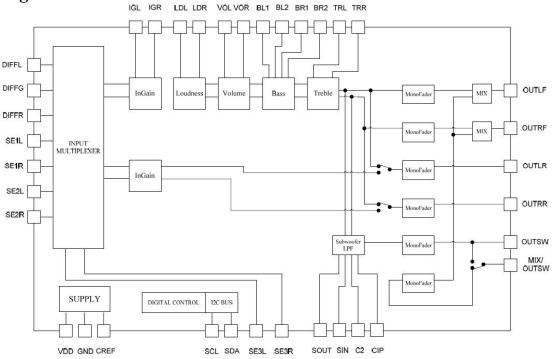


Application

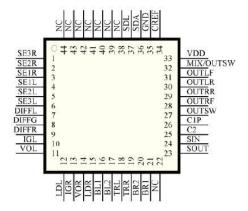
■ Car Audio

Features


- Controlled by I² C Interface
- 4 Stereo Inputs (including 1 quasi-differential input) with selectable input gain
- 2 Channels Electronic Volume: +15 to -79dB with 1dB/step
- 1 Subwoofer Output: +15 to -79dB with 1dB/step
- Adjustable crossover frequency for Subwoofer
- Tone Control (Bass and Treble): -15 to +15dB, 1dB/step
- Input Gain Control: 0 to +15dB, 1dB/step
- Loudness: 0 to -15dB, 1dB/step
- 4 independent speaker outputs: +15 to -79dB with 1dB/step & independent programmable mix input with 50% mixing ratio for front speakers
- Low Distortion and Low Noise
- LQFP44 package

Description

The ZL3459 is a 4.1CH audio processor designed for Car Audio purpose. Using I2C interface controls all of the functions. Like most of audio processor, it equipped up to 4 stereo sources input with adjustable gain, master volume with adaptive loudness, treble and bass tone control.


In a car entertainment system needs front and rear seat individual control, the ZL3459 provides separate input source selection and output volume adjust; a special design mixing amp is very easy combine the navigation system or cellular phone's voice into the car audio system.

Block diagram

Pin configuration

Pin description

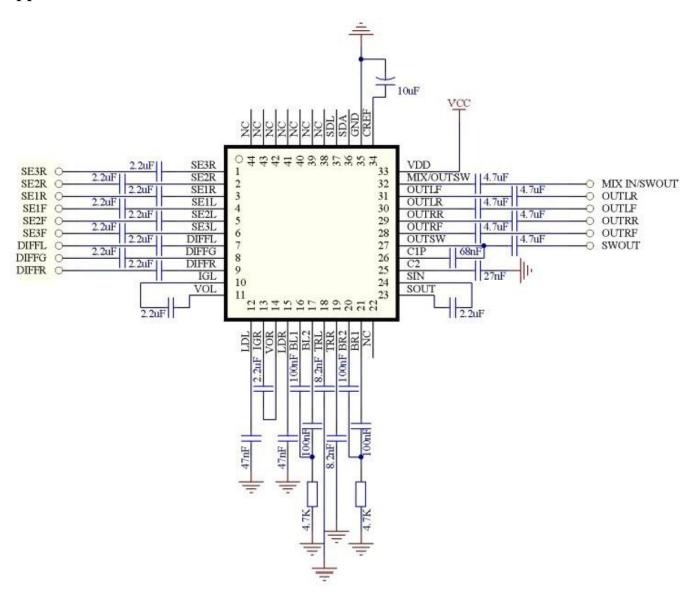
Pin Mame	No	Description	Pin No
SE3R		Single-ended Right Channel Input 3	1
SE 2R		Single-ended Right Channel Input 2	2
SE1R	1 8	Single-ended Right Channel Input 1	3
SE1L	- B	Single-ended Left Channel Input 1	4
SE 2L	. 6	Single-ended Left Channel Input 2	5
SE3L	1 18	Single-ended Left Channel Input 3	6
DIFFL		Pseudo Differential Stereo Input Left	7
DIFFG	. 6	Pseudo Differential Stereo Input Common	8
DIFFR		Pseudo Differential Stereo Input Right	9
IGL	0	Left Channel Input Selector Output	10
VOL	. 6	Left Channel Volume Input	11
LDL		Left Channel Loudness Input	12
IGR	0	Right Channel Input Selector Output	13
VOR	. 6	Right Channel Volume Input	14
LDR	T i	Right Channel Loudness Input	15
BL1		Left Channel Bass Cap 1	16
BL2	0	Left Channel Bass Cap 2	17
TRL	T	Left Channel Treble Cap	18
TRR	1 13	Right Channel Treble Cap	19
BR2	0	Right Channel Bass Cap 2	20
BR1	T	Right Channel Bass Cap 1	21
SOUT	0	R + L Output (-6db Gain)	23
SIN		Subwoofer Filter Input	24
C2	1	Subwoofer Filter Cap 2	25
C1P	7 6	Subwoofer Filter Cap 1	26
OUTSW	0	Subwoofer Output	27
OUTRF	0	Right Front Output	28
OUTRR	0	Right Rear Output	29
OUTLR	0	Left Rear Output	30
OUTLF	0	Left Front Output	31
MIX/OUTSW	1/0	Mix input / Subwoofer output	32
VDD	-	Supply Voltage	33
CREF	1 1	Analog Reference Voltage (1/2 VDD)	34
GND	- 23	Ground	35
SDA		SDAINPUT	36
SCL	1. 18	SCLINPUT	37
NC	30	No connect	22, 38~44

Absolute maximum ratings

	P arame ter	Symbol	Min.	Max.	Unit
Operating su	upply voltage	Vs		10	V
Latch up current		lin	-150	+150	mA
ESD level	Human body model	нвм	-2	+2	KV
C2D level	Machine model	MM	-0.2	+0.2	KV
Input voltage	e	Vin	-0.3	Vs+0.3	V
Operating temperature		Topr	-40	+85	°C
Storage tem	perature	Tstg	-65	+150	°C

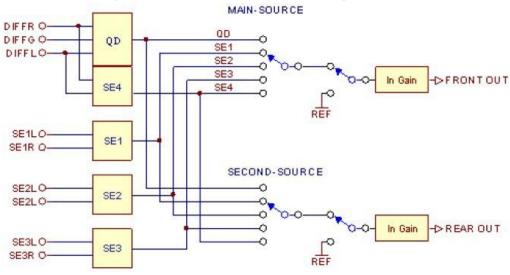
Electrical characteristics

(Unless specified: Ta=25 °C, VCC=9V, RL=10K Ω , Rg = 40 Ω , all controls flat (G=0), f=1KHz)

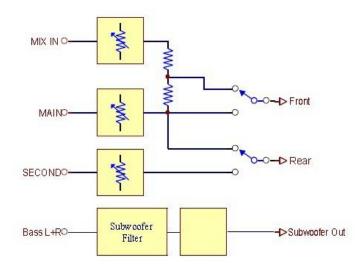

Parameter	Symbol	Test Conditi	Min.	Тур.	Max.	Unit	
Supply	A	Alt		ti ita	500000	ta s	u lucus
Supply voltage	VDD	201		5	9	10	٧
Supply current	Is	20	23	30	40	mΑ	
PSRR	PSRR	Vr=200m∨		0 8 0	- 55	070	
Input Selector							
Input resistance	R _{In}	SE/QD		35	50	65	ΚΩ
Clipping level	Vol	SE/QD Input		2	2.5		Vrms
Channel separation	CS _{IN}	SE		85	100		dB
Criariner separation	CSIN	QD		70	85		uD
Input separation	Sim	All Inputs		70	90		dB
QD common mode rejection	CMRR	Vam = 1Vrms@1K	Hż	45	60		dB
ratio	CWITTE	Vom = 1 Vrms@10	(Hz	45	60		uD.
Input gain	Gillimin	For Front & Rear	Min	-1	0	1	dB
mpar gain	G IMmax	Channel	Max	13	15	17	GD.
Step resolution	AINSTEP	50		-1	1	+1	dB
Minimum load	RL	IGL, IGR		10	85	1153	ΚΩ
Mixing Control							
Max. attenuation	Amuax	#30		-83	-79	-75	dB
Max. gain	Gmaax	#-0		13	15	17	dB
Step resolution	Amere	-		0.5	1	1.5	dB
Mixing ratio	Mievel	Main & Mix-In sour	ce		-6	343	dB
Loudnese Control		40		40 99 40 98			10 80
Min, attenuation	Amax	21		-1	0	+1	dB
Max. attenuation	Amax	23		-17	-15	-13	dB
Step resolution	AISTER	500		0.5	1	1.5	dB
Base Control	9	80		33 33		69 9	V.
Control range	Gb	F=100Hz		±13	±15	±17	dB
	Ветер			0.5	1	1.5	dB

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Treble Control		71. 1900. A 1000. A 10		is sometime	Sign of the same o	
Control range	Gt	F=15KHz	±13	±15	±17	dB
Step resolution	esolution T _{STEP}		0.5	1	1.5	dB
Valume Control	900		9	80	: to 1	2
put resistance R _n		Loud=ON	70	100	130	κΩ
input resistance	D _m	Loud=OFF	20	30	40	1/42
Max. gain	Gymax	2	13	15	17	dB
Max. attenuation	Aveca	200	-83	-79	-75	dB
Step resolution	Asrep		0.5	1	1.5	dB
Attenuation set error	- 100 Contract	Step= -20 to +20 dB	-0.75		0.75	20
Attenuation set error	Ex	Step= -79 to -20 dB	3	0	3	dΒ
Mute attenuation	AMUTE		85	100	50	dB
Speaker Attenuator	877	98 8	9)	9:	8 8	78
Max. gain	G _{MANA}	Front and Rear CH	13	15	17	dB
Max. attenuation	Amou	20.	-83	-79	-75	dB
Step resolution	Syrep	-2	0.5	1	1.5	dB
Attenuation set error	E,		*	0	1	dB
Mute attenuation	Amure	1.0	85	100	81	dB
Subwoofer Output	98					92
Max. gain	G _{abress}		14	15	16	dB
Max. attenuation	Asses		-83	-79	-75	dB
Step resolution	Syrep) (S)	0.5	1	1.5	dB
		Step= -50 to -79dB	-0.5	-1	-2.5	
Attenuation set error	Ex	Step=+15 to -50dB	381	0.5	0	dB
Mute attenuation	Amure		70	80	*81	dB
X	Ĺp:		72	80	88	Hz
4.00	Ĺpz	Ī,	108	120	132	Hz
f _{LP}	t _{P2}	Lowpass corner frequency	144	160	176	Hz
Audio Outputs	92	da da	3	8	6	92
Clipping level	Vacu	d=0.3%	2	2.5	3 30	Vrms
Load resistance	R _L	Front, Rear, Sub-out	7	10	28	ΚΩ
Output noise	e _{no} ,	Front, Sub, Rear(Main Source)	*	7	15	μ∨
	e _{ne2}	Rear(Second Source)		5	10	
Signal to noise ratio	al to noise ratio		*	100	20	dBV
88	S/N ₂	Rear(Main Source) Rear(Second Source)	85	105	8	
Distortion	THD	Vin=1Vrms; all gain=0dB	20	0.025	0.08	46
Channel separation	Sc	N 100	80	90	- 80	dB

Application circuit

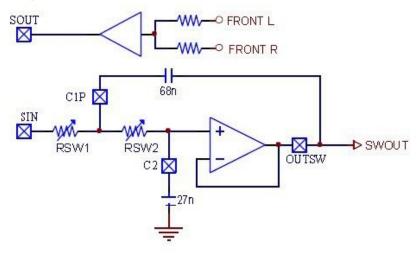


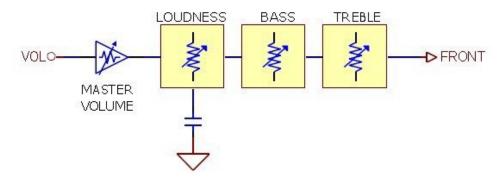
Function descriptions


Input multiplexer

The ZL3459 provides pseudo-differential stereo input and single-ended stereo input, the pseudo differential input also could configured as single-ended input 4th, in this configuration the DIFFG pin is no connection.

Output multiplexer


Pin 31 is bi-direction function, if D5 of data-byte 03H is 0 the pin 31 will becomes an input pin, an auxiliary source (such navigation system or cellular phone) can be mix with front channel output. Otherwise D5=1 the pin 31 will outputs subwoofer signal. The rear output signal is flexible from second sources selector or sync with front channel signal. Each channel's output level can be controlled from +15dB to -79dB and individually, it is well to be the balance and fader control.


Subwoofer filter

Built-in mono-mixer (with 50% mixture ratio) would mix both front channel outputs to SOUT and coupling with a capacitor to SIN, the subwoofer filter input. It is a 2nd order low pass filter with programmable cut off frequency, there have 3 cut off frequencies could be choosing: 80Hz, 120Hz and 160Hz, the output level of subwoofer filter is from +15dB to -79dB with 1dB step resolution.

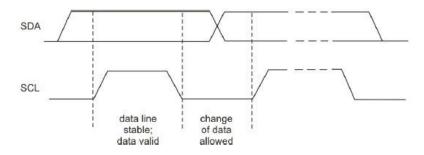
Volume, loudness and tone control

Master volume controller is similar to others, provides from +15 dB to -79 dB range with 1dB step resolution; the loudness block is a 1st order filter configuration behind the volume output, provides 15dB gain with 1dB step resolution to boost up the bass response, in the flat mode is will performs as a ordinary attenuator. The bass and treble corner frequency is on the 100Hz and 10KHz, provides $\pm 15 dB$ gain and 1dB step resolution.

Control bus specification

Bus interface

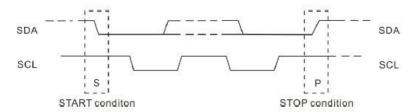
All functions of the ZL3459 are controlled by the I2C interface, the interface is consisting by SDA and SCL pins. Detail protocol of the I2C bus will discuss on the next section. It should be noted that the bus level pull-up resistors connected to the ZL3459 positive supply voltage may required in some application especially the MCU output high level is no


Ver:1.0 WWW.ZLMICRO.COM 7/21

enough.

Data validity

A data on the SDA Line is considered valid and stable only when the SCL Signal is in HIGH State. The HIGH and LOW State of the SDA Line can only change when the SCL signal is LOW. Please refer to the figure below.


Start and stop conditions

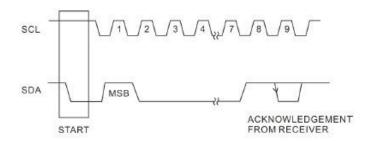
A Start Condition is activated when

- 1) The SCL is set to HIGH and
- 2) SDA shifts from HIGH to LOW State.

The Stop Condition is activated when

- 1) SCL is set to HIGH and
- 2) SDA shifts from LOW to HIGH State. Please refer to the timing diagram below.

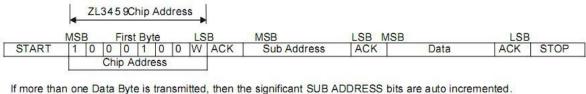
Byte format


Every byte transmitted to the SDA Line consists of 8 bits. Each byte must be followed by an Acknowledge Bit. The MSB is first transmitted.

Acknowledge

During the Acknowledge clock pulse (ACK), the SDA output port of the master device (μ P) would be sets on Hi-Z state, if peripheral device (ex: audio processor) recognize the I2C command the SDA line will be pull-down by slave device during the SCL clock pulse held in HIGH state period. Please refer to the diagram below. The slave device that has been addressed to generate an Acknowledge after receiving each byte, otherwise, the SDA Line will remain at the High level in period of the ninth (9th) clock pulse. In this case, the host controller will generate a STOP sign in order to abort the transfer mission.

Ver:1.0 WWW.ZLMICRO.COM 8/21


Transmission without acknowledge

If the application does not need to verify the Acknowledge signal that generated by the slave device is right or not, host controller can just bypass the acknowledge check and transmit next data byte to the slave device. If this approach is used, there are greater chances of faulty operation as well as decrease in noise immunity.

Interface protocol

The interface protocol sequence was defined in below section:

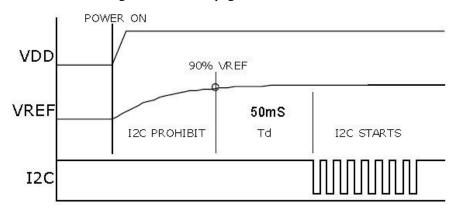
- A Start sign.
- A Chip Address of the desire slave device. The W Bit must be "0" (written). The ZL3459 will always response an Acknowledge on the end of each byte.
- A Data Sequence (N-Bytes + Acknowledge)
- A Stop Condition

OHAE 01HE 02HE 03HE 04HE 05HE 06HE 07HE 08HE 09HE 10HE11H

Data rate

The ZL3459 support Standard-Mode (100kbit/s) I2C data rate In all operation condition, in specified condition it also support Fast-Mode (400kbit/s) I2C data rate, please refer to the follow table:

MCU		ZL3459 VDD Voltage									
Level	4V	5V	6V	7V	8V	9V	10V				
2.5V	F	F	X	X	X	X	X				
3.3V	F	F	F	F	S	S	X				
5V	X	F	F	F	F	F	F				


Notes:

- 1. x = Not allow in this combination, S = Standard Mode Supported, F = Fast Mode Supported.
- 2. Data rate specification is design guarantee and exams in test bench only, not fully tested in final production.

I2C Bus initial time

The ZL3459 is controlled by the I2C bus command; each time the supply voltage applied to chip it needs an initial time to reset all of the internal decoder register, in this period access the I2C bus is prohibited. The initial time is determinate by capacitance it attached on CREF pin and Td. For proper operation user must check the I2C starts timing is fit this requirement and recommended Td timing shown on next page is 50mS.

Software specification

ZL3459 chip address

The ZL3459 chip address is 88H AND binary table is shown on below.

MSB							LSB	
1	0	0	0	1	0	0	0	

Sub address table

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Sub address
0	48 88	Inpu	t Gain		Mai	n Input S	elector	00H
0	Subv	voofer			Loudne	SS		01H
	260		Vo	lume				02H
Mix3	Mix2	Mix1			Bass		2	03H
0	0	0	9) S		Trebl	е		04H
3/6/		ı	Mixing Le	vel Cont	rol			05H
		Speal	er Atten	uator Let	t Front			06 H
		Speak	er Attenu	ator Rigi	ht Front		. T.	07H
		Speal	ker Atten	uator Let	ft Rear		8	08H
		Speak	er Atteni	uator Rig	ht Rear			09H
		S	ubwoofe	r Attenua	ator			10H
R.Spkr		Inpu	Gain		Seco	nd Input	Selector	11H

Data table description

Main input selector/input gain(OOH)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	runction
	96 05				ur.	X0	XII	Input Selector
0			Î		0	0	0	QD/SE : QD
0		3			0	0	1	SE IN1
0					0	1	0	SE IN2
0					0	1	1	SE IN3
0		1.0			1	0	0 .	QD/SE : SE IN4
0					1	0	1	Mute
3	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1 58		9 0	8	10	36	Input Gain
0	0	0	0	0				0dB
0	0	0	0	1				+1dB
0	0	0	1	0))	+2dB
0	0	0	1	1				+3dB
0	0	1	0	0				+4dB
0	0	1	0	1				+5dB
0	0	1	1	0				+6dB
0	0	1	1	1				+7dB
0	1	0	0	0				+8dB
0	1	0	0	1				+9dB
0	1	0	1	0	5		"	+10dB
0	1	0	1	1			2 2	+11dB
0	1	1	0	0				+12dB
0	1	1	0	1)):	+13dB
0	1	1	1	0				+14dB
0	1	1	1	1			7	+15dB

Loudness/subwoofer(01H)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	runction
				v				Loudness
0				0	0	0	0	0dB
0				0	0	0	1	-1dB
0				0	0	1	0	-2dB
0				0	0	1	1	-3dB
0	v			0	1	0	0	-4dB
0				0	1	0	1	-5dB
0				0	-1	1	0	-6dB
0				0	1	1	1	-7dB
0				1	0	0	0	-8dB
0				1	0	0	1	-9dB
0				1	0	1	0	-10dB
0				1	0	1	1	-11dB
0				-1	1	0	0	-12dB
0				1	1	0	1	-13dB
0				1	-1	1	0	-14dB
0	V. 1			1	1	1	1	-15dB
0			0					Loudness On
0			1	7.		5) 5		Loudness Off
								Subwoofer
	_							Cut-off Frequency
0	0	1		i.		().	4 22	80Hz
0	1	0				7	- 50	120Hz
0	1	1			8	5,	8 8	160Hz

Volume (02H)

VISB			. 20.0000			0.000	LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
	8 8	v 2		(U) (91 16			Volume Gain
0	0	0	0	0	0	0	0	0dB
0	0	0	0	0	0	0	1	+1dB
0	0	0	0	0	0	1	0	+2dB
0	0	0	0	0	0	1	1	+3dB
0	0	0	0	0	1	0	0	+4dB
0	0	0	0	0	1	0	1	+5dB
0	0	0	0	0	1	1	0	+6dB
.0	0	0	.0	0	1	1	1	+7dB
0	0	0	.0	1	0	0	0	+8dB
0	0	0	0	. 1	0	0	1	+9dB
.0	0	0	.0	1	0	1	0	+10dB
.0	0	0	.0	1	0	1	1	+11 dB
0	0	0	0	- 1	1	0	0	+12dB
.0	0	0	.0	1	1	0	1	+13dB
0	0	0	0	1	1	1	0	+14dB
0	0	0	0	1	1	1	1	+15dB
ac 5	0 35 30 1	0 OR 01	AC.	NO 25	71 925 11	2 32	Wit 200 - 200	Volume Attenuation
		9		0	0	0	0	-OdB
				0	0	0	1	-1dB
				0	0	-1	0	-2dB
		9		0	0	1	1	-3dB
				0	1	0	0	-4dB
				0	-1	0	1	-5dB
				0	1	1	0	-6dB
				0	1	1	1	-7dB
				. 2000	0 ME -0	1075	20 20 00	80000
0	0	0	1		3		6 1	-OdB
0	0	1	0					-8dB
0	0	1	1					-16dB
0	1	0	0	8 1	3		6 6	-24dB
0	1	0	1					-32dB
0	1	1	0					-40dB
0	1	1	1		3		6 6	-48dB
1	0	0	0					-56dB
1	0	0	1					-64dB
1	0	1	0	Ø	3		8 8	-72dB
1	1	1	1	0	0	0	0	Mute

Bass/MIX1/MIX2/MIX(03H)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	
- 0								Bass Cut
			0	0	0	0	0	0dB
			0	0	0	.0	1	-1dB
- 3			0	0	0	1	0	-2dB
			0	0	0	1	1	-3dB
			0	0	1	.0	0	-4dB
3			0	0	1	0	1	-5dB
			0	0	1	1	0	-6dB
			0	0	1	1	1	-7dB
- 3			0	1	0	0	0	-8dB
			0	. 4	0	0	1	-9dB
			0	1	0	1	0	-10dB
- 1			0	1	0	1	1 1	-11dB
			0	1	1	0	0	-12dB
			0	1	1	.0	1	-13dB
	1 8		0	1	1	1	0	-14dB
			0	1	. 1	1	1	-15dB
			**************************************	** ***			A	Bass Boost
- 1	8		1	0	0	0	0	0dB
	Į.		1	0	0	0	1	+1dB
			1	0	0	1	0	+2dB
- 1	1 8		1	0	0	1	1 1	+3dB
	Į.		1	0	1	0	0	+4dB
			1	0	1	.0	1	+5dB
- 1	1 8		1	0	1	1	0	+6dB
	Į.		1	0	1	1	1	+7dB
			1	1	0	0	0	+8dB
- 3	1 8		1	1	0	0	1 1	+9dB
	Į.		1	1	0	1	0	+10dB
			1	1	0	1	1	+11 dB
2			1	1	1	0	0	+12dB
- 4			1	1	1	0	1 1	+13dB
			1	1	1	1	0	+14dB
3	7		1	1	1	1	1 1	+15dB
- 6		0	8	9 " 8	- 0	100		Mixing Enable on
		1			1			Mixing Enable off *
-	0	356	50		12			Mixing to LF on
3	1		2	8 8	- 13			Mixing to LF off
0					72		1	Mixing to RF on
1	- 1		57		- 13			Mixing to RF off

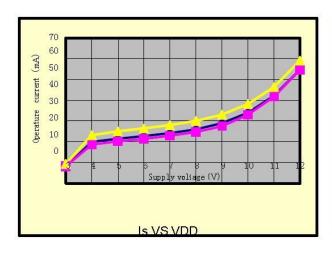
Note: Mixing Enable off means pin 31 as 2nd subwoofer output.

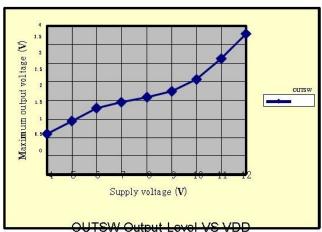
Treble (04H)

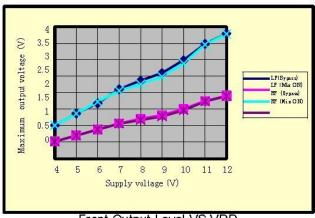
MSB			1,00101			1,000	LSB	Franklan
D7	D6	D5	D4	D3	D2	D1	D0	Function
-	B 8	26 N	Ē.	Ann I	DR IV	ý.	300	Treble Cut
0	0	0	0	0	0	0	0	0dB
.0	0	0	0	0	0	0	1	-1dB
0	0	0	0	0	0	1	0	-2dB
0	0	0	0	0	0	1	. 3	-3dB
0	0	0	0	0	1	0	0	-4dB
0	0	0	0	0	1	0	1	-5dB
0	0	0	0	0	1	1	0	-6dB
0	0	0	0	0	1	1	1	-7dB
0	0	0	0	1	0	0	0	-8dB
0	0	0	0	1	0	0	1 1	-9dB
0	0	0	0	1	0	1	0	-10dB
0	0	0	0	1	0	1	1	-11dB
0	0	0	0	3 11	1	0	0	-12dB
0	0	0	0	1	1	0	1	-13dB
0	0	0	0	1	1	1	0	-14dB
.0	0	0	0	31	1	1	1 1	-15dB
-00		20 100 77			no voca s	x vo	VI	Treble Boost
0	0	0	1	0	0	0	0	0dB
0	0	0	1	0	0	0	1	+1dB
0	0	0	1	0	0	1	0	+2dB
0	0	0	1	0	0	1	1	+3dB
0	0	0	1	0	1	0	0	+4dB
0	0	0	1	0	1	0	1	+5dB
0	0	0	1	0	1	1	0	+6dB
.0	0	0	1	0	1	1	1	+7dB
0	0	0	1	1	0	0	0	+8dB
0	0	0	1	1	0	0	1	+9dB
0	0	0	1	1	0	1	0	+10dB
0	0	0	1	. 1	0	1	1	+11 dB
0	0	0	1	1	1	0	0	+12dB
0	0	0	1	1	1	0	1	+13dB
0	0	0	1	1	1	1	0	+14dB
.0	0	0.	- 1	1	1	-1	1	+15dB

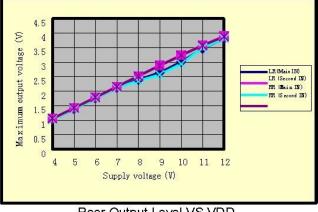
Mixinglevel (05H)/Speaker attenuator leftfront (06H) /Rightfront (07H) /Leftrear (08H)/Rightrear (09H) /Subwoofer (10H)

MSB			/4				LSB	E.m. Ham
D7	D6	D5	D4	D3	D2	D1	D0	Function
8	9	ě		ž 1	3	셠	100	Gain
0	0	0	0	0	0	0	0	0dB
0	0	0	0	0	0	0	1	+1dB
0	0	0	0	0	0	1	0	+2dB
0	0.	0	0	0	0	1	1 1	+3dB
0	0	0	0	0	1	0	0	+4dB
0	0	0	0	0	1	0	1	+5dB
0	0	0	0	0	1	31	0	+6dB
0	0	0	0	0	1	1	1	+7dB
0	0	.0	0	1	0	0	0	+8dB
0	0	0	0	1	0	0	1	+9dB
0	0	0	0	1	0	1	0	+10dB
0	0	0	0	1	0	1	1	+11 dB
0	0	0	0	1	1	0	0	+12dB
0	0	0	0	1	1	0	1	+13dB
0	0.	0	0	1	1	1	0	+14dB
0	0	0	0	1	1	1	1	+15dB
								Attenuation
î				0	0	0	0	-0dB
- 1	1		1	0	0	0	1	-1dB
				0	0	1	0	-2dB
				0	0	1	1	-3dB
			0	0	1	0	0	-4dB
				0	1	0	1	-5dB
1	1			0	1	1	0	-6dB
				0	1	1	7	-7dB
								1000A
0	0.	0	1			54-		-0dB
0	0	1	0	3		8		-8dB
0	0	1	1					-16dB
0	1	0	0			34-		-24dB
0	1	ō	1	3		8	8	-32dB
0	1	1	0					-40dB
0	1	1	1			Se-		-48dB
1	Ó	Ö	0	3		8	18 18	-56dB
1	Ō	ō	1				1 1	-64dB
1	0	1	0			594		-72dB
1	1	1	1	0	0	0	0	Mute

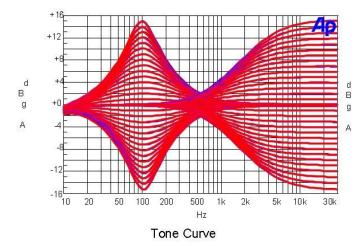


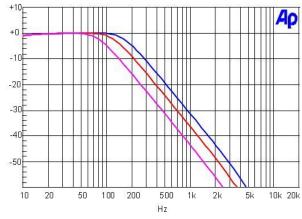

Second input selector /Input gain (11H)


MSB			D4	D3	D2	D1	LSB D0	Function
D7	D6	D5						
6 2 89	N SI	4	atti i	ii ii	v 3	£	AR M	Second Input Selector
				li i	0	0	0	QD/SE:QD
- 1			2.		0	0	1	IN1
	ž 8		8	8 8	0	1	0	IN2
					0	1	1	IN3
			2.		1	.0	0	QD/SE : SE IN4
- 3			8	3	1	.0	1	Mute
								Input Gain
- 1	0	0.	0	0				0dB
	0	. 0	0	1	- 8			+1dB
	0	0	1	0				+2dB
- 1	0	0.	1	1	13			+3dB
	0	- 1	0	0	3			+4dB
	0	1	0	1				+5dB
	0	1	1	0	100			+6dB
	0	- 1	1	1				+7dB
	1	0	0	0				+8dB
- 1	1	0	0	1	12			+9dB
	1	0	1	0				+10dB
	1	0	1	1				+11 dB
	1	1	0	0	***			+12dB
	1	1	0	1	3			+13dB
	1	1	1	0				+14dB
	1	1	1	1	177			+15dB
- 8	1 1		(4)))			Rear Speaker Source
0								Main Source
1			5					Second Source

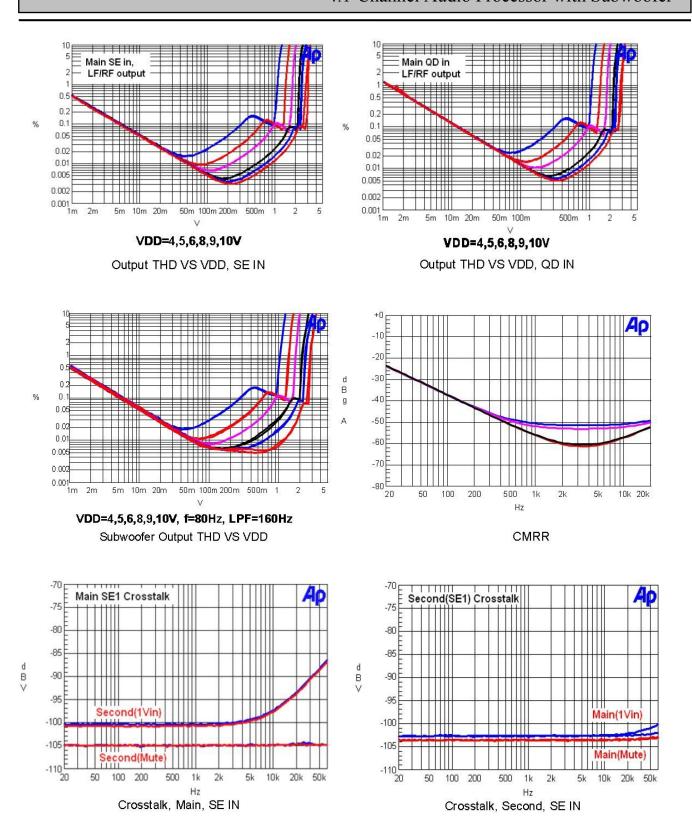


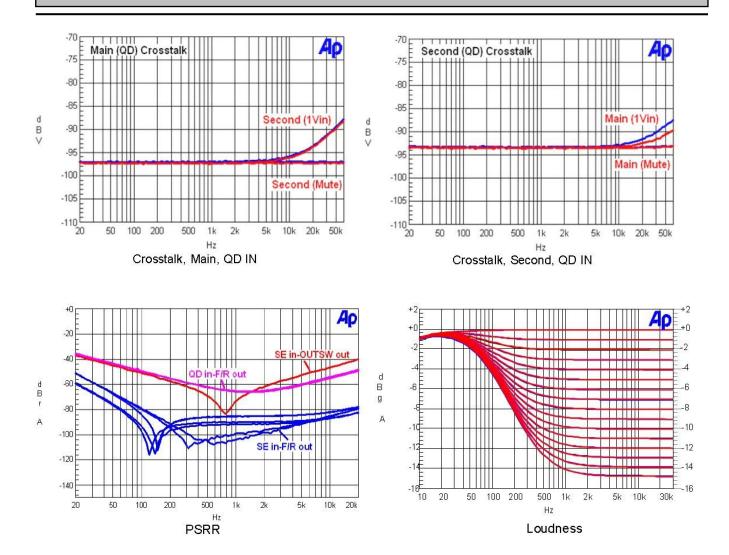
Typical Performance Characteristics



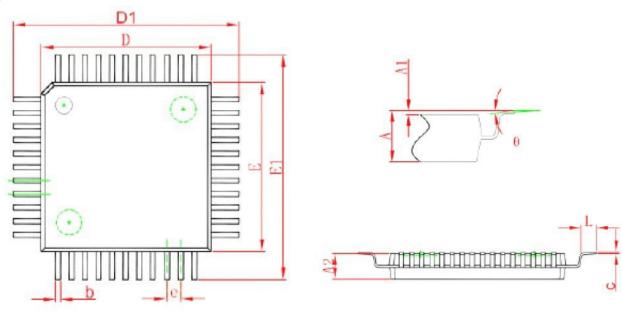


Front Output Level VS VDD


Rear Output Level VS VDD



Low Pass Crossover Frequency



Package information

LQFP44

CL . I	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α		1.600		0.063	
A1	0.050	0.150	0.002	0.006	
A2	1. 350	1. 450	0.053	0.057	
Ь	0. 280	0.400	0.011	0.016	
С	0. 100	0. 200	0. 004 0. 390	0.008	
D	9. 900	10. 100		0.398	
D1	11. 850	12. 150	0.467	0.478	
E	9. 900	10. 100	0.390	0.398	
E1	11.850	12. 150	0.467	0.478	
е	0. 800 (BSC)		0. 031 (BSC)		
L	0. 450	0.750	0.018	0.030	
θ	0°	7°	0°	7°	