

High speed, low power, operational amplifier

AD847

1.0 SCOPE

This specification documents the detail requirements for space qualified product manufactured on Analog Devices, Inc.'s QML certified line per MIL-PRF-38535 Level V except as modified herein.

The manufacturing flow described in the STANDARD SPACE LEVEL PRODUCTS PROGRAM brochure is to be considered a part of this specification. http://www.analog.com/aerospace

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at www.analog.com/AD847

2.0 Part Number. The complete part number(s) of this specification follow:

Part Number Description

AD847-703Q High speed, low power, operational amplifier

AD847-713Q Radiation Tested, High speed, low power, operational amplifier

2.1 Case Outline.

Letter Descriptive designator Case Outline (Lead Finish per MIL-PRF-38535)

O GDIP1-T8 8-Lead ceramic dual-in-line package (CERDIP)

Figure 1 - <u>Terminal connections</u>.

Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2008 Analog Devices, Inc. All rights reserved.

AD847

3.0 **Absolute Maximum Ratings**. ($T_A = 25$ °C, unless otherwise noted)

Supply voltage	±18 V
Differential input voltage	
Input common mode voltage	$\pm V_{\mathrm{S}}$
Operating temperature range	55°C to +125°C
Storage temperature range	65°C to +150°C
Power dissipation (P _D)	1.1W
Lead temperature (soldering, 10 seconds)	-300°C
Thermal resistance, junction-to-case (θ_{JC})	See MIL-STD-1835
Thermal resistance, junction-to-ambient (θ_{JA})	110°C/W
Junction temperature (T _J)	+175°C

4.0 Electrical Table: See notes at end of table

Table I						
Parameter	Symbol	Conditions 1/	Sub- group	<u>2/</u> Min	<u>2/</u> Max	Units
Input offset voltage	V _{IO}		1		±1.0	mV
			2, 3		±4.0	
Input bias current	I_{B}	$V_S = \pm 5V, \pm 15V$	1		5.0	μΑ
			2, 3		7.5	
Input offset current	I_{IO}		1		±300	nA
			2, 3		±400	
Common mode input voltage	IVR		1, 2, 3		±2.5	V
range 3/		$V_S = \pm 15V$	1, 2, 3		±12	
Open loop gain	AVO	$V_{OUT} = \pm 2.5 V, R_L = 500 \Omega$	1	2.0		V/mV
			2, 3	1.0		
		$V_{OUT}=\pm 10V$, $R_L=1k\Omega$, $V_S=\pm 15V$	1	3.0		
			2, 3	1.5		
Common mode rejection ratio	CMRR	$V_{CM} = \pm 2.5 V$	1	80		dB
		$V_{CM} = \pm 12V, V_S = \pm 15V$	1	80		
			2, 3	75		
Output current $4/$	I_{OUT}	$V_{OUT} = \pm 2.5 V$	4	13		mA
		$V_{OUT} = \pm 10V, V_S = \pm 15V$	4	20		
Output voltage swing	$+V_{OUT}$	$R_L = 500\Omega$	1	3.0		V
			2, 3	2.5		
		$R_L = 150\Omega$	1	2.5		
		$V_S = \pm 15V, R_L = 1k\Omega$	1, 2, 3	12		
		$V_{\rm S} = \pm 15 V, R_{\rm L} = 500 \Omega$	1	10		
	$-V_{OUT}$	$R_{\rm L} = 500\Omega$	1	-3.0		
			2, 3	-2.5		
		$R_L = 150\Omega$	1	-2.5		
		$V_S = \pm 15V$, $R_L = 1k\Omega$	1, 2, 3	-12		
		$V_{\rm S} = \pm 15 \rm V, R_{\rm L} = 500 \Omega$	1	-10		
Quiescent power supply current	I_{CC}		1		5.7	mA
			2, 3		7.8	
		$V_S = \pm 15V$	1		6.3	
			2, 3		8.4	
Power supply rejection ratio	PSRR	$V_S = \pm 5V$ to $\pm 15V$	1	75		dB
			2, 3	72		
Differential input resistance <u>4/</u>	R_{IN}	$V_S = \pm 5V, \pm 15V$	4	80		kΩ

Table I						
Parameter	Symbol	Conditions 1/	Sub- group	<u>2/</u> Min	<u>2/</u> Max	Units
Slew rate <u>6/</u> <u>4/</u>	+SR	$V_{OUT} = -2.5V \text{ to } +2.5V, R_L = 500\Omega, A_V = 1V/V,$	4	120		V/µS
		Measured from 10% to 90%	5, 6	90		
	-SR	$V_{OUT} = +2.5V \text{ to } -2.5V, R_L = 500\Omega, A_V = 1V/V,$	4	90		
		Measured from 10% to 90%	5, 6	65		
	+SR	$V_{OUT} = -5V \text{ to } +5V, R_L = 1K\Omega,$ $V_S = \pm 15V$	4	200		
		Measured from 10% to 90%	5, 6	130		
	-SR	$V_{OUT} = +5V \text{ to } -5V, R_L = 1K\Omega,$ $V_S = \pm 15V$	4	145		
		Measured from 10% to 90%	5, 6	120		
Gain bandwidth product $\frac{4}{}$	GBWP	$V_{OUT} = \pm 100 \text{mV}, R_L - 500\Omega$	4	25		MHz
		$V_{OUT} = \pm 100 \text{mV}, R_L = 1 \text{K}\Omega, VS$ = $\pm 15 \text{V}$		40		
Full power bandwidth <u>4/</u>	FPBW	$V_{PK} = 2.5 V, R_L = 500 \Omega$	4	5.7		
		$V_{PK} = 10V, R_L = 1K\Omega, V_S = \pm 15V$		2.8		
Closed loop stable gain 4/	CLSG	$R_L = 1K\Omega, V_S = \pm 5V, \pm 15V$	4, 5, 6	1.0		V/V
Rise time <u>4/</u> <u>8/</u>	r _r	$V_{OUT} = 0V \text{ to } +200\text{mV}, A_V = +1,$ $R_L = -1K\Omega, V_S = \pm 15V$	4, 5, 6		10	nS
	t_{f}	$V_{OUT} = 0V \text{ to } -200\text{mV}, A_V = +1,$ $R_L = -1K\Omega, V_S = \pm 15V$	4, 5, 6		10	
Settling time 4/	$t_{\rm s}$	$A_V = -1V/V$, 10V step at 0.1% of the fixed value, $R_L = 1K\Omega$			150	
		$A_V = -1V/V$, 10V step at 0.01% of the fixed value, $R_L = 1K\Omega$			200	
Overshoot 4/	+OS	$V_{OUT} = 0V \text{ to } +200 \text{mV}, A_V = +1,$ $R_L = 1K\Omega, V_S = \pm 15V$	4		30	%
	-OS	$V_{OUT} = 0V \text{ to } -200 \text{mV}, A_V = +1,$ $R_L = 1K\Omega, V_S = \pm 15V$	4		30	

TABLE I NOTES:

- 1/ Unless otherwise specified for dc tests, $V_S = \pm 5V$, $R_S < 100\Omega$, $R_L > 100k\Omega$, $V_{OUT} = 0V$, and $C_L \le 10pF$. Unless otherwise specified for ac tests, $A_V = \pm 1 \ V/V$, $R_L = 1k\Omega$, and $C_L = 10pF$.
- 2/ The limiting terms "min" (minimum) and "max" (maximum) shall be considered to apply to magnitudes only. Negative current shall be defined as conventional current flow out of a device terminal.
- <u>3/</u> This parameter is guaranteed by CMRR test.
- 4/ If not tested, shall be guaranteed to the limits specified in table I herein.
- <u>5/</u> Quiescent power consumption is based on quiescent supply current test maximum (no load at the output).
- 6/ Slew rate test limits are guarantee after 5 minutes of warm-up.
- $\overline{2}$ / Full power bandwidth = SR/($2\pi V_{PK}$).
- 8/ Rise and fall times measured between 10% and 90% point.

AD847

4.1 Electrical Test Requirements:

Table II			
Test Requirements	Subgroups (in accordance with MIL-PRF-38535, Table III)		
Interim Electrical Parameters	1		
Final Electrical Parameters	1, 2, 3, 4, 5, 6 <u>1/</u> <u>2/</u>		
Group A Test Requirements	1, 2, 3, 4, 5, 6		
Group C end-point electrical parameters	1 <u>2/</u>		
Group D end-point electrical parameters	1		
Group E end-point electrical parameters	1		

- 1/ PDA applies to Subgroup 1. Delta's excluded from PDA.
- 2/ See Table III for delta parameters. See table I for conditions.

4.2 Table III. Burn-in test delta limits.

Table III				
TEST	BURN-IN	LIFETEST	DELTA	
TITLE	ENDPOINT	ENDPOINT	LIMIT	UNITS
Vos	±1	±1.5	±0.5	mV
$\pm I_{B}$	5	7.5	2.5	μΑ
I_{IO}	±300	±500	±200	nA

5.0 Life Test/Burn-In Circuit:

- 5.1 HTRB is not applicable for this drawing.
- 5.2 Burn-in is per MIL-STD-883 Method 1015 test condition B.
- 5.3 Steady state life test is per MIL-STD-883 Method 1005.

Rev	Description of Change	Date
A	Initiate	July 20, 2000
В	Update web address	Feb. 7, 2002
C	Update web address. Delete Burn-In circuit.	June 20, 2003
D	Update header/footer & add to 1.0 scope description.	Feb. 25, 2008