
September 2013 DocID024408 Rev 2 1/21

AN4276
Application note

ECC management on SPC560x

Introduction
This document describes Error Correction Code (ECC) management and implementation
on SPC560x microcontroller family. It describes both hardware and software aspects linked
to the ECC mechanism used to protect content of memories.

It starts with an overview of ECC protection and than it jumps to more detailed hardware
ECC Fault management and how it is implemented in the microcontroller. The hardware
notification on one side is important but not enough to correctly manage memory content
faults in the application. That is why this note takes closer look on software aspects in its
second part.

www.st.com

http://www.st.com

Contents AN4276

2/21 DocID024408 Rev 2

Contents

1 ECC overview . 5

1.1 ECC principle . 5

1.2 Number of check bits . 5

2 ECC on SPC560x microcontroller family . 6

2.1 RAM ECC implementation . 6

2.2 Code and Data Flash memory ECC implementation 7

2.3 ECSM module . 8

3 ECC error hardware exceptions . 9

3.1 ECSM module interrupts . 9

3.2 Core exceptions . 9

4 ECC exception handling . 11

4.1 RAM ECC error action . 12

4.2 Code Flash ECC error action . 12

4.3 Data Flash ECC error action . 12

4.3.1 Continue with successive instruction of the read function 12

4.3.2 Continue from known address in the read function 13

4.4 Clearing error flags . 14

5 Application software notes . 15

5.1 RAM memory checks . 15

5.2 Operating System (OS) exception handling . 15

5.3 Flash memory drivers . 16

5.3.1 Check ECC immediately after each read access 17

5.3.2 Check ECC after whole data buffer is read . 17

5.3.3 Low level exception handler link to the driver ECC check 18

Appendix A Document references . 19

Revision history . 20

DocID024408 Rev 2 3/21

AN4276 List of tables

List of tables

Table 1. SEC-DED code - number of check bits needed . 5
Table 2. SRAM timing. 6
Table 3. Flash codes with the same syndrome . 7
Table 4. ECSM module register set . 8
Table 5. Non-correctable ECC exceptions . 10
Table 6. Document revision history . 20

List of figures AN4276

4/21 DocID024408 Rev 2

List of figures

Figure 1. ECC block scheme . 6
Figure 2. ECSM interrupt generation . 9
Figure 3. Example of core exception flow . 10
Figure 4. General IVOR2/3 handler software flow . 11
Figure 5. Pseudo-Code for next instruction handler flow . 13
Figure 6. Instruction primary OPCODE decoding . 13
Figure 7. Pseudo Code for known address jump. 14
Figure 8. OS exception handling with user hook . 16
Figure 9. Example of Immediate ECC check during read function . 17
Figure 10. Example of ECC check after whole buffer is read . 17
Figure 11. Example of Low level link to the driver ECC check. 18

DocID024408 Rev 2 5/21

AN4276 ECC overview

1 ECC overview

Error correction codes, ECC, are known techniques to protect data information against
single or multiple bit errors. SRAM memories represent main field of ECC usage, where soft
induced bit flips errors are common and where these problems increase with processes
going to submicron ranges. ECC protection is one of the highly recommended measures of
memory protection in high reliable and safety systems.

There are several conventional algorithms used for ECC protection, single-error-correcting
(SEC) Hamming code, single-error-correcting-double-error-detecting (SEC-DED) modified
Hamming, or SEC-DED Hsiao code. All of these algorithms are based on principle of
extending information bits with so called check bits in a way that bit error on reception is
identified and corrected in case of one bit error or detected in case of two errors.

1.1 ECC principle
Set of information symbols (data), where any bit error in one symbol leads to another valid,
but wrong symbol, is transformed to another set of code words by extending information bits
with check bits. The size of new code set is higher than the size of original one. It gives an
option to map original information symbols to code words with specific characteristic like
Hamming distance specifying number of bits in which these code words differ.

1.2 Number of check bits
There is a minimum number of check bits that are needed for SEC-DED protection. Table 1
shows relations between data width and number of check bits.

Table 1. SEC-DED code - number of check bits needed

Data width Number of check bits

16 6

32 7

64 8

ECC on SPC560x microcontroller family AN4276

6/21 DocID024408 Rev 2

2 ECC on SPC560x microcontroller family

SPC560x microcontroller family implements ECC mechanism for all its memories, RAM,
Code Flash and Data Flash. Each memory has its own ECC block that calculates parity bits
with each write access and checks data validity with each read access where 1-bit
correction is done automatically if needed. Decode result is reported out of the ECC module
and collected in ECSM module and in parallel in Flash modules for Flash ECC errors.
General scheme is shown in Figure 1.

Figure 1. ECC block scheme

2.1 RAM ECC implementation
Data are protected on 32-bit word boundaries with seven check bits. It means that 39-bits
are stored on write access and checked on read access.

7-bit check bits are calculated for whole 32-bits that have consequence for 8 or 16-bit
accesses where the content of the requested address is read and checked first then merged
with modified bytes, then ECC is calculated for whole 32-bit word and written back to
memory.

From that reason of read-modify-write operations, access time can vary depending on
current and previous operation as shown in Table 2.

Encoder

Decoder

wdata
m-bits

syndrome
k-bits

rdata_d

m-bitsrdata
m-bits

Bit
correction
muxing

R
A

M
re

ad
-m

od
ify

-w
rit

e
m

-b
its

System
bus

wdata_mem
m+k bits

rdata_mem

m+k
bits

Memory
bus

ECC block

ECSM module

Table 2. SRAM timing

Current operation Previous operation Number of wait states required

Read

Idle / Pipelined read 1

8/16/32 bit write

0
(same address)

1
(different address)

DocID024408 Rev 2 7/21

AN4276 ECC on SPC560x microcontroller family

ECC block has impact on SRAM initialization after power-up or destructive resets where
ECC check bits may not correspond to data content and has to be recalculated. It means
that whole memory must be written with 32-bit write accesses. Otherwise read access to
ECC non-initialized area will trigger ECC exceptions.

2.2 Code and Data Flash memory ECC implementation
Differently from RAM, Flash memories are protected on 64-bit word boundaries with eight
check bits. Because of the nature of the Flash memory that enables programming memory
bits only in one direction from logical one to logical zero whole 64-bits should be
programmed at once. Reprogramming same word with different value may lead to different
ECC check bit pattern that would cause reprogramming error.

Such limitation of bit reprogramming in the same location widely used in EEPROM
emulation can be a problem. Therefore ECC scheme implemented in Flash memories is
slightly modified to support such features but in a limited manner. There are few data
patterns selected from the whole set of available codes that do not lead to change of ECC
check bit vector, see Table 3. Using such words can be used in EEPROM emulation
software to change status of data sets or sector status information in the same address
location.

Each Flash module contains status bits reflecting ECC check result for each read access.
ECC hardware sets these bits whenever there is an ECC error. They are cleared from
application software. Seeing status bit set means that there was an error in one of the read
memory accesses occurring between last and current status bit check.

Pipelined read Read 0

8/16/ bit write

Idle / Read 1

Pipelined 8/16 bit write
32 bit write

2

8/16 bit write
0

(same address)

Pipelined 8/16/32 bit write 8/16/32 bit write 0

32 bit write Idle / 32 bit write / Read 0

Table 2. SRAM timing (continued)

Current operation Previous operation Number of wait states required

Table 3. Flash codes with the same syndrome

Double word

0xFFFF_FFFF_FFFF_FFFF

0xFFFF_FFFF_FFFF_0000

0xFFFF_FFFF_0000_0000

0xFFFF_0000_0000_0000

0x0000_0000_0000_0000

ECC on SPC560x microcontroller family AN4276

8/21 DocID024408 Rev 2

2.3 ECSM module
A part of Error Correction Status Module is dedicated to collecting ECC information reported
by memories and underlying bus system. It provides set of registers storing extended
information about last ECC fault signaled by status register ESR.

ECSM module differentiates between RAM and Flash memories, where Code and Data
Flash memories are merged and signaled as one Flash ECC fault. Code analyzing from
which memory the fault comes has to use FEAR register storing the address and to bind it to
the correct Flash region.

Table 4. ECSM module register set

Register Description Register Description

ECR ECC Configuration FEDR Flash ECC Data

ESR ECC Status REAR RAM ECC Address

EEGR ECC Error Generation RESR RAM ECC Syndrome

FEAR Flash ECC Address REMR RAM ECC Master

FEMR Flash ECC Master Number REAT RAM ECC Attributes

FEAT Flash ECC Attributes REDR RAM ECC Data

DocID024408 Rev 2 9/21

AN4276 ECC error hardware exceptions

3 ECC error hardware exceptions

There are two types of ECC fault notifications that are generated by hardware of SPC650x
microcontroller.

• ECSM module interrupts

• Exceptions events of the core

3.1 ECSM module interrupts
ECSM module interrupt can be generated in the case of both kinds of ECC faults, 1-bit and
2-bit, and they are further distinguished for RAM and Flash memory. This interrupt belongs
among external peripheral interrupts that are linked to IVOR4 vector. Figure 2 shows block
scheme of ECSM interrupt routing in the microcontroller.

All interrupts that can be generated by ECSM module are configurable and can be masked
by the user in ECR register.

Figure 2. ECSM interrupt generation

3.2 Core exceptions
In all cases, non-correctable ECC errors that occur during instruction fetch or data read
cause generation of core exceptions because of bus transaction errors between Z0 core
and given memory target. Core exception events cannot be masked and should be handled
properly to solve the issue.

Several exceptions can be generated based on type of memory access, instruction fetch or
data fetch, and configuration of machine state register MSR, see Table 5.

Single bit interrupts does not generate core exceptions, they can be caught by enabled
ECSM interrupts. Not all non-correctable ECC errors are signaled by core exceptions like
ECC error during discarded not taken branch fetch, but they are signaled by ECSM module.

ECC config reg

ECC status reg

&

ECC catch
registers

INTC
module

IVOR4 vector

External interrupt
to Z0 core

Z0 coreECSM module

1-bit ECC fault

Non-correctable
ECC fault

1-bit ECC fault

Non-correctable
ECC fault

RAM
memory

CFlash
/ Dflash
memory

Interrupt
Handler

ECC error hardware exceptions AN4276

10/21 DocID024408 Rev 2

From the Table 5 it is visible that ECC core exception system provides three priority
notification levels. Application has several trials to overcome the ECC error if it is possible.
Figure 3 shows an example of such exception flow.

Figure 3. Example of core exception flow

Table 5. Non-correctable ECC exceptions

MSR register bits
Access type Result / exception

EE ME

0 0 Instruction or data Enter Checkstop state

0 1 Instruction or data IVOR1 (Machine check interrupt)

1 x Data IVOR2 (Data storage interrupt)

1 x Instruction IVOR3 (Instruction storage interrupt)

Running application
MSR.EE = 1
MSR.ME = 1

IVOR2 Interrupt
Handler

MSR.EE = 0
MSR.ME = 1

ECC non-correctable error
Data storage

IVOR1 Interrupt
Handler

MSR.EE = 0
MSR.ME = 0

ECC non-correctable error
Instruction storage

ECC non-correctable error
Instruction storage

CHECKSTOP
state

RESET
(default setting in Reset Module)

Standard non-faulty application
operations

(like reading data from the flash
memory)

ECC error obtained during data
read from the flash memory
(first level of ECC handling,
similar to standard external

interrupt hanling in this case)

More severe ECC error occurred
during instruction fetch

(application tries to recover , like
safe termination of the system)

Another ECC error during
instruction fetch in IVOR1

handler puts microcontroller to
CHECKSTOP state where

microcontroller does not know
what to do, therefore stops.

Entering CHECKSTOP state
leads to Reset signal generation

on SPC560x microcontrollers
(reset configuration of Reset

module)

DocID024408 Rev 2 11/21

AN4276 ECC exception handling

4 ECC exception handling

As seen above, microcontroller always generates one of the exceptions for non-correctable
ECC errors depending on the EE and ME bits setting in the MSR register. Proper software
handlers should be placed on IVOR2, IVOR3 and IVOR1 exception vectors.

Z0 core used on SPC560x microcontrollers adds additional complexity to the exception
handling mixing several different exception causes to one vector, which means that software
handler has to find the reason of the interrupt first. IVOR2 and IVOR3 exceptions merge
following causes

• ECC non-correctable errors (IVOR2 and IVOR3)

• MPU access faults (IVOR2 and IVOR3)

• Register protection violation (IVOR2)

General software flow of the exception handler IVOR2 and IVOR3 with focus on ECC
processing is shown in Figure 4. IVOR1 can differ in a way that having this exception
(machine check) means that system recovery is hardly possible and system should safely
terminate.

Figure 4. General IVOR2/3 handler software flow

IVOR2/3 handler start

Read ECSM.ESR register

RNCE or FNCE

Return back and continue
to check other exception

reasons

RAM or Flash memory

Read ECSM.FEAR register

Code or Data flash

Return back and finish
exception handler.

Clear ECSM.FNCE flag Clear ECSM.RNCE flag

NO YES

FLASH RAM

CODE DATA

Take appropriate Code flash
ECC error action

(Most probably safe system
termination)

Take appropriate Data flash
ECC error action.

(Most probably report this
error and continue in system

operations)

Take appropriate RAM ECC
error action.

(Most probably safe system
termination in case of fault in

used RAM area)

ECC exception handling AN4276

12/21 DocID024408 Rev 2

4.1 RAM ECC error action
It is up to the system requirements what to do in case of non-correctable ECC error during
read access to RAM memory. Handler can decide upon analysis of additional ECSM
registers, like ECSM.REAR register determining RAM address. If the application considers
such event as critical it is up to the application to terminate the system in the managed way.
To clear non-correctable ECC error in the memory means to overwrite whole 32-bit word of
affected RAM cell with a new value that refreshes data and ECC value.

4.2 Code Flash ECC error action
Criticality of non-correctable ECC error from Code Flash memory depends on type of the
access. Error during the instruction fetch represents critical situation and can be taken as
critical event requiring system termination.

ECC error during data access can or cannot represent critical event depending on system
implementation, like data redundancy etc. In such case error action depends on system
design.

4.3 Data Flash ECC error action
Non-correctable ECC exception coming from data Flash accesses can happen regularly
and may not represent critical events especially when data Flash memory is used for
EEPROM emulation. In such case it is desired to continue the program operation and let
application software to solve the ECC data error.

In principle there are two scenarios how error handler, IVOR2 in this case, can let
application software to continue its flow.

• Continue with successive instruction of the read function

• Continue from known address in the read function

Both scenarios are based on SRR0 register modification which changes effective address
where to continue once the handler returns back by rfi instruction. Modification of SRR0
register is necessary because it is loaded by effective address of the instruction that caused
the exception, which means that using the original value of SRR0 would cause execution of
the same instruction accessing corrupted memory cell once returning from the handler.

4.3.1 Continue with successive instruction of the read function

Target is to continue with the instruction that follows the instruction reading the data from
Flash memory like in Figure 5.

DocID024408 Rev 2 13/21

AN4276 ECC exception handling

Figure 5. Pseudo-Code for next instruction handler flow

Because of variable length instruction encoding, handler has to decode the length of the
instruction on the address stored in SRR0 register. It is done by means of analyzing
OPCODE of the instruction that can reveal the actual length, 16 or 32-bit. Once the length is
known value of SRR0 will be increased by the computed length.

Algorithm to find the instruction length for Z0 core is shown in Figure 6, where first six bits of
the first byte represents a primary OPCODE. Bits are in big endian form, where the bit 0 in
the leftmost bit in the word.

Figure 6. Instruction primary OPCODE decoding

Next instruction decoding approach has an advantage that it returns exactly to next
instruction in the application function which caused the ECC error regardless which function
caused the error. Later in the function code can be check of data validity.

Disadvantage can be processing time and exception load if for example function reads
multiple data bytes in the loop and checks for the error after that. Such loop will generate
ECC exception for each read where the data are corrupted.

4.3.2 Continue from known address in the read function

It is similar to the previous approach of next instruction decode, but return from the error
handler is to a known symbol in the function that can cause the ECC data access fault
without need of instruction decode like in Figure 7.

Application function FCE1()

Value = ReadDataFlashWord(addr)
Buffer[i] = StoreValue

EndOfFunction

Z0 core stores SRR0/SRR1

Start of handler execution

Reason found

Decode address of next instruction
(&StoreValue) and move it to SRR0

Clear the ECC error flag

Finish handler (rfi)

Z0 core restores MSR (SRR1) and
load PC counter with value of SRR0

IVOR2 exception (ECC on data flash access)

instruction = Read
content of address
given by SRR0 reg

instruction
Bit 3

SRR0 = SRR0 + 2

instruction
Bit 0

SRR0 = SRR0 + 4

‘0’ ‘1’

‘1’

‘0’16-bit
instruction

32-bit
instruction

ECC exception handling AN4276

14/21 DocID024408 Rev 2

Figure 7. Pseudo Code for known address jump

An advantage of this approach is that ECC error is immediately found and possible read
accesses stopped. This can save some time and exception load when reading long buffers
without immediate error check.

The disadvantage is that there must be only one function that can cause ECC error. It
means that in whole application there is just one place where data Flash is read. It is
strongly dependent on software implementation.

4.4 Clearing error flags
ECC error flags in the ECSM module should be cleared for recoverable scenarios in order to
enable proper exception handling for other causes, like register protection etc. Other reason
for clearing ECSM status bits is the property of the ECSM behavior where new ECC error
overwrites the old information, because there is only one set of registers storing extended
information. The recommendation is to clear these flags always, even in the case of non-
recoverable situations.

Application function FCE1()

Value = ReadDataFlashWord(addr)
Buffer[i] = StoreValue

EndOfFunction

Z0 core stores SRR0/SRR1

Start of handler execution

Reason found

Move ECC_error_check symbol to
SRR0 register

Clear the ECC error flag

Finish handler (rfi)

Z0 core restores MSR (SRR1) and
load PC counter with value of SRR0

IVOR2 exception (ECC on data flash access)

ECC_error_check:

DocID024408 Rev 2 15/21

AN4276 Application software notes

5 Application software notes

This chapter discusses some application aspects and areas that are linked to ECC
protection mechanism implemented on SPC560x microcontrollers.

5.1 RAM memory checks
SEC-DED ECC mechanism provides meaningful protection against soft errors. But to use
benefits of the ECC protection application support is needed. The list bellow shows the main
points.

• Configure ECSM module to report 1-bit RAM ECC errors

• Enable interrupt handling from ECSM module

• Read regularly content of the RAM memory, that triggers ECC check

• Correct any single bit error caught by ECC in the interrupt

Each 1-bit ECC error in the RAM memory shall be caught and corrected by the application.
The reason is to prevent accumulation of several 1-bit errors that can lead to non-
correctable error with potential undesired system shutdown.

Corrective action is based on writing back the corrected data value to the affected address.
Needed information is stored in ECSM registers, where affected address cell is given by
REAR register and corrected value by REDR register.

Important thing is that ECC module does not check memory content automatically, but has
to be activated by explicit read accesses. There are several possible approaches like
reading the memory content piece by piece from the software function or using DMA
channel to scan the memory on background. Method selected depends on system
requirements and hardware features on particular SPC560x microcontrollers.

5.2 Operating System (OS) exception handling
Whenever operating system is used it usually contains predefined exception handling
implementation for most of exception vectors for given family of microcontrollers. Example
can be handlers for external interrupts coming from system timer, system call handler or
memory protection handlers if memory protection is supported by the microcontroller.

Care must be taken when microcontroller has more exception events assigned to shared
vectors like in case of ECC, register protection and memory protection on SPC560x
microcontroller family and not all are served by the OS handler. In such case standard OS
handlers should give the user support to provide its own implementation and prioritization
for these additional exception causes. ECC errors are of particular importance here.
Figure 8 shows an example of such scheme.

Application software notes AN4276

16/21 DocID024408 Rev 2

Figure 8. OS exception handling with user hook

5.3 Flash memory drivers
Flash driver can easily find if data read from the memory are correct or there was a non-
correctable ECC error by reading Flash module control register MCR. There are two status
bits linked to ECC events, MCR.EDC bit signaling single bit correction and MCR.EER bit
signaling presence of non-correctable EC error during read operation. It is up to the driver
and application how it processes these events.

In any case, low level exception events are enabled and activated whenever there is a non-
correctable EC error during read access. It can have impact on processing time needed to
read the data from Flash memory by the driver.

Driver should not rely on ECSM ECC status bits that are used and controlled in low level
exception handlers and which are completely independent from the Flash driver.

There are several methods to read multiple data with ECC checking where each method
has its pros and cons.

• Check ECC immediately after each read access

• Check ECC after whole data buffer is read

• Low level exception handler linked to the driver ECC check

IVOR2 exception ie.
- ECC
- MPU
- Register protection

OS IVOR2 Handler() User IVOR2 Handler()

ECC errors

Try to correct the
ECC issue

User IVOR2
Handler() call

Shutdown

Return
UserSolved value

Shutdown

Other reason of
user interest

Return
UserNotSolved value

YES NO

NO

UserSolved

Continue with
standard OS

handler

YES

NO

YESNO

DocID024408 Rev 2 17/21

AN4276 Application software notes

5.3.1 Check ECC immediately after each read access

Figure 9. Example of Immediate ECC check during read function

Advantage

Recognition of corrupted data in the Flash memory is immediate after the first read access.
It can help to decrease time in the case where a lot of memory words are corrupted, like
power drop during sector erase operation.

Disadvantage

ECC check needs some processing time for each read access. This increases processing
time of read operation in general.

5.3.2 Check ECC after whole data buffer is read

Figure 10. Example of ECC check after whole buffer is read

Advantage

Standard read buffer operation is not delayed with ECC check after each read access. This
gives the standard performance in case of good memory sector.

ReadBuffer ()
 error = 0;
 for (i=0; i < length ; ++i)
 {
 buffer [i] = *(mem_ptr + i);

if (MCR.EER == 1)
 {
 error = 1;
 break ;
 }
 }
 if (error)
 {
 DoErrorAction ();
 end funciton ;
 }
 ...

IVOR2 Handler
 if (ECSM.FNCE)
 {
 if (DataFlash == TRUE)
 {
 SRR 0 <= change to next instruction ;
 return from Handler ;
 }
 }

1x time

ReadBuffer ()
 error = 0;
 for (i=0; i < length ; ++i)
 {
 buffer [i] = *(mem_ptr + i);
 }
 if (MCR.EER)
 {
 DoErrorAction ();
 end funciton ;
 }
 ...

IVOR2 Handler
 if (ECSM.FNCE)
 {
 if (DataFlash == TRUE)
 {
 SRR 0 <= change to next instruction ;
 return from Handler ;
 }
 }

i times

Application software notes AN4276

18/21 DocID024408 Rev 2

Disadvantage

Any read access with ECC error generates low level exception that runs on background so
many times as there are items in the loop. It can have impact on time needed for initial read
of a sector with many corrupted cells.

5.3.3 Low level exception handler link to the driver ECC check

Figure 11. Example of Low level link to the driver ECC check

Advantage

In case of an ECC error during read access, code execution of Read function immediately
moves to ECC check part, which should find that the data are corrupted. There is the same
performance during errorless operation as well as with ECC errors.

Disadvantage

Because of using exported symbol in the low level exception handler, this symbol should be
unique in the whole application. It means that there is only one place in the application and
the driver that read from the Flash memory.

ReadBuffer ()
 error = 0;
 for (i=0; i < length ; ++i)
 {
 buffer [i] = *(mem_ptr + i);
 }
ECC_check:
 if (MCR.EER)
 {
 DoErrorAction ();
 end funciton ;
 }
 ...

IVOR2 Handler
 if (ECSM.FNCE)
 {
 if (DataFlash == TRUE)
 {
 SRR 0 <= change address to ECC _check symbol ;
 return from Handler ;
 }
 }

1x time

DocID024408 Rev 2 19/21

AN4276 Document references

Appendix A Document references

1. SPC560D30L1, SPC560D30L3, SPC560D40L1, SPC560D40L3 32-bit MCU family
built on the embedded Power Architecture® (RM0045, DocID16886)

2. SPC560B40x, SPC560B50x, SPC560C40x, SPC560C50x 32-bit MCU family built on
the embedded Power Architecture® (RM0017, DocID14629)

3. Support microcontrollers SPC560B54x, SPC560B60x and SPC560B64x (RM0037,
DocID15700)

4. SPC564Bxx, SPC56ECxx 32-bit MCU family built on the embedded Power
Architecture® (RM0070, DocID18196)

5. SPC560P34/SPC560P40 32-bit MCU family built on the embedded Power
Architecture® (RM0046, DocID16912)

6. 32-bit MCU family built on the Power Architecture® embedded category for automotive
chassis and safety electronics applications (RM0022, DocID14891)

7. 32-bit MCU family built on the Power Architecture® embedded category for automotive
chassis and safety electronics applications (RM0083, DocID018714)

8. Error Detecting and Error Correcting Codes – Hamming, The Bell Technical Journal
1950

Revision history AN4276

20/21 DocID024408 Rev 2

Revision history

Table 6. Document revision history

Date Revision Changes

21-Mar-2013 1 Initial release.

18-Sep-2013 2 Updated Disclaimer.

DocID024408 Rev 2 21/21

AN4276

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

