20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960 #### BLX98 ## U.H.F. LINEAR POWER TRANSISTOR N-P-N silicon planar epitaxial transistor primarily intended for use in linear u.h.f. amplifiers of television transposers and transmitters in band IV-V. #### Features: - diffused emitter ballasting resistors for an optimum temperature profile; - gold metallization ensures excellent reliability. The transistor has a ¼" capstan envelope with a moulded cap. All leads are isolated from the stud. #### QUICK REFERENCE DATA **MECHANICAL DATA** | R.F. performance in lin | ear amplifier | | | | | | | | |-------------------------|----------------|-----------------|----------|----------------|-------------------------|--------------|----------------|--| | mode of operation | fvision
MHz | V _{CE} | mA
IC | T _h | d _{im} *
dB | Posync*
W | G _p | | | class-A | 860 | 25 | 850 | 70 | 60 | > 3,5 | > 5,0 | | | class-A | 860 | 25 | 850 | 70 | 60 | typ. 4,0 | typ. 5,5 | | * Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB), zero dB corresponds to peak sync level. # Torque on nut: min. 0,75 Nm (7,5 kg cm) max. 0,85 Nm (8,5 kg cm) 9.75 max 26 min 1,52 5 8-32UNC metal plastic plastic 11,4 5,75 max Dimensions in mm Diameter of clearance hole in heatsink: max. 4,2 mm. Mounting hole to have no burrs at either end. De-burring must leave surface flat; do not chamfer or countersink either end of hole. When locking is required an adhesive is preferred instead of a lock washer. NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders. ## BLX98 #### RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) | Collector-emitter voltage | | | | | |---|-------------------|--------|-------|----| | (peak value); $V_{BE} = 0$ | [∨] cesm | max. | 50 | V | | open base | VCEO | max. | 27 | ٧ | | Emitter-base voltage (open collector) | V_{EBO} | max. | 3,5 | ٧ | | Collector current | | | | | | d.c. | Ic | max, | 2 | Α | | (peak value); f > 1 MHz | ¹ CM | max. | 4 | Α | | Total power dissipation at T _h = 70 °C | P _{tot} | max. | 21,5 | W | | Storage temperature | T_{stg} | -65 to | + 200 | οС | | Junction temperature | Τj | max. | 200 | оÇ | | | | | | | (1) Second breakdown limit (independent of temperature. Fig. 2 D.C. SOAR. Fig. 3 Power derating curve vs. temperature. | THERMAL RESISTANCE (dissipation = 21,25 W; T _{mb} | = 82,75 °C, i.e. T _h = 70 | OC). | | |--|--------------------------------------|------|----------| | From junction to mounting base | R _{th j-mb} | = | 5,45 K/W | | From mounting base to heatsink | R _{th mb-h} | = | 0,6 K/W | # . BLX98 ### CHARACTERISTICS | T _j = 25 °C unless otherwise specified | | | | |---|--------------------|-----------|----------------| | Collector-emitter breakdown voltage
V _{BE} = 0; I _C = 10 mA | V(BR)CES | > | 50 V | | open base; I _C = 25 mA | V(BR)CEO | > | 27 V | | Emitter-base breakdown voltage open collector; IE = 5 mA | V(BR)EBO | > | 3,5 V | | D.C. current gain*
$I_C = 860 \text{ mA}$; $V_{CE} = 25 \text{ V}$ | hFE | >
typ. | 15
40 | | Collector-emitter saturation voltage* I _C = 500 mA; I _B = 100 mA | V _{CEsat} | typ. | 0,25 V | | Transition frequency at f = 500 MHz** —IE = 850 mA; VCB = 25 V | f _T | typ. | 2,5 GHz | | Collector capacitance at f = 1 MHz
I _E = I _e = 0; V _{CB} = 25 V | c_c | typ. | 24 pF
30 pF | | Feedback capacitance at f = 1 MHz
i _C = 50 mA; V _{CE} = 25 V | C _{re} | typ. | 15 pF | | Collector-stud capacitance | C _{cs} | typ. | 2 pF | Fig. 5 Typical values; $V_{CE} = 25 \text{ V}$. - * Measured under pulse conditions: $t_p \le 300~\mu s$; $\delta \le 0.02$. ** Measured under pulse conditions: $t_p \le 50~\mu s$; $\delta \le 0.01$. # BLX98 Fig. 4 Maximum thermal resistance from junction to heatsink as a function of power dissipation, with heatsink and junction temperature as parameters. ($R_{th\ mb-h} = 0.6\ K/W.$) #### Example Nominal class-A operation (without r.f. signal): V_{CE} = 25 V; I_{C} = 850 mA; T_{h} = 70 °C. Fig. 4 shows: R $_{th\ j\ h}$ max. 6,05 K/W $_{T_{j}}$ max. 200 ^{o}C Typical device: $R_{th\ j-h}$ typ. 5,35 K/W T_j typ. 183 °C