

AN1827 APPLICATION NOTE IMPLEMENTATION OF SIGMA-DELTA ADC WITH ST7FLITE05/09

INTRODUCTION

The purpose of this document is to describe how to implement a 10-bit Sigma-Delta A/D converter using a simple external circuit and a Sigma-Delta conversion program.

The ST7FLITE05(09) has an on-chip ADC with 8-bit resolution and an input range of 0-V_{CC}.

The external Sigma-Delta ADC described in this application is designed for relatively slow alternating signals (0,2 - 5Hz) in the range 0 - 10mV(p-p). The focus of the project is to provide good relative accuracy, repeatable parameters and simplicity, resulting therefore a low cost of the device (in its simplest form, apart from the microcontroller, only three RC elements are necessary).

1 SIGMA-DELTA CONVERTER THEORY

The basic Sigma-Delta converter (Figure 1) is built of 2 basic circuits: a modulator and a digital filter. In the modulator the input signal is summarised with the signal of negative feedback from the D/A converter. The signal's difference, after passing through the integrating circuit, reaches the input of the comparator, where it is compared to the reference voltage (the comparator works as a 1-bit quantizator). The input signal from the comparator controls the 1-bit converter and reaches the input of the digital filter, which decreases flowability and transforms the 1-bit stream into 10-bit words.

Figure 2 shows the general scheme of the microcontroller implementation. Within the system the function of an integrator is fulfilled by the Ci capacitor, and the range of converted voltages depends on the resistance ratio R1 and R2. The principle of operation is as follows: from the moment of setting the high status on the output, the voltage on the Ci capacitor and simultaneously on the input of the comparator begins to rise. As soon as the reference voltage is reached the output status is altered and the voltage decreases. After falling below the reference voltage the output status is altered to the high one and the cycle repeats. Provision of the state of balance and the correct conversion of signal into its digital form is realised by a program-operated feedback loop and digital filter.

Figure 2. Sigma-Delta Implementation with Microcontroller

57

2 REALISATION WITH THE USE OF THE MICROCONTROLLER ST7FLITE05(09)

The practical realisation of the Sigma-Delta converter has been used with our passive infrared detector. A sensor of passive infrared characterises with a low output voltage (below 10mV) as well as with a usable range of frequencies from 0,2Hz to 7Hz. Therefore the Sigma-Delta converter is a perfect solution. It provides an accurate enough conversion of a signal into its digital form with use of a minimal number of external elements. That means simplicity of construction, relatively low production costs and good using properties.

Figure 3 presents the block diagram of the detector.

Figure 3. ST7FLITE05 interfacing with PIR Sensor

A signal from the sensor passes through the capacitor to the input of the converter. The A/D converter has been used as a comparator in the microcontroller as well as the source of the reference voltage. By enabling the internal x8 amplifier, the amplitude of an output signal has been decreased 20 times to provide correct operation of the amplifier. This allows a decrease in the resistors' value span in the same ratio and to increase the operational accuracy of the A/D converter working as a comparator. Additionally the temperature compensation of sensitivity has been introduced.

<u>لرکا</u>

Figure 4 shows the work algorithm of the Sigma-Delta converter.

57

3 THE DESCRIPTION OF THE SIGMA-DELTA CONVERSION PROGRAM

The Sigma-Delta conversion procedure is executed cyclically in an interrupt from the AT timer with a period of 50µs. The result of the Sigma-Delta conversion (a 10-bit word) is achieved every 1024 interrupts, that is to say every 51.2ms. The main loop of the program awaits the Sigma-Delta conversion result and sends it through the RS serial interface to the computer.

The start of the Sigma-Delta conversion is preceded with clearing of the loop conversion counter Loop_h, Loop_l and the result registry Adc_h, Adc_l.

At the first stage, the service routine of the AT timer interrupt clears the marker of request and executes the A/D conversion from the AIN1 channel (the x8 amplifier is on). Following this, the result of conversion is compared with the constant value represented by the reference voltage 037h).

If, in the result of comparison, the voltage from the AIN1 channel is lower than the reference voltage, then the B-DIt port line will be set and the loop conversions counter will be increased. Loop_h, Loop_l.

In a reverse situation, when the voltage from the AIN1 channel is higher than the reference voltage, the B-DIt port line will be set to zero, and the Adc_h,Adc_I result registry as well as the Loop_h, Loop_I. loop conversion counter will be increased.

The next task of the interrupt is to check whether the Loop_h, Loop_I loop conversion counter has reached the value 1024. When the Loop_h, Loop_I loop conversion counter is lower than 1024, the service routine of the interrupt finishes. If this condition is fulfilled the value of the result registry is rewritten into the result Rez_h, Rez_I buffer and a request of a new result to the main loop is set and the start of a new conversion is initiated (clearing of the Loop_h, Loop_I counter and of the Adc_h,Adc_I.result registry)

The period of an AT timer interrupt is not critical. In the below example, because of the frequency of the signal from the passive infrared detector and the speed of RS communication (19200bps), it has been defined at 50µs.

equ \$80 ; conversion result buffer H Rez h Rez l equ \$81 ; conversion result buffer L ; loop conversions counter H Loop_h equ \$82 Loop_1 equ \$83 ; loop conversions counter L Adc_h equ \$84 ; conversion result H ; conversion result L Adc_l equ \$85 FLAGS0 equ \$90 ; binary variables ; new data from the conversion Nw_adc equ 7 m50us equ 6 ; marker 50us ;Definitions of constants ;port A ; destination of bits in port A RS equ 6 ; destination of bits in port B ;port B Adc_in equ 1 Dlt_out equ 4 ; Processor initiation segment 'rom' INIT: sim rsp ld a, \$FFDE ld RCCR, a ; oscillator frequency calibrator RC ld a,#%01000000 ; settings of ports ld PADDR, a ld a, #%01000000 ld PAOR, a ld PADR, a ld a, #%00010000 ld PBDDR, a ld a, #%00010000 ld PBOR, a ld PBDR, a ld x, #\$80 ; All RAM clearing (80-FF) loop_clrRAM: clr(x) inc x jrne loop clrRAM ld a, #\$0E ; initiation of an AT timer interrupt with ; the period of 50us

5/

```
ld ATRH, a
               ld a, #$70
               ld ATRL, a
               ld a, #%00010010
               ld ATCSR, a
               rim
;Main loop of the program
IDLE:
               btjf FLAGS0, #Nw adc, Idle ; waiting for the conversion result
               bres FLAGS0, #Nw_adc
                                 ; new result
                                 ; sending the conversion result
                                 ; through RS
               ld a, #$FF
                                 ; frame format:
               call Send rs
                                 ;0FFh,0FFh,Rez H,Rez L
               ld a, #$FF
               call Send_rs
               ld a,Rez_h
               call Send_rs
               lda,Rez l
               call Send_rs
               jra IDLE
;Interrupts
; delta/sigma conversion
; sampling of 1 bit with period of 50us
; conversion result- 10 bit word, received every (1024*50us)=51,2ms
timoverfl rt:
                                 ; cancelling of the interrupt re-
               bres ATCSR, #2
                                 ; quest
               lda,#00000100
                                 ; adding the amplifier into the A/D
                                 ; processing
               ld ADCCAMP, a
               ld a, #%01100001
                                 ; voltage measurement at AIN1
               ld ADCCSR, a
loop_adc:
               btjf ADCCSR, #7, loop_adc
               ld a, ADCDR
               cp a, #$37
                                 ; comparison U ain1 z 037h
               jrc set_Dlt
               bres PBDR, #Dlt_out
                                 ; U ain1>037h
               inc Adc_l
                                 ; increase of the conversion result
```

67/

	jrne inc_loop inc Adc_h	
	jra inc_loop	
set_DIt:	bset PBDR, #DIt_out	; U_aini <u3 n<="" td=""></u3>
inc_loop:	bset FLAGS0, #m50us	; setting of a marker 50us
	inc Loop_1	; increase of the samples counter
	jrne tst_loop	
tst_loop:	ld a,Loop_l	; is the samples counter equal to
		; 1024?
	jreq tst_loopH	
	iret	
tst_loopH:	ld a,Loop_h	
	cp a,#\$04	
	jreq ok_knw	; yes
	iret	
ok_knw:	clr Loop_l	; conversion completed
	clr Loop_h	; initiating of the loop conversion
		; counter
	ld a,Adc_h	; rewriting of the result into
		; Rez_h,Rez_l
	ld Rez_h,a	
	ld a,Adc_l	
	ld Rez_l,a	
	clr Adc_l	; initiating of the conversion re-
		; sult variable
	clr Adc_h	
	bset FLAGS0,#Nw_adc	; marker for IDLE (data ready)
	iret	
*************	************************	*********
spi_rt	iret	
lttimrtc_rt	iret	
ltimoutcmp_rt	iret	
timoutcmp_rt	iret	
lvd_rt	iret	
ext3_rt	iret	
ext2_rt	iret	
extl_rt	inch	
ext0_rt	inch	
sw_rt	inch	
uullilly	TTGC	* * * * * * * * * * * * * * * * * * * *
·Drogodurog and		
;*************************************	**************************************	* * * * * * * * * * * * * * * * * * * *

57

IMPLEMENTATION OF SIGMA-DELTA ADC WITH ST7FLITE05/09

Send_rs:	bres FLAGS0,#m50us call wait bres PADR,#RS call wait ld x,#\$08		; procedure of RS data byte sending ; 19200bps,1b start,1b stop,8b data ; setting of a start bit
loop_snd:	rrc a call S dec x	Send_bt	; setting of 8 data bits
	bset F jra wa	PADR, #RS	; setting of a stop bit
Send_bt:	jrc sd_H bres PADR,#RS ira wait		; setting of a data bit at the port
sd_H:	bset PADR, #RS		
wait:	btjf F	LAGS0,#m50us,wait	; latency for the duration of the ; data bit
	bres F	'LAGS0,#m50us	
• * * * * * * * * * * * * * * * * * *	ret ******	* * * * * * * * * * * * * * * * * * * *	****
; Interrupt vectors :	segment	'vectit'	
;******	* * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
	DC.W	dummy	; FFE0-FFF1h location
spi_it	DC.W	spi_rt	; FFE2-FFE3h location
lttimrtc_it	DC.W	lttimrtc_rt	; FFE4-FFE5h location
ltimoutcmp_it	DC.W	ltimoutcmp_rt	; FFE6-FFE7h location
timoverfl_it	DC.W	timoverfl_rt	; FFE8-FFE9h location
timoutcmp_it	DC.W	timoutcmp_rt	; FFEA-FFEBh location
lvd_it	DC.W	lvd_rt	; FFEC-FFEDh location
	DC.W	dummy	; FFEE-FFEFh location
	DC.W	dummy	; FFF0-FFF1h location
ext3_it	DC.W	ext3_rt	; FFF2-FFF3h location
ext2_it	DC.W	ext2_rt	; FFF4-FFF5h location
ext1_it	DC.W	ext1_rt	; FFF6-FFF7h location
ext0_it	DC.W	ext0_rt	; FFF8-FFF9h location
	DC.W	dummy	; FFFA-FFFBh location
softit	DC.W	sw_rt	; FFFC-FFFDh location
reset	DC.W end	INIT	; FFFE-FFFFh location

57

"THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF THE INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS."

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com