MAX20082

Dual, Redundant, H-Bridge Motor Driver with ASIL Diagnostics

General Description

The MAX20082 is a dual, full-bridge controller specifically designed for fault-tolerant automotive applications with high-power inductive loads such as brushed DC motors. The device has two fully independent motor-control channels designed for use with external n-channel power MOSFETs. Each channel operates from a 4.75V to 5.25V input supply voltage range, and is capable of working with motor supply voltages up to 35V.

A charge-pump regulator provides 9.8V gate drive with a 5V input supply voltage. A bootstrap capacitor is used to provide the voltage above the input battery voltage necessary to drive the high-side n-channel MOSFETs in the H-bridge. An internal top-off charge pump for the high-side drive allows DC (100% duty cycle) operation.

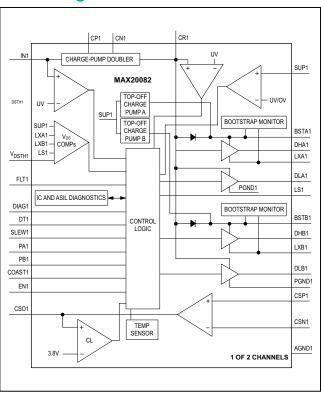
The device also includes programmable dead time, gatedrive slew rate, and MOSFET short-circuit threshold. The H-bridge can be driven in forward mode (clockwise), reverse mode (counterclockwise), braking mode, and coast mode. In braking mode, both the low-side MOSFETs are turned on (synchronous slow decay). In coast mode, all the MOSFETs in the H-bridge are off (asynchronous fast decay). The power MOSFETs are protected from shoot-through by a resistor-adjustable dead-time circuit.

Each channel also integrates a low-side current-sense amplifier. Used for sensing motor (H-bridge) current, the current-sense amplifier includes an overcurrent-protection circuit to limit the current in the event of motor faults.

Integrated diagnostics provide indication of undervoltage, overtemperature, H-bridge, and pin faults and can be configured to protect the power MOSFETs under most short-circuit conditions. In addition, the device supports implementation in ASIL systems by having two completely redundant H-bridge drivers in one package. The two channels are completely independent and fully redundant, with no shared pins or functions.

The MAX20082 is specified for operation over the full -40°C to +125°C ambient temperature range. The maximum junction temperature is 150°C, with thermal shutdown at 170°C (typ). The device is available in a 56-pin, 14mm x 6.1mm, TSSOP package.

Ordering Information appears at end of data sheet.


Benefits and Features

- Comprehensive IC Diagnostics Detect Both IC and H-Bridge Faults, Enhancing System Safety
- Both Channels are Fully Independent Without Any Shared Pins or Circuitry, Providing Complete Redundancy
- Resistor-Programmable Functionality Simplifies Software Development
- All nFET Operation, Including 100% Duty Cycle, Saves System Cost

Applications

- Automotive Motor Drivers
- Industrial Motor Drivers

Block Diagram

Absolute Maximum Ratings

SUP_, to AGND	0.3V to +40V	COAST_, PA_, PB_, EN_, DIAG_, V _{DSTH} ,
LXA_, LXB_, to AGND	4V to +40V	SLEW_, DT_, CSO_ to AGND0.3V to + (V _{IN} + 0.3V)
BSTA_ to LXA	0.3V to +12V	\overline{FLT} , LS_, CSP_, CSN_ to AGND0.3 \overline{V} to + 6 V
BSTB_ to LXB		PGND_ to AGND0.3V to 0.3V
DHA_ to LXA	0.3V to V _{BST} + 0.3V	Continuous Power Dissipation (T _A = +70°C) TSSOP on
DHB_ to LXB	0.3V to V _{BST} + 0.3V	Multilayer Board (derate 10.8mW/°C above +70°C)860mW
CR_ to AGND		Operating Ambient Temperature Range40°C to +125°C
CN_ to AGND	0.3V to (V _{IN} + 0.3V)	Storage Temperature Range55°C to +150°C
CP_ to CN	0.3⊽ to + 6V	Maximum Junction Temperature+150°C
DLA_, DLB_ to AGND	0.3V to + (V _{CR} + 0.3V)	Lead Temperature (soldering, 10s)+300°C
IN_ to AGND	0.3V to +6V	Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal Characteristics (Note 1)

TSSOP

Junction-to-Ambient Thermal Resistance (θ_{JC}).......93°C/W Junction-to-Case Thermal Resistance (θ_{JC}).........21°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Electrical Characteristics

(Electrical characteristics valid at $T_A = T_J = -40^{\circ}\text{C}$ to 125°C, $V_{\text{IN}} = 5\text{V}$, $V_{\text{SUP}} = 14\text{V}$, $V_{\text{EN}} = V_{\overline{\text{DIAG}}} = 3.3\text{V}$, DH_ and DL_ open, unless otherwise noted.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
Input Supply Voltage Range	V_{IN}		4.75		5.25	V
Input Supply Undervoltage	V _{INPUV}	Rising	4	4.2	4.5	V
Lockout	V _{INUVHYS}	Hysteresis		200		mV
Start Lia Timor	.	From EN_ going high to V _{CR} _ > CR _{UV_ON} , DIAG_ = low		13.5	20	ma
Start-Up Timer	^t START_UP	From EN_ going high to $V_{CR} > CR_{UVON}$, $\overline{DIAG} = high$		1.7	2	ms
Cinale Channel Cumply		FLT_ and CSO_ pin unconnected		1.7	3	mA
Single-Channel Supply Current	I _{IN_Q}	$V_{EN} = V_{PA} = V_{PB} = V_{\overline{DIAG}}$ = $V_{\overline{COAST}} = 0V$			10	μA
CR_OUTPUT						
CD Output Voltage	.,	I _{CR} _ = 3mA. C _{CP} _ = 330nF, CR_ = 3.3μF	9.4	9.7		V
CR_ Output Voltage	V_{CR}	I _{CR} _ = 3mA, V _{IN} _ = 4.75V	nA, V _{IN} _ = 4.75V 8.9 9.2			V
CP Undervoltage Leekeut	CR _{UV_ON}	Rising	6.65	7	7.35	V
CR_ Undervoltage Lockout	CR _{UV_OFF}	Hysteresis		500		mV
CR_ Charge Timeout	CR _{TO}	V _{CR} _ from 0V to CR _{UV} _ON	1.4	1.6	1.8	ms

Electrical Characteristics (continued)

(Electrical characteristics valid at $T_A = T_J = -40^{\circ}\text{C}$ to 125°C, $V_{IN} = 5\text{V}$, $V_{SUP} = 14\text{V}$, $V_{EN} = V_{\overline{DIAG}} = 3.3\text{V}$, DH_ and DL_ open, unless otherwise noted.) (Note 2)

PARAMETER	PARAMETER SYMBOL CONDITIONS		MIN	TYP	MAX	UNITS
BOOTSTRAP CIRCUIT						
Bootstrap Voltage Drop	V _{BST} _	V _{LX} _= 0V, I _{SOURCE} = 10mA	V _{CR}			V
Bootstrap Input Current	I _{BST} _	V _{BST} _ = 24V, V _{LX} _ = 14V		0.3	0.6	mA
BST_ Charge Timeout	BST _{TO}	V _{BST} from 0V to V _{BOOSTUV} , COAST rising	0.7	0.8	0.9	ms
Bootstrap Undervoltage	V _{BOOSTUV}	Rising (V _{BSTA} to V _{LXA} or V _{BST} to V _{LXB})	6.7	7.2	7.6	V
Threshold	V _{BOOSTUVHYS}	Hysteresis (V_{BSTA} to V_{LXA} or V_{BST} to V_{LXB})		1		V
Top-Off Charge-Pump Enable Delay	T _{TO_EN_DLY}	PA_, PB_ rising	0.5	0.6	0.7	ms
GATE DRIVE			_			
Output-Voltage High	V	V_{BST} = 9.5V, I_{SOURCE} = 10mA, R_{SLEW} = 10kΩ	9.1	9.3		V
DH_ to LX_	V _{DH} HIGH	V_{BST} = unconnected, V_{CR} = 9.8V, I_{SOURCE} = 25 μ A	6.6	7.7		V
Output-Voltage Low DH_ to LX_	V _{DH_LOW}	I _{SINK} = 10mA		0.2	0.5	V
Output-Voltage High DL_ to PGND_	V _{DL_} HIGH	I_{SOURCE} = 10mA, R_{SLEW} = 10kΩ, V_{CR} = 9.5V	9.1	9.3		V
Output-Voltage Low DL_ to PGND_	V _{DL_LOW}	I _{SINK} = 10mA		0.2	0.5	V
Turn-Off Propagation Delay	tOFF	See Figure 4 for timing characteristics	60	100	150	ns
Turn-On Propagation Delay	t _{ON}	See Figure 4 for timing characteristics	60	100	150	ns
Propagation Delay Matching				10		ns
		R_{DT} = 10kΩ (see Figure 4 for timing characteristics)	370			
Dead Time	t	R_{DT} = 40kΩ (see Figure 4 for timing characteristics)		1100		ns
Dead Tille	^t DEAD	R_{DT} = 100kΩ (see Figure 4 for timing characteristics)		2500		
		R_{DT} = 200kΩ (see Figure 4 for timing characteristics)	5000			
		R_{SLEW} = 10k Ω		40		mA
Slew Current	ISLEW	R_{SLEW} = 50k Ω , V_{DL} = V_{DH} = 5V, V_{LX} = 0V	8		mA	
		R _{SLEW} _ = 200kΩ		2		mA

Electrical Characteristics (continued)

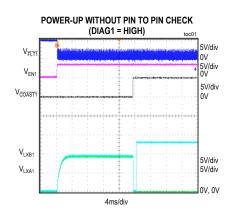
(Electrical characteristics valid at $T_A = T_J = -40^{\circ}\text{C}$ to 125°C, $V_{IN} = 5\text{V}$, $V_{SUP} = 14\text{V}$, $V_{EN} = V_{\overline{DIAG}} = 3.3\text{V}$, DH_ and DL_ open, unless otherwise noted.) (Note 2)

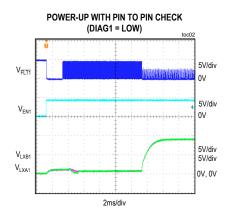
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
CURRENT-SENSE AMPLIFI	ER					
Input Common-Mode Voltage Range	CMVR		0		3	V
Input Offset Voltage	V _{OFF}		-1.5		+1.5	mV
Input Bias Current	I _{BIAS}			200	-600	nA
Input Offset Current	I _{OFF}			20	-	nA
Differential DC Voltage Gain		$R_{CSO} = 2k\Omega$	90	105		dB
Input Capacitance	C _{CS_IN}			5		pF
Output Voltage Range	V _{CSO} _	I _{CSO} _ = ±3mA	0.5		4.5	V
Output Sink Current	I _{CSOsink}	V _{CSO} _ = 0V	10		50	mA
Output Source Current	ICSOSOURCE	V _{CSO} _ = 5V	14		54	mA
Output Slew Rate	SR	Gain > 10, C _{LOAD} = 100pF		10		V/µs
DC Common-Mode Rejection	CMR		81	100		dB
Gain-Bandwidth Product	GBW	C _{LOAD} = 100pF		30		MHz
Phase Margin	SR	C _{LOAD} = 100pF, gain = 10		66		٥
OVERCURRENT PROTECT	ION					
Overcurrent Threshold	V _{OC}	V _{CSO} _rising	3.5	3.75	4	V
Overcurrent Threshold Hysteresis	V _{OC_HYS}			0.2		V
V _{DS} PROTECTION						
V _{DSTH} _ Input Voltage Range	V _{DS_RNG}		0.2		2	V
V _{DSTH} _ Accuracy	V _{DS_ACC}	V _{DSTH} _ = 0.5V	-50		-60	mV
V _{DSTH} _ Input Current	V _{DSTH} _			0.1	1	μA
V _{DSTH} _ Disable Voltage	V _{DS_DIS}		2.6			V
V _{DSTH} _ Fault Blanking Time	tVDS_BLANK	From dead time elapsed	12	15	18	μs
V _{DSTH} _ Comp Propagation Delay	tVDS_DEL	From fault time elapsed, 100mV overdrive		1		μs
LX_ Input Current	I _{LX}	V _{EN} _ = 0V, V _{LX} _ = 0 to 16V, no switching			250	μA
SUP_Input Current	I _{SUP} _			50	100	μA
LS_ Input Current	I _{LS} _				30	μA

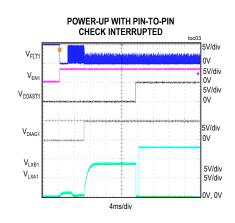
Electrical Characteristics (continued)

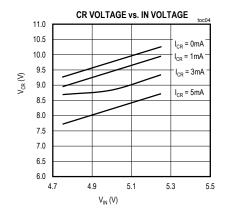
(Electrical characteristics valid at $T_A = T_J = -40^{\circ}\text{C}$ to 125°C, $V_{IN} = 5\text{V}$, $V_{SUP} = 14\text{V}$, $V_{EN} = V_{\overline{DIAG}} = 3.3\text{V}$, DH_ and DL_ open, unless otherwise noted.) (Note 2)

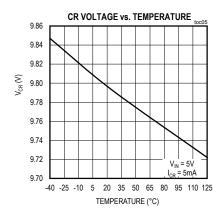
PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS	
SUP_INPUT PROTECTION							
Overvoltage Blanking Time	t _{BLANK_OV}		350	400	450	ms	
SUP_ Undervoltage	SUP _{UV}	Rising	4.2	4.6	5	V	
Lockout	SUP _{UV_HYS}	Hysteresis		300		mV	
CLID. Occarrente de la classica	SUPOV	Rising, more than t _{BLANK_OV}	35	36.5	38	V	
SUP_ Overvoltage Lockout	SUP _{OV_HYS}	Hysteresis		1.2		V	
THERMAL PROTECTION							
Overtemperature Fault	T _{JFT_R}	Rising		170		°C	
Threshold	T _{JFT_F}	Falling		145			
FAULT FLAG							
Fault Output, Low State	V _{FLT_LOW}	I _{SINK} = 1mA			0.3	V	
Fault Output Leakage, High State	I _{FLT_HIGH}	V _{FLT_} = 5V	-1		+1	μA	
Fault Class 1	0/			12.5		%	
Fault Class 1	%FLT_1	DIAG_ low during pin-to-pin check routine	62.5			/0	
Fault Class 2	%FLT_2			25		%	
Fault Class 3	%FLT_3			50		%	
Fault Class 4	%FLT_4			75		%	
Fault Class 5	%FLT_5			87.5		%	
Fault Frequency	f _{FLT} _		550	625	700	kHz	
EN_, COAST_, PA_, PB_, ar	nd DIAG_ LOGIC	INPUTS					
Input High Voltage	IN _{VIH}		2			V	
Input Low Voltage	IN _{VIL}				0.7	V	
Input Leakage Current	IN _{LKG}	Input voltage from 0 to 5.5V	-1		+1	μA	
EN_ Deglitch Time	t _{RES}	Note 3	7	10	13	μs	
EN_ Pulldown Resistor	EN_RES			50		kΩ	
EN_ Low Time to Enter Shutdown Mode	t _{SHDW}	Note 4	0.8	1	1.2	ms	

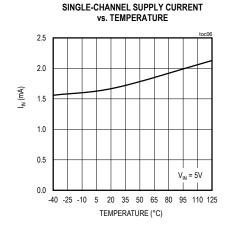

Note 2: Limits are 100% tested at $T_A = +25$ °C. Limits over the operating temperature range and relevant supply voltage range are guaranteed by design and characterization.

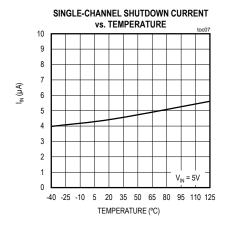

Note 3: Minimum time EN_ has to be low in order to enter reset state.

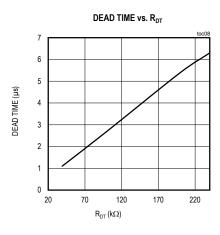

Note 4: Minimum time EN_ has to stay low after a power-up in order to enter shutdown mode.

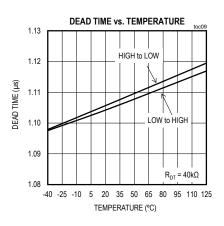

Typical Operating Characteristics

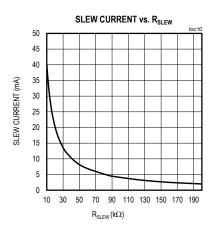

(V_{IN} = 5V, V_{SUP} = 14V, V_{EN} = $V_{\overline{DIAG}}$ = 3.3V, unless otherwise noted.)

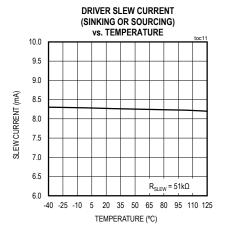


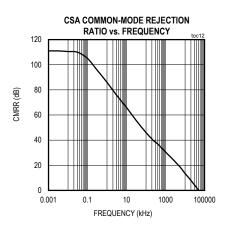


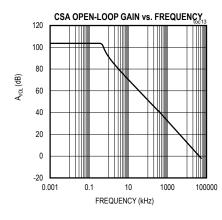


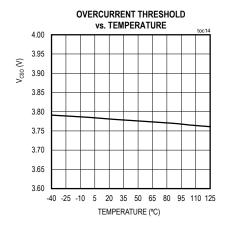


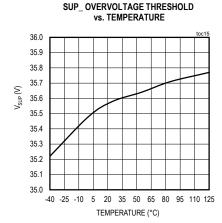

Typical Operating Characteristics (continued)

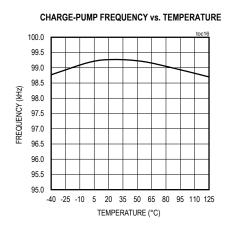

(V_{IN} = 5V, V_{SUP} = 14V, V_{EN} = $V_{\overline{DIAG}}$ = 3.3V, unless otherwise noted.)

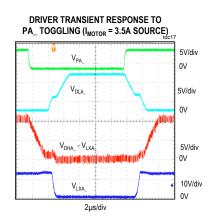


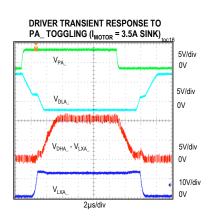




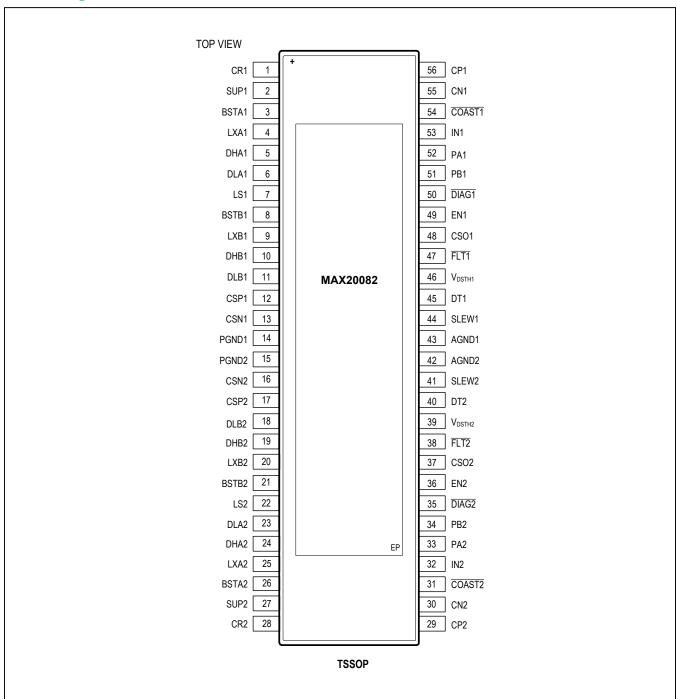








Typical Operating Characteristics (continued)


 $(V_{IN} = 5V, V_{SUP} = 14V, V_{EN} = V_{\overline{DIAG}} = 3.3V$, unless otherwise noted.)

Pin Configuration

Pin Description

PIN	NAME	FUNCTION	
1	CR1	Nominal 10V Supply Voltage for the Gate Drivers	
2	SUP1	High-Side Common Drain Connection and Sense	
3	BSTA1	Bootstrap Capacitor Connection for High-Side Drive A	
4	LXA1	Motor Connection A	
5	DHA1	High-Side Gate Drive A	
6	DLA1	Low-Side Gate Drive A	
7	LS1	Low-Side Common Source Connection	
8	BSTB1	Bootstrap Capacitor Connection for High-Side Drive B	
9	LXB1	Motor Connection B	
10	DHB1	High-Side Gate Drive B	
11	DLB1	Low-ide Gate Drive B	
12	CSP1	Positive Input Current Sense	
13	CSN1	Negative Input Current Sense	
14	PGND1	Power Ground	
15	PGND2	Power Ground	
16	CSN2	Negative Input Current Sense	
17	CSP2	Positive Input Current Sense	
18	DLB2	Low-Side Gate Drive B	
19	DHB2	High-Side Gate Drive B	
20	LXB2	Motor Connection B	
21	BSTB2	Bootstrap Capacitor Connection for High-Side Drive B	
22	LS2	Low-Side Common Source Connection	
23	DLA2	Low-Side Gate Drive A	
24	DHA2	High-Side Gate Drive A	
25	LXA2	Motor Connection A	
26	BSTA2	Bootstrap Capacitor Connection for High-Side Drive A	
27	SUP2	High-Side Common Drain Connection and Sense	
28	CR2	Nominal 10V Supply Voltage for the Gate Drivers	
29	CP2	Charge-Pump Doubler Capacitor Connection P	
30	CN2	Charge-Pump Doubler Capacitor Connection N	
31	COAST2	Active-Low H-Bridge Disable Input	
32	IN2	5V Input Supply	
33	PA2	Logic Control Input A	
34	PB2	Logic Control Input B	
35	DIAG2	Diagnostic Input	

Pin Description (continued)

PIN	NAME	FUNCTION
36	EN2	Enable Input
37	CSO2	Input Current-Sense Amplifier Output
38	FLT2	Fault Flag Open-Drain Output
39	V _{DSTH2}	Drain-to-Source Fault-Threshold Level Input
40	DT2	Dead-Time Resistor Connection
41	SLEW2	Slew-Time Resistor Connection
42	AGND2	Analog Ground
43	AGND1	Analog Ground
44	SLEW1	Slew-Time Resistor Connection
45	DT1	Dead-Time Resistor Connection
46	V _{DSTH1}	Drain-to-Source Fault-Threshold Level Input
47	FLT1	Fault Flag Open-Drain Output
48	CSO1	Input Current-Sense Amplifier Output
49	EN1	Enable Input
50	DIAG1	Diagnostic Input
51	PB1	Logic Control Input B
52	PA1	Logic Control Input A
53	IN1	5V Input Supply
54	COAST1	Active-Low H-Bridge Disable Input
55	CN1	Charge-Pump Capacitor Connection N
56	CP1	Charge-Pump Capacitor Connection P

Detailed Description

The MAX20082 is a dual, full-bridge controller specifically designed for use in fault-tolerant automotive applications, with high-power inductive loads such as brushed DC motors. The device has two fully independent motor-control channels designed for use with external n-channel power MOSFETs. Each channel operates from a 4.75V to 5.25V input supply voltage range, and is capable of working with motor supply voltages up to 35V.

A charge-pump regulator provides 9.8V gate drive with a 5V input supply voltage. A bootstrap capacitor is used to provide the voltage above the input battery voltage necessary to drive the high-side n-channel MOSFETs in the H-bridge. An internal top-off charge pump for the high-side drive allows DC (100% duty cycle) operation.

The device also includes programmable dead time, gatedrive slew rate, and MOSFET short-circuit threshold. The H-bridge can be driven in forward mode (clockwise), reverse mode (counterclockwise), braking mode, and coast mode. In braking mode, both the low-side MOSFETs are turned on (synchronous slow decay). In coast mode, all the MOSFETs in the H-bridge are off (asynchronous fast decay). The power MOSFETs are protected from shoot-through by a resistor-adjustable dead time.

Each channel also integrates a low-side current-sense amplifier. Used for sensing-motor (H-bridge) current, the current-sense amplifier includes an overcurrent-protection circuit to limit the current in the event of motor faults.

Integrated diagnostics provide indication of undervoltage, overtemperature, H-bridge, and pin faults and can be configured to protect the power MOSFETs under most short-circuit conditions. In addition, the device supports implementation in ASIL systems by having two completely redundant H-bridge drivers in one package. The two channels are completely independent and fully redundant, with no shared pins or functions.

The device is specified for operation over the full -40°C to +125°C ambient temperature range. The maximum junction temperature is +150°C, with thermal shutdown at +170°C (typ). The device is available in a 56-pin 14mm x 6.1mm TSSOP package.

Input Supply

Individual 5V power-supply connections, isolated with fuses, should be provided to the device in order to guarantee fault isolation. Decouple each supply with a 2.2µF ceramic capacitor connected close to the IN_pins and ground pins. An RC filter, consisting of a 1Ω resistor in series with a 2.2µF connected to AGND, is needed to prevent supply line transients from triggering undesired UVLO faults. The device operates within specified parameters with an input supply from 4.75 to 5.25 V.

Input Supply Undervoltage

The device includes undervoltage-lockout circuitry (UVLO) on the IN_ pins. Input supply voltages of less than 4.25V inhibit operation of the device by turning off the driver outputs (motor in coast) and CR charge pump.

Charge Pump

A charge-pump doubler provides the voltage required to drive the switching MOSFETs in the H-bridge. The charge-pump boost converter doubles the input supply voltage (IN_) through a pump capacitor connected between the CP_ and CN_ pins. This capacitor should typically be a 330nF ceramic type. The switching frequency of the charge pump is set at 100kHz.

The regulated voltage is available on the CR_ pin. Connect a $3.3\mu F$ ceramic capacitor between CR_ and AGND_ to provide the transient charging current to the low-side drivers and the bootstrap capacitors. The charge pump features undervoltage-lockout circuitry that turns off the driver outputs (motor in coast) and CR charge pump when the CR_ voltage is lower than 7V (typ). See Figure 1.

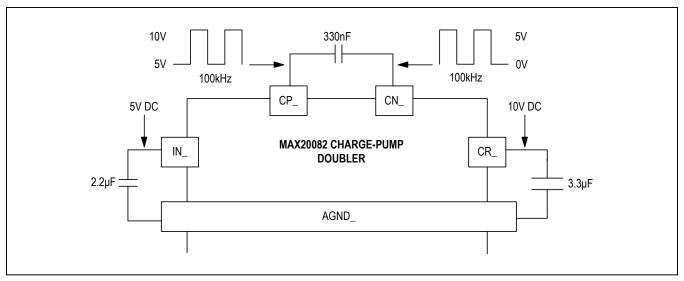


Figure 1. Charge-Pump Doubler

Top-Off Charge Pump

A top-off charge pump maintains the gate voltage on the external FETs during 100% duty-cycle operation. It is a low-current trickle pump and operates only when the corresponding high-side FET has been on for at least 0.6ms (typ). Without the top-off charge pump, this current would be drawn from the bootstrap capacitor causing it to discharge. The charge pump provides sufficient current to ensure that the bootstrap voltage is maintained close to twice the IN_ voltage. The dynamic charge required to turn on the external FETs is provided by the bootstrap capacitor. The top-off charge pump only provides the charge required to compensate for any leakage current that occurs on the high-side once the FET is on.

Low-Side Gate Drivers

The gate drivers are controlled by the logic inputs (PA_ and PB_). The low-side drivers are powered by the charge-pump output voltage on CR_. DLA_ controls the low-side FET whose drain is connected to LXA_ and

DLB_ controls the low-side FET whose drain is connected to LXB_. DLA_ goes low to turn off the low-side FET whose drain is connected to LXA_ and DLB_ goes low to turn off the low-side FET whose drain is connected to LXB .

The rise and fall times can be controlled by a resistor on the SLEW_ pin and are designed to be symmetrical. Additional increase in the slew times can be achieved by adding external resistors in series with the connection to the external FET gate. The dead time is controlled by a resistor on the DT_ pin and is also symmetrical.

Low-Side MOSFET Drain Connection

The LXA_ and LXB_ pins are directly connected to the motor. These pins should be connected to the negative side of the bootstrap capacitors and are the negative rail connection for the high-side drivers. The discharge current from the high-side gate capacitance flows through these connections so a low-impedance connection is needed to the MOSFET bridge.

High-Side Gate Drivers

The high-side gate drive outputs (DHA_ and DHB_) are used to drive the high-side FETs in the H-bridge. Connect the external FET gates as close as possible to the DHA_ and DHB_pins.

Both the rise/fall times can be controlled by the resistor on the SLEW_ pin. Additional gate-drive resistors can be added to increase the slew times beyond what is programmed on the SLEW_ pin. The dead time is controlled by the resistor on the DT_ pin and is symmetrical.

Bootstrap Capacitor Connections

These are the high-side connections for the bootstrap capacitors and are the positive supply for the high-side gate drives. The bootstrap capacitors are charged to approximately the CR_ voltage when the associated output LXA or LXB terminal is low.

When the LXA_ or LXB_ output swings high, the charge on the bootstrap capacitor causes the voltage at the corresponding BSTA_ or BSTB_ terminal to rise with the output to provide the boosted gate voltage needed to drive the high-side MOSFETs.

Undervoltage circuitry monitors the voltage on the bootstrap capacitors and turns on the H-bridge low-side FETs (see the faults description) if this voltage is lower than 60% of the CR_ voltage. A typical bootstrap capacitor value of 330nF is advised.

Dead-Time Programming

Dead time is defined as the time between the high/low side starting to turn off and the complementary side starting to turn on. Dead time is required to prevent shoot-through in the MOSFET bridge when the high- or low-side FET is turned off and the complementary low- or high-side FET is turned on. Set the dead time for all the phases in one channel by a single resistor on the DT_ pin.

The voltage on the DT_ pin is regulated to 1V $\pm 3\%$ when a resistor greater than $10k\Omega$ is connected from this pin to AGND_. The dead time is programmed by the current

through the DT_ resistor, within a range between 370ns to 5μ s. The current flowing into the resistor on the DT_ pin is given by:

$$I_{DT} = 1/R_{DT}$$

where R_{DT} is the resistor on the DT_ pin. For R_{DT} values between $10k\Omega$ and $200k\Omega$ at 25° C, the nominal value of the dead time (t_{DFAD}) is given by:

$$t_{DEAD}(R_{DT_{-}}) = 25 \times R_{DT_{-}}(k) + 100 \text{ns}$$

Slew-Time Programming

The gate pullup or pulldown current for all the FETs is programmed by a resistor on the SLEW_ pin. This results in controlled LX_ rise and fall times, which are symmetrical and equivalent for all the FETs in the H-bridge. The voltage on the slew pin is regulated to 1V $\pm 3\%$ when a resistor greater than $10k\Omega$ is connected from this pin to AGND .

The slew current is programmed within the 40mA and 2mA range. The current flowing into the resistor on the SLEW_ pin is given by:

$$I_{SLEW} = 1/R_{SLEW}$$

where $R_{SLEW}_$ is the resistor on the SLEW_ pin. For $R_{SLEW}_$ values between $10k\Omega$ and $200k\Omega$ at $25^{\circ}C,$ the nominal value of the slew current (I_SLEW_) is given by:

$$I_{SLEW}(R_{SLEW}) = 400/R_{SLEW}(k) \text{ mA}$$

Slew time can be determined with the following formula, where Q_{GD} is the gate drain charge of the external nMOS:

$$t_{SLEW} = Q_{GD} (nF)/I_{SLEW} (mA)$$

Enable

When EN_ is low, the device is in shutdown mode and the maximum current drawn by each half of the device is less than $10\mu A$. To enter shutdown, hold EN_ low for at least 1.2ms.

Phase Control

The $\overline{\text{COAST}}$, PA_, and PB_ logic inputs allow motor control through a single-bit PWM digital signal. Depending on the logic configuration of the PA_ and PB_ inputs, the μC can select the direction of the motor and the current-decay mode during the off time (see Figure 2, Figure 3, and Table 1).

PA_ (PB_)
$$0 \rightarrow 1$$
 and $\overline{COAST} = 1$:

- 1) Q2 (Q4) is turned off and dead-time delay starts.
- 2) When dead-time delay elapses, Q1 (Q3) is turned on. PA (PB) 1 \rightarrow 0 and \overline{COAST} =1:
- 1) Q1 (Q3) is turned off and dead-time delay starts.
- 2) When dead-time delay elapses, Q2 (Q4) is turned on.

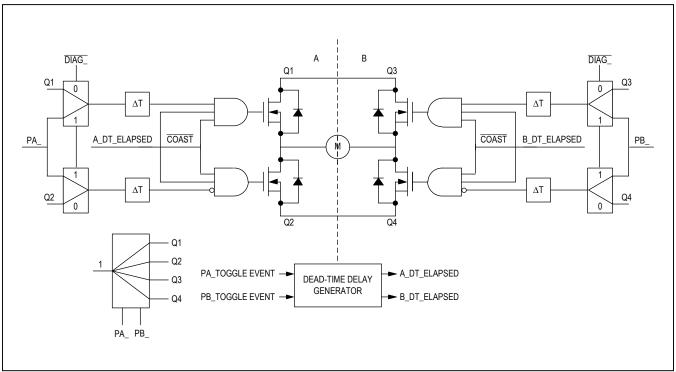


Figure 2. H-Bridge Logic (Normal/Diagnostic Mode)

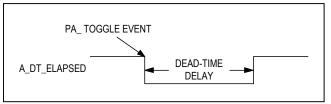


Figure 3. A_DT_Elapsed Signal Used in Dead-Time Generation

Table 1. Phase Control

PA_ (PB_)	COAST_	Q1 (Q3)	Q2 (Q4)
1	1	On	Off
0	1	Off	On
X	0	Off	Off

Table 2. H-Bridge Application

PA_	PB_	COAST_	ON TIME	OFF TIME
PWM	0	1	Forward (Q1 and Q4 on)	LS brake (Q2 and Q4 on)
1	PWM	1	Forward (Q1 and Q4 on)	HS brake (Q1 and Q3 on)
PWM	PWM	1	Forward (Q1 and Q4 on)	Reverse (Q2 and Q3 on)
0	PWM	1	Reverse (Q2 and Q3 on)	LS brake (Q2 and Q4 on)
PWM	1	1	Reverse (Q2 and Q3 on)	HS brake (Q1 and Q3 on)
PWM	PWM	1	Reverse (Q2 and Q3 on)	Forward (Q1 and Q4 on)

Table 3. Truth Table for External MOSFET Control

PA_	PB_	COAST_	DIAG_	Q1	Q2	Q3	Q4	H-BRIDGE STATE
0	0	1	1	Off	On	Off	On	Low sides on (LS brake)
0	1	1	1	Off	On	On	Off	Reverse
1	0	1	1	On	Off	Off	On	Forward
1	1	1	1	On	Off	On	Off	High sides on (HS brake)
Х	Х	0	Х	Off	Off	Off	Off	Coast
0	0	1	0	On	Off	Off	Off	FETs diagnostic (Q1 on)
0	1	1	0	Off	Off	Off	On	FETs diagnostic (Q4 on)
1	1	1	0	Off	On	Off	Off	FETs diagnostic (Q2 on)
1	0	1	0	Off	Off	On	Off	FETs diagnostic (Q3 on)

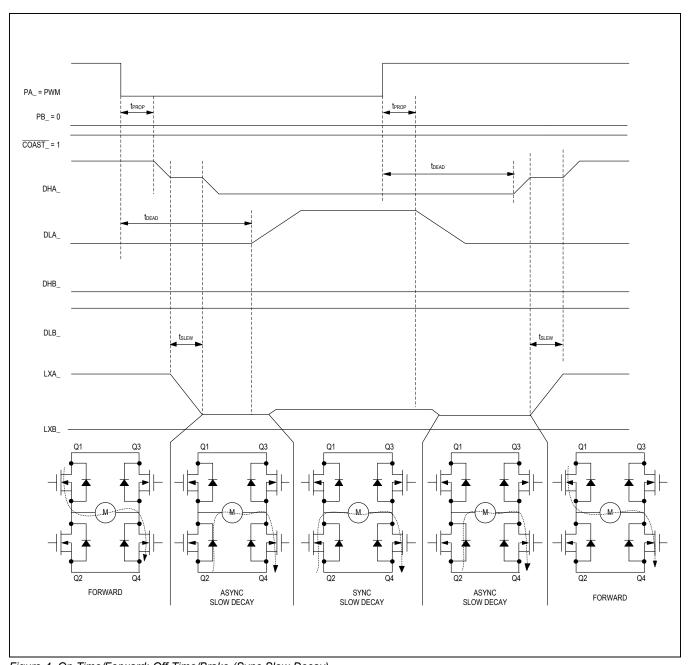


Figure 4. On Time/Forward; Off Time/Brake (Sync Slow Decay)

Current-Sense Amplifier and Overcurrent Detection

The H-bridge current is sensed by the low-side currentsense amplifier. The open-loop gain of the current-sense amplifier is 110dB and the closed-loop gain of this amplifier is set with external resistors (CSA G) according to:

$$CSA_G = R2/R1+1$$
 with $R3//R4 = R2$

With additional external resistors, it is possible to add a bias voltage to the CSO_ output to enable negative current monitoring during fast decay:

$$BIAS = V_{REF} \times [R3/(R3 + R4)]$$

The values of R1–R4 must be chosen in accordance with Table 4 in order to pass the power-up diagnostic test.

An overcurrent fault is triggered when the output of the current-sense amplifier (CSO_) reaches 3.8V. The motor overcurrent value can be estimated with the following formula:

$$I_{MOTOR OC} = (3.8V - BIAS)/(R_{SENSE} \times CSA_G)$$

The application circuit for a slow-decay case (I_{MOTOR} always positive) is shown in Figure 7.

The application circuit for a fast-decay case (I_{MOTOR} is positive and negative) is shown in Figure 8.

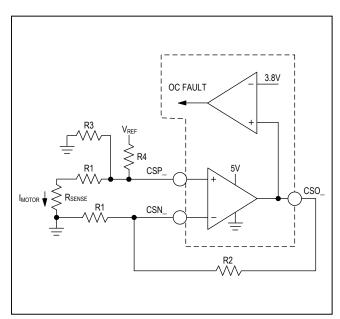


Figure 5. Current-Sense Amplifier (Typical Configuration)

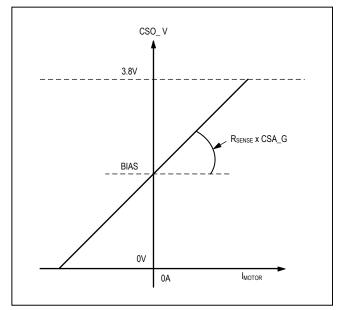


Figure 6. Current-Sense Amplifier Output Characteristics

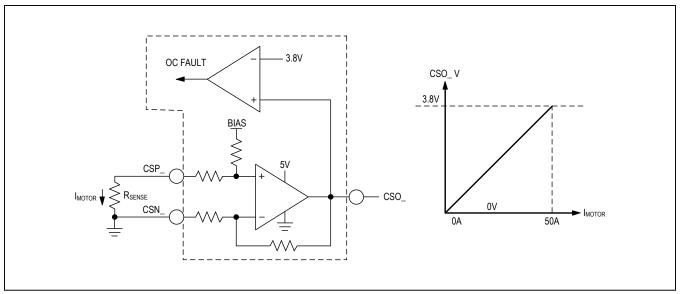


Figure 7. Current-Sense Amplifier Configuration (Positive Current Only)

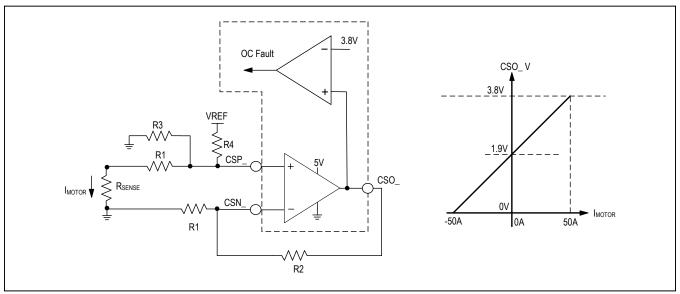


Figure 8. Current-Sense Amplifier Configuration (Bidirectional Current Flow)

Power-Up Diagnostic Mode

After power-up, every time EN_ goes high with DIAG_ low, the diagnostic power-up routine starts. The device performs the following checks for each pin:

- · Is the pin shorted to ground?
- Is the pin open?
- · Is the pin shorted to an adjacent pin?

The diagnostic strategy is based on a sequential routine that starts from the V_{DSTH} pin and proceeds counterclockwise to end at the \overline{COAST} pin. In the event of a diagnostic error during the sequential check, the diagnostic sequence is terminated and an ASIL fault is declared at the \overline{FLT} pin by forcing the duty of the output signal to 25%.

Pins LX_, DH_, DL_, BST_, SUP_, and LS_ are not checked during this power-up diagnostic routine. Their functionality can be verified during the FET diagnostic mode, as described in the FET Diagnostic Mode section.

FET Diagnostic Mode

During normal operation (after power-up is completed, EN_ pin high), FET diagnostic mode can be entered by forcing $\overline{DIAG}_-=0$. The LXA_ and LXB_ pins are then connected through an internal $1k\Omega$ (typ) pulldown/pullup to PGND_/SUP_, based on the selected FET under diagnosis.

V_{DS} fault and overcurrent event can be used to check the motor and H-bridge status in FET diagnostic mode.

Table 4. Power-Up Diagnostic Pin Setting

PIN	CONDITION TO PASS POWER-UP TEST
CR_	3.3μF ±10% ceramic capacitor connected to ground.
CSP_	Place an equivalent resistance with a value between 500 Ω and 2k Ω .
CSN_	Place an equivalent resistance with a value between 500 Ω and 2k Ω .
CSO_	Place a feedback resistance with a value between $5k\Omega$ and $100k\Omega$.
PGND_	Connect to the ground plane of the system board.
SLEW_	Place a resistance with a value between $10k\Omega$ and $200k\Omega$.
DT_	Place a resistance with a value between $10k\Omega$ and $200k\Omega$.
V _{DSTH} _	Place an equivalent resistance with a value between 500 Ω and 10k Ω .
FLT_	Connect a resistance with a value between $1k\Omega$ and $3.3k\Omega$ to $IN_{_}$.
EN_	Connect to IN_ through external driving circuitry.
DIAG_	Connect to AGND_/PGND_ or IN_ through external driving circuitry.
PA_	Connect to AGND_/PGND_ through external driving circuitry.
PB_	Connect to IN_ through external driving circuitry.
COAST_	Connect to AGND_/PGND_ through external driving circuitry.

Table 5. FET Control

COAST_	PA_	PB_	FET ON	LXA_ STATUS	LXB_ STATUS
1	0	0	Q1	Pulldown to ground	Hi-Z
1	1	1	Q2	Pullup to SUP_	Hi-Z
1	1	0	Q3	Hi-Z	Pulldown to ground
1	0	1	Q4	Hi-Z	Pullup to SUP_

Table 6. Interpreting Fault Information in Diagnostic Mode

TURNED ON nMOS	V _{DS} FAULT	V _{DS} AND OVERCURRENT EVENT
Q1	Q1 open or motor terminal A shorted to ground	Q2 shorted
Q2	Q2 open or motor terminal A shorted to SUP_	Q1 shorted
Q3	Q3 open or motor terminal B shorted to ground	Q4 shorted
Q4	Q4 open or motor terminal B shorted to SUP_	Q3 shorted

Power-Up Scenarios

See Figure 9, Figure 10, and Figure 11 for power-up scenarios.

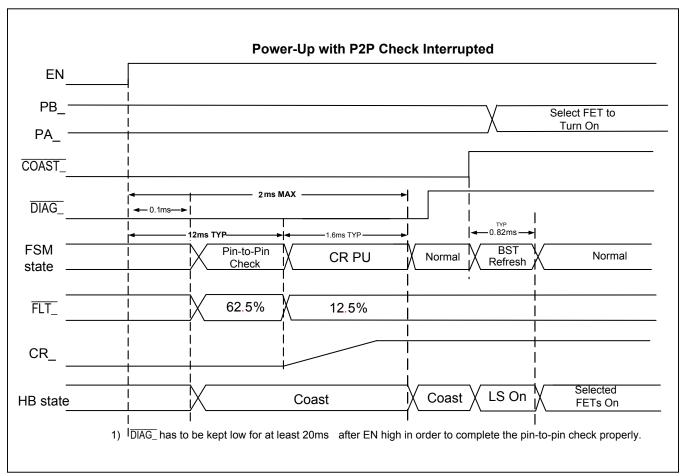


Figure 9. Power-Up Sequencing with Pin-to-Pin Check Enabled

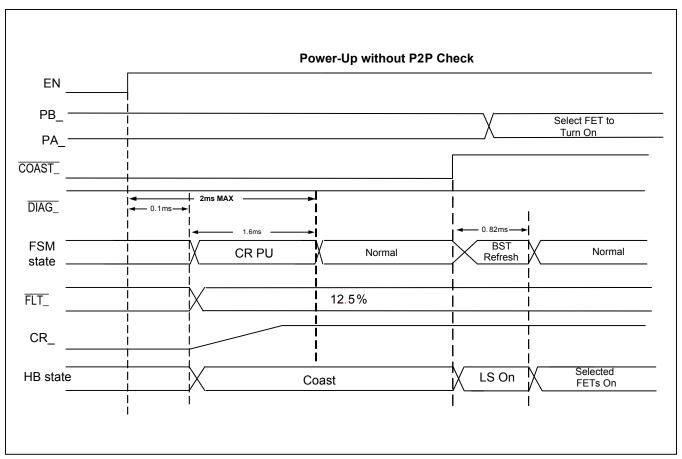


Figure 10. Power-Up Sequencing with Pin-to-Pin Check Disabled

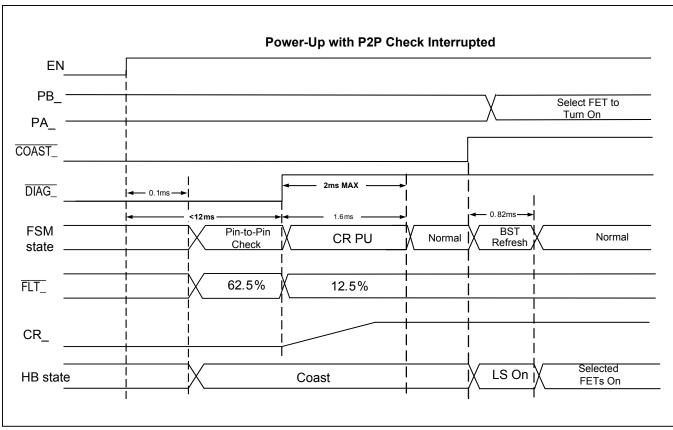


Figure 11. Power-Up Sequencing with Pin-to-Pin Check Interrupted

State Diagram

See Figure 12 for the FSM state diagram.

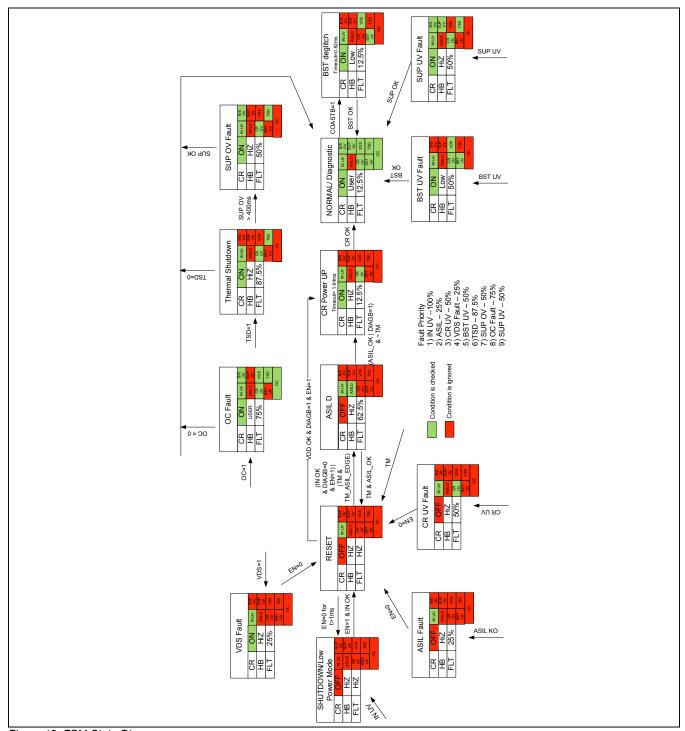


Figure 12. FSM State Diagram

BST Fault

A BST fault is detected (except in coast mode, when it is masked) when the voltage on any of the BST_ capacitors falls below 7V (typ). When this happens, normal operation of the H-bridge is impossible until the BST_ capacitor is recharged. To avoid faults due to undervoltage on the boost (BST_) capacitors, a BST fault deglitch timer is incorporated in the device. At each low-to-high transition of the COAST_ pin, the deglitch timer is activated. During the deglitch time, the internal logic of the device takes control and the DLA and DLB outputs are forced high in order to turn on the external low-side MOSFETs and refresh the charge on the boost capacitors. When this timer elapses, the bootstrap capacitors are fully charged and ready to operate the motor.

When a BST fault occurs (in the absence of faults), it is normally sufficient to perform a boost-capacitor refresh by taking COAST low and then high again and waiting at least 0.9ms until the BST fault deglitch timer elapses.

VDS Fault

Every time an FET of the H-bridge is turned on, a dedicated drain-source comparator checks if its drain-source voltage is lower or higher than the V_{DS} voltage threshold set through the V_{DSTH} pin. If the FET drain-source voltage is higher than the voltage on the V_{DSTH} pin, a fault is detected. To avoid false error detection, the V_{DS} comparators are inhibited after MOSFET power-on for a blanking time (t_{BLANK}). Connect V_{DSTH} to IN_ to disable the V_{DS} fault-detection circuitry.

SUP_ Undervoltage and Overvoltage Protections

The device includes undervoltage and overvoltage detection circuitry on the SUP_ pins. If the voltage is less than 4.5V, a SUP_ undervoltage fault is signaled through the FLT_ pin and all the MOSFET drivers are turned off. If the SUP_ voltage exceeds 35V for more than 400ms, a SUP_ overvoltage fault is detected and all the drivers are turned off (H-bridge).

Fault Behavior

The FLT_ pin indicates detected faults by means of a 625kHz signal, with varying duty cycle according to Table 7.

Table 7. Fault Classes and the FLT_ Output

FAULT CLASS	FAULT DESCRIPTION	DUTY CYCLE OF FLT_ (%)
1	None	12.5
2	V _{DS} fault, ASIL fault	25
3	SUP_ overvoltage (SUP_, CR_ and BST_ undervoltage)	50
1	None (pin-to-pin check routine ongoing)	62.5
4	Overcurrent	75
5	Thermal shutdown	87.5
6	IN_ undervoltage	100

Table 8. Fault Summary

FAULT	FAULT DESCRIPTION	DUTY CYCLE (%)	CR_	H-BRIDGE FETs STATE	LATCHED	FAULT RESET
None	_	12.5	On	User control	No	_
Overcurrent	V _{CSO} _ > 3.8V	75	On	User control	No	_
V_{DS} fault ($\overline{DIAG}_{-} = X$)	FET on-drain source voltage > V _{DSTH} _	25	On	Off (coast*)	Yes	EN_low pulse
IN_ undervoltage	V _{IN} _ < V _{INUV}	100	Off	Off (coast*)	No	_
CR_ undervoltage	CR_ < V _{CRUV}	50	Off	Off (coast*)	Yes	EN_low pulse
BSTA_/BSTB_ undervoltage	BST LX_ < V _{BSTUV}	50	On	DLA_, DLB_ high	No	_
SUP_ undervoltage	SUP_ < V _{SUPUV}	50	On	Off (coast*)	No	_
SUP_ overvoltage	SUP_ > 36V for t > 400ms	50	On	Off (coast*)	No	_
Thermal shutdown	T _J > T _{JTSD}	87.5	On	Off (coast*)	No	_

^{*}Coast = Motor in Hi-Z.

Applications Information

Power Dissipation

To evaluate the device's power consumption, it is necessary to calculate the total supply current from the supply input pin (IN_) for a single channel:

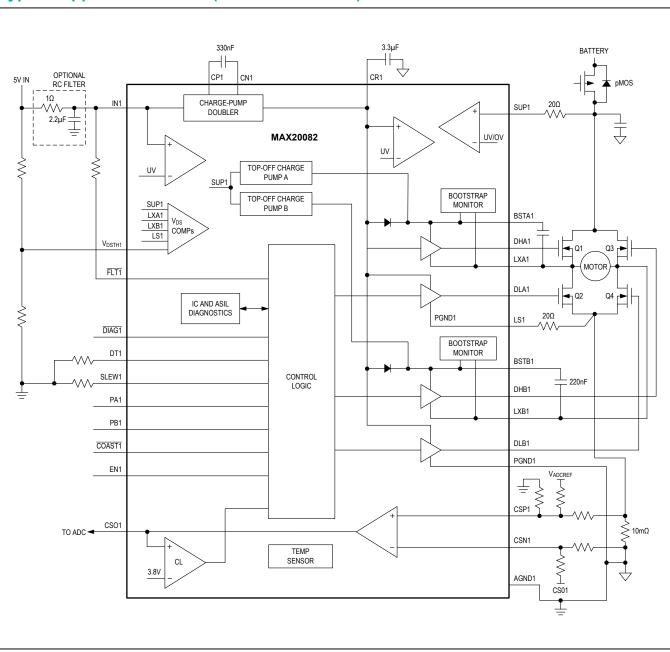
$$I_{IN} = I_{IN} Q + 4 \times Q_G \times f_{PWM}$$

where I_{IN} Q is the quiescent current, Q_G is the total gate charge of the external nMOS, and f_{PWM} is the PWM switching frequency.

The device's total power dissipation is then (for both channels):

$$PD = 2 \times [V_{IN} \times I_{IN}]$$

Layout Guidelines


For best performance, it is advisable to use the following guidelines when designing the PCB for the MAX20082:

 Use separate analog ground (AGND) and power ground (PGND) planes and connect them at a single point. Implement connections between the same grounds on different layers with multiple vias.

- Maintain the input and output power sections (connections to SUP_, LXA_, LXB_, and LS_) as compact as possible.
- Use wide traces to connect the components related to the high-current paths.
- Use multiples vias to connect high-current paths that must pass from one layer to another.
- Make the MOSFET gate-drive traces (DHA_, DHB_, DLA_, and DLB_) as short as possible and use large track widths.
- Place the boost capacitors (between CP_ and CN_), charge-pump output capacitors (on CR_), and the input capacitors (on IN_) close to the IC and connect them without using vias.
- The current-sense connections should be Kelvin connected.

Contact your Maxim Integrated representative for further details on choosing and placing external components.

Typical Application Circuit (1 Channel Shown)

MAX20082

Dual, Redundant, H-Bridge Motor Driver with ASIL Diagnostics

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX20082AUN/V+T	-40°C to +125°C	56 TSSOP

N denotes an automotive qualified part. +Denotes a lead(Pb)-free/RoHS-compliant package. T = Tape and reel.

Chip Information

PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND PATTERN
TYPE	CODE	NO.	NO.
56 TSSOP	U56N+2C	21-0481	90-0338

MAX20082

Dual, Redundant, H-Bridge Motor Driver with ASIL Diagnostics

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/14	Initial release	_

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.