20 STERN AVE.
SPRINGFIELD, NEW JERSEY 07081
U.S.A.

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

BLX98

U.H.F. LINEAR POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor primarily intended for use in linear u.h.f. amplifiers of television transposers and transmitters in band IV-V.

Features:

- diffused emitter ballasting resistors for an optimum temperature profile;
- gold metallization ensures excellent reliability.

The transistor has a ¼" capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA

MECHANICAL DATA

R.F. performance in lin	ear amplifier							
mode of operation	fvision MHz	V _{CE}	mA IC	T _h	d _{im} * dB	Posync* W	G _p	
class-A	860	25	850	70	60	> 3,5	> 5,0	
class-A	860	25	850	70	60	typ. 4,0	typ. 5,5	

* Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB), zero dB corresponds to peak sync level.

Torque on nut: min. 0,75 Nm (7,5 kg cm)

max. 0,85 Nm (8,5 kg cm)

9.75 max

26 min

1,52 5 8-32UNC metal plastic plastic 11,4 5,75 max

Dimensions in mm

Diameter of clearance hole in heatsink: max. 4,2 mm. Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

BLX98

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-emitter voltage				
(peak value); $V_{BE} = 0$	[∨] cesm	max.	50	V
open base	VCEO	max.	27	٧
Emitter-base voltage (open collector)	V_{EBO}	max.	3,5	٧
Collector current				
d.c.	Ic	max,	2	Α
(peak value); f > 1 MHz	¹ CM	max.	4	Α
Total power dissipation at T _h = 70 °C	P _{tot}	max.	21,5	W
Storage temperature	T_{stg}	-65 to	+ 200	οС
Junction temperature	Τj	max.	200	оÇ

(1) Second breakdown limit (independent of temperature.

Fig. 2 D.C. SOAR.

Fig. 3 Power derating curve vs. temperature.

THERMAL RESISTANCE (dissipation = 21,25 W; T _{mb}	= 82,75 °C, i.e. T _h = 70	OC).	
From junction to mounting base	R _{th j-mb}	=	5,45 K/W
From mounting base to heatsink	R _{th mb-h}	=	0,6 K/W

. BLX98

CHARACTERISTICS

T _j = 25 °C unless otherwise specified			
Collector-emitter breakdown voltage V _{BE} = 0; I _C = 10 mA	V(BR)CES	>	50 V
open base; I _C = 25 mA	V(BR)CEO	>	27 V
Emitter-base breakdown voltage open collector; IE = 5 mA	V(BR)EBO	>	3,5 V
D.C. current gain* $I_C = 860 \text{ mA}$; $V_{CE} = 25 \text{ V}$	hFE	> typ.	15 40
Collector-emitter saturation voltage* I _C = 500 mA; I _B = 100 mA	V _{CEsat}	typ.	0,25 V
Transition frequency at f = 500 MHz** —IE = 850 mA; VCB = 25 V	f _T	typ.	2,5 GHz
Collector capacitance at f = 1 MHz I _E = I _e = 0; V _{CB} = 25 V	c_c	typ.	24 pF 30 pF
Feedback capacitance at f = 1 MHz i _C = 50 mA; V _{CE} = 25 V	C _{re}	typ.	15 pF
Collector-stud capacitance	C _{cs}	typ.	2 pF

Fig. 5 Typical values; $V_{CE} = 25 \text{ V}$.

- * Measured under pulse conditions: $t_p \le 300~\mu s$; $\delta \le 0.02$. ** Measured under pulse conditions: $t_p \le 50~\mu s$; $\delta \le 0.01$.

BLX98

Fig. 4 Maximum thermal resistance from junction to heatsink as a function of power dissipation, with heatsink and junction temperature as parameters. ($R_{th\ mb-h} = 0.6\ K/W.$)

Example

Nominal class-A operation (without r.f. signal): V_{CE} = 25 V; I_{C} = 850 mA; T_{h} = 70 °C.

Fig. 4 shows: R $_{th\ j\ h}$ max. 6,05 K/W $_{T_{j}}$ max. 200 ^{o}C

Typical device: $R_{th\ j-h}$ typ. 5,35 K/W T_j typ. 183 °C