LSI Computer Systems, Inc. 1235 Walt Whitman Road, Melville, NY 11747 (631)271-0400 FAX (631)271-0405

Mar 2013

BATTERY POWERED LOW-POWER PIR SENSOR INTERFACE

FEATURES:

- Power derived from 3.0V Lithium battery
- V_{DD} operating range 2.3V to 3.6V
- 25µA maximum quiescent current (LS6525)
- 30µA maximum quiescent current (LS6526)
- Direct interface with PIR sensor
- Analog signal and digital interrupt signal outputs for interfacing with a MCU
- 2.175V regulated output
- Low battery indicator output (LS6526)
- LS6525 (DIP), LS6525-S (SOIC) LS6526 (DIP), LS6526-S (SOIC)

APPLICATIONS:

The low operating voltage and low current drain make the LS65 25 / LS6526 ideal for microcontroller based portable applications such as battery operate d motion detectors and photographic equipment, automatic doors, intrusion detection, and anywhere electric outlets are not available.

DESCRIPTION:

The LS6525 / LS6526 is a CMOS integrated circuit designe d for detecting motion from a PIR sen sor and is micro controller interface ready. It uses a 3.0V Li battery as a source of energy fo operation. The detailed de scription of the functional b locks is as follows (refer to Figure 2).

AMPLIFIERS

The input PIR p reamplifier, AMP1, has a nominal gain set at 29V/V using internal resistors. An int ernal bias is u sed so that AMP10 output has a guiescent voltage of 1.1V. The output of the PIR amplifier is AC coupled to a second amplifier (AMP2) which uses external components to set the gain. This secon d stage is internally biased and applied to a window comparator which has lower and higher trip levels set with respect to that bias. External components are used to set a typical gain of 22V/V. Amplifie d signals greater in magnitude than the trip levels will cause an in terrupt signal to be generated at the INT open drain output, pin 12. The INT output can be pulled to a voltage higher than V_{DD} (pin 13).

The output of the PIR amplifier is also AC coupled to an additional amplifier (MCU amplifier) which uses external components to set the gain. An internal bias set the MCO output a t 0.5V and external resistors set a typical ga in = 10V/V, the MCO o utput signal can be applied to a microcontroller input for processing.

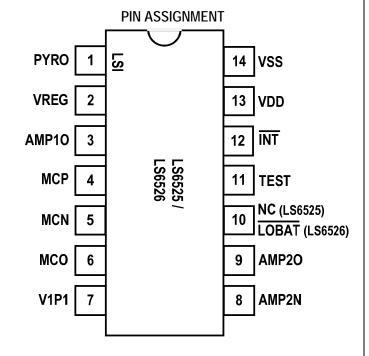


Figure 1

INPUT / OUTPUT DESCRIPTION

PIN1 – PYRO Input – Non-inverting input of PIR amplifier AC coupled to source of PIR signal.

PIN2 – VREG Output – This output provides power to the PIR Sensor circuit and for all the internal amplifier circuitry.

PIN3 - AMP10 Output - Output terminal of the PIR amplifier

PIN4 – MCP – 0.5V internal bias. (Internal use only. No external components.)

PIN5 – MCN Input – Inverting input to the MCU amplifier.

PIN6 - MCO Output - Output of the MCU amplifier.

PIN7 – V1P1 – Internally biased to 1.1V and applied to non-inverting input of AMP2. Requires an external bypass capacitor.

PIN8 – AMP2N – Inverting input of AMP2 amplifier.

PIN9 - AMP2O - Output of the AMP2 amplifier.

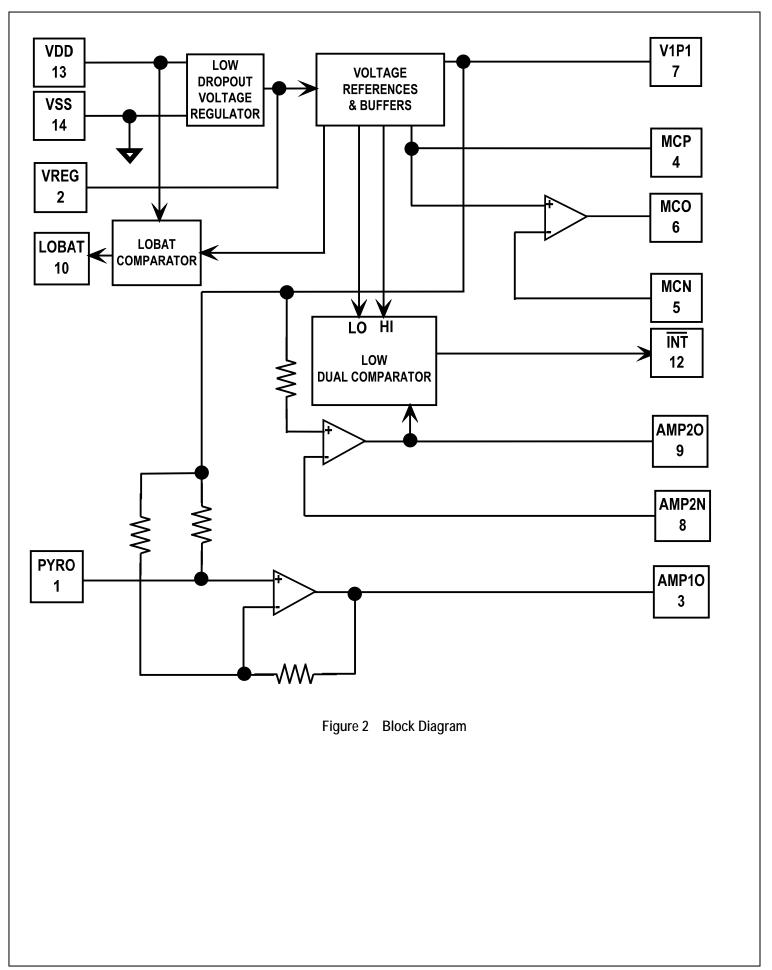
PIN10 - NC - For LS6525.

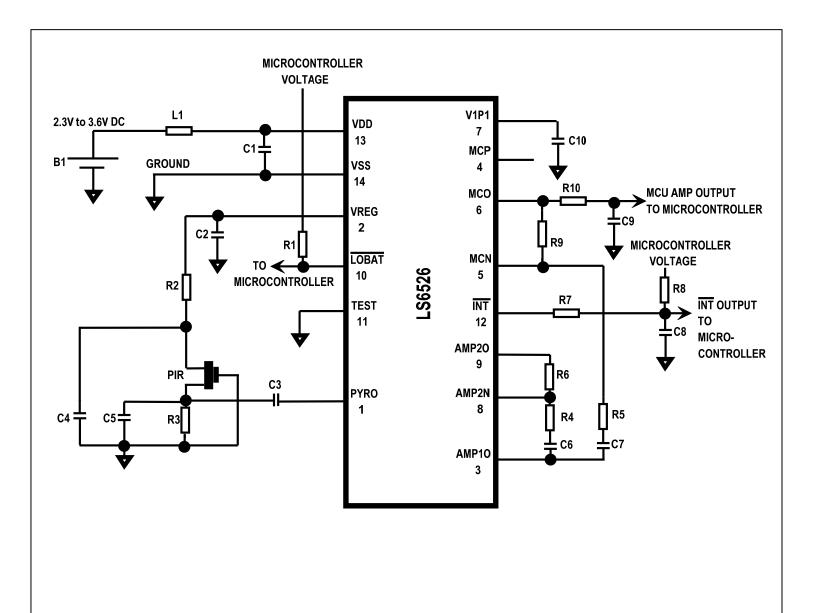
PIN10 – $\overline{\text{LOBAT}}$ Output – For LS6526 only. Open drain output requiring an external pull-up resistor to a power-supply that can be higher than V_{DD}. An active low at the output signifies that a low battery condition exists.

PIN11 – TEST – This pin is not used and must be tied to ground.

PIN12 – INT Output – Open drain output requiring an external pull-up resistor to a power supply that can be higher than V_{DD}. A recognized Interrupt signal will be an active low at this output.

PIN13 - VDD - Power Supply Voltage


PIN14 - VSS - Power Supply Ground


ABSOLUTE MAXIMUM RATINGS:							
PARAMETER	SYMBOL	VALUE	UNIT				
DC Supply Voltage	V_{DD}	+7	V				
Input Voltage	V _{IN}	V_{SS} - 0.3 to V_{DD} + 0.3	V				
Operating Temperature	TA	-40 to +70	°C				
Storage Temperature	T _{STG}	-65 to +150	°C				

ELECTRICAL CHARACTERISTICS:

(All voltages referenced to V_{SS} , $T_A = 25$ °C, $V_{DD} = 2.3V - 3.6V$, unless otherwise specified.)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
SUPPLY CURRENT:						
$V_{DD} = 2.3V - 3.6V$	I _{DD}	-	-	25	μΑ	LS6525, No Load@VREG
	I _{DD}			30	μΑ	LS6526, No Load@VREG
REGULATOR:						
Voltage V	_R 2.13		2.175	2.22	٧	
Source Current Capability	I _R	-	-	25	μΑ	
AMPLIFIERS:						
PIR Amplifier						
Gain G	_P 28		29.5	32	V/V	$Vi_{/p} 1mV_{P-P}$, $10Hz$ $R_L = No Load to 3M\Omega$
Input Impedance	R_P		2		MΩ	
MCU amplifier / AMP2						
Open Loop Gain	Gм 70				dB	
MCO Output Quiescent Voltage	VQ	0.48 0.5		0.52	V	
AMP2 Internal Reference	VIR		1.1		V	
Window - Comparator amplifier						
Input Sensitivity to INT Output	V _S 120				μV_P	AMP1 and AMP2 cascaded for net gain = 675V/V
Comparator	VLO, THRESHOLD		1.02		V	
Comparator	VIO, THRESHOLD VHI, THRESHOLD	1.18	1.02		V	
	V HI, THRESHOLD	1.10			v	
INT Output	V _{OL} , INT			0.1	V	RPULL-UP = $2M\Omega$, VPULL-UP = $3.6V$
	V _{PULL-UP}			5.5	V	THE SECOND STATE OF S
Lobat	1	6.15			1.7	
Trip Voltage	V _{TRIP}	2.45			V	
Hysteresis	Hys	0.1		0.1	V	D 2040 1/2 2 2/2
	V _{OL} , LOBAT			0.1	V	$R_{PULL-UP} = 2M\Omega$, $V_{PULL-UP} = 3.6V$
	V _{PULL-UP}			5.5	V	

L1	68nH	C1	1μF
C		2	1μF
R1	$2M\Omega$	C3	1μF
R2	10k Ω	C4	47pF
R3	$4.7 M\Omega$	C5	47pF
R4	$442k\Omega$	C6	3.3μF
R5	$1M\Omega$	C7	1μF
R6	$10 M\Omega$	C8	3.3nF
R7	100k Ω	C9	0.16μF
R8	$2M\Omega$	C10	10μF
R9	$10 M\Omega$		
R10	100k Ω	B1	Typical battery used: 3V CR123A Lithium
		PIR	Excelitas LHI968 Pyro (Typical)

Figure 3 Application schematic for LS6526.

For the LS6525, pin 10 has no connection. The gain of AMP2 is set using R6 and R4 to a nominal gain of 22V/V. The MCU amplifier gain is set to 10V/V using R9 and R5. R10-C9 and R7-C8 are additional filter stages for the MCO and INT outputs when applied to the microcontroller.