document. ${ }^{2}$ SYSREF setup and hold times are defined with respect to the rising SYSREF \pm edge and rising clock edge. Positive setup time leads the clock edge. Negative hold time also leads the clock edge.

TIMING SPECIFICATIONS

Table 5.

Parameter	Test Conditions/Comments	Min	Typ	Max	Unit
SPITIMING REQUIREMENTS					
t_{DS}	Setup time between the data and the rising edge of SCLK	2			ns
$t_{\text {DH }}$	Hold time between the data and the rising edge of SCLK	2			ns
tclk	Period of the SCLK	40			ns
ts	Setup time between CSB and SCLK	2			ns
t_{H}	Hold time between CSB and SCLK	2			ns
$\mathrm{tHIGH}^{\text {ren }}$	Minimum period that SCLK should be in a logic high state	10			ns
tow	Minimum period that SCLK should be in a logic low state	10			ns
ten_sdio	Time required for the SDIO pin to switch from an input to an output relative to the SCLK falling edge (not shown in Figure 3)	10			ns
$\mathrm{t}_{\text {DIS_SDIO }}$	Time required for the SDIO pin to switch from an output to an input relative to the SCLK rising edge (not shown in Figure 3)	10			ns

Timing Diagrams

Figure 2. SYSREF \pm Setup and Hold Timing

Figure 3. Serial Port Interface Timing Diagram (MSB First)

Figure 4. CLK Input and DOUT Timing Relationship (Generic Eight-Lane Mode)

ABSOLUTE MAXIMUM RATINGS

Table 6.

Parameter	Rating
Electrical	
AVDD1 to AGND	-0.3 V to +1.32 V
AVDD2 to AGND	-0.3 V to +2.75 V
DRVDD1 to DRGND	-0.3 V to +1.32 V
DRVDD2 to DRGND	-0.3 V to +2.75 V
DVDD1 to DGND	-0.3 V to +1.32 V
DVDD2 to DGND	-0.3 V to +2.75 V
DVDDIO to DGND	-0.3 V to +3.63 V
SPI_VDDIO to DGND	-0.3 V to +3.63 V
AGND to DRGND	-0.3 V to +0.3 V
$\mathrm{VIN} \pm$ to AGND	-0.3 V to AVDD1+ 0.2 V
VCM to AGND	-0.3 V to AVDD1+ 0.2 V
VMON to AGND	-0.3 V to AVDD1+ 0.2 V
CLK \pm to AGND	-0.3 V to AVDD1+ 0.2 V
SYSREF \pm to AGND	-0.3 V to AVDD1+ 0.2 V
SYNCINB \pm to DRGND	-0.3 V to DRVDD2 +0.2 V
SCLK to DRGND	-0.3 V to SPI_VDDIO +0.2 V
SDIO to DRGND	-0.3 V to SPI_VDDIO +0.2 V
IRQ to DRGND	-0.3 V to DVDDIO +0.2 V
RSTB to DRGND	-0.3 V to DVDDIO +0.2 V
CSB to DRGND	-0.3 V to SPI_VDDIO + 0.2 V
FD to DRGND	-0.3 V to DVDDIO +0.2 V
DIVCLK \pm to DRGND	-0.3 V to DRVDD2 +0.2 V
SERDOUT[x$] \pm$ to DRGND	-0.3 V to DRVDD1 +0.2 V
Environmental	
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature	$90^{\circ} \mathrm{C}$

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL CHARACTERISTICS

The following characteristics are for a 4-layer and 10-layer printed circuit board (PCB).

Table 7. Thermal Resistance

PCB	$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \hline \theta_{\mathrm{JA}} \\ & \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{aligned}$	$\begin{aligned} & \hline \boldsymbol{\Psi}_{\mathrm{J}} \\ & \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{aligned}$	$\begin{aligned} & \hline \boldsymbol{\Psi}_{\mathrm{JB}} \\ & \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{aligned}$	$\begin{aligned} & \hline \theta_{\mathrm{f}} \\ & \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{aligned}$
4-Layer	85.0	18.7	0.61	6.1	1.4
10-Layer	85.0	11.5	0.61	4.1	N/A ${ }^{1}$

${ }^{1} \mathrm{~N} / \mathrm{A}$ means not applicable.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

	$\begin{gathered} \text { AD9625 } \\ \text { TOP VIEW } \\ \text { (Not to Scale) } \end{gathered}$													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	AGND	AGND	AGND	AVDD1	AGND	AVDD2	vcm	AGND	VIN+	vin-	AGND	VM_BYP	AVDD2	AVDD2
B	AGND	AGND	AGND	AGND	AVDD1	AGND	AVDD2	AGND	AGND	AGND	AGND	AVDD2	AGND	AGND
c	AGND	AGND	AGND	AGND	AGND	AVDD1	AGND	AVDD2	AGND	AGND	AVDD2	AGND	AGND	AVDD1
D	DVDD1	DVDD1	DVDD1	DNC	AGND	AGND	AVDD1	AVDD2	AGND	AGND	AVDD2	AVDD1	AVDD1	AVDD1
E	DGND	DGND	DGND	DVDD2	vmon	AGND	AVDD1	AVDD2	AGND	AGND	AVDD2	AVDD1	AGND	AGND
F	DVDD1	DVDD1	DVDD1	SPI_VDDIO	DVDDIo	AGND	AVDD1	AVDD2	AGND	AGND	AVDD2	AVDD1	AGND	CLK+
G	DGND	DGND	DGND	CSB	DVDDIo	AGND	AVDD1	AVDD2	AGND	AGND	AVDD2	AVDD1	AGND	CLK-
H	DVDD1	DVDD1	DVDD1	SCLK	IRQ	AGND	AVDD1	AVDD2	AGND	AGND	AVDD2	AVDD1	AGND	AGND
J	DGND	DGND	DGND	SDIO	FD	RBIAS_EXT	AVDD1	AVDD2	AGND	AGND	AVDD2	AVDD1	AGND	SYSREF+
K	DVDD1	DVDD1	RSTB	DNC	AGND	SYSREF-								
L	DGND	DNC	SYNCINB-	SYNCINB+	DGND	DGND	DGND	DGND	DGND	DNC	DNC	DNC	AGND	AGND
M	DRGND	DRVDD1	REXT	DRGND	DRGND									
N	DRVDD1	$\underset{\substack{\text { SERDOUT } \\[7]+}}{ }$	$\underset{[6]^{+}}{\text {SERDOUT }}$	$\underset{[5]+}{\text { SERDOUT }}$	$\underset{[4]+}{\text { SERDOUT }}$	DRVDD1	$\underset{[3]+}{\text { SERDOUT }}$	$\underset{[2]^{+}}{\text {SERDOUT }}$	$\underset{[1]+}{\mathrm{SERDOUT}}$	$\underset{[0]^{+}}{\text {SERDOUT }}$	DRVDD1	VP_BYP	DRVDD2	DRVDD2
P	DRVDD1	$\begin{gathered} \text { SERDOUT } \\ {[7]-} \end{gathered}$	$\begin{aligned} & \text { SERDOUT } \\ & {[6]-} \end{aligned}$	$\begin{aligned} & \text { SERDOUT } \\ & {[5]-} \end{aligned}$	$\begin{aligned} & \text { SERDOUT } \\ & \text { [4]- } \end{aligned}$	DRVDD1	$\begin{aligned} & \text { SERDOUT } \\ & \text { [3]- } \end{aligned}$	$\underset{\text { SERDOUT }}{\substack{\text { SER }}}$	$\underset{\text { [1]- }}{\text { SERDOUT }}$	$\begin{aligned} & \text { SERDOUT } \\ & \text { [0]-- } \end{aligned}$	DRVDD1	DRGND	DIVCLK-	DIVCLK+
	AVDD2	AVDD1	DVDD2	DVDD1	DRVDD2	DRVDD1	DVDDIO SPI VD DIO	AGND	DGND	DRGND	DNC OR BYPASS WITH CAP			

1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN. LEAVE THIS PIN FLOATING.

Figure 5. Pin Configuration

Table 8. Pin Function Descriptions (By Pin Number)

Pin No.	Mnemonic	Type	Description
A1 to A3	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
A4	AVDD1	Power	ADC Analog Power Supply (1.30 V).
A5	AGND	Ground	ADC Analog Ground. This pin connects to the analog ground plane.
A6	AVDD2	Power	ADC Analog Power Supply (2.50 V).
A7	VCM	Output	Analog Input, Common Mode (0.525 V).
A8	AGND	Ground	ADC Analog Ground. This pin connects to the analog ground plane.
A9	VIN+	Input	Differential Analog Input, True.
A10	VIN-	Input	Differential Analog Input, Complement.
A11	AGND	Ground	ADC Analog Ground. This pin connects to the analog ground plane.
A12	VM_BYP	Input	Voltage Bypass.
A13	AVDD2	Power	ADC Analog Power Supply (2.50 V).
A14	AVDD2	Power	ADC Analog Power Supply (2.50 V).
B1 to B4	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
B5	AVDD1	Power	ADC Analog Power Supply (1.30 V).
B6	AGND	Ground	ADC Analog Ground. This pin connects to the analog ground plane.
B7	AVDD2	Power	ADC Analog Power Supply (2.50 V).
B8 to B11	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
B12	AVDD2	Power	ADC Analog Power Supply (2.50 V).
B13, B14	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
C1 to C5	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
C6	AVDD1	Power	ADC Analog Power Supply (1.30 V).
C7	AGND	Ground	ADC Analog Ground. This pin connects to the analog ground plane.
C8	AVDD2	Power	ADC Analog Power Supply (2.50 V).
C9, C10	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
C11	AVDD2	Power	ADC Analog Power Supply (2.50 V).
C12, C13	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
C14	AVDD1	Power	ADC Analog Power Supply (1.30 V).
D1 to D3	DVDD1	Power	ADC Digital Power Supply (1.30 V).
D4	DNC	N/A	Do Not Connect. Do not connect to this pin. Leave this pin floating.
D5, D6	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
D7	AVDD1	Power	ADC Analog Power Supply (1.30 V).
D8	AVDD2	Power	ADC Analog Power Supply (2.50 V).
D9, D10	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
D11	AVDD2	Power	ADC Analog Power Supply (2.50 V).
D12 to D14	AVDD1	Power	ADC Analog Power Supply (1.30 V).
E1 to E3	DGND	Ground	Digital Control Ground Supply. These pins connect to the digital ground plane.
E4	DVDD2	Power	ADC Digital Power Supply (2.5 V).
E5	VMON	Output	CTAT Voltage Monitor Output.
E6	AGND	Ground	ADC Analog Ground. This pin connects to the analog ground plane.
E7	AVDD1	Power	ADC Analog Power Supply (1.30 V).
E8	AVDD2	Power	ADC Analog Power Supply (2.50 V).
E9, E10	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
E11	AVDD2	Power	ADC Analog Power Supply (2.50 V).
E12	AVDD1	Power	ADC Analog Power Supply (1.30 V).
E13, E14	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
F1 to F3	DVDD1	Power	ADC Digital Power Supply (1.30 V).
F4	SPI_VDDIO	Power	SPI Digital Power Supply (2.50 V).
F5	DVDDIO	Power	Digital I/O Power Supply (2.50 V).
F6	AGND	Ground	ADC Analog Ground. This pin connects to the analog ground plane.
F7	AVDD1	Power	ADC Analog Power Supply (1.30 V).
F8	AVDD2	Power	ADC Analog Power Supply (2.50 V).
F9, F10	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.

Pin No.	Mnemonic	Type	Description
F11	AVDD2	Power	ADC Analog Power Supply (2.50 V).
F12	AVDD1	Power	ADC Analog Power Supply (1.30 V).
F13	AGND	Ground	ADC Analog Ground. This pin connects to the analog ground plane.
F14	CLK+	Input	ADC Clock Input, True.
G1 to G3	DGND	Ground	Digital Control Ground Supply. These pins connect to the digital ground plane.
G4	CSB	Input	SPI Chip Select CMOS Input. Active low.
G5	DVDDIO	Power	Digital I/O Power Supply (2.50 V).
G6	AGND	Ground	ADC Analog Ground. This pin connects to the analog ground plane.
G7	AVDD1	Power	ADC Analog Power Supply (1.30 V).
G8	AVDD2	Power	ADC Analog Power Supply (2.50 V).
G9, G10	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
G11	AVDD2	Power	ADC Analog Power Supply (2.50 V).
G12	AVDD1	Power	ADC Analog Power Supply (1.30 V).
G13	AGND	Ground	ADC Analog Ground. This pin connects to the analog ground plane.
G14	CLK-	Input	ADC Clock Input, Complement.
H1 to H3	DVDD1	Power	ADC Digital Power Supply (1.30 V).
H4	SCLK	Input	SPI Serial Clock CMOS Input.
H5	IRQ	Output	Interrupt Request Output Signal.
H6	AGND	Ground	ADC Analog Ground. This pin connects to the analog ground plane.
H7	AVDD1	Power	ADC Analog Power Supply (1.30 V).
H8	AVDD2	Power	ADC Analog Power Supply (2.50 V).
H9, H10	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
H11	AVDD2	Power	ADC Analog Power Supply (2.50 V).
H12	AVDD1	Power	ADC Analog Power Supply (1.30 V).
H13, H14	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
J1 to J3	DGND	Ground	Digital Control Ground Supply. These pins connect to the digital ground plane.
J4	SDIO	I/O	SPI Serial Data CMOS Input/Output; Scan Output 1.
J5	FD	Output	Fast Detect Output. This pin requires an external $10 \mathrm{k} \Omega$ resistor connected to ground.
J6	RBIAS_EXT	Input	Reference Bias. This pin requires an external $10 \mathrm{k} \Omega$ resistor connected to ground.
J7	AVDD1	Power	ADC Analog Power Supply (1.30 V).
J8	AVDD2	Power	ADC Analog Power Supply (2.50 V).
J9, J10	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
J11	AVDD2	Power	ADC Analog Power Supply (2.50 V).
J12	AVDD1	Power	ADC Analog Power Supply (1.30 V).
J13	AGND	Ground	ADC Analog Ground. This pin connects to the analog ground plane.
J14	SYSREF+	Input	System Reference Chip Synchronization, True.
K1 to K2	DVDD1	Power	ADC Digital Power Supply (1.30 V).
K3	RSTB	Input	Chip Digital Reset, Active Low.
K4	DNC	N/A	Do Not Connect. Do not connect to this pin. Leave this pin floating.
K5 to K13	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
K14	SYSREF-	Input	System Reference Chip Synchronization, Complement.
L1	DGND	Ground	Digital Control Ground Supply. This pin connects to the digital ground plane.
L2	DNC	N/A	Do Not Connect. Do not connect to this pin. Leave this pin floating.
L3	SYNCINB-	Input	Synchronization, Complement.
L4	SYNCINB+	Input	Synchronization, True. SYNCINB LVDS input (active low, true).
L5 to L9	DGND	Ground	Digital Control Ground Supply. These pins connect to the digital ground plane.
L10 to L12	DNC	N/A	Do Not Connect. Do not connect to these pins. Leave these pins floating.
L13, L14	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
M1 to M10	DRGND	Ground	Digital Driver Ground Supply. These pins connect to the digital driver ground plane.
M11	DRVDD1	Power	Power Supply (1.3 V) Reference Clock Divider, VCO, and Synthesizer.
M12	REXT	Input	External Resistor, $10 \mathrm{k} \Omega$ to Ground.
M13, M14	DRGND	Ground	Digital Driver Ground Supply. This pin connects to the digital driver ground plane.

Pin No.	Mnemonic	Type	Description
N1	DRVDD1	Power	Serial Digital Power Supply (1.3 V).
N2	SERDOUT[7]+	Output	Lane 7 CML Output Data, True.
N3	SERDOUT[6]+	Output	Lane 6 CML Output Data, True.
N4	SERDOUT[5]+	Output	Lane 5 CML Output Data, True.
N5	SERDOUT[4]+	Output	Lane 4 CML Output Data, True.
N6	DRVDD1	Power	Serial Digital Power Supply (1.3 V).
N7	SERDOUT[3]+	Output	Lane 3 CML Output Data, True.
N8	SERDOUT[2]+	Output	Lane 2 CML Output Data, True.
N9	SERDOUT[1]+	Output	Lane 1 CML Output Data, True.
N10	SERDOUT[0]+	Output	Lane 0 CML Output Data, True.
N11	DRVDD1	Power	Serial Digital Power Supply (1.3 V).
N12	VP_BYP	Input	Voltage Bypass.
N13, N14	DRVDD2	Power	Power Supply (2.5 V) Reference Clock Divider for SYNCINB \pm, DIVCLK \pm.
P1	DRVDD1	Power	Serial Digital Power Supply (1.3 V).
P2	SERDOUT[7]-	Output	Lane 7 CML Output Data, Complement.
P3	SERDOUT[6]-	Output	Lane 6 CML Output Data, Complement.
P4	SERDOUT[5]-	Output	Lane 5 CML Output Data, Complement.
P5	SERDOUT[4]-	Output	Lane 4 CML Output Data, Complement.
P6	DRVDD1	Power	Serializer Digital Power Supply (1.30 V).
P7	SERDOUT[3]-	Output	Lane 3 CML Output Data, Complement.
P8	SERDOUT[2]-	Output	Lane 2 CML Output Data, Complement.
P9	SERDOUT[1]-	Output	Lane 1 CML Output Data, Complement.
P10	SERDOUT[0]-	Output	Lane 0 CML Output Data, Complement.
P11	DRVDD1	Power	Serializer Digital Power Supply (1.30 V).
P12	DRGND	Ground	Digital Driver Ground Supply. This pin connects to the digital driver ground plane.
P13	DIVCLK-	Output	Divide-by-4 Reference Clock LVDS, Complement.
P14	DIVCLK+	Output	Divide-by-4 Reference Clock LVDS, True.

Table 9. Pin Function Descriptions (By Function) ${ }^{1}$

Pin No.	Mnemonic	Type	Description
General Power and Ground Supply Pins			
A1 to A3, A5, A8, A11, B1 to B4, B6, B8 to B11, B13, B14, C1 to C5, C7, C9, C10, C12, C13, D5, D6, D9, D10, E6, E9, E10, E13, E14, F6, F9, F10, F13, G6, G9, G10, G13, H6, H9, H10, H13, H14, J9, J10, J13, K5 to K13, L13, L14	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.
J6	RBIAS_EXT	Input	Reference Bias. This pin requires an external $10 \mathrm{k} \Omega$ resistor connected to ground.
Clock Pins			
F14	CLK+	Input	ADC Clock Input, True.
G14	CLK-	Input	ADC Clock Input, Complement.
ADC Analog Power and Ground Supplies Pins			
A6, A13, A14, B7, B12, C8, C11, D8, D11, E8, E11, F8, F11, G8, G11, H8, H11, J8, J11	AVDD2	Power	ADC Analog Power Supply (2.50 V).
A4, B5, C6, C14, D7, D12 to D14, E7, E12, F7, F12, G7, G12, H7, H12, J7, J12	AVDD1	Power	ADC Analog Power Supply (1.30 V).
A12	VM_BYP	Input	Voltage Bypass.
$A 1$ to $A 3, A 5, A 8, A 11, B 1$ to $B 4, B 6, B 8$ to $B 11$, B13, B14, C1 to C5, C7, C9, C10, C12, C13,D5, D6, D9, D10, E6, E9, E10, E13, E14, F6, F9, F10, F13, G6, G9, G10, G13, H6, H9, H10, H13, H14, J9, J10, J13, K5 to K13, L13, L14	AGND	Ground	ADC Analog Ground. These pins connect to the analog ground plane.

Pin No.	Mnemonic	Type	Description
ADC Analog Input and Outputs Pins			
A9	VIN+	Input	Differential Analog Input, True.
A10	VIN-	Input	Differential Analog Input, Complement.
A7	VCM	Output	Analog Input, Common Mode (0.525 V).
E5	VMON	Output	CTAT Voltage Monitor Output (Diode Temperature Sensor).
N1, N6, N11, P1, P6, P11	DRVDD1	Power	Serial Digital Power Supply (1.3 V).
M1 to M10, M13, M14, P12	DRGND	Ground	Digital Driver Ground Supply. These pins connect to the digital driver ground plane.
N13, N14	DRVDD2	Power	Power Supply (2.5 V) Reference Clock Divider, SYNCINB \pm, DIVCLK \pm.
M11	DRVDD1	Power	Power Supply (1.3V) Reference Clock Divider, VCO, and Synthesizer.
N12	VP_BYP	Input	Voltage Bypass.
L2	DNC	N/A	Do Not Connect. Do not connect to this pin.
JESD204B High Speed Serial I/O Pins			
J14	SYSREF+	Input	System Reference Chip Synchronization, True.
K14	SYSREF-	Input	System Reference Chip Synchronization, Complement.
L4	SYNCINB+	Input	Synchronization, True. SYNCINB LVDS input (active low, true).
L3	SYNCINB-	Input	Synchronization, Complement. SYNCINB LVDS input (active low, complement).
N10	SERDOUT[0]+	Output	Lane 0 CML Output Data, True.
P10	SERDOUT[0]-	Output	Lane 0 CML Output Data, Complement.
N9	SERDOUT[1]+	Output	Lane 1 CML Output Data, True.
P9	SERDOUT[1]-	Output	Lane 1 CML Output Data, Complement.
N8	SERDOUT[2]+	Output	Lane 2 CML Output Data, True.
P8	SERDOUT[2]-	Output	Lane 2 CML Output Data, Complement.
N7	SERDOUT[3]+	Output	Lane 3 CML Output Data, True.
P7	SERDOUT[3]-	Output	Lane 3 CML Output Data, Complement.
N5	SERDOUT[4]+	Output	Lane 4 CML Output Data, True.
P5	SERDOUT[4]-	Output	Lane 4 CML Output Data, Complement.
N4	SERDOUT[5]+	Output	Lane 5 CML Output Data, True.
P4	SERDOUT[5]-	Output	Lane 5 CML Output Data, Complement.
N3	SERDOUT[6]+	Output	Lane 6 CML Output Data, True.
P3	SERDOUT[6]-	Output	Lane 6 CML Output Data, Complement.
N2	SERDOUT[7]+	Output	Lane 7 CML Output Data, True.
P2	SERDOUT[7]-	Output	Lane 7 CML Output Data, Complement.
P14	DIVCLK+	Output	Divide-by-4 Reference Clock LVDS, True.
P13	DIVCLK-	Output	Divide-by-4 Reference Clock LVDS, Complement.
Digital Supply and Ground Pins			
D1 to D3, F1 to F3, H1 to H3, K1 to K2	DVDD1	Power	ADC Digital Power Supply (1.3 V).
F5, G5	DVDDIO	Power	Digital I/O Power Supply (2.5 V).
F4	SPI_VDDIO	Power	SPI Digital Power Supply (2.5 V).
E4	DVDD2	Power	ADC Digital Power Supply (2.5 V).
E1 to E3, G1 to G3, J1 to J3, L1, L5 to L9	DGND	Ground	Digital Control Ground Supply. These pins connect to the digital ground plane.
D4	DNC	N/A	Do Not Connect. Do not connect to this pin. Leave this pin floating.

Pin No.	Mnemonic	Type	Description
Digital Control Pins	RSTB	Input	Chip Digital Reset, Active Low.
K3	DNC	N/A	Do Not Connect. Do not connect to this pin. Leave this pin K4
M12	REXT	Input	External Resistor, $10 \mathrm{k} \Omega$ to Ground. S4
G4	SCBi	Input	SPI Chip Select CMOS Input. Active low.
H4	SDIO	Input	SPI Serial Clock CMOS Input.
J4	FD	Output	SPI Serial Data CMOS Input/Output. Jast Detect Output. This pin requires an external $10 \mathrm{k} \Omega$ J5
H5	IRQ	Output	Interrupt Request Output Signal. Do Not Connect. Do not connect to these pins. Leave these pins floating.
L10 to L12	NNC		

[^2]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. FFT Plot at 2.0 GSPS, $f_{I N}=1807.3 \mathrm{MHz}$ at AIN (SFDR $=75.5 \mathrm{dBc}, S N R=58.1 \mathrm{dBFS}$)

Figure 7. FFT Plot at 2.0 GSPS, $f_{I N}=730.3 \mathrm{MHz}$ at AIN (SFDR $=80.9 \mathrm{dBC}, S N R=59.2 \mathrm{dBFS}$)

Figure 8. FFT Plot at 2.0 GSPS, $f_{i N}=310.3 \mathrm{MHz}$ at AIN $(S F D R=82.2 \mathrm{dBC}, \mathrm{SNR}=59.6 \mathrm{dBFS})$

Figure 9. SNR/SFDR vs. Analog Input Amplitude at 2 GSPS, $f_{i N}=241.1 \mathrm{MHz}$ at AIN

Figure 10. SNR/SFDR vs. Analog Input Amplitude at 2 GSPS, $f_{I N}=1811.3 \mathrm{MHz}$ at AIN

Figure 11. Current and Power vs. Sample Rate

Figure 12. Full Power Bandwidth at 2.0 GSPS

Figure 13. Two Tone SFDR and IMD3 vs. Analog Input Amplitude at 2.0 GSPS at 1800 MHz AIN

Figure 14. Two Tone SFDR and IMD3 vs. Analog Input Amplitude at 2.0 GSPS at 230 MHz AIN

Figure 15. SNR/SFDR vs. Analog Input Frequency at Different Temperatures at 2.0 GSPS

Figure 16. SNR/SFDR vs. Sample Rate

Figure 17. Input Referred Noise Histogram

Figure 18. Two Tone FFT Plot at 2.0 GSPS, $f_{N 1}=1805.5 \mathrm{MHz}$ and $f_{N_{2} 2}=1808.5 \mathrm{MHz}$ at AIN, $-7 \mathrm{dBFS}($ SFDR $=78.1 \mathrm{dBC})$

Figure 19. Two Tone FFT Plot at 2.0 GSPS, $f_{\mathrm{F}_{1} 1}=728.5 \mathrm{MHz}$ and $f_{N_{2}}=731.5 \mathrm{MHz}$ at AIN, $-7 \mathrm{dBFS}($ SFDR $=81 \mathrm{dBC})$

Figure 20. Two Tone FFT Plot at 2.0 GSPS, $f_{I N 1}=228.5 \mathrm{MHz}$ and $f_{I N 2}=231.5 \mathrm{MHz}$ at AIN, $-7 \mathrm{dBFS}(S F D R=81 \mathrm{dBc})$

Figure 21. Differential Nonlinearity (DNL), ± 0.2 LSB

Figure 22. Integral Nonlinearity (INL), ± 0.4 LSB

EQUIVALENT TEST CIRCUITS

Figure 23. Equivalent Analog Input Circuit

Figure 24.Equivalent SCLK Circuit

Figure 25. Equivalent Temperature Sensor Circuit

Figure 26. Equivalent Clock Input Circuit

Figure 27. Equivalent CSB Input Circuit

Figure 28. Equivalent DIVCLK \pm Output Circuit

THEORY OF OPERATION ADC ARCHITECTURE

The AD9625 is a pipelined ADC. The pipelined architecture permits the first stage to operate on a new input sample and the remaining stages to operate on the preceding samples. Sampling occurs on the rising edge of the clock.

Each stage of the pipeline, excluding the last, consists of a low resolution flash ADC connected to a switched capacitor digital-to-analog converter (DAC) and an interstage residue amplifier (MDAC). The residue amplifier magnifies the difference between the reconstructed DAC output and the flash input for the next stage in the pipeline. One bit of redundancy is used in each stage to facilitate digital correction of flash errors. The last stage simply consists of a flash ADC.
The input stage contains a differential sampling circuit that can be ac- or dc-coupled in differential or single-ended modes. The output staging block aligns the data, corrects errors, and passes the data to the output buffers. The output buffers are powered from a separate supply, allowing adjustment of the output drive current.
Synchronization capability is provided to allow synchronized timing between multiple devices.

FAST DETECT

The fast detect block within the AD9625 generates a fast detection bit (FD), which, when used with variable gain amplifier front-end blocks, reduces the gain and prevents the ADC input signal levels from exceeding the converter range.
Figure 29 shows the rapidity by which the detection bit is programmable using an upper threshold, lower threshold, and dwell time.

Figure 29. Fast Detection Bit

TEST MODES

Figure 30. Test Modes
Table 10. Flexible Output Test Modes from SPI Register 0x00D

Output Test Mode Bit Sequence	Pattern Name	Digital Output Word 1 (Default Twos Complement Format)	Digital Output Word 2 (Default Twos Complement Format)	Subject to Data Format Select
0000	Off (default)	Not applicable	Not applicable	Yes
0001	Midscale short	000000000000	$=$ Word1	Yes
0010	Positive full scale	011111111111	$=$ Word1	Yes
0011	Negative full scale	100000000000	$=$ Word1	Yes
0100	Alternating checkerboard	101010101010	010101010101	No
0101	PN sequence long	Not applicable	Not applicable	Yes
0111	One-/zero-word toggle	111111111111	000000000000	No
1000	User test mode	User data from	Usegister 0x019 to data from Register 0x019 to	Yes
		Register 0x020	Register 0x020	
1111	Ramp output	N +1	No	

DIGITAL DOWNCONVERTERS (DDC)

Figure 31. Digital Downconverters

The AD9625 architecture includes two DDCs, each designed to extract a portion of the full digital spectrum captured by the ADC. Each tuner consists of an independent frequency synthesizer and quadrature mixer; a chain of low-pass filters for rate conversion follows these components. Assuming a sampling frequency of 2.000 GHz , the frequency synthesizer (10-bit NCO) allows for 1024 discrete tuning frequencies, ranging from -0.999 GHz to +1.000 GHz , in steps of $2000 / 1024$ $=1.953 \mathrm{MHz}$. The low-pass filters allow for two modes of decimation.

- A high bandwidth mode, 192 MHz wide (from -96 MHz to +96 MHz), sampled at $2.0 \mathrm{GHz} / 8=250 \mathrm{MHz}$ for the I and Q branches separately. The 16 -bit samples from the I and Q branches are transmitted through a dedicated JESD204B interface.
- A low bandwidth mode, 96 MHz wide (from -48 MHz to +48 MHz), sampled at $2.0 \mathrm{GHz} / 16=125 \mathrm{MHz}$ for the I and Q branches separately. The 16-bit samples from the I and Q branches are transmitted through a dedicated JESD204B interface.

By design, all of the blocks operate at a single clock frequency of $2.0 \mathrm{GHz} / 8=250 \mathrm{MHz}$.

Each filter stage includes a gain control block that is programmable by the user. The gain varies from 0 dB to 18 dB , in steps of 6 dB , and the gain is applied before final scaling and rounding. The gain control feature may be useful in cases where the tuner filters out a strong out-of-band interferer, leaving a weak inband signal.

FREQUENCY SYNTHESIZER AND MIXER

For a sampling rate of 2.000 GHz , the synthesizer (10-bit NCO) outputs one of 1024 possible complex frequencies from -0.999 GHz to +1.000 GHz . The synthesizer employs the direct digital synthesis technique, using look-up sine tables and a phase accumulator. The user specifies the tuner frequency by writing to a 10 -bit phase increment register.

HIGH BANDWIDTH DECIMATOR

The first filter stage is designed for a rate reduction factor of 8 , yielding a sample rate of $2.000 \mathrm{GHz} / 8=250 \mathrm{MHz}$. To achieve a combination of low complexity and low clock rate, the DDC employs a decimate-by- 8 polyphase fuse filter that receives eight 13-bit samples from the mixer block at every clock cycle.
The block design provides user specified gain control, from 0 dB to 18 dB in steps of 6 dB . The gain is applied before final scaling and rounding to 16 bits.

Figure 32. Magnitude Response of the Decimate-by-8 Polyphase Fuse Filter
Filter performance is shown in Figure 32 and Figure 34. The filter yields an effective bandwidth of 96 MHz , with a transition band of $125-96=29 \mathrm{MHz}$. Hence, the two-sided complex bandwidth of the filter is 192 MHz .
A rejection ratio of 85 dB ensures that the seven aliases that fold back into the pass band yield an SNR of $85 \mathrm{~dB}-10 \log 10(7)=$ 76.5 dB , which ensures that the aliases remain sufficiently below the noise floor of the input signal. The pass-band ripple is $\pm 0.05 \mathrm{~dB}$, as shown in Figure 33 .

Figure 33. Magnitude Ripple in the Pass Band

LOW BANDWIDTH DECIMATOR

Use the second filter stage in the optional low bandwidth mode only. It achieves an additional rate reduction factor of 2 , yielding a final sample rate of $2.000 \mathrm{GHz} / 16=125 \mathrm{MHz}$. The internal architecture of the low bandwidth decimation filter is similar to that of a high bandwidth decimator. Moreover, for ease of physical design, the block operates at 250 MHz , a result of which both the I- and Q-phases can share the filter engine.
The performance of the low bandwidth decimation filter is shown in Figure 34 and Figure 35. The filter yields an effective bandwidth of 60 MHz , with a transition band of $81.25 \mathrm{MHz}-$ $60=21.25 \mathrm{MHz}$. Thus, the two sided, complex bandwidth of the filter is 120 MHz . A rejection ratio of 85 dB ensures that the alias region folds back well below the noise floor of the input signal.
As with the high bandwidth filter, this block provides user specified gain control, from 0 dB to 18 dB , in steps of 6 dB . The gain is applied before final quantization at the output of the low bandwidth decimation filter to 16 bits.

Figure 34. Magnitude Response of Decimate-by-2 Filter

Figure 35. Magnitude Ripple in the Pass Band

ANALOG INPUT CONSIDERATIONS

Figure 36. Front-End Minimum Requirement
Series resistors (R5 and R6) are recommended to reduce bandwidth peaking and minimize kickback from the ADC sampling capacitor. Small series resistors (R3 and R4) limit bandwidth, but can be installed to further improve performance. Table 11 lists the front-end requirements.

Table 11. Recommended Front-End Components

Components	Component Value
R1	50Ω (termination)
R2	50Ω (termination)
R3	0Ω to 33Ω
R4	0Ω to 33Ω
R5	0Ω to 33Ω
R6	0Ω to 33Ω

CLOCK INPUT CONSIDERATIONS

For optimum performance, the AD9625 sample clock inputs (CLK+ and CLK-) should be driven with a differential signal. This signal is typically ac-coupled to the CLK+ and CLK- pins via a transformer or capacitors. These pins are biased internally and require no additional biasing.

Clock Jitter Considerations

High speed, high resolution ADCs are sensitive to the quality of the clock input. The degradation in SNR at a given input frequency $\left(f_{A}\right)$ due only to aperture jitter (t_{J}) can be calculated by

$$
S N R=20 \times \log 10\left(2 \times \pi \times f_{A} \times t_{J}\right)
$$

In this equation, the rms aperture jitter represents the root-meansquare of all jitter sources, including the clock input, analog input signal, and ADC aperture jitter specifications. IF undersampling applications are particularly sensitive to jitter (see Figure 37).

DC COUPLING

The AD9625 cannot operate correctly by dc coupling the analog inputs, VIN \pm. It is recommended that the analog inputs are ac-coupled around a common-mode voltage, VCM, using a front-end network, as shown in Figure 36.

Figure 37. Ideal SNR vs. Analog Input Frequency and Jitter
In cases where aperture jitter may affect the dynamic range of the AD9625, treat the clock input as an analog signal. To avoid modulating the clock signal with digital noise, separate power supplies for clock drivers from the ADC output driver supplies. If the clock is generated from another type of source (by gating, dividing, or other methods), it should be retimed by the original clock at the last step. Refer to the AN-501 Application Note and the AN-756 Application Note for more information about jitter performance as it relates to ADCs.

Clock Duty Cycle Considerations

Typical high speed ADCs use both clock edges to generate a variety of internal timing signals. As a result, these ADCs may be sensitive to clock duty cycle. Commonly, a 5% tolerance is required on the clock duty cycle to maintain dynamic performance characteristics.

CALIBRATION

The AD9625 requires a calibration cycle at startup and once every 24 -hour period. To perform this calibration at startup, the default value in Register 0x12A[7:0] must be overwritten and set to 0×03 at ADC startup to initiate the calibration. When the calibration is initiated, the ADC needs to remain in this mode for at least 500 clock cycles. During calibration, the output data of the ADC is invalid. When the calibration is complete, a successive write of Register 0x12A[7:0] to 0×01 terminates the calibration and valid ADC data resumes. To maintain ADC performance, repeat this calibration cycle once in every 24 -hour period.

DIGITAL OUTPUTS

INTRODUCTION TO JESD204B INTERFACE

The AD9625 digital output complies with the JEDEC Standard No. JESD204B, Serial Interface for Data Converters. JESD204B is a protocol to link the AD9625 to a digital processing device over a serial interface up to 6.5 Gbps link speeds. The benefits of the JESD204B interface over LVDS include a reduction in required board area for data interface routing, and enabling smaller packages for converter and logic devices. The AD9625 supports one, two, four, six, or eight output lanes.

The JESD204B data transmit block assembles the parallel data from the ADC into frames and uses 8 -bit/10-bit encoding as well as optional scrambling to form serial output data. Lane synchronization is supported using special characters during the initial establishment of the link, and additional data that is used to maintain synchronization is embedded in the data stream thereafter. A JESD204B receiver is required to complete the serial link. For additional details on the JESD204B interface, users are encouraged to refer to the JESD204B standard.

The AD9625 JESD204B transmit block maps to two digital down converters for the outputs of the ADC over a link. A link can be configured to use up to eight JESD204B lanes. The JESD204B specification refers to a number of parameters to define the link, and these parameters must match between the JESD204B transmitter (AD9625 output) and receiver (FPGA, ASIC, or logic device).
Table 12 describes the JESD204B interface nomenclature (the terms, converter device and link, are used interchangeably in the specification).

Table 12. JESD204B Interface Nomenclature

Symbol	Description
S	Samples transmitted per single converter per frame cycle
M	Number of converters per converter device (link)
L	Number of lanes per converter device (link)
N	Converter resolution
N^{\prime}	Total number of bits per sample
CF	Number of control words per frame clock cycle per
	converter device (link)
CS	Number of control bits per conversion sample
K	Number of frames per multiframe
HD	High density mode
F	Octets per frame
C	Control bit (overrange, time stamp)
T	Tail bit

The AD9625 adheres to the JESD204B draft specification, which provides a high speed, serial, embedded clock interface standard for data converters and logic devices. It is designed as an MCDA-ML, Subclass 1 device that uses the SYSREF \pm input signal for multichip synchronization and deterministic latency. This design adheres to the following basic JESD204B link configuration parameters:

- $\quad \mathrm{M}=1$ (single converter, always for AD9625)
- $\mathrm{L}=1$ to 8 (up to eight lanes)
- $S=4$ (four samples per JESD204B frame)
- $\mathrm{F}=1,2,4,8$ (up to 8 octets per frame)
- $\mathrm{N}^{\prime}=12,16$ (12- or 16-bit JESD204B word size)
- $\quad \mathrm{HD}=0,1$ (high density mode, sample span multiple lanes)

FUNCTIONAL OVERVIEW

The block diagram in Figure 38 shows the flow of data through the JESD204B hardware from the sample input to the physical output. The processing can be divided into layers that are derived from the OSI model widely used to describe the abstraction layers of communications systems. These are the transport layer, data link layer, and physical layer (serializer). Each of these layers are described in detail in the following sections.

Transport Layer

The transport layer handles packing the data (consisting of samples and optional control bits) into 8 -bit words that are sent to the data link layer. The transport layer is controlled by rules derived from the link configuration data. It packs data according to the rules, adding tail bits to fill gaps when required.

Data Link Layer

The data link layer is responsible for the low level functions of passing data across the link. These include optionally scrambling the data, handling the synchronization process for characters, frames, and lanes across the links, encoding 8-bit data-words into 10 -bit characters, and inserting appropriate control characters into the data output. The data link layer is also responsible for sending the initial lane alignment sequence (ILAS), which contains the link configuration data, used by the receiver (Rx) to verify the settings in the transport layer.

Physical Layer

The physical layer consists of the high speed circuitry clocked at the serial clock rate. The physical layer includes the serialization circuits and the high speed drivers.

Figure 38. Data Flow

JESD204B LINK ESTABLISHMENT

The AD9625 JESD204B Tx interface operates in Subclass 1 as defined in the JEDEC Standard No. 204B-July 2011 specification. It is divided into the following steps: code group synchronization, initial lane alignment sequence, and data streaming.

Code Group Synchronization (CGS) and SYNCINB \pm

CGS is the process where the JESD204B receiver finds the boundaries between the 10 -bit characters in the stream of data. During the CGS phase, the JESD204B transmit block transmits /K28.5/ characters. The receiver (external logic device) must locate the /K28.5/ characters in its input data stream using clock and data recovery (CDR) techniques.

The receiver issues a synchronization request by activating the SYNCINB \pm pins of the AD9625. The JESD204B Tx begins sending /K28.5/ characters until the next LMFC boundary. When the receiver has synchronized, it waits for the correct reception of at least four consecutive /K28.5/ symbols. It then deactivates SYNCINB \pm. The AD9625 then transmits an initial lane alignment sequence (ILAS) on the following LMFC boundary.

For more information on the code group synchronization phase, please refer to the JEDEC Standard No. 204B-July 2011, Section 5.3.3.1.

The SYNCINB \pm pin operation can be controlled by SPI. The SYNCINB \pm signal is a differential LVDS mode signal by default, but it can also be driven single ended. For more information on configuring the SYNCINB \pm pin operation, refer to the Memory Map section.

Initial Lane Alignment Sequence (ILAS)

The ILAS phase follows the CGS phase and begins on the next LMFC boundary. The ILAS consists of four mulitframes, with an $/ \mathrm{R} /$ character marking the beginning and an / $\mathrm{A} /$ character marking the end. The ILAS begins by sending an /R/ character followed by 0 to 255 ramp data for one multiframe. On the second multiframe, the link configuration data is sent starting with the third character. The second character is a /Q/ character to confirm that the link configuration data follows. All undefined data slots are filled with ramp data. The ILAS sequence is never scrambled.
The ILAS sequence construction is shown in Figure 41. The four multiframes include the following:

- Multiframe 1: begins with an /R/ character (K28.0) and ends with an /A/ character (K28.3).
- Multiframe 2: begins with an /R/ character followed by a /Q/ [K28.4] character, followed by link configuration parameters over 14 configuration octets and ends with an /A/ character. Many of the parameter values are of the notation of the value, -1 .
- Multiframe 3: this is the same as Multiframe 1.
- Multiframe 4: this is the same as Multiframe 1.

Data Streaming

After the initial lane alignment sequence is complete, the user data is sent. In a usual frame, all characters are user data. However, to monitor the frame clock and multiframe clock synchronization, there is a mechanism for replacing characters with /F/ or /A/ alignment characters when the data meets certain conditions. These conditions are different for unscrambled and scrambled data. The scrambling operation is enabled by default but may be disabled using SPI.
For scrambled data, any 0 xFC character at the end of a frame is replaced by an $/ \mathrm{F} /$, and any 0 xFD character at the end of a multiframe is replaced with an /A/. The JESD204B Rx checks for /F/ and /A/ characters in the received data stream and verifies that they only occur in the expected locations. If an unexpected /F/ or /A/ character is found, the receiver handles the situation by using dynamic realignment or activating the SYNCINB \pm signal for more than four frames to initiate a resynchronization. For unscrambled data, if the final character of two subsequent frames is equal, the second character is replaced with an /F/ if it is at the end of a frame, and an / $\mathrm{A} /$ if it is at the end of a multiframe.
Insertion of alignment characters may be modified using SPI. The frame alignment character insertion is enabled by default. More information on the link controls is available in the Memory Map section, Register 0x062.

8-Bit/10-Bit Encoder

The 8 -bit/ 10 -bit encoder converts 8 -bit octets into 10 -bit characters and inserts control characters into the stream when needed. The control characters used in JESD204B are shown in Table 13. The 8 -bit/10-bit encoding allows the signal to be dc balanced by using the same number of ones and zeros.
The 8-bit/10-bit interface has options that may be controlled via SPI. These operations include bypass, invert or mirror. These options are intended to be a troubleshooting tool for the verification of the digital front end (DFE).

Digital Outputs, Timing, and Controls

The AD9625 physical layer consists of drivers that are defined in the JEDEC Standard No. 204B-July 2011. The differential digital outputs are powered up by default. The drivers use a dynamic 100Ω internal termination to reduce unwanted reflections.

Place a 100Ω differential termination resistor at each receiver input to result in a nominal 300 mV p-p swing at the receiver (see Figure 39). Alternatively, single-ended 50Ω termination can be used. When single-ended termination is used, the termination voltage should be DRVDD/2; otherwise, $0.1 \mu \mathrm{~F}$ ac coupling capacitors can be used to terminate to any single-ended voltage.

OUTPUT SWING $=300 \mathrm{mV}$ p-p
Figure 39. AC-Coupled Digital Output Termination Example
The AD9625 digital outputs can interface with custom ASICs and FPGA receivers, providing superior switching performance in noisy environments. Single point-to-point network topologies are recommended with a single differential 100Ω termination resistor placed as close to the receiver inputs as possible. The common mode of the digital output automatically biases itself to half the DRVDD supply. See Figure 40 for dc coupling the outputs to the receiver logic.

OUTPUT SWING $=300 \mathrm{mV}$ p-p

If there is no far end receiver termination, or if there is poor differential trace routing, timing errors may result. To avoid such timing errors, it is recommended that the trace length be less than six inches, and that the differential output traces be close together and at equal lengths.

De-Emphasis

De-emphasis enables the receiver eye diagram mask to be met in conditions where the interconnect insertion loss does not meet the JESD204B specification. The de-emphasis feature should only be used when the receiver is unable to recover the clock due to excessive insertion loss. Under normal conditions, it is disabled to conserve power. Additionally, enabling and setting too high a de-emphasis value on a short link may cause the receiver eye diagram to fail. Use the de-emphasis setting with caution because it may increase EMI. See the Memory Map section for details.

Figure 40. DC-Coupled Digital Output Termination Example

Figure 41. Initial Lane Alignment Sequence

Table 13. AD9625 Control Characters Used in JESD204B

			10-Bit Value RD (Running Disparity $)=-\mathbf{1}$	10-Bit Value RD (Running Disparity) $=+\mathbf{1}$	Description
Abbreviation	Control Symbol	8-Bit Value	00011100	0011110100	1100001011
/R/	/K28.0/	01111100	0011110011	1100001100	Lane alignment multiframe
/A/	/K28.3/	10011100	0011110100	1100001101	Start of link configuration data
/Q/	/K28.4/	10111100	0011111010	1100000101	Group synchronization
/K/	K28.5/	11111100	0011111000	1100000111	Frame alignment
/F/	/K28.7/				

Table 14. JESD204B Mode of Operation ($M=1, S=4, N^{\prime}=16$, Unless Otherwise Noted)

Quick Configuration Value	Description ${ }^{1}$	Lanes (L)	Octets/Frame(F)	Sample Clock Rate		Sample Clock Multiplier	JESD204B Lane Rate	
				Minimum MSPS	Maximum MSPS		Minimum Mbps	Maximum Mbps
0x02	Generic	2	4	330	650	10	3300	6500
0x04	Generic	4	2	650	1300	5	3250	6500
0×06	Generic ($\mathrm{N}^{\prime}=12$)	6	1	1300	2000	2.5	3250	5000
0x08	Generic	8	1	1300	2000	2.5	3250	5000
0x18	$\mathrm{f}_{5} \times 8$	2	4	406	813	8	3250	6500
0×28	$\mathrm{f}_{5} \times 4$	4	2	813	1625	4	3250	6500
0×48	$\mathrm{f}_{5} \times 2$	8	1	1625	2000	2	3250	4000
0×81	Single DDC, high BW	1	8	650	1300	5	3250	6500
0×82	Single DDC, high BW	2	4	1300	2000	2.5	3250	5000
0×91	Single DDC, low BW	1	8	1300	2000	2.5	3250	5000
0xC1	Dual DDC, high BW	1	8	330	650	10	3300	6500
0xC2	Dual DDC, high BW	2	4	650	1300	5	3250	6500
0xC4	Dual DDC, high BW	4	2	1300	2000	2.5	3250	5000
0xD1	Dual DDC, mixed BW	1	8	330	650	10	3300	6500
0xD2	Dual DDC, mixed BW	2	4	650	1300	5	3250	6500
0xE1	Dual DDC, mixed BW	4	2	1300	2000	2.5	3250	5000
0xE2	Dual DDC, low BW	1	8	650	1300	5	3250	6500
0xE4	Dual DDC, low BW	2	4	1300	2000	2.5	3250	5000

${ }^{1}$ DDC means digital downconverter, BW means bandwidth, $\mathrm{f}_{s} \times \mathrm{x}$ means sample rate multiplied by an integer.
Table 15. JESD204B Logical Lane Mapping

Quick Configuration Value	Description	Lanes (L)	Logical Lane 0	Logical Lane 1	Logical Lane 2	Logical Lane 3	Logical Lane 4	Logical Lane 5	Logical Lane 6	Logical Lane 7
0×02	Generic	2	$\begin{aligned} & \mathrm{S}[\mathrm{~N}], \\ & \mathrm{S}[\mathrm{~N}+1] \end{aligned}$	$\begin{aligned} & \mathrm{S}[\mathrm{~N}+2], \\ & \mathrm{S}[\mathrm{~N}+3] \end{aligned}$	Off	Off	Off	Off	Off	Off
0x04	Generic	4	$\mathrm{S}[\mathrm{N}]$	$\mathrm{S}[\mathrm{N}+1]$	$\mathrm{S}[\mathrm{N}+2]$	$\mathrm{S}[\mathrm{N}+3]$	Off	Off	Off	Off
0x06	Generic $\left(\mathrm{N}^{\prime}=12\right)$	6	$S_{M S B}[N], S_{L S B}[N], S_{M S B}[\mathrm{~N}+1], \mathrm{S}_{L S B}[\mathrm{~N}+1], \mathrm{S}_{M S B}[\mathrm{~N}+2], \mathrm{S}_{\text {LSB }}[\mathrm{N}+2], \mathrm{S}_{M S B}[\mathrm{~N}+3], \mathrm{S}_{L S B}[\mathrm{~N}+3]$						Off	Off
0x08	Generic	8	$\mathrm{Sams}_{\text {m }}[\mathrm{N}]$	$\mathrm{S}_{\text {LSB }}[\mathrm{N}]$	$\mathrm{Smss}_{\text {ms }}[\mathrm{N}+1]$	$\mathrm{S}_{\text {LSB }}[\mathrm{N}+1]$	$\mathrm{S}_{\text {MSB }}[\mathrm{N}+2]$	$\mathrm{S}_{\text {LSB }}[\mathrm{N}+2]$	$\mathrm{S}_{\text {MSB }}[\mathrm{N}+3]$	$\mathrm{S}_{\text {LSB }}[\mathrm{N}+3]$
0x18	$\mathrm{f}_{\mathrm{S}} \times 8$	2	See Figure 46, $\mathrm{f}_{5} \times 2$ mode application layer (transmit)							
0x28	$\mathrm{f}_{5} \times 4$	4	See Figure 46, fs $\times 2$ mode application layer (transmit)							
0x48	$\mathrm{f}_{5} \times 2$	8	$S_{M S B}[N], S_{L S B}[N], S_{M S B}[N+1], S_{L S B}[N+1], S_{M S B}[N+2], S_{L S B}[N+2], S_{M S B}[N+3], S_{L S B}[N+3], S_{M S B}[N+4], S_{L S B}[N+4] ;$ see Figure $46, \mathrm{f}_{\mathrm{S}} \times 2$ mode application layer (transmit)							
0x81	Single DDC, high BW	1	$\begin{aligned} & \hline \mathrm{I}_{0}[\mathrm{~N}], \\ & \mathrm{Q}_{0}[\mathrm{~N}], \\ & \mathrm{I}_{0}[\mathrm{~N}+1], \\ & \mathrm{Q}_{0}[\mathrm{~N}+1] \end{aligned}$	Off						
0x82	Single DDC, high BW	2	$\begin{aligned} & \mathrm{I}_{0}[\mathrm{~N}], \\ & \mathrm{Q}_{0}[\mathrm{~N}] \end{aligned}$	$\begin{aligned} & \mathrm{I}_{0}[\mathrm{~N}+1], \\ & \mathrm{Q}_{0}[\mathrm{~N}+1] \end{aligned}$	Off	Off	Off	Off	Off	Off
0x91	Single DDC, low BW	1	$\begin{aligned} & \hline \mathrm{I}_{0}[\mathrm{~N}], \\ & \mathrm{Q}_{0}[\mathrm{~N}], \\ & \mathrm{I}_{0}[\mathrm{~N}+1], \\ & \mathrm{Q}_{0}[\mathrm{~N}+1] \\ & \hline \end{aligned}$	Off						
$0 \times C 1$	Dual DDC, high BW	1	$\mathrm{I}_{0}[\mathrm{~N}]$, $\mathrm{Q}_{0}[\mathrm{~N}]$, $\mathrm{I}_{1}[\mathrm{~N}]$, $\mathrm{Q}_{1}[\mathrm{~N}]$	Off						
$0 \times C 2$	Dual DDC, high BW	2	$\begin{aligned} & \mathrm{I}_{0}[\mathrm{~N}], \\ & \mathrm{Q}_{0}[\mathrm{~N}] \end{aligned}$	$\begin{aligned} & \mathrm{I}_{1}[\mathrm{~N}], \\ & \mathrm{Q}_{1}[\mathrm{~N}] \end{aligned}$	Off	Off	Off	Off	Off	Off
0xC4	Dual DDC, high BW	4	$\mathrm{I}_{0}[\mathrm{~N}]$	$\mathrm{Q}_{0}[\mathrm{~N}]$	$\mathrm{I}_{1}[\mathrm{~N}]$	$\mathrm{Q}_{1}[\mathrm{~N}]$	Off	Off	Off	Off
0xD1	Dual DDC, mixed BW	1	$\begin{aligned} & \hline \mathrm{I}_{0}[\mathrm{~N}], \\ & \mathrm{Q}_{2}[\mathrm{~N}], \\ & \mathrm{I}_{1}[\mathrm{~N}], \\ & \mathrm{Q}_{1}[\mathrm{~N}] \\ & \hline \end{aligned}$	Off						
0xD2	Dual DDC, mixed BW	2	$\begin{aligned} & \hline \mathrm{I}_{0}[\mathrm{~N}], \\ & \mathrm{Q}_{0}[\mathrm{~N}] \end{aligned}$	$\begin{aligned} & \hline \mathrm{I}_{1}[\mathrm{~N}], \\ & \mathrm{Q}_{1}[\mathrm{~N}] \end{aligned}$	Off	Off	Off	Off	Off	Off

Quick Configuration Value	Description	Lanes (L)	Logical Lane 0	Logical Lane 1	Logical Lane 2	Logical Lane 3	Logical Lane 4	Logical Lane 5	Logical Lane 6	Logical Lane 7
0xE1	Dual DDC, mixed BW	4	$\mathrm{I}_{0}[\mathrm{~N}]$	Q 0 [N$]$	$\mathrm{I}_{1}[\mathrm{~N}]$	$\mathrm{Q}_{1}[\mathrm{~N}]$	Off	Off	Off	Off
0xE2	Dual DDC, low BW	1	$\begin{aligned} & \mathrm{I}_{0}[\mathrm{~N}], \\ & \mathrm{Q}_{0}[\mathrm{~N}], \\ & \mathrm{I}_{1}[\mathrm{~N}], \\ & \mathrm{Q}_{1}[\mathrm{~N}] \end{aligned}$	Off						
0xE4	Dual DDC, low BW	2	$\begin{aligned} & \mathrm{I}_{0}[\mathrm{~N}], \\ & \mathrm{Q}_{0}[\mathrm{~N}] \end{aligned}$	$\begin{aligned} & \mathrm{I}_{1}[\mathrm{~N}], \\ & \mathrm{Q}_{1}[\mathrm{~N}] \end{aligned}$	Off	Off	Off	Off	Off	Off

PHYSICAL LAYER OUTPUT

Figure 42. Recovered Data Eye of JESD204B Lane at 6.25 Gbps

Figure 43. Bathtub Plot of JESD204B Output at 6.25 Gbps

Figure 44. Time Interval Histogram Error of JESD204B Output at 6.25 Gbps

SCRAMBLER

The scrambler polynomial is $1+\mathrm{x}^{14}+\mathrm{x}^{15}$. The scrambler enable bit is located in Register 0x06E[7].

- Setting Bit 7 to 0 disables the scrambler.
- Setting Bit 7 to 1 enables the scrambler.

TAIL BITS

The tail bit, PN generator, is located in Register 0x05F[6].

- Setting Bit 6 to 0 disables the tail bit generator.
- Setting Bit 6 to 1 enables the tail bit generator.

DDC MODES (SINGLE AND DUAL)

The AD9625 contains two separate DDCs that can digitally downconvert real ADC output data into I/Q decimated data at a reduced bandwidth. This feature is useful when the full bandwidth supplied by the 2.0 GSPS converter is not needed.
Figure 45 shows a simplified block diagram of the DDC blocks as they traverse through the AD9625. Because all JESD204B frames contain four samples ($S=4$), the output from the DDCs must also output four samples. Table 16 shows the remapping of I/Q samples to converter samples for the JESD204B interface, specific to the AD9625.

When in mixed bandwidth mode, DDC 0 is always in high bandwidth mode and DDC 1 is always in low bandwidth mode. To match the data throughput of the high bandwidth mode, the low bandwidth samples are repeated twice in mixed bandwidth mode. Table 17 lists the four frames of data for both DDC 0 (high bandwidth mode) and DDC 1 (low bandwidth mode).

Figure 45. DDC Mapping
Table 16. DDC Remap I/Q to Converter Samples

Application Mode	Sample[N]	Sample[N + 1]	Sample[N + 2]	Sample[N + 3]
Single DDC	$\mathrm{I}_{0}[\mathrm{~N}]$	$\mathrm{Q}_{0}[\mathrm{~N}]$	$\mathrm{I}_{0}[\mathrm{~N}+1]$	$\mathrm{Q}_{0}[\mathrm{~N}+1]$
Dual DDCs	$\mathrm{I}_{0}[\mathrm{~N}]$	$\mathrm{Q}_{0}[\mathrm{~N}]$	$\mathrm{I}_{1}[\mathrm{~N}]$	$\mathrm{Q}_{1}[\mathrm{~N}]$

Table 17. DDC Mixed Bandwidth Mode

JESD204B Frame Number	Sample[N]	Sample[N + 1]	Sample[N + 2]	Sample[N + 3]
Frame 0	$\mathrm{I}_{0}[\mathrm{~N}]$	$\mathrm{Q}_{0}[\mathrm{~N}]$	$\mathrm{I}_{1}[\mathrm{~N}]$	$\mathrm{Q}_{1}[\mathrm{~N}]$
Frame 1	$\mathrm{I}_{0}[\mathrm{~N}+1]$	$\mathrm{Q}_{0}[\mathrm{~N}+1]$	$\mathrm{I}_{1}[\mathrm{~N}]$	$\mathrm{Q}_{1}[\mathrm{~N}]$
Frame 2	$\mathrm{I}_{0}[\mathrm{~N}+2]$	$\mathrm{Q}_{0}[\mathrm{~N}+2]$	$\mathrm{I}_{1}[\mathrm{~N}+1]$	$\mathrm{Q}_{1}[\mathrm{~N}+1]$
Frame 3	$\mathrm{I}_{0}[\mathrm{~N}+3]$	$\mathrm{Q}_{0}[\mathrm{~N}+3]$	$\mathrm{H}_{1}[\mathrm{~N}+1]$	$\mathrm{Q}_{1}[\mathrm{~N}+1]$

CHECKSUM

The JESD204B checksum value is sent with the configuration parameters during the initial lane alignment sequence. Disabling the checksum is primarily for debug purposes only.

8-BIT/10-BIT ENCODER CONTROL

The 8-bit/10-bit encoder must be controlled in the following manner:

- The bypass 8 -bit/10-bit encoder is controlled by Register 0x60, Bit 2 ($0=8$-bit/ 10 -bit enabled; $1=$ 8 -bit/10-bit bypassed).
- The invert 10 -bit encoder is controlled by Register 0x060, Bit 1 ($0=$ normal; $1=$ invert $)$.
- The mirror 10-bit encoder is controlled by Register 0x060, Bit $0(0=$ normal; $1=$ mirrored $)$.

The inversion of the 10 -bit values allows the user to swap the true/complement differential pins swapped on the boards. For details about Register 0x060, see the Memory Map Register section.

INITIAL LANE ALIGNMENT SEQUENCE (ILAS)

The AD9625 must support three different ILAS modes that are controlled using Bits[3:2] in Register 0x05F as follows:

- 00: disabled
- 01: enabled
- 10: reserved
- 11: always on test mode

When enabled, the device must also support the capability to repeat the ILAS using Bits[7:0] in Register 0x062 to determine the number of times ILAS is repeated $(0=$ repeat 0 times, ILAS runs one time only, $1=$ repeat one time, ILAS runs twice, and so forth). Because the number of frames per multiframe is determined by the value of K, the total number of frames transmitted during the initial lane alignment sequence is

$$
4 \times(K+1) \times(\text { ILAS_COUNT + 1 })
$$

where the value of K is defined in Register 0x070, Bits[4:0]. Note that only values divisible by four can be used.

For details about Register 0x05F and Register 0x062, see the Memory Map Register section.

LANE SYNCHRONIZATION

Lane synchronization is defined by Register 0x05F, Bit 4 ($0=$ disabled, 1 = enabled). For more information, see the Memory Map Register section.

ADC Output Control Bits on JESD204B Samples

When $\mathrm{N}^{\prime}=16$ and the ADC resolution is 12 , there are four spare bits available per sample. Two of these spare bits can be used as control bits in Location 2 to Location 1 of the sample, depending on the configuration options. The control bits are set in Register 0x072, Bits[7:6].

- 00: no control bits sent per sample $(\mathrm{CS}=0)$.
- 01: one control bit sent per sample, overrange bit enabled, ($\mathrm{CS}=1$).
- 10: two control bits sent per sample, overrange + time stamped SYSREF control bit (marks the sample of a rising edge seen on the SYSREF \pm pin), (CS = 2). Use of the SYSREF control bit (CS = 2) time stamps a particular analog sample that is seen coincident with a rising signal on the SYSREF \pm pins.
Bits[5:4] in Register 0x061 control the JESD204B interface test injection points.
- 00: 16-bit test generation data injected at the sample input to the link.
- 01: 10-bit test generation data injected at the output of the 8 -bit/10-bit encoder (at the input to PHY).
- 10: 8-bit test generation data injected at the input of the scrambler.
- 11: reserved.

Bits[3:0] in Register 0x061 determine the type of test patterns that are injected, as follows:

- 0000: normal operation (test mode disabled).
- 0001: alternating checkerboard.
- 0010: $1 / 0$ word toggle.
- 0011: PN sequence: long $\left(x^{23}+x^{18}+1\right)$.
- 0101: continuous/repeat user test mode; most significant bits from 16 -bit user pattern $(1,2,3,4)$ are placed on the output for one clock cycle and then repeated. (Output user pattern: $1,2,3,4,1,2,3,4,1,2,3,4, \ldots$.
- 0110: single user test mode; most significant bits from the 16-bit user pattern ($1,2,3,4$) placed on the output for one clock cycle and then outputs all zeros. (Output user pattern: $1,2,3,4$, then output all zeros.)
- 0111: Ramp output (dependent on test injection point and number of bits, N).
- 1000: modified RPAT test sequence.
- 1001: unused.
- 1010: JSPAT test sequence.
- 1011: JTSPAT test sequence.
- 1100 to 1111: unused.

JESD204B APPLICATION LAYERS

The AD9625 supports the following application layer modes via Register 0x063[3:0]:

- $\quad 0100: \mathrm{f}_{\mathrm{S}} \times \mathrm{x}$ mode which supports line rates at integer multiples of the sample rates
- 1000: single DDC mode, high bandwidth mode (only DDC 0 used)
- 1001: single DDC mode, low bandwidth mode (only DDC 0 used)
- 1010 to 1011: unused
- 1100: dual DDC mode, high bandwidth mode (both DDC 0 and DDC 1 used)
- 1101: dual DDC mode, low bandwidth mode (both DDC 0 and DDC 1 used)
- 1110: dual DDC mode, mixed bandwidth mode (DDC 0 high bandwidth mode, DDC 1 low bandwidth mode, samples repeated)

$\boldsymbol{f}_{s} \times \mathbf{2}, \boldsymbol{f}_{s} \times \mathbf{4}, \boldsymbol{f}_{s} \times \mathbf{8}$ Modes

The JESD204B low multiplier mode application layer adds a rate conversion on top of a JESD204B transmitter/receiver with the following configuration parameters: $\mathrm{M}=1 ; \mathrm{L}=8 ; \mathrm{S}=4$;
$\mathrm{F}=1 ; \mathrm{N}=16 ; \mathrm{N}^{\prime}=16 ; \mathrm{CS}=0 ; \mathrm{CF}=0 ; \mathrm{SCR}=0,1 ; \mathrm{HD}=1$;
$\mathrm{K}=$ reference JESD204B specification.
In this mode, there are five actual samples per frame and scrambling can be optionally enabled in the JESD204B interface. The transmit portion of the low multiplier mode JESD204B application layer is shown in Figure 46.
The first step in this application layer is where 12-bit ADC samples are divided into six bytes.

To allow the line rate of the JESD204B interface to map directly into an integer of the converter sample rate, a four to five rate conversion takes place to group the 12-bit ADC samples into blocks of five samples. During this rate conversion, for every five 12 -bit ADC sample, an extra user defined, 4 -bit nibble is appended to create a 64-bit frame. Next, the 64-bit low multiplier frame maps into the four 16-bit JESD204B samples. The most significant 16-bits of the 64-bit low multiplier frame map to the oldest 16 -bit JESD204Bsample and the least significant 16 -bits of the 64 -bit low multiplier frame map to the most recent 16-bit JESD204B sample.

The receive portion of the $\mathrm{f}_{\mathrm{S}} \times 2$ JESD204B application layer is shown in Figure 47.

Figure 47. $f_{S} \times 2$ Application Layer (Receive)

FRAME ALIGNMENT CHARACTER INSERTION

Frame alignment character insertion (FACI) is defined in the register map (see the Memory Map Register section). Disable FACI only when it is used as a test feature.

The FACI disable bit is located in Register 0x05F, Bit 1. Use the following settings:

- Setting Bit 1 to $0=$ FACI enabled
- Setting Bit 1 to $1=$ FACI disabled

THERMAL CONSIDERATIONS

Because of the high power nature of the device, it is critical to provide airflow and/or install a heat sink when operating at a high temperature. This ensures that the maximum case temperature does not exceed $85^{\circ} \mathrm{C}$.

POWER SUPPLY CONSIDERATIONS

The AD9625 must be powered by the following two supplies: $\mathrm{AVDD} 1=\mathrm{DVDD} 1=\mathrm{DRVDD} 1=1.3 \mathrm{~V}, \mathrm{AVDD} 2=\mathrm{DVDD} 2=$ DRVDD2 $=2.5 \mathrm{~V}$. An optional DVDDIO and SPI_DVDDIO may be required at 2.5 V .

For applications requiring an optimal high power efficiency and low noise performance, it is recommended that ADP2386 switching regulator is used to convert the 12 V input rail into two intermediate rails (2.1 V and 3.6 V). These intermediate rails are then postregulated by very low noise, low dropout (LDO) regulators (ADP1740, ADP7104, and ADP125). Figure 48 shows the recommended method.

Figure 48. Power Supply Recommendation

SERIAL PORT INTERFACE (SPI)

The AD9625 SPI allows the user to configure the converter for specific functions or operations through a structured register space provided inside the ADC. The SPI gives the user added flexibility and customization, depending on the application. Addresses are accessed via the serial port and can be written to or read from via the port. Memory is organized into bytes that can be further divided into fields. These fields are documented in the Memory Map section.

CONFIGURATION USING THE SPI

Three pins define the SPI of this ADC: the SCLK pin, the SDIO pin, and the CSB pin (see Table 18). The SCLK (serial clock) pin is used to synchronize the read and write data presented from/to the ADC. The SDIO (serial data input/output) pin is a dual-purpose pin that allows data to be sent and read from the internal ADC memory map registers. The CSB (chip select bar) pin is an active low control that enables or disables the read and write cycles.

Table 18. Serial Port Interface Pins

Pin	Function
SCLK	Serial Clock. The serial shift clock input, which is used to synchronize serial interface, reads and writes.
SDIO	Serial Data Input/Output. A dual-purpose pin that typically serves as an input or an output, depending on the instruction being sent and the relative position in the timing frame.
CSB	Chip Select Bar. An active low control that gates the read and write cycles.

The falling edge of CSB, in conjunction with the rising edge of SCLK, determines the start of the framing. An example of the serial timing and its definitions can be found in Table 5 and Figure 3.
Other modes involving the CSB pin are available. The CSB pin can be held low indefinitely, which permanently enables the device; this is called streaming. The CSB pin can stall high between bytes to allow for additional external timing. When

CSB is tied high, SPI functions are placed in a high impedance mode. This mode turns on any SPI pin secondary functions.
All data is composed of 8 -bit words. The first bit of each individual byte of serial data indicates whether a read or write command is issued. This allows the SDIO pin to change direction from an input to an output.

In addition to word length, the instruction phase determines whether the serial frame is a read or write operation, allowing the serial port to be used both to program the chip and to read the contents of the on-chip memory. If the instruction is a readback operation, performing a readback causes the SDIO pin to change direction from an input to an output at the appropriate point in the serial frame.

Data can be sent in MSB first mode or in LSB first mode. MSB first is the default on power-up and can be changed via the SPI port configuration register.

HARDWARE INTERFACE

The pins described in Table 18 comprise the physical interface between the user programming device and the serial port of the AD9625. The SCLK pin and the CSB pin function as inputs when using the SPI interface. The SDIO pin is bidirectional, functioning as an input during write phases and as an output during readback.

The SPI interface is flexible enough to be controlled by either FPGAs or microcontrollers. One method for SPI configuration is described in detail in the AN-812 Application Note, Microcontroller-Based Serial Port Interface (SPI) Boot Circuit.
Do not activate the SPI port during periods when the full dynamic performance of the converter is required. Because the SCLK signal, the CSB signal, and the SDIO signal are typically asynchronous to the ADC clock, noise from these signals can degrade converter performance. If the on-board SPI bus is used for other devices, it may be necessary to provide buffers between this bus and the AD9625 to prevent these signals from transitioning at the converter inputs during critical sampling periods.

MEMORY MAP

READING THE MEMORY MAP REGISTER

Each row in the memory map register contains eight bit locations. The memory map is roughly divided into three sections: the chip configuration registers (Address 0x000 to Address 0x002); the transfer register (Address 0x0FF); and the ADC functions registers, including setup, control, and test (Address 0x008 to Address 0x13A).
The memory map register tables provids the default hexadecimal value for each hexadecimal address that is listed.

The column with the heading, Bit 7 (MSB), is the start of the default hexadecimal value given. For example, Address 0x14, the output mode register, has a hexadecimal default value of $0 x 01$. This means that Bit $0=1$, and the remaining bits are 0 s. This setting is the default output format value, which is twos complement. For more information on this function and others, see the AN-877 Application Note, Interfacing to High Speed ADCs via SPI.

Open and Reserved Locations

All address and bit locations are not currently supported for this device. Unused bits of a valid address location should be written with 0 s. Writing to these locations is required only when a portion of an address location is open. If the entire address location is open, this address location should not be written.

Default Values

After the AD9625 is reset, critical registers are loaded with default values. The default values for the registers are given in the memory map register tables.

Logic Levels

An explanation of logic level terminology follows:

- "Bit is set" is synonymous with "bit is set to Logic 1" or "writing Logic 1 for the bit."
- "Clear a bit" is synonymous with "bit is set to Logic 0 " or "writing Logic 0 for the bit."

Transfer Register Map

Address 0×008 to Address 0×020 are shadowed. Writes to these addresses do not affect device operation until a transfer command is issued by writing 0 x 01 to Address 0 x 0 FF , thereby setting the transfer bit. This allows these registers to update internally and simultaneously when the transfer bit is set. The internal update occurs when the transfer bit is set, and then the bit automatically clears.

MEMORY MAP REGISTERS

Address and bit locations that are not included in Table 19 through Table 106 are not currently supported for this device.

Table 19. SPI Configuration Register, Address 0x000 (Default $=0 \times 00)$

Bit No.	Access	Bit Description
7		Unused.
6	RW	SPI least significant bit (LSB) first. 1: LSB shifted first for all SPI operations. For multibyte SPI operations, the addressing increments automatically. 0: most significant bit (MSB) shifted first for all SPI operations. For multibyte SPI operations, the addressing decrements automatically.
5	RW	Self clearing soft reset. 1: reset the SPI registers (self clearing). 0 : do nothing.
4	R	13-bit addressing enabled.
3	R	13-bit addressing enabled.
2	RW	Self clearing soft reset. 1: reset the SPI registers(self clearing). 0 : do nothing.
1	RW	SPI LSB first. 1: LSB shifted first for all SPI operations. For multi-byte SPI operations, the addressing increments automatically. 0: MSB shifted first for all SPI operations. For multi-byte SPI operations, the addressing decrements automatically.
0	Unused	Unused.

Table 20. Chip ID Register, Address 0x001 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	R	Chip ID.

Table 21. Chip Grade Register, Address 0x002 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 6]$		Unused.
$[5: 4]$	R	Chip ID/speed grade.
3		Unused.
$[2: 0]$	R	Chip die revision. $000:$ first silicon. 001 to 111: reserved.

Table 22. Power Control Mode Register, Address 0x008 (Default = 0x00)

Bit No.	Access	Bit Description
7		Unused.
6		Unused.
5		Unused.
$[4: 2]$		Unused.
$[1: 0]$	RW	Chip power modes.
		$00:$ normal mode (power-up).
		$01:$ reserved.
		$10:$ standby mode; digital datapath clocks disabled, JESD204B interface enabled, outputs enabled.
		$11:$ digital datapath reset mode; digital data path clocks enabled, digital data path held in reset,
		JESD204B interface held in reset, outputs enabled.

Table 23. PLL Status Register, Address 0x00A (Default $=0 \times 00$)

Bit No.	Access	Bit Description
7	RO	PLL locked status bit.
		$0:$ PLL is unlocked.
		$1:$ PLL is locked.
$[6: 0]$		Unused.

Table 24. ADC Test Control Register, Address 0x00D (Default $=0 \times 00$)

Bit No.	Access	Bit Description
7	RW	ADC datapath user test mode control. Note: These bits are only used when Register 0x00D, Bits[3:0] is in user input mode (Register 0x00D[3:0] = 1000); otherwise, they are ignored. $0=$ continuous/repeat pattern mode. Place each user pattern ($1,2,3,4$) on the output for one clock cycle and then repeat. (Output user pattern: $1,2,3,4,1,2,3,4,1,2,3,4, \ldots$) $1=$ single pattern mode. Place each user pattern ($1,2,3,4$) on the output for one clock cycle and then output all zeros. (Output user pattern: 1, 2, 3, 4, then output all zeros.)
6		Unused.
5	RW	ADC long psuedo random number test generator reset. 0 : long PN enabled. 1: long PN held in reset.
4	RW	Unused.
[3:0]	RW	ADC data output test generation mode. 0000: off, normal operation. 0001: midscale short. 0010: positive full scale. 0011: negative full scale. 0100: alternating checkerboard. 0101: PN sequence, long. 0110: unused. 0111: one-/zero-word toggle. 1000: user test mode. Used with Register 0x00D[7] and user pattern (1, 2, 3, 4) registers. 1001 to 1110: unused. 1111: ramp output.

Table 25. Data Path Customer Offset Register, Address 0x010 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 6]$		Unused.
$[5: 0]$	RW	Digital datapath offset. Twos complement offset adjustment aligned with least converter resolution.
		$011111:+31$
		$011110:+30$
		\ldots
		$000001: 1$
		$000000: 0$
		$11111:-1$
		\ldots
		$100001:-31$
		$100000:-32$

Table 26. Output Mode Register, Address 0x014 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 5]$	RW	Unused.
4	Chip output disable. Bit 4 enables and disables the digital outputs from the ADC. 0: enable. 1: disable.	
3	RW	Unused. 2 $1: 0]$ Digital ADC sample invert. 0: ADC sample data is not inverted. 1: ADC sample data is inverted.
	Digital ADC data format select (DFS). Note: the use of the muxed SDIO pin to control Register 0x014[1:0] is not supported on the AD9625. 00: offset binary. 01: twos complement (default). 10: reserved. 11: reserved.	

Table 27. Serializer Output Adjust, Register, Address 0x015 (Default = 0x50)

Bit No.	Access	Bit Description
7	RW	Serializer output polarity selection. 0: normal, not inverted. 1: output driver polarity inverted.
[6:5]	RW	Serializer output emphasis amplitude control. 00: 0 mV emphasis differential p-p. 01: 160 mV emphasis differential $p-\mathrm{p}$. 10: 80 mV emphasis differential $p-p$. 11:40 mV amplitude differential p-p.
[4:0]	RW	Reserved.

Table 28. User Test Pattern 1 LSB Register, Address 0x019 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	User Test Pattern 1 least significant byte. Note: these bits are used only when Register 0x00D, Bits[3:0] is in user input mode (Register 0x00D[3:0] = 1000), or when Register 0x061, Bits[3:0] is in the scrambler or 10-bit test modes (Register 0x061[3:0] = 0100 to 0111). Otherwise, these bits are ignored.

Table 29. User Test Pattern 1 MSB Register, Address 0x01A (Default $=0 \times 00$)

Bit No.	Access	Bit Description
$[7: 0]$	RW	User Test Pattern 1 most significant byte. Note: These bits are used only when Register 0x00D, Bits[3:0] is in user input mode (Register 0x00D[3:0] = 1000). Otherwise, these bits are ignored.

Table 30. User Test Pattern 2 LSB Register, Address 0x01B (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	User Test Pattern 2 least significant byte. Note: these bits are used only when Register 0x00D, Bits[3:0] is in user input mode (Register 0x00D[3:0] $=1000$). Otherwise, these bits are ignored.

Table 31. User Test Pattern 2 MSB Register, Address 0x01C (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	User Test Pattern 2 most significant byte. Note: these bits are used only when Register 0x00D, Bits[3:0] is in user input mode (Register 0x00D[3:0] = 1000). Otherwise, these bits are ignored.

Table 32. User Test Pattern 3 LSB Register, Address 0x01D (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	User Test Pattern 3 least significant byte. Note: these bits are used only when Register 0x00D, Bits[3:0] is in user input mode (Register 0x00D[3:0] $=1000)$. Otherwise, these bits are ignored.

Table 33. User Test Pattern 3 MSB Register, Address 0x01E (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	User Test Pattern 3 most significant byte. Note: these bits are used only when Register 0x00D, Bits[3:0] is in user input mode (Register 0x00D[3:0] = 1000). Otherwise, these bits are ignored.

Table 34. User Test Pattern 4 LSB Register, Address 0x01F (Default $=0 \times 00$)

Bit No.	Access	Bit Description
$[7: 0]$	RW	User Test Pattern 4 least significant byte. Note: these bits are used only when Register 0x00D, Bits[3:0] is in user input mode (Register 0x00D[3:0] = 1000). Otherwise, these bits are ignored.

Table 35. User Test Pattern 4 MSB Register, Address 0x020 (Default $=0 \times 00$)

Bit No.	Access	Bit Description
$[7: 0]$	RW	User Test Pattern 4 most significant byte. Note: these bits are used only when Register 0x00D, Bits[3:0] is in user input mode (Register 0x00D[3:0] = 1000). Otherwise, these bits are ignored.

Table 36. Synthesizer PLL Control Register, Address 0x021 (Default $=0 \times 00$)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
4	RW	1 = force power-down of VCO LDO
3	RW	Reserved for future use.
$[2: 0]$		Unused.

Table 37. ADC Analog Input Control Register, Address 0x02C (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 3]$		Unused.
2	RW	Set function on VMON pin.
		$0:$ unused.
		$1:$ allow customer to apply external reference on VMON pin.
$[1: 0]$		Unused.

Table 38. SYSREF Control Register, Address 0x03A (Default $=0 \times 00$)

Bit No.	Access	Bit Description
7	RW	SYSREF status bit replaces the LSB from the converter. 0: normal mode. 1: SYSREF status bit replaces the LSB.
6	RW	SYSREF status bit flag reset. To use the flags, Register 0x03A, Bit 1 must be set to high. 0: normal flag operation. 1: SYSREF status bit flags held in reset.
5		Unused.
4	RW	SYSREF \pm transition selection. 0: SYSREF \pm is valid on low to high transitions using selected CLK edge.

Bit No.	Access	Bit Description
3	RW	SYSREF \pm capture edge selection. 0: captured on rising edge of CLK input. 1: captured on falling edge of CLK input.
2	RW	SYSREF \pm next mode. 0: continuous mode. 1: next SYSREF \pm mode: uses the next valid edge only of the SYSREF \pm pin. Subsequent edges of the SYSREF \pm pin are ignored. When the next system reference is found, Bit 1 of Register 0x03A clears.
1	RW	SYSREF \pm pins enable. 0: SYSREF \pm disabled. 1: SYSREF \pm enabled. When Register 0x03A, Bit 2 = 1, only the next valid edge of the SYSREF \pm pins is used. Subsequent edges of the SYSREF pin are ignored.
0		Unused.

Table 39. Fast Detect Control Register, Address 0x045 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 4]$		Unused.
3	RW	Force the fast detect output pin. 0: normal operation of fast detect pin. 1: force a value on the fast detect pin (see Bit 2 in this table, Table 39).
2	RW	The fast detect output pin is set to the value in this bit (Register 0x045[2]) when the output is forced.
1		Unused.
0	RW	Enable fast detect on the corrected ADC data. 0: fine fast detect disabled. 1: fine fast detect enabled.

Table 40. Fast Detect Upper Threshold Register, Address 0x047 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	These bits are the LSBs of the fast detect upper threshold. These eight LSBs of the programmable 12-bit upper threshold are compared to the fine ADC magnitude.

Table 41. Fast Detect Upper Threshold Register, Address 0x048 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 4]$		Unused.
$[3: 0]$	RW	These bits are the MSBs of the fast detect upper threshold. These four MSBs of the programmable 12-bit upper threshold are compared to the fine ADC magnitude.

Table 42. Fast Detect Lower Threshold Register, Address 0x049 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	These bits are the LSBs of the fast detect lower threshold. These eight LSBs of the programmable 12-bit lower threshold are compared to the fine ADC magnitude.

Table 43. Fast Detect LowerThreshold Register, Address 0x04A (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 4]$		Unused.
$[3: 0]$	RW	MSBs of the fast detect lower threshold. These four MSBs of the programmable 12-bit lower threshold are compared to the fine ADC magnitude.

Table 44. Fast Detect Dwell Time Counter Threshold Register, Address 0x04B (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	These bits are the LSBs of the fast detect dwell time counter target. This is the value for a 16-bit counter that determines the length of time that the ADC data must remain below the lower threshold before the FD pin reset to 0.

Table 45. Fast Detect Dwell Time Counter Threshold Register, Address 0x04C (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	These bits are the MSBs of the fast detect dwell time counter target. This is the value for a 16-bit counter that determines the length of time that the ADC data must remain below the lower threshold before the FD pin resets to 0. Note that the fast detect (FD) pin deasserts after the ADC codes stay below the lower target for the number of samples indicated by the value in Register 0x04C[7:0].

Table 46. JESD204B Quick Configuration Register, Address 0x05E (Default = 0x00)

Bit No.	Access	Bit Description
[7:0]	RW	JESD204B serial quick configuration (self clearing). This register is self clearing and does not control anything in the AD9625 directly; it only changes the value of the other JESD240B registers that control the chip. Because this register is self clearing, it always returns to 000 after each write. To use the quick configuration feature, write to this register first, then, if there are any changes that need to be made to any of the following settings, write to the other JESD204B registers. 0×00 : configuration determined by other registers. Because the register is self clearing, it always returns to this value after each write. 0x01: reserved. 0×02 : Generic 2 Lane Configuration Register $0 \times 063[3: 0]=0 \times 0$; Register $0 \times 06 E[4: 0]=0 \times 1$; Register $0 \times 072[4: 0]=0 \times B$; Register 0x073[4:0] = 0xF. 0×04 : Generic 4 Lane Configuration Register $0 \times 063[3: 0]=0 \times 0$; Register $0 \times 06 E[4: 0]=0 \times 3$; Register $0 \times 072[4: 0]=0 \times B$; Register 0x073[4:0] = 0xF. 0×06 : Generic 6 Lane Configuration Register $0 \times 063[3: 0]=0 \times 0$; Register 0x06E[4:0] $=0 \times 5$; Register 0x072[4:0] $=0 \times B$; Register 0x073[4:0] $=0 \times B$. 0×08 : Generic 8 Lane Configuration Register $0 \times 063[3: 0]=0 \times 0$; Register $0 \times 06 E[4: 0]=0 \times 7$; Register $0 \times 072[4: 0]=0 \times B$; Register 0x073[4:0] $=0 \times F$. 0×18 : reserved. 0×28 : reserved. 0×48 : $\mathrm{f}_{\mathrm{s}} \times 2$ mode, eight lanes. Register $0 \times 063[3: 0]=0 \times 4$; Register $0 \times 06 \mathrm{E}[4: 0]=0 \times 7$; Register $0 \times 072[4: 0]=0 \times F$; Register 0x073[4:0] $=0 \times F$. 0x81: 1 DDC (high BW), one lane. Register 0x063[3:0] = 0x8; Register 0x06E[4:0] $=0 \times 0$; Register 0x072[4:0] $=0 \times 5$; Register 0x073[4:0] $=0 \times F$. 0×82 : 1 DDC (high BW), two lanes. Register 0x063[3:0] = 0x8; Register 0x06E[4:0] $=0 \times 1$; Register 0x072[4:0] $=0 \times F$; Register 0x073[4:0] = 0xF. 0x91: 1 DDC (low BW), one lane. Register 0x063[3:0] $=0 \times 9$; Register 0x06E[4:0] $=0 \times 0$; Register 0x072[4:0] $=0 \times F$; Register $0 \times 073[4: 0]=0 \times F$. $0 \times C 1$: 2 DDCs (high BW), one lane. Register $0 \times 063[3: 0]=0 \times C$; Register $0 \times 06 E[4: 0]=0 \times 0$; Register $0 \times 072[4: 0]=0 \times F$; Register 0x073[4:0] $=0 \times F$. $0 \times C 2$: 2 DDCs (high BW), two lanes. Register $0 \times 063[3: 0]=0 \times C$; Register 0x06E[4:0] $=0 \times 1$; Register 0x072[4:0] $=0 \times \mathrm{FF}$; Register 0x073[4:0] = 0xF. $0 \times C 4: 2$ DDCs (high BW), four lanes. Register $0 \times 063[3: 0]=0 \times C$; Register 0x06E[4:0] $=0 \times 3$; Register 0x072[4:0] $=0 \times F$; Register 0x073[4:0] = 0xF. $0 \times D 1$: 2 DDCs (low BW), one lane. Register $0 \times 063[3: 0]=0 \times D$; Register $0 \times 06 E[4: 0]=0 \times 0$; Register $0 \times 072[4: 0]=0 \times F ;$ Register 0x073[4:0] $=0 \times F$. $0 \times D 2$: 2 DDCs (low BW), two lanes. Register 0x063[3:0] = 0xD; Register 0x06E[4:0] $=0 \times 1$; Register 0x072[4:0] $=0 \times F$; Register 0x073[4:0] = 0xF. 0xE1: 2 DDCs (mixed BW), one lane. Register $0 \times 063[3: 0]=0 \times E$; Register $0 \times 06 \mathrm{E}[4: 0]=0 \times 0$; Register $0 \times 072[4: 0]=0 \times F$; Register 0x073[4:0] = 0xF. 0xE2: 2 DDCs (mixed BW), two lanes. Register $0 \times 063[3: 0]=0 \times E$; Register 0x06E[4:0] $=0 \times 1$; Register 0x072[4:0] $=0 \times F$; Register 0x073[4:0] = 0xF. 0xE4: 2 DDCs (mixed BW), four lanes. Register 0x063[3:0] = 0xE; Register 0x06E[4:0] $=0 \times 3$; Register 0x072[4:0] $=0 \times F$; Register 0x073[4:0] $=0 \times F$. All other values have no effect.

Table 47. JESD204B Link Control Register 1, Address 0x05F (Default = 0x00)

Bit No.	Access	Bit Description
7		Unused.
6	RW	JESD204B serial tail bit, PN, enable. Note: the following equation can be used to determine the number of PN bits sent per sample $=$ N' - N - CS (the number of control bits per sample). 0: serial tail bit, PN, disabled. Unused extra tail bits are padded with zeros. 1: serial tail bit, PN, enabled. Unused extra tail bits are padded with a pseudo random number sequence from a 31-bit LFSR (see JESD204B 5.1.4).
5	RW	JESD204B serial test sample enable. 0: JESD204B test samples disabled. 1: JESD204B test samples enabled. The transport layer test sample sequence (as specified in JESD204B Section 5.1.6.2) is sent on all link lanes.
4	RW	JESD204B serial lane synchronization enable. Note that the frame character insertion must be enabled (Register 0x05F[1] = 0) to enable lane synchronization. 0: lane synchronization disabled. Both sides do not perform lane synchronization; frame alignment character insertion always uses /K28.7/ control characters (see JESD204B 5.3.3.4). 1: lane synchronization enabled. Both sides perform lane sync; frame alignment character insertion uses either /K28.3/ or /K28.7/ control characters (see JESD204B 5.3.3.4).
[3:2]	RW	JESD204B serial initial lane alignment sequence mode. 00: initial lane alignment sequence disabled (JESD204B 5.3.3.5). 01: initial lane alignment sequence enabled (JESD204B 5.3.3.5). 10: reserved. 11: initial lane alignment sequence always on test mode; the JESD204B data link layer test mode (where repeated lane alignment sequence, as specified in JESD204B section 5.3.3.9.2) is sent on all lanes.
1	RW	JESD204B serial frame alignment character insertion (FACI) disable. 0: frame alignment character insertion enabled (JESD204B 5.3.3.4). 1: frame alignment character insertion disabled. Note that this is for debug only (JESD204B 5.3.3.4).
0	RW	JESD204B serial transmit link power-down (active high). Note that the JESD204B transmitter link must be powered down while changing any of the link configuration bits. 0: JESD204B serial transmit link enabled. Transmission of the /K28.5/ characters for code group synchronization is controlled by the SYNCINB pins. 1: JESD204B serial transmit link powered down (held in reset and clock gated).

Table 48. JESD204B Link Control Register 2, Address 0x060 (Default = 0x00)

Bit No.	Access	Bit Description
[7:6]	RW	JESD204B serial sync mode. 00: normal mode. 01: reserved. 10: SYNCINB \pm active mode. SYNCINB \pm pins are active: force code group synchronization. 11: SYNCINB \pm pins disabled.
5	RW	JESD204B serial sync pin invert. 0 : SYNCINB \pm pins not inverted. 1: SYNCINB \pm pins inverted.
[4:3]		Unused.
2	RW	JESD204B Serial 8-bit/10-bit bypass (test mode only). 0: 8-bit/10-bit enabled. 1: 8-bit/10-bit bypassed (most significant two bits are 0).
1	RW	JESD204B 10-bit serial transmit bit invert. Note that in the event that the CML signals are reversed in a system board layout, this bit effectively inverts the differential outputs from the PHY. 0 : normal. 1: invert the $a, b, c, d, e, f, g, h, i, j$ bits.
0	RW	JESD204B 10-bit serial transmit bit mirror. 0 : 10-bit serial bits are not mirrored. Transmit bit order is alphabetical: $a, b, c, d, e, f, g, h, i, j$. 1: 10-bit serial bits are mirrored. Transmit bit order is alphabetically reversed: $j, i, h, g, f, e, d, c, b, a$.

Table 49. JESD204B Link Control Register 3, Address 0x061 (Default = 0x00)

Bit No.	Access	Bit Description
7	RW	JESD204B checksum disable. 0 : checksum enabled in the link configuration parameter. Normal operation. 1: checksum disabled in the link configuration parameter (set to zero). For testing purposes only.
6	RW	JESD204B checksum mode. 0 : checksum is the sum of all 8-bit registers in the link configuration fields. 1: checksum is the sum of all individual link configuration fields (LSB aligned).
[5:4]	RW	JESD204B serial test generation input selection. 00: 16-bit test generation data injected at the sample input to the link. 01: 10-bit test generation data injected at the output of the 8 -bit/10-bit encoder (at the input to PHY). 10: 8 -bit test generation data injected at the input of the scrambler. 11: reserved.
[3:0]	RW	JESD204B serial test generation mode. 0000: normal operation (test mode disabled). 0001: alternating checkerboard. 0010: 1/0 word toggle. 0011: PN sequence (long). 0100: unused. 0101: continuous/repeat user test mode. The most significant bits from the user pattern (1, 2, 3, 4) are placed on the output for one clock cycle and then repeated (the output user pattern is $1,2,3,4,1,2,3,4,1,2,3,4, \ldots$). 0110: single user test mode. The most significant bits from the user pattern $(1,2,3,4)$ are placed on the output for one clock cycle and then output all zeros (the output user pattern is $1,2,3,4$, and then outputs all zeros). 0111: ramp output. 1000: modified RPAT test sequence (10-bit value). 1001: unused. 1010: JSPAT test sequence (10-bit value). 1011: JTSPAT test sequence (10-bit value). 1100 to 1111: unused.

Table 50. JESD204B Link Control Register 4, Address 0x062 (Default 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	Initial lane alignment sequence repeat count. Bits[7:0] specify the number of times the initial lane alignment sequence repeats. For ADCs, the JESD204B specification states that the initial lane alignment sequence always spans four multiframes (JESD204B 5.3.3.5). Because Register 0x070, Bits[4:0] determine the number of frames per multiframe, the total number of frames transmitted during the initial lane alignment sequence $=4 \times($ Register $0 \times 070[4: 0]+1) \times($ Register $0 \times 062[7: 0]+1)$.

Table 51. JESD204B Link Control Register 5, Address 0x063 (Default = 0x00)

Bit No.	Access	Bit Description
7		Unused.
[6:4]		Unused.
[3:0]	RW	JESD204B application layer mode. DDC bandwidth modes are as follows: high bandwidth, decimate by 8 (effective output bandwidth $=\mathrm{f}_{\mathrm{s}} / 10$) and low bandwidth, decimate by 16 (effective output bandwidth $=\mathrm{f}_{\mathrm{s}} / 20$). 0000: generic (no application layer used). 0001: unused. 0010: unused. 0011: unused. 0100: $\mathrm{f}_{\mathrm{s}} \times \mathrm{x}$ mode (where x is an integer). 0101 to 0111: unused. 1000: single DDC mode (high bandwidth mode (only DDC0 used). 1001: single DDC mode (low bandwidth mode (only DDC0 used). 1010 to 1011: unused. 1100: dual DDC mode, high bandwidth mode (both DDC 0 and DDC 1 used). 1101: dual DDC mode, low bandwidth mode (both DDC 0 and DDC 1 used). 1110: dual DDC mode, mixed bandwidth mode (DDC 0 high bandwidth mode, DDC 1 low bandwidth mode, samples repeated). 1111: unused.

Table 52. JESD204B Configuration Register, Address 0x064 (Default $=0 \times 00$)

Bit No.	Access	Bit Description
$[7: 0]$	RW	JESD204B serial device identification (DID) number.

Table 53. JESD204B Configuration Register, Address 0x065 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 4]$		Unused.
$[3: 0]$	RW	JESD204B serial bank identification (BID) number (extension to DID).

Table 54. JESD204B Configuration Register, Address 0x066 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
$[4: 0]$	RW	JESD204B serial lane identification (LID) number for Lane 0.

Table 55. JESD204B Configuration Register, Address 0x067 (Default = 0x01)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
$[4: 0]$	RW	JESD204B serial lane identification (LID) number for Lane 1.

Table 56. JESD204B Configuration Register, Address 0x068 (Default $=0 \times 02$)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
$[4: 0]$	RW	JESD204B serial lane identification (LID) number for Lane 2.

Table 57. JESD204B Configuration Register, Address 0x069 (Default = 0x03)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
$[4: 0]$	RW	JESD204B serial lane identification (LID) number for Lane 3.

Table 58. JESD204B Configuration Register, Address 0x06A (Default = 0x04)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
$[4: 0]$	RW	JESD204B serial lane identification (LID) number for Lane 4.

Table 59. JESD204B Configuration Register, Address 0x06B (Default $=0 \times 05$)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
$[4: 0]$	RW	JESD204B serial lane identification (LID) number for Lane 5.

Table 60. JESD204B Configuration Register, Address 0x06C (Default = 0x06)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
$[4: 0]$	RW	JESD204B serial lane identification (LID) number for Lane 6.

Table 61. JESD204B Configuration Register, Address 0x06D (Default $=0 \times 07$)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
$[4: 0]$	RW	JESD204B serial lane identification (LID) number for Lane 7.

Table 62. JESD204B Configuration Register, Address 0x06E (Default = 0x87)

Bit No.	Access	Bit Description
7	RW	JESD204B serial scrambler mode.
		$0:$ JESD204B scrambler disabled $(S C R=0)$.
	$1:$ JESD204B scrambler enabled $(S C R=1)$.	
$[6: 5]$		Unused.

Bit No.	Access	Bit Description
$[4: 0]$	RW	JESD204B serial lane control $(\mathrm{L}=$ Register 0x06E[4:0] + 1).
		0: one lane per link $(\mathrm{L}=1)$.
		1:two lanes per link $(\mathrm{L}=2)$.
		2: unused.
		3: four lanes per link $(\mathrm{L}=4)$.
	4: unused.	
		5: six lanes per link $(\mathrm{L}=6)$.
		6: unused.
		7: eight lanes per link $(\mathrm{L}=8)$.
		8 to 31: unused.

Table 63. JESD204B Configuration Register, Address 0x06F (Default $=0 \times 00$)

Bit No.	Access	Bit Description
[7:0]	RO	JESD204B number of octets per frame ($\mathrm{F}=$ Register 0x06F[7:0] + 1). These bits are calculated using the following equation: $F=\left(N^{\prime}\right) /(2 \times L)$ The following are valid values of F : $\begin{aligned} & M=1, S=4, N^{\prime}=16, L=1, F=8 . \\ & M=1, S=4, N^{\prime}=16, L=2, F=4 . \\ & M=1, S=4, N^{\prime}=16, L=4, F=2 . \\ & M=1, S=4, N^{\prime}=12, L=6, F=1 . \\ & M=1, S=4, N^{\prime}=16, L=8, F=1 \text { (default). } \end{aligned}$

Table 64. JESD204B Configuration Register, Address 0x070 (Default $=0 \times 00$)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
$[4: 0]$	RW	JESD204B number of frames per multiframe (K = Register 0x070[4:0] + 1). Only those values that are divisible by four can be used.

Table 65. JESD204B Configuration Register, Address 0x071 (Default $=0 \times 00$)

Bit No.	Access	Bit Description
$[7: 0]$	RO	JESD204B number of converters per link/device.
		$0:$ link connected to one $\operatorname{ADC}(M=1)$.
		1 to 255 : unused.

Table 66. JESD204B Configuration Register, Address 0x072 (Default $=0 \times 0 B$)

Bit No.	Access	Bit Description
[7:6]	RW	JESD204B number of control bits per sample (CS, based on the JESD204B specification). 00 : no control bits sent per sample ($C S=0$). 01: one control bit sent per sample, overrange bit enabled ($C S=1$). 10: two control bits sent per sample, overrange + timestamp SYSREF bit (CS = 2). 11: reserved.
5		Unused.
[4:0]	RW	JESD204B converter resolution ($\mathrm{N}=$ Register 0x072[4:0] + 1). 0x00 to 0x06: reserved. 0×07 to 0x09: reserved. 0x0A: reserved. $0 \times 0 \mathrm{~B}: \mathrm{N}=12$-bit ADC converter resolution. 0x0C to 0x0E: reserved. $0 \times 0 F$: $\mathrm{N}=16$-bit ADC converter resolution. 0×10 to $0 \times 1 \mathrm{~F}$: reserved.

Table 67. JESD204B Configuration Register, Address 0x073 (Default = 0x2F)

Bit No.	Access	Bit Description
[7:5]	RW	JESD204B device subclass version. 0×0 : Subclass 0 . 0×1 : Subclass 1 (default). 0×2 : Subclass 2 (not supported). 0×3 : undefined.
[4:0]	RW	JESD204B total number of bits per sample ($\mathrm{N}^{\prime}=$ Register 0x073[4:0] + 1). 0x0 to 0xA: unused. $0 x B$: $\mathrm{N}^{\prime}=12$ (L must be equal to 6). 0xC to 0xE: unused. $0 x F$: $\mathrm{N}^{\prime}=16$ (L must be equal to $1,2,4$, or 8).

Table 68. JESD204B Configuration Register, Address 0x074 (Default = 0x23)

Bit No.	Access	Bit Description
$[7: 5]$	RW	JESD204B version. 0x0: JESD204A. SYNCINB \pm pins input are internally gated by the frame clock. SYNCINB \pm must be low for at least two frame clock cycles to be interpreted as a synchronization request. $0 \times 1:$ JESD204B. SYNCINB \pm pins input are internally gated by the local multiframe clock. SYNCINB \pm must be low for at least four frame clock cycles to be interpreted as a synchronization request. 0×2 to 0x7: undefined.
$[4: 0]$	RO	JESD204B samples per converter frame cycle ($S=$ Register 0x074[4:0] + 1). These are read-only bits. For the AD9625, S must be equal to 4 (Register 0x074[4:0] = 3).

Table 69. JESD204B Configuration Register, Address 0x075 (Default $=0 \times 80$)

Bit No.	Access	Bit Description
7	RO	JESD204B high density (HD) format. This is a read-only bit. 0 : HD format disabled. 1: HD format enabled. High density mode is automatically enabled based on the values of N ' and L . The values of HD for the AD9625 are as follows: $\begin{aligned} & \mathrm{N}^{\prime}=16, \mathrm{~L}=1, \mathrm{HD}=0 . \\ & \mathrm{N}^{\prime}=16, \mathrm{~L}=2, \mathrm{HD}=0 . \\ & \mathrm{N}^{\prime}=16, \mathrm{~L}=4, \mathrm{HD}=0 . \\ & \mathrm{N}^{\prime}=12, \mathrm{~L}=6, \mathrm{HD}=1 . \\ & \mathrm{N}^{\prime}=16, \mathrm{~L}=8, \mathrm{HD}=1 \text { (default). } \end{aligned}$
[6:5]		Unused.
[4:0]	RO	JESD204B Number of control words per frame clock cycle per link (CF). These are read-only bits. For the AD9625, CF must equal 0 (Register 0x075[4:0] = 0).

Table 70. JESD204B Configuration Register, Address 0x076 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	JESD204B Serial Reserved Field 1.

Table 71. JESD204B Configuration Register, Address 0x077 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	JESD204B Serial Reserved Field 2.

Table 72. JESD204B Configuration Register, Address 0x078 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RO	JESD204B serial checksum value for Lane 0. This value is automatically calculated The value $=$ (the sum of all link configuration parameters for Lane 0) Modulus 256. Checksum is enabled/disabled using Register 0x061, Bit 7.

Table 73. JESD204B Configuration Register, Address 0x079 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RO	JESD204B serial checksum value for Lane 1. This value is automatically calculated. The value $=$ (the sum of all link configuration parameters for Lane 1) Modulus 256. Checksum is enabled/disabled using Register 0x061, Bit 7.

Table 74. JESD204B Configuration Register, Address 0x07A (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RO	JESD204B serial checksum value for Lane 2. This value is automatically calculated. The value $=$ (the sum of all link configuration parameters for Lane 2) Modulus 256. Checksum is enabled/disabled using Register 0x061, Bit 7.

Table 75. JESD204B Configuration Register, Address 0x07B (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RO	JESD204B serial checksum value for Lane 3. This value is automatically calculated. The value $=$ (the sum of all link configuration parameters for Lane 3) Modulus 256. Checksum is enabled/disabled using Register 0x061, Bit 7.

Table 76. JESD204B Configuration Register, Address 0x07C (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RO	JESD204B serial checksum value for Lane 4. This value is automatically calculated. The value $=$ (the sum of all link configuration parameters for Lane 4) Modulus 256. Checksum is enabled/disabled using Register 0x061, Bit 7.

Table 77. JESD204B Configuration Register, Address 0x07D (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RO	JESD204B serial checksum value for Lane 5. This value is automatically calculated. The value $=$ (the sum of all link configuration parameters for Lane 5) Modulus 256. Checksum is enabled/disabled using Register 0x061, Bit 7.

Table 78. JESD204B Configuration Register, Address 0x07E (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RO	JESD204B serial checksum value for Lane 6. This value is automatically calculated. The value $=$ (the sum of all link configuration parameters for Lane 6) Modulus 256. Checksum is enabled/disabled using Register 0x061, Bit 7.

Table 79. JESD204B Configuration Register, Address 0x07F (Default $=0 \times 00$)

Bit No.	Access	Bit Description
$[7: 0]$	RO	JESD204B serial checksum value for Lane 6 . This value is automatically calculated. The value $=$ (the sum of all link configuration parameters for Lane 6) Modulus 256. Checksum is enabled/disabled using Register 0x061, Bit 7.

Table 80. JESD204B Lane Power-Down Register, Address 0x080 (Default = 0x00)

Bit No.	Access	Bit Description
7	RW	Physical Lane H power-down. 0 : Lane H enabled. 1: Lane H powered down.
6	RW	Physical Lane G power-down. 0 : Lane G enabled. 1: Lane G powered down.
5	RW	Physical Lane F power-down. 0 : Lane F enabled. 1: Lane F powered down.
4	RW	Physical Lane E power-down. 0: Lane E enabled. 1: Lane E powered down.
3	RW	Physical Lane D power-down. 0 : Lane D enabled. 1: Lane D powered down.
2	RW	Physical Lane C power-down. 0: Lane C enabled. 1: Lane C powered down.
1	RW	Physical Lane B power-down. 0 : Lane B enabled. 1: Lane B powered down.
0	RW	Physical Lane A power-down. 0 : Lane A enabled. 1: Lane A powered down.

Table 81. JESD204B Lane Control Register 1, Address 0x082 (Default = 0x10)

Bit No.	Access	Bit Description
7		Unused.
$[6: 4]$	RW	Physical Lane B assignment.
		000: Logical Lane 0.
		001: Logical Lane 1 (default).
		010: Logical Lane 2.
		011: Logical Lane 3.
		$100:$ Logical Lane 4.
		$101:$ Logical Lane 5.
		$110:$ Logical Lane 6.
		$111:$ Logical Lane 7.
3		Unused.
$[2: 0]$		Physical Lane A assignment.
		$000:$ Logical Lane 0 (default).
		$001:$ Logical Lane 1.
		$010:$ Logical Lane 2.
		$011:$ Logical Lane 3.
		$100:$ Logical Lane 4.
		$101:$ Logical Lane 5.
		$110:$ Logical Lane 6.
		$111:$ Logical Lane 7.

Table 82. JESD204B Lane Control Register 2, Address 0x083 (Default = 0x42)

Bit No.	Access	Bit Description
7		Unused.
$[6: 4]$	RW	Physical Lane D assignment.
		000: Logical Lane 0.
		001: Logical Lane 1.
		010: Logical Lane 2.
		011: Logical Lane 3 (default).
		100: Logical Lane 4.
		101: Logical Lane 5.
		110: Logical Lane 6.
		111: Logical Lane 7.
3		Unused.
		Physical Lane C assignment.
		000: Logical Lane 0.
		001: Logical Lane 1.
		010: Logical Lane 2 (default).
		011: Logical Lane 3.
		100: Logical Lane 4.
		101: Logical Lane 5.
		110: Logical Lane 6.
		111: Logical Lane 7.

AD9625

Table 83. JESD204B Lane Control Register 3, Address 0x084 (Default = 0x54)

Bit No.	Access	Bit Description
7		Unused.
$[6: 4]$	RW	Physical Lane F assignment.
		000: Logical Lane 0.
		001: Logical Lane 1.
		010: Logical Lane 2.
		011: Logical Lane 3.
		100: Logical Lane 4.
		101: Logical Lane 5 (default).
		$110:$ Logical Lane 6.
		$111:$ Logical Lane 7.
3		Unused.
		Physical Lane E assignment.
		$000:$ Logical Lane 0.
		$001:$ Logical Lane 1.
		$010:$ Logical Lane 2.
		$011:$ Logical Lane 3.
		$100:$ Logical Lane 4 (default).
		$101:$ Logical Lane 5.
		$110:$ Logical Lane 6.
		$111:$ Logical Lane 7.

Table 84. JESD204B Lane Control Register 4, Address 0x085 (Default = 0x76)

Bit No.	Access	Bit Description
7		Unused.
$[6: 4]$	RW	Physical Lane H assignment.
		000: Logical Lane 0.
		001: Logical Lane 1.
		010: Logical Lane 2.
		011: Logical Lane 3.
		100: Logical Lane 4.
		101: Logical Lane 5.
		110: Logical Lane 6.
		111: Logical Lane 7 (default).
$[2: 0]$		Unused.
		Physical Lane G assignment.
		000: Logical Lane 0.
		001: Logical Lane 1.
		010: Logical Lane 2.
		011: Logical Lane 3.
		100: Logical Lane 4.
		101: Logical Lane 5.
		$110:$ Logical Lane 6 (default).
		111: Logical Lane 7.

Table 85. Unused, Address 0x088 (Default $=0 \times 00$)

Bit No.	Access	Bit Description
$[7: 0]$	RW	Unused.

Table 86. Unused, Address 0x089 (Default $=0 \times 00$)

Bit No.	Access	Bit Description
$[7: 0]$	RW	Unused.

AD9625

Table 87. Unused Control Register, Address 0x08A (Default = 0x20)

Bit No.	Access	Bit Description
$[7: 6]$		Unused.
$[5: 4]$	RW	Unused; Bits[5:4] must be set to 10.
$[3: 2]$		Unused.
$[1: 0]$	RW	Unused; Bits[1:0] must be set to 00.

Table 88. JESD204B Local Multiframe Clock Offset Control Register, Address 0x08B (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
$[4: 0]$	RW	Local multiframe clock (LMFC) phase offset value. These bits provide the reset value for LMFC phase counter when SYSREF \pm pins are asserted; this is used for deterministic delay applications.

Table 89. JESD204B Local Frame Clock Offset Control Register, Address 0x08C (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	Local frame clock phase offset value. Reset value for frame clock phase counter when SYSREF \pm pins are asserted. For the AD9625, only values from 0 to 7 are valid. This is used for deterministic delay applications.

Table 90. Customer Spare Register, Address 0x0F8 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 1]$	RW	Spare customer register.
0	RW	Register control to set the ratio between ADC sampling clock and DIVCLK \pm.
	$0=$ divide by 4.	
	$1=$ not used.	

Table 91. Customer Spare Register, Address 0x0F9 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	Spare customer register.

Table 92. Customer Spare Register, Address 0x0FF (Default $=0 \times 00$)

Bit No.	Access	Bit Description
$[7: 1]$		Unused.
RW	Register map master/slave transfer bit. Self-clearing bit used to synchronize the transfer of data from the master to the slave registers.	
		0: no effect.
		1: transfers data from the master registers, written by the register maps, to the slave registers.

Table 93. Interrupt Request (IRQ) Status Register, Address 0x100 (Default = 0x00)

Bit No.	Access	Bit Description
7	RO	Interrupt request PLL lock error. 1: the PLL is unlocked.
6		Unused.
5	RO	Unused.
4	RO	Unused.
3	RO	Interrupt request SYSREF \pm hold error. 1: a hold error has occurred with the last SYSREF signal received. To clear this error, set and clear Bit 6 in Register 0x03A.
2	RO	Interrupt request SYSREF \pm setup error. 1: a setup error has occurred with the last SYSREF \pm signal received. To clear this error, set and clear Bit 6 in Register 0x03A.
1		Unused.
0	RO	Interrupt request clock error.

Table 94. Interrupt Request (IRQ) Mask Control Register, Address 0x101 (Default = 0xbf)

Bit No.	Access	Bit Description
7	RW	Interrupt request PLL lock error masked. $1:$ PLL unlocked events are masked.
6		Unused.
5	RW	Must be set to 1.
4	RW	Must be set to 1.
3	RW	Interrupt request SYSREF \pm hold error. $1:$ a hold error has occurred with the last SYSREF \pm signal received. To clear this error, set and clear Bit 6 in Register 0x03A.
2	RW	Interrupt request SYSREF \pm setup error. $1:$ a setup error has occurred with the last SYSREF \pm signal received. To clear this error, set and clear Bit 6 in Register 0x03A.
1		Unused.
0	RW	Interrupt request clock error mask. $1:$ clock error has occurred and the validity of the output data cannot be guaranteed. The only way to recover from this error is to reset the device.

Table 95. Digital Control Register, Address 0x105 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
4	RW	Must be set to 0.
3	RW	Must be set to 0.
2	RW	Must be set to 0.
1	RW	Must be set to 0.
0	RW	Must be set to 0.

Table 96. Digital Calibration Threshold Control Register, Address 0x10A (Default = 0x10)

Bit No.	Access	Bit Description
$[5: 7]$		Unused.
4	RW	Enable data set threshold logic for background gain.
$[0: 3]$		Unused.

Table 97. Digital Calibration Data Set Threshold Register, Address 0x10D (Default = 0x3D)

Bit No.	Access	Bit Description
$[7: 0]$	RW	Data set threshold for background gain calibration.

Table 98. Digital Calibration Data Set Threshold Register, Address 0x10E (Default = 0x14)

Bit No.	Access	Bit Description
$[7: 0]$	RW	Data set threshold for background gain calibration.

Table 99. Calibration Register, Address 0x12A (Default $=0 \times 01$)

Bit No.	Access	Bit Description
$[7: 0]$	RW	The AD9625 requires a calibration cycle at startup and once every 24 hour period. To perform this calibration at startup, the default value in Register 0x12A[7:0] must be overwritten and set to 0x03 at ADC startup to initiate the calibration. When the calibration is initiated, the ADC needs to remain in this mode for at least 500 clock cycles. During calibration, the output data of the ADC is invalid. When the calibration is complete, a successive write of Register 0x12A[7:0] to 0x01 terminates the calibration and valid ADC data resumes. To maintain ADC performance, repeat this calibration cycle once in every 24 hour period.

Table 100. DIVCLK \pm Output Control Register, Address 0x120 (Default = 0x11)

Bit No.	Access	Bit Description
$[7: 5]$		Unused.
4	RW	DIVCLK \pm output disable.
		$0:$ DIVCLK \pm output is disabled.
		$1:$ DIVCLK \pm output is enabled.

Bit No.	Access	Bit Description
3	RW	DIVCLK \pm output termination selection.
		0: DIVCLK \pm output uses an external 100Ω resistive termination.
	1: DIVCLK \pm output uses no external resistive termination.	
2		Unused.
$[1: 0]$	RW	Control the differential swing for the DIVCLK \pm output.
	$00=100 \mathrm{mV}$ p-p differential.	
		$01=200 \mathrm{mV}$ p-p differential.
		$10=300 \mathrm{mV}$ p-p differential.
		$11=400 \mathrm{mV}$ p-p differential.

Table 101. DDC 0 Gain Control Register, Address 0x130 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 6]$		Unused.
$[5: 4]$	RW	DDC 0 polyphase (decimate by 2) gain in units of 6 dB.
		$00: 0 \mathrm{~dB}$ gain.
		$01: 6 \mathrm{~dB}$ gain.
	$10: 12 \mathrm{~dB}$ gain.	
		$11: 18 \mathrm{~dB}$ gain.
$[3: 2]$		Unused.
$[1: 0]$	RW	DDC 0 polyphase (decimate by 8) gain in units of 6 dB.
		$00: 0 \mathrm{~dB}$ gain.
		$01: 6 \mathrm{~dB}$ gain.
		$10: 12 \mathrm{~dB}$ gain.
		$11: 18 \mathrm{~dB}$ gain.

Table 102. DDC 0 Phase Increment Least Significant Bits Register, Address 0x131 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	DDC 0 NCO phase increment value. Phase increment for the NCO within DDC 0. The output frequency $=$ $($ decimal(Register 0x132[1:0]; Register $\left.0 \times 131[7: 0]) \times f_{\mathrm{s}}\right) / 1024$.

Table 103. DDC 0 Phase Increment Most Significant Bits Register, Address 0x132 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 2]$		Unused.
$[1: 0]$	RW	DDC 0 NCO phase increment value. Phase increment for the NCO within DDC 0.

Table 104. DDC 1 Gain Control Register, Address 0x138 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 6]$		Unused.
$[5: 4]$	RW	DDC 1 polyphase (decimate by 2) gain in units of 6 dB.
		$00: 0 \mathrm{~dB}$ gain.
		$01: 6 \mathrm{~dB}$ gain.
	$10: 12 \mathrm{~dB}$ gain.	
		$11: 18 \mathrm{~dB}$ gain.
$[3: 2]$		Unused.
$[1: 0]$	RW	DDC 1 polyphase (decimate by 8) gain in units of 6 dB.
		$00: 0 \mathrm{~dB}$ gain.
		$01: 6 \mathrm{~dB}$ gain
		$10: 12 \mathrm{~dB}$ gain.
		$11: 18 \mathrm{~dB}$ gain.

Table 105. DDC 1 Phase Increment Least Significant Bits Register, Address 0x139 (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 0]$	RW	DDC 1 NCO phase increment value. Phase increment for the NCO within DDC 1. The output frequency $=$ (decimal(Register 0x13A[1:0]; Register $\left.0 \times 139[7: 0]) \times f_{s}\right) / 1024$.

Table 106. DDC 1 Phase Increment Most Significant Bits Register, Address 0x13A (Default = 0x00)

Bit No.	Access	Bit Description
$[7: 2]$		Unused.
$[1: 0]$	RW	DDC1 NCO phase increment value.

OUTLINE DIMENSIONS

Figure 49. 196-Ball Ball Grid Array, Thermally Enhanced [BGA_ED] (BP-196-2)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
AD9625BBPZ-2.0	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	196 -Ball Ball Grid Array, Thermally Enhanced [BGA_ED]	$\mathrm{BP}-196-2$
AD9625BBPZRL-2.0	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	196-Ball Ball Grid Array, Thermally Enhanced [BGA_ED], 13"Tape and Reel	BP-196-2
AD9625-2.0EBZ		Evaluation Board with AD9625	

${ }^{1} Z=$ RoHS Compliant Part.
Data Sheet \quad AD9625

NOTES

NOTES

[^0]: ${ }^{1}$ Full temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ measured at the case (T_{C}).

[^1]: ${ }^{1}$ Differential and common-mode return loss measured from 100 MHz to $0.75 \times$ baud rate

[^2]: ${ }^{1}$ Note that when pins are relevant to multiple categories, they are repeated in Table 9 . Pins may not appear in alphanumeric order within Table 9.

