
AN1712
APPLICATION NOTE

GENERATING A HIGH RESOLUTION
SINEWAVE USING ST7 PWMART

By Microcontroller Division Applications
Rev. 1.0

INTRODUCTION

The purpose of this application note is to present a software technique for generating a high
resolution sinewave using ST7 PWMART, tunable in frequency and average amplitude. This
application has been implemented using the ST72321J9 microcontroller. The PWMART (Au-
toreload timer peripheral embedded in the microcontroller) is used to generate a PWM signal
and this PWM signal is then filtered by low pass filter (simple RC circuit) to generate a sine-
wave.
AN1712/0304
 1/14

1

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
1 GENERATING A SINUSOID

This section highlights the main features of the ST7 PWMART used to generate a PWM signal
which is then filtered by low pass filter (a simple RC circuit in this example) to generate a si-
nusoid. Please refer to the ST7 datasheet for more details.

The ST7 PWMART consists of an 8-bit auto reload counter with compare/capture capabilities
and a 7-bit clock prescaler.

1.1 PWM GENERATION

The free running 8-bit counter is fed by the output of the prescaler, and is incremented on
every rising edge of the clock signal. It is possible to read or write the contents of the counter
on the fly by reading or writing the Counter Access register (ARTCAR). When a counter over-
flow occurs, the counter is automatically reloaded with the contents of the ARTARR register
(the prescaler is not affected).

The counter clock frequency is given by:

The timer counter’s input clock (fINPUT) feeds the 7-bit programmable prescaler, which selects
one of the 8 available taps of the prescaler, as defined by CC[2:0] bits in the ARTCSR Reg-
ister. Thus the division factor of the prescaler can be set to 2n (where n = 0, 1,..7). This fINPUT
frequency source is selected through the EXCL bit of the ARTCSR register and can be either
the fCPU or an external input frequency fEXT. The clock input to the counter is enabled by the
TCE (Timer Counter Enable) bit in the ARTCSR register. When TCE is reset, the counter is
stopped and the prescaler and counter contents are frozen. When TCE is set, the counter runs
at the rate of the selected clock source.

The timer compare function is based on four different comparisons with the counter (one for
each PWMx output). Each comparison is made between the counter value and an output com-
pare register (OCRx) value. This OCRx register can not be accessed directly, it is loaded from
the duty cycle register (PWMDCRx) at each overflow of the counter.

This double buffering method avoids glitch generation when changing the duty cycle on the fly.

PWM mode allows up to four Pulse Width Modulated signals to be generated on the PWMx
output pins with minimum core processing overhead. This function is stopped during HALT
mode. Each PWMx output signal can be selected independently using the corresponding OEx
bit in the PWM Control register (PWMCR). When this bit is set, the corresponding I/O pin is

2CC[2:0]

fINPUT
fCOUNTER=
2/14

2

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
configured as output push-pull alternate function. The PWM signals all have the same fre-
quency which is controlled by the counter period and the ARTARR register value.

When a counter overflow occurs, the PWMx pin level is changed depending on the corre-
sponding OPx (output polarity) bit in the PWMCR register. When the counter reaches the
value contained in one of the output compare register (OCRx) the corresponding PWMx pin
level is restored.

Note: The reload values will also affect the value and the resolution of the PWM output signal
duty cycle. To obtain a signal on a PWMx pin, the contents of the OCRx register must be
greater than the contents of the ARTARR register.

The resolution for the PWMx duty cycle is:

Figure 1. PWM Auto-reload Timer Function

On overflow, the OVF flag of the ARTCSR register is set and an overflow interrupt request is
generated if the overflow interrupt enable bit, OIE, in the ARTCSR register, is set. The OVF
flag must be reset by the user software. This interrupt is used as a time base in the application.

256 - ARTARR

fCOUNTER
fPWM=

256 - ARTARR
1

Resolution=

DUTY CYCLE
REGISTER

(PWMDCRx)

AUTO-RELOAD
REGISTER
(ARTARR)

00

255

C
O

U
N

TE
R

P
W

M
x

O
U

T
P

U
T

WITH OEx=1

WITH OEx=0

AND OPx=0

AND OPx=1
3/14

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
1.2 SINEWAVE GENERATION

At the start of the program:

– the PWMDCR0 register is initialized to obtain a 50% duty cycle

– the number of samples in a sinewave cycle is defined

– the counter reload value (ARTARR) is initialized

In the software provided with this application note, predefined initialization values for each fre-
quency can be selected in the define.h file.

More than 18 samples in a sinewave cycle should be selected to generate a sinewave with
Total Harmonic Distortion of less than 5%. So, depending on the number of samples in a sin-
ewave cycle, the duty cycle register (PWMDCR0) is modified, taking care that no 0% and
100% PWM is generated for any of the sinewave samples (because the PWM duty cycle must
be between ~99% to ~1% to generate an undistorted sinewave). The PWM duty cycle is
changed after a certain number (“COUNTER”) of overflow cycles. So, the sinewave frequency
depends on three parameters,

– the PWM frequency (fPWM)

– the number of samples in a sinewave cycle

– the number of overflow cycles after which the PWM duty cycle changes (“COUNTER”)

So, the sinewave frequency can be given by:

See also Figure 2.

This PWM signal must be filtered with an external RC network selected for the filtering level re-
quired to generate a sinusoid. The cut off frequency of low pass RC filter is given as:

So, the value of R and C must be chosen in such a way that the output sinewave frequency
should be less than this high cut off frequency (fH).

The instantaneous value of sinewave depends on the duty cycle of PWM. So:

fSINE =
1

tPWM * number of samples * COUNTER

fH =
1

2 * pi * R * C

VSINE max,min = Max, Min PWM duty cycle * VDD
VSINE average = Average PWM duty cycle * VDD
4/14

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
Figure 2. Output at PWM0 pin and general calculation for finding sinewave frequency

10 PWM cycles each

Number Of Samples = 4
fPWM= fCOUNTER/(256-ARTARR)

= 20 KHz (if fCOUNTER = 4MHz)
COUNTER=10
fSINE = 1/(50us*4*10) = 500 Hz

duty cycle
= ~50%

time

Vdd

maximum
duty cycle
= ~87%

average
duty cycle
= ~50%

minimum
duty cycle
= ~13%

duty cycle
= ~50%

one sinewave cycle

time

P
W

M
D

C
R

0
re

gi
st

er
 v

al
u

e

00

255

ARTARR=56

PWMDCR0 = Average Value =
155 (PWM duty cycle = ~50%)

PWMDCR0 = Average Value+75

PWMDCR0 = Average Value-75

10(=COUNTER) * tPWM

Output at PWM0 pin

Output of RC circuit
5/14

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
2 IMPROVING SINEWAVE RESOLUTION

Sinewave resolution depends on three factors:

– tPWM

– the number of samples in a sinewave cycle

– “COUNTER” value

By changing any of these parameters you can get a different resolution.

If fCOUNTER is fixed, you can only change tPWM by varying the ARTARR value. The minimum
change you can do to ARTARR is 1. So, the minimum change in tPWM is tCOUNTER. For ex-
ample:

If fCOUNTER is 4 MHz and ARTARR value is 56, then tPWM is 50us. If the number of samples
in a sinewave cycle is 40 and COUNTER is 10, fSINE will be 50 Hz.

If you change the ARTARR value to 57, tPWM will change to 49.75us. So, fSINE will be ~50.25
Hz (assuming the number of samples and COUNTER value are fixed). So, the resolution is
~0.25 Hz.

Now to improve resolution, change ARTARR = 36, COUNTER = 7 and number of samples in
a sinewave cycle = 52.

Assuming fCOUNTER is still 4MHz, tPWM will be 55us. In this case fSINE will be 49.95 Hz, which
gives improved resolution (~0.05Hz).
6/14

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
3 SOFTWARE CONFIGURATION

The software is developed in “C” language and gives you the option of using the ST7 software
library or not. A header file “define.h” is supplied. This header file defines the sin structure. The
sin structure has the three user defined datatypes for storing sinewave patterns depending on
the number of samples in a sinewave cycle, the “index” which is used for counting the current
sinewave sample and another datatype which is used to indicate whether the current sample
is related to the upper half or lower half of the sinewave. Depending on the number of samples
in a s inewave cyc le, sample values are in i t ia l ized fo r the s inewave envelope
(X(n)=Asin((2*pi*n)/N)). where A is the sinewave amplitude, pi is 3.1416, n is the nth sample of
the sinewave, N is the number of samples in a sinewave cycle. N should be more than 18 in
order to generate a sinewave with Total Harmonic Distortion of less than 5%. The value of A
should be such that no 0% or 100% duty cycle is generated for any of the sinewave samples.

There are other define types for the sinewave frequency from 45 to 65Hz with a resolution of
less than 0.1Hz. These define types contain five parameters:

– “no_of_samples_half” for defining the number of samples in half a sinewave cycle

– “COUNTER” value which defines the number of overflow cycles after which the PWM duty
cycle changes

– Initialization value of ARTARR for fPWM,

– Initialization value of PWMDCR0 a 50% duty cycle

– “AVERAGE_AMP” to define the average sinewave amplitude.

A s inewa ve w i th a reso lu t ion o f le ss t han 0 .1 Hz is ob ta ine d b y va ry ing the
“no_of_samples_half”, the “COUNTER” value and ARTARR. The average sinewave ampli-
tude is also software configurable by the “AVERAGE_AMP” parameter.

It should be noted that the value of A and the value of the “AVERAGE_AMP” is chosen in such
a way that no 0% or 100% duty cycle is generated for any of the sinewave samples.

3.1 SIN STRUCTURE INITIALIZATION

The sin structure has the three user defined datatypes for storing the sinewave pattern ac-
cording to the number of samples in a sinewave cycle, the “index” which is used for counting
the current sinewave sample and another datatype which is used for indicating whether the
current sample is related to the upper half or lower half of the sinewave.
7/14

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
Figure 3. Loading of sample values and initialization of sin structure

3.2 AUTO-RELOAD TIMER INITIALIZATION

The counter is initialized by:

– Writing to the ARTARR register to set the PWM frequency.

– Setting the FCRL (Force Counter Re-Load), the TCE (Timer Counter Enable) and OIE (Over-
flow Interrupt Enable) bits in the ARTCSR register.

In this case, the fINPUT is CPU clock (fCPU) and fCOUNTER = fINPUT (= 4MHz in this particular
application).

– Enable PWM0 and configure the polarity in the PWMCR register.

– Initialize the PWMDCR0 register to define the PWM duty cycle.

LoadValueIntoSinStructur

Load sample values (already defined)
into value[no_of_samples_half] of sin
structure (the no of samples in half sin

wave is already defined)

Initialize sinewave for up-
per half

return

Initialize Index=0
8/14

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
Figure 4. PWMART timer initialization

3.3 PWMART INTERRUPT SERVICE ROUTINE

This is the interrupt service routine for the PWMART interrupt. Every time an overflow occurs,
an interrupt is generated (because overflow interrupt is enabled). The PWMART duty cycle is
changed after every “COUNTER” number of overflow cycles. The duty cycle can vary from
~99% to ~1% depending on the sinewave sample values.

AR_TIMER_Init

Start the PWM timer counter, force
counter reload is ON & overflow interrupt

is enabled

Enable PWM0 and con-
figure the polarity

return

Set the frequency of PWMART
by initializing the ARTARR

Initialize the duty cycle
of sinewave to 50%
9/14

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
Figure 5. PWMART interrupt service routine

ART_Interrupt

Clears the overflow interrupt flag

counter = counter+1

return

Is counter >=
COUNTER?

no yes

counter = 0

Upper half cycle
of sinewave?

Load the duty cycle register for up-
per half cycle of sinewave. This is

achieved by adding the current sam-
ple value into AVERAGE_AMP.

yes

no

Load the duty cycle register for lower
half cycle of sinewave. This is achieved
by subtracting the current sample value

from AVERAGE_AMP.

Index = Index+1

Is Index=
no_of_samples_half?

Index = 0 & change the po-
larity of sinewave cycle

yes no
10/14

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
3.4 MAIN ROUTINE

The main routine calls LoadValueIntoSinStructur and AR_TIMER_Init. After this, the initializa-
tion interrupts are enabled (RIM is executed) so that the microcontroller can go into the inter-
rupt routine and an infinite while loop is called.

Figure 6. Main routine

main

LoadValueIntoSinStructur

 EnableInterrupts

AR_TIMER_Init

+

While(1)
11/14

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
4 HARDWARE CONFIGURATION

This application runs on an ST72F321 microcontroller. The PWM0 channel is used to gen-
erate the PWM signal which is then filtered by low pass filter (a simple RC circuit in this ex-
ample) to generate a sinusoid. The Rext used is 1.8K and Cext is 0.47uf. The values of Rext and
Cext decides the filtering level.

The selected crystal for this example has a frequency of 8 MHz which gives fCPU = 4 MHz be-
cause the PLL is disabled and slow mode is not selected. It gives the fCOUNTER = 4 MHz for
the reset value of Counter Clock Control bits in ARTCSR register.

Figure 7. Generation of sinewave: Application circuitry

ST7

8 MHz

PWM0/PB3 /\/\/\/\/\/\
Rext=1.8K

VDD_0, VDD_1, VDD_2

VDD

VSS_0, VSS_1, VSS_2

27 pf 27 pf

OSC1 OSC2

Cext=0.47 uf

VPP/ICCSEL

C = 0.1 uf
12/14

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
5 SOFTWARE

All the source files in “C” language with the option of using the ST7 software library or not (ST7
software library version 1.1) are given in the zip file with this application note.

The source files are for guidance only. STMicroelectronics shall not be held liable for any di-
rect, indirect or consequential damages with respect to any claims arising from use of this soft-
ware.
13/14

GENERATING A HIGH RESOLUTION SINEWAVE USING ST7 PWMART
THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com
14/14

