Product specification

Unit: mm

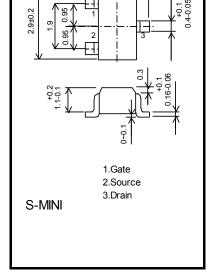
SSM3J15F

Small package

Low ON resistance

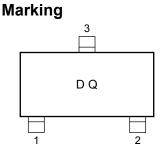
: $R_{on} = 12 \Omega (max) (@V_{GS} = -4 V)$

: $R_{on} = 32 \Omega (max) (@V_{GS} = -2.5 V)$

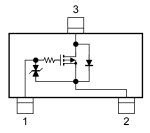

Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit	
Drain-Source voltage		V _{DS}	-30	V	
Gate-Source voltage		V _{GSS}	±20	V	
Drain current	DC	I _D	-100	mA	
	Pulse	I _{DP}	-200		
Drain power dissipation (Ta = 25° C)		PD	200	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.



TY Semiconductor Reliability Handbook ("Handling



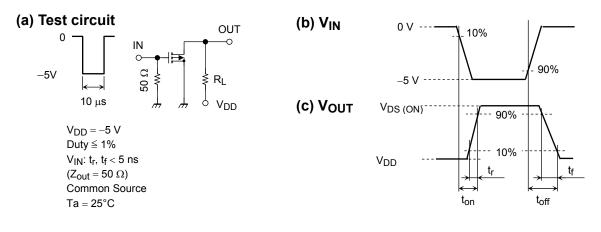
Weight: 0.012g(typ.)

Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Equivalent Circuit (top view)

Handling Precaution

When handling individual devices (which are not yet mounting on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.


Product specification

SSM3J15F

Electrical Characteristics (Ta = 25°C)

Characteristic		Symbol	Test Condition	MIN.	TYP.	MAX.	UNIT	
Gate leakage current		I _{GSS}	$V_{GS}=\pm 16~V,~V_{DS}=0$	_	_	±1	μA	
Drain-Source breakdown voltage		V (BR) DSS	$I_D = -0.1 \text{ mA}, V_{GS} = 0$	-30	_		V	
Drain cut-off current		I _{DSS}	$V_{DS} = -30 \text{ V}, \text{ V}_{GS} = 0$		_	-1	μA	
Gate threshold voltage		V _{th}	$V_{DS} = -3 \text{ V}, \text{ I}_{D} = -0.1 \text{ mA}$	-1.1	_	-1.7	V	
Forward transfer admittance		Y _{fs}	$V_{DS} = -3 \text{ V}, \text{ I}_{D} = -10 \text{ mA}$	20	_		mS	
Drain-Source ON resistance		R _{DS (ON)}	$I_{D} = -10 \text{ mA}, V_{GS} = -4 \text{ V}$	_	8	12	Ω	
			$I_D = -1 \text{ mA}, V_{GS} = -2.5 \text{ V}$	_	14	32	52	
Input capacitance		C _{iss}	V _{DS} = –3 V, V _{GS} = 0, f = 1 MHz	_	9.1		pF	
Reverse transfer capacitance		C _{rss}			3.5		pF	
Output capacitance		C _{oss}			8.6		pF	
Switching time	Turn-on time	t _{on}	$V_{DD} = -5 V, I_{D} = -10 mA,$	—	65		ns	
	Turn-off time	t _{off}	$V_{GS} = 0 \sim -5 V$		175	—		

Switching Time Test Circuit

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is $I_D = -100 \mu$ A for this product. For normal switching operation, V_{GS} (on) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} . (Relationship can be established as follows: V_{GS} (off) $< V_{th} < V_{GS}$ (on))

Please take this into consideration for using the device.