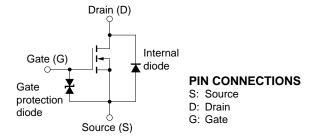

2SK1958

The 2SK1958 is an N-channel vertical MOS FET. Because it can be driven by a voltage as low as 1.5 V and it is not necessary to consider a drive current, this FET is ideal as an actuator for low-current portable systems such as headphone stereos and video cameras.


FEATURES

- Gate can be driven by 1.5 V
- Because of its high input impedance, there's no need to consider drive current
- Since bias resistance can be omitted, the number of components required can be reduced

PACKAGE DIMENSIONS (in mm)

EQUIVALENT CURCUIT

ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C)

PARAMETER	SYMBOL	TEST CONDITIONS	RATING	UNIT
Drain to Source Voltage	Vdss	Vcs = 0	16	V
Gate to Source Voltage	Vgss	V _{DS} = 0	±7.0	V
Drain Current (DC)	D(DC)		±0.1	А
Drain Current (Pulse)	D(pulse)	$PW \le 10 \text{ ms}$, duty cycle $\le 50 \%$	±0.2	А
Total Power Dissipation	Р⊤		150	mW
Channel Temperature	Tch		150	°C
Storage Temperature	Tstg		-55 to +150	°C

Product specification

2SK1958

ELECTRICAL CHARACTERISTICS (TA = 25 °C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Drain Cut-Off Current	loss	$V_{DS} = 16 V, V_{GS} = 0$			1.0	μΑ
Gate Leakage Current	lgss	$V_{GS} = \pm 7.0 V, V_{DS} = 0$			±3.0	μΑ
Gate Cut-Off Voltage	VGS(off)	$V_{DS} = 3 V$, $I_D = 10 \mu A$	0.5	0.8	1.1	V
Forward Transfer Admittance	y _{fs}	Vds = 3 V, Id = 10 mA	20			mS
Drain to Source On-State Resistance	RDS(on)1	Vgs = 1.5 V, Id = 1 mA		20	50	Ω
Drain to Source On-State Resistance	RDS(on)2	Vgs = 2.5 V, Id = 10 mA		7	15	Ω
Drain to Source On-State Resistance	RDS(on)3	Vgs = 4.0 V, Id = 10 mA		5	12	Ω
Input Capacitance	Ciss	V _{DS} = 3 V, V _{GS} = 0, f = 1.0 MHz		10		pF
Output Capacitance	Coss			13		pF
Reverse Transfer Capacitance	Crss			3		pF
Turn-ON Delay Time	td(on)	$V_{DD}=3~V,~I_{D}=10~mA,~V_{GS(on)}=3~V,$ $R_{G}=10~\Omega,~R_{L}=300~\Omega$		15		ns
Rise Time	tr			70		ns
Turn-OFF Delay Time	td(off)			100		ns
Fall Time	tr			110		ns