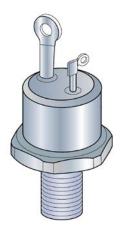




# PNPN SILICON, REVERSE-BLOCKING, POWER TRIODE THYRISTORS

Qualified per MIL-PRF-19500/108

Qualified Levels: JAN and JANTX


# **DESCRIPTION**

This silicon controlled rectifier device is military qualified up to a JANTX level for high-reliability applications. Microsemi also offers numerous other products to meet higher and lower power voltage regulation applications.

Important: For the latest information, visit our website http://www.microsemi.com.

### **FEATURES**

- JEDEC registered 2N682, 2N683, 2N685, 2N687 2N692 and 2N5206.
- JAN and JANTX qualifications are available per MIL-PRF-19500/108.
- RoHS compliant versions available (commercial grade only).



TO-208 / TO-48 Package

#### **APPLICATIONS / BENEFITS**

A general purpose, reverse-blocking thyristor.

# **MAXIMUM RATINGS**

| Parameters/Test Conditions                          | Symbol           | Value       | Unit  |
|-----------------------------------------------------|------------------|-------------|-------|
| Junction Temperature                                | TJ               | -65 to +125 | °C    |
| Storage Temperature                                 | T <sub>STG</sub> | -65 to +150 | °C    |
| Gate Voltage                                        | $V_{GM}$         | 5           | V(pk) |
| Maximum Average DC Output Current (1)               | Io               | 16          | Α     |
| Non-repetitive Peak On-State Current (2) @ t = 7 ms | I <sub>TSM</sub> | 150         | Α     |

## Notes:

- 1. This average forward current is for a maximum case temperature of +65 °C, and 180 electrical degrees of conduction.
- 2. Surge rating is non-recurrent and applies only with device in the conducting state. The peak rate of surge current must not exceed 100 amperes during the first 10 µs after switching from the off (blocking) state to the on (conducting) state. This time is measured from the point where the thyristor voltage has decayed to 90 percent of its initial blocking value.

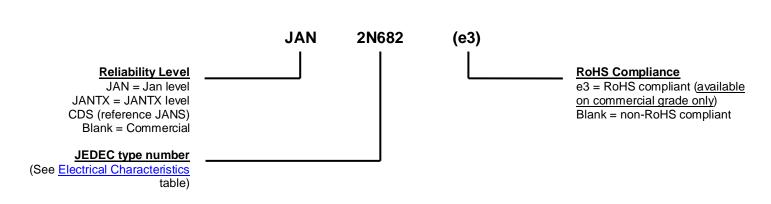
#### MSC - Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

#### MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

#### Website:


www.microsemi.com



# **MECHANICAL and PACKAGING**

- · CASE: Nickel plated copper.
- TERMINALS: Nickel plated steel, solder dipped.
- MARKING: Manufacturer's ID, part number, date code, polarity.
- POLARITY: Terminal 1: gate, terminal 2: cathode, terminal 3 (stud): anode.
- WEIGHT: 12.36 grams.
- See <u>Package Dimensions</u> on last page.

# PART NOMENCLATURE



|          | SYMBOLS & DEFINITIONS            |  |  |  |  |
|----------|----------------------------------|--|--|--|--|
| Symbol   | Definition                       |  |  |  |  |
| $V_{AA}$ | Anode power supply voltage (dc). |  |  |  |  |
|          |                                  |  |  |  |  |
|          |                                  |  |  |  |  |



# **ELECTRICAL CHARACTERISTICS**

| Parameters / Test Conditions                                          |                                                             | Symbol                                                     | Min. | Max.                                         | Unit   |
|-----------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|------|----------------------------------------------|--------|
| Repetitive Peak Reverse Voltage And Repetitive peak off-state voltage | 2N682<br>2N683<br>2N685<br>2N686<br>2N687<br>2N688<br>2N689 | V <sub>RRM</sub> <sup>(1)</sup><br>and<br>V <sub>DRM</sub> |      | 50<br>100<br>200<br>250<br>300<br>400<br>500 | V (pk) |
|                                                                       | 2N690<br>2N691<br>2N692<br>2N5206                           |                                                            |      | 600<br>700<br>800<br>1,000                   |        |

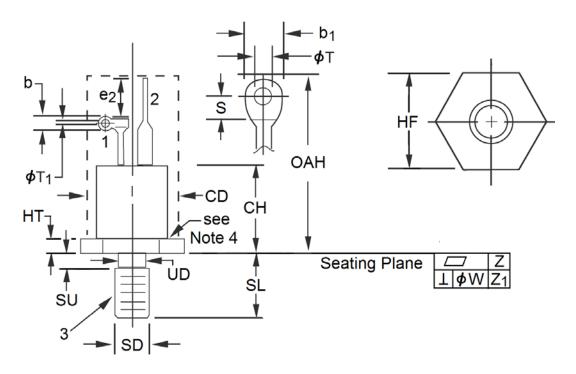
<sup>(1)</sup> Values applicable to zero or negative gate voltage (V<sub>GM</sub>).

| Parameters / Test Conditions                                                                                                                                                                                              | Symbol            | Min. | Max.    | Unit    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|---------|---------|
| Holding current: Bias condition D; $V_{AA} = 24 \text{ V maximum}$ ; $I_{TM} = I_{F1} = 1 \text{ A}$ $I_{T} = I_{F2} = 100 \text{ mA}$ trigger voltage source = 10 V trigger PW = 100 $\mu$ s (minimum) $R_2 = 20 \Omega$ | I <sub>H</sub>    |      | 50      | mA      |
| Reverse blocking current AC method, bias condition D; f = 60 Hz, V <sub>RRM</sub> = rated                                                                                                                                 | I <sub>RRM1</sub> |      | 2       | mA (pk) |
| Forward blocking current AC method, bias condition D; f = 60 Hz; V <sub>DRM</sub> = rated                                                                                                                                 | I <sub>DRM1</sub> |      | 2       | mA (pk) |
| Gate trigger voltage and current $V_2 = V_D = 6 V$ ; $R_L = 50 \Omega$ ; $R_e = 20 \Omega$ maximum                                                                                                                        | V <sub>GT1</sub>  |      | 3<br>35 | V<br>mA |
| Forward on voltage  I <sub>TM</sub> = 50 A(pk) (pulse);  pulse width = 8.5 ms; maximum;  duty cycle = 2 percent maximum                                                                                                   | V <sub>TM</sub>   |      | 2       | V (pk)  |
| Reverse gate current V <sub>G</sub> = 5 V                                                                                                                                                                                 | I <sub>G</sub>    |      | 250     | mA      |



# **ELECTRICAL CHARACTERISTICS (continued)**

| Parameters / Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  | Symbol            | Min.                                                                    | Max.    | Unit    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------|---------|---------|
| Reverse blocking current (T <sub>C</sub> = +120 °C) AC method, bias condition D; f = 60 Hz; V <sub>RRM</sub> = rated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  | I <sub>RRM2</sub> |                                                                         | 5       | mA (pk) |
| Forward blocking current (T <sub>C</sub> = +120 °C) AC method, bias condition D; f = 60 Hz; V <sub>DRM</sub> = rated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  | I <sub>DRM2</sub> |                                                                         | 5       | mA (pk) |
| Gate trigger voltage ( $T_C = +120$ °C; $R_e = 20 \Omega$ max)<br>$V_2 = V_{DM} = 50 \text{ V}$ ; $R_L = 140 \Omega$<br>$V_2 = V_{DM} = 100 \text{ V}$ ; $R_L = 140 \Omega$<br>$V_2 = V_{DM} = 200 \text{ V}$ ; $R_L = 140 \Omega$<br>$V_2 = V_{DM} = 250 \text{ V}$ ; $R_L = 650 \Omega$<br>$V_2 = V_{DM} = 300 \text{ V}$ ; $R_L = 650 \Omega$<br>$V_2 = V_{DM} = 400 \text{ V}$ ; $R_L = 3 \text{ k} \Omega$<br>$V_2 = V_{DM} = 500 \text{ V}$ ; $R_L = 3 \text{ k} \Omega$<br>$V_2 = V_{DM} = 600 \text{ V}$ ; $R_L = 3 \text{ k} \Omega$<br>$V_2 = V_{DM} = 700 \text{ V}$ ; $R_L = 3 \text{ k} \Omega$<br>$V_2 = V_{DM} = 800 \text{ V}$ ; $R_L = 3 \text{ k} \Omega$ | 2N682<br>2N683<br>2N685<br>2N686<br>2N687<br>2N688<br>2N689<br>2N690<br>2N691<br>2N692<br>2N5206 | $V_{	ext{GT}2}$   | .25                                                                     |         | V       |
| Reverse blocking current (T <sub>C</sub> = -65 °C) AC method, bias condition D; f = 60 Hz; V <sub>RRM</sub> = rated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  | I <sub>RRM3</sub> |                                                                         | 2       | mA (pk) |
| Forward blocking current (T <sub>C</sub> = -65 °C) AC method, bias condition D; f = 60 Hz; V <sub>DRM</sub> = rated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                  | I <sub>DRM3</sub> |                                                                         | 2       | mA (pk) |
| Gate trigger voltage and current ( $T_C = -65$ °C)<br>$V_2 = V_D = 6$ V; $R_L = 50$ $\Omega$ ;<br>$R_e = 20$ $\Omega$ maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                  | V <sub>GT3</sub>  |                                                                         | 3<br>80 | V<br>mA |
| Exponential rate of voltage rise Bias condition D; $T_C = +120^{\circ}C$ minimum, $dv/dt = 25 \text{ v/}\mu\text{s}$ ; repetition rate = 60 pps; test duration = 15 s; $C = 1.0 \ \mu\text{F}$ ; $R_L = 50 \ \Omega$ $V_{AA} = 50 \ V$ $V_{AA} = 100 \ V$ $V_{AA} = 200 \ V$ $V_{AA} = 250 \ V$ $V_{AA} = 250 \ V$ $V_{AA} = 300 \ V$ $V_{AA} = 500 \ V$ $V_{AA} = 600 \ V$ $V_{AA} = 600 \ V$ $V_{AA} = 800 \ V$ $V_{AA} = 1,000 \ V$                                                                                                                                                                                                                                      | 2N682<br>2N683<br>2N685<br>2N686<br>2N687<br>2N688<br>2N689<br>2N690<br>2N691<br>2N692<br>2N5206 | V <sub>D</sub>    | 47<br>95<br>190<br>240<br>285<br>380<br>475<br>570<br>665<br>760<br>950 |         | V       |




# **ELECTRICAL CHARACTERISTICS (continued)**

| Parameters / Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                |                  | Min. | Max.                                                     | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------|------|----------------------------------------------------------|------|
| Circuit-commutated tum-off time $T_C = +120^{\circ}C$ minimum; $I_{TM} = 10$ A; $t_{on} = 100 \pm 50$ µs; di/dt = 5 A/µs minimum; di/dt = 8 A/µs maximum; reverse voltage at $t_1 = 15$ repetition rate = 60 pps maximum; di/dt = 20 V/µs; gate bias conditions; gate source voltage = 0 V; gate source resistance = $100 \Omega$ V $_{DM} = V_{DRM} = 50 V$ (pk); $V_{RRM} = 50 V$ maximum V $_{DM} = V_{DRM} = 100 V$ (pk); $V_{RRM} = 100 V$ maximum V $_{DM} = V_{DRM} = 200 V$ (pk); $V_{RRM} = 200 V$ maximum V $_{DM} = V_{DRM} = 250 V$ (pk); $V_{RRM} = 250 V$ maximum V $_{DM} = V_{DRM} = 300 V$ (pk); $V_{RRM} = 300 V$ maximum V $_{DM} = V_{DRM} = 400 V$ (pk); $V_{RRM} = 400 V$ maximum V $_{DM} = V_{DRM} = 500 V$ (pk); $V_{RRM} = 500 V$ maximum V $_{DM} = V_{DRM} = 500 V$ (pk); $V_{RRM} = 600 V$ maximum V $_{DM} = V_{DRM} = 600 V$ (pk); $V_{RRM} = 700 V$ maximum V $_{DM} = V_{DRM} = 700 V$ (pk); $V_{RRM} = 800 V$ maximum V $_{DM} = V_{DRM} = 800 V$ (pk); $V_{RRM} = 800 V$ maximum V $_{DM} = V_{DRM} = 800 V$ (pk); $V_{RRM} = 800 V$ maximum V $_{DM} = V_{DRM} = 1,000 V$ (pk); $V_{RRM} = 1,000 V$ max. | V minimum;  2N682 2N683 2N685 2N686 2N687 2N688 2N689 2N690 2N691 2N692 2N5206 | t <sub>off</sub> |      | 30<br>30<br>30<br>30<br>30<br>30<br>40<br>40<br>60<br>60 | μs   |
| Gate controlled turn-on time $V_{AA} = 50 \text{ V}$ for 2N682 $V_{AA} = 100 \text{ V}$ for 2N683, 2N685 through 2N692 and 2N5206 $I_{TM} = 10 \text{ A}$ ; $V_{GG} = 10 \text{ V}$ ; $R_e = 25 \Omega$ $t_{p1} = 15 \pm 5 \mu \text{s}$ ; $4 \text{ A/}\mu \text{s} \le \text{di/dt} \le 200 \text{ A/}\mu \text{s}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2N682,<br>2N683,<br>2N685<br>through<br>2N692 and<br>2N5206                    | t <sub>on</sub>  |      | 5                                                        | μѕ   |



# **PACKAGE DIMENSIONS**



## **NOTES:**

- 1. Dimensions are in inches. Millimeters are given for general information only.
- Device contour, except on hex head and noted terminal dimensions, is optional within zone defined by CD and OAH, CD not to exceed actual HF.
- 3. Contour and angular orientation of terminals 1 and 2 with respect to hex portion and to each other are optional.
- Chamfer or undercut on one or both ends of the hexagonal portion are optional.
- 5. Square or radius on end of terminal is optional.
- 6. Minimum difference in terminal lengths to establish datum line for numbering terminals.
- 7. Dimension SD is pitch diameter of coated threads.
- 8. In accordance with ASME Y14.5M, diameters are equivalent to  $\Phi x$  symbology.

|     | Dimensions |            |             |       |       |
|-----|------------|------------|-------------|-------|-------|
| Ltr | Inc        | hes        | Millimeters |       | Notes |
|     | Min        | Max        | Min         | Max   |       |
| b   | .115       | .139       | 2.92        | 3.53  | 3     |
| b1  | .210       | .300       | 5.33        | 7.62  | 3     |
| CD  |            | .543       |             | 13.8  | 2     |
| CH  |            | .550       |             | 14.00 |       |
| e2  | .125       |            | 3.17        |       | 6     |
| HF  | .544       | .563       | 13.8        | 14.3  |       |
| HT  | .075       | .200       | 1.9         | 5.08  | 4     |
| OAH |            | 1.193      |             | 30.3  | 2     |
| S   | .120       |            | 3.05        |       | 3     |
| SD  |            | 1⁄4 - 28 l | JNF 2A      |       |       |
| SL  | .422       | .453       | 10.7        | 11.5  |       |
| SU  |            | .090       |             | 2.29  |       |
| ΦТ  | .125       | .165       | 3.17        | 4.19  |       |
| ФТ1 | .060       | .075       | 1.52        | 1.9   |       |
| UD  | .220       | .249       | 5.59        | 6.32  |       |

| Terminal 1 | Gate         |   |
|------------|--------------|---|
| Terminal 2 | Cathode      | 5 |
| Terminal 3 | Anode (Stud) | 7 |