## **DATAFORTH**<sup>®</sup>

Isolated Process Control Signal Conditioning Products

# **SCM7B32/33** Isolated Process Current/Voltage Input Modules

## Description

The SCM7B32 current input modules accept input signals in the 4-20mA or 0-20mA ranges from the field and provide a high-level output to the process control system (Figure 1). Current to voltage conversion occurs internal to the module, which is factory calibrated to ensure the highest accuracy.

SCM7B33 voltage input modules accept input signals in the +1V to +5V or 0 to +5V ranges from the field and provide a high-level output to the process control system. As an alternative, the SCM7B33 can be used with an external  $250\Omega$  resistor (Dataforth SCM7BXR1 or equivalent), to accept input signals in the 4-20mA or 0-20mA ranges. Using the external sense resistor allows the module to be removed without disrupting the current loop. All SCM7B33s are shipped with a SCM7BXR1 resistor.

These modules incorporate a five-pole filtering approach to maximize both time and frequency response by taking advantage of both Thomson (Bessel) and Butterworth characteristics. One pole of the filter is on the field side of the isolation barrier; four are on the process control system side.

After the initial field-side filtering (conversion-SCM7B32 only), the input signal is chopped by a proprietary chopper circuit and transferred across the transformer isolation barrier, suppressing transmission of common mode spikes and surges. The signal is then reconstructed and filtered for process control system output.

Modules accept a wide 14 - 35VDC power supply range (+24VDC nominal). Their compact packages (2.13"x1.705"x0.605" max) save space and are ideal for high channel density applications. They are designed for easy DIN rail mounting using any of the "-DIN" backpanels.

### **Features**

- · Accepts Current or Voltage Input
- Provides High-Level Voltage Outputs
- 1500Vrms Transformer Isolation
- Accuracy, ±0.03% of Span Typical, ±0.1% Max
- ANSI/IEEE C37.90.1 Transient Protection
- Input Protected to 120Vrms Continuous
- Noise, 500µVp-p (5MHz), 300µVrms (100kHz)
- 105dB CMRR
- Easy DIN Rail Mounting
- CSA C/US Certified
- CE and ATEX Compliant



Figure 1: SCM7B32/33 Block Diagram

For information call 800-444-7644

©1995-2011 Dataforth Corporation, All Rights Reserved ISO9001:2008-Registered QMS



# DATAFORTH<sup>®</sup>

## Isolated Process Control Signal Conditioning Products

## SCM7B

#### Specifications Typical at 25°C and +24VDC

| Module                                                                                                                                                                                   | SCM7B32                                                                                                                                                  | SCM7B33                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Input<br>Signal Range<br>Bias Current<br>Resistance<br>Normal<br>Power Off<br>Overload<br>Protection<br>Continuous                                                                       | 4-20mA, 0-20mA<br>N/A<br><100Ω<br><100Ω<br>30kΩ<br>120Vrms max                                                                                           | +1 to +5V, 0 to +5V<br>±0.1nA<br>2MΩ<br>2MΩ<br>2MΩ |
| Transient                                                                                                                                                                                | ANSI/IEEE C37.90.1                                                                                                                                       | *                                                  |
| Output<br>Signal Range <sup>(1)</sup><br>Effective Available Power <sup>(1)</sup><br>Resistance<br>Protection<br>Voltage/Current Limit                                                   | t<br>40mW<br><1Ω<br>Continuous Short-to-Ground<br>±12V, ±14mA                                                                                            | 1<br>*<br>*<br>*                                   |
| CMV (Input-to-Output)<br>Continuous<br>Transient<br>CMRR (50 or 60Hz)                                                                                                                    | 1500Vrms<br>ANSI/IEEE C37.90.1<br>105dB                                                                                                                  | *<br>*                                             |
| Accuracy <sup>(2)</sup><br>Linearity <sup>(3)</sup>                                                                                                                                      | ±0.03% Span typical,<br>±0.1% Span max<br>±0.01% Span typical,<br>±0.02% Span max                                                                        | *                                                  |
| Stability (-40°C to +85°C)<br>Gain<br>Input Offset<br>Output Offset<br>Noise<br>Peak at 5MHz B/W<br>RMS at 10Hz to 100kHz B/W<br>Peak at 0.1Hz to 10Hz B/W                               | ±35ppm/°C<br>N/A <sup>(4)</sup><br>±0.003% Span/°C<br>500μV<br>300μV<br>1μV RTI                                                                          | * * * * *                                          |
| Frequency and Time Response<br>Bandwidth, –3dB<br>NMR (–3dB at 100Hz)<br>Step Response, 90% Span                                                                                         | 100Hz<br>80dB per decade above 100Hz<br>5ms                                                                                                              | *<br>*                                             |
| Supply Voltage<br>Current <sup>(1)</sup><br>Sensitivity                                                                                                                                  | 14 to 35VDC<br>12mA<br>±0.0001%/%V <sub>s</sub>                                                                                                          | *<br>*<br>*                                        |
| Mechanical Dimensions<br>(h)(w)(d)                                                                                                                                                       | 2.13" x 1.705" x 0.605" max<br>54.1mm x 43.3mm x 15.4mm max                                                                                              | *                                                  |
| Environmental<br>Operating Temperature Range<br>Storage Temperature Range<br>Relative Humidity<br>Emissions EN61000-6-4<br>Radiated, Conducted<br>Immunity EN61000-6-2<br>RF<br>ESD, EFT | -40°C to +85°C<br>-40°C to +85°C<br>0 to 95% Noncondensing<br>ISM, Group 1<br>Class A<br>ISM, Group 1<br>Performance A ±0.5% Span Error<br>Performance B | * * * * * * *                                      |

### **Ordering Information**

| Model      | Input Range |
|------------|-------------|
| SCM7B32-01 | 4 to 20mA   |
| SCM7B32-02 | 0 to 20mA   |
| SCM7B33-01 | +1 to +5V   |
| SCM7B33-02 | 0 to +5V    |

#### <sup>†</sup>Output Ranges Available

| Output Range | Part No. Suffix | Example     |
|--------------|-----------------|-------------|
| +1 to +5V    | NONE            | SCM7B32-01  |
| 0 to +5V     | A               | SCM7B32-01A |
| 0 to +10V    | D               | SCM7B32-01D |

 ESD, EF1
 Performance B

 NOTES:
 \*Specification same as preceding model

 (1) Output Range and Supply Current specifications are based on minimum output load resistance. Minimum output load resistance is calculated by V<sub>out</sub><sup>7</sup>/P<sub>E</sub>, where P<sub>E</sub> is the output Effective Available Power that guarantees output range, accuracy, and linearity specifications.

 (2) Accuracy includes the effects of repeatability, hysteresis, and linearity.

 (3) Linearity is calculated using the best-fit straight line method.

 (4) Input offset term included in output offset specification.

©1995-2011 Dataforth Corporation, All Rights Reserved ISO9001:2008-Registered QMS