

LSK389 ULTRA LOW NOISE DUAL N-CHANNEL J-FET

 $V_{GDS} = 40V$

Replace discontinued Toshiba 2SK389 with LSK389

The 2SK389 / LSK389 is a 1nV/√Hz single chip dual JFET

Why use monolithic dual JFET instead of 2 single JFETS?

2SK389 / LSK389 removes significant cost for test screening time needed to match loss on 2 individual JFETS and offers ZERO yield loss.

2SK389 / LSK389 On-Chip loss matching gives closest possible synchronous electrical performance and also offers better matched performance when the chip is subjected to temperature.

The 8 Pin SOIC-A provides ease of manufacturing, and the symmetrical pinout prevents improper orientation.

(See Packaging Information).

2SK389 / LSK389 Applications:

- Audio Amps, effects boxes, microphones
- Instrumentation— Input stages
- Acoustic Sensors Sonobouvs
- Military Antisubmarine, personnel vehicle detectors, sonar, radiation detectors

FEATURES					
TRA LOW NOISE $e_n = 0.9 \text{nV} / \text{V} \text{ Hz (typ)}$					
TIGHT MATCHING	V _{GS1-2} = 20mV max				
HIGH BREAKDOWN VOLTAGE	BV _{GSS} = 40V max				
HIGH GAIN	Y _{fs} = 20mS (typ)				
LOW CAPACITANCE	25pF (typ)				
IMPROVED SECOND SOURCE REPLACEMENT FOR 2SK389					
ABSOLUTE MAXIMUM RATINGS ¹					
@ 25°C (unless otherwise noted)					
Maximum Temperatures					
Storage Temperature	-65°C to +150°C				
Operating Junction Temperature	-55°C to +135°C				
Maximum Power Dissipation					
Continuous Power Dissipation @ + 125°C	400mW				
Maximum Currents					
Gate Forward Current	$I_{G(F)} = 10 \text{mA}$				
Maximum Voltages					
Gate to Source	V _{GSS} = 40V				

FOR EQUIVALENT SINGLE VERSION, SEE LSK170A						
-		www.micross.com/ndf/LSM_LSK170A_SOT-23.ndf	Τ			

MATCHING CHARACTERISTICS @ 25°C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP -	MAX	UNITS	CONDITIONS
$ V_{GS1} - V_{GS2} $	Differential Gate to Source Cutoff Voltage	-		20	mV	$V_{DS} = 10V$, $I_D = 1mA$
I_{DSS1} / I_{DSS2}	Gate to Source Saturation Current Ratio	0.9				$V_{DS} = 10V, V_{GS} = 0V$

Gate to Drain

ELECTRICAL CHARACTERISTICS @ 25°C (unless otherwise noted)

SYMBOL	CHARACTERISTICS		MIN.	TYP.	MAX.	UNITS	CONDITIONS
BV_{GSS}	Gate to Source Breakdown Voltage		40			٧	$V_{DS} = 0$, $I_{D} = 100 \mu A$
$V_{GS(OFF)}$	Gate to Source	0.15		2	٧	$V_{DS} = 10V, I_{D} = 0.1 \mu A$	
	Drain to Source Saturation	2SK389A / LSK389A	2.6		6.5	mA	V _{DS} = 10V, V _{GS} = 0V
I _{DSS}		2SK389B / LSK389B	6		12		
	Current	2SK389C / LSK389C	10		20		
I _{GSS}	Gate to Source Leakage Current		1		200	pА	$V_{GS} = -30V$, $V_{DS} = 0V$
Y_{fs}	Full Conduction Transconductance		8	20		mS	$V_{DS} = 10V$, $V_{GS} = 0V$, $I_{DSS} = 3mA$, $f = 1kHz$
e _n	Noise		0.9	1.9	nV/√Hz	$V_{DS} = 10V$, $I_D = 2mA$, $f = 1kHz$, $NBW = 1Hz$	
e _n	Noise	1	2.5	4	nV/√Hz	$V_{DS} = 10V$, $I_{D} = 2mA$, $f = 10Hz$, NBW = 1Hz	
C _{ISS}	Common Source Input Capacitance		1	25		pF	$V_{DS} = 10V$, $V_{GS} = 0V$, $f = 1MHz$
C_{RSS}	Common Source Reverse Transfer			5.5		pF	$V_{DG} = 10V$, $I_D = 0V$, $f = 1MHz$
	Сара						

Notes:

1. Absolute Maximum ratings are limiting values above which serviceability may be impaired

Available Packages:

LSK389 in SOIC-A LSK389 available as bare die

Please contact Micross for full package and die dimensions:

Email: chipcomponents@micross.com Web: www.micross.com/distribution.aspx

