GENERAL DESCRIPTION

HT2269 is a highly integrated current mode PWM control IC optimized for high performance, low standby power and cost effective offline flyback converter applications.

PWM switching frequency at normal operation is externally programmable and trimmed to tight range. At no load or light load condition, the IC operates in extended 'burst mode' to minimize switching loss. Lower standby power and higher conversion efficiency is thus achieved.

VDD low startup current and low operating current contribute to a reliable power on startup design with HT2269. A large value resistor could thus be used in the startup circuit to minimize the standby power.

The internal slope compensation improves system large signal stability and reduces the possible sub-harmonic oscillation at high PWM duty cycle output. Leading-edge blanking on current sense input removes the signal glitch due to snubber circuit diode reverse recovery. This greatly helps to reduce the external component count and system cost in application.

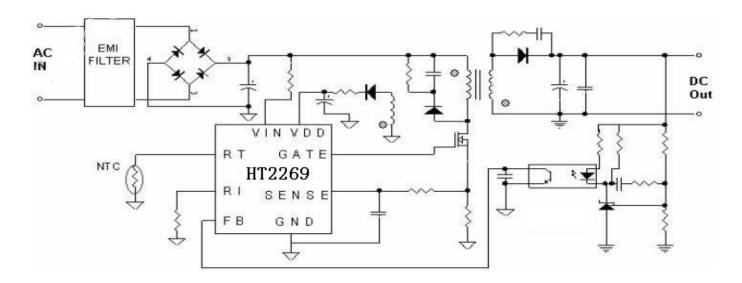
HT2269 offers complete protection coverage with automatic self-recovery feature including Cycle-by-Cycle current limiting (OCP), over load protection (OLP), over temperature protection (OTP), VDD over voltage protection (OVP) and under voltage lockout (UVLO). The Gate-drive output is clamped at 18V to protect the power MOSFET.

In HT2269, OCP threshold slope is internally optimized to reach constant output power limit over universal AC input range.

Excellent EMI performance is achieved frequency shuffling technique together with soft switching control at the totem pole gate drive output.

The tone energy at below 20KHZ is minimized in operation. Consequently, audio noise erformance is greatly improved. HT2269 is offered in both SOP-8 and DIP-8 packages.

FEATURES

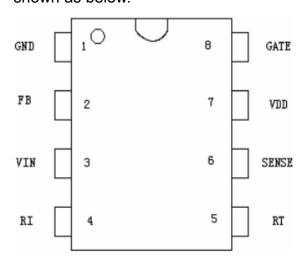

- Extended Burst Mode Control For Improved Efficiency and Minimum Standby Power Design.
- Audio Noise Free Operation
- External Programmable PWM Switching Frequency
- Internal Synchronized Slope Compensation
- Low VIN/VDD Startup Current(6.5uA) and Low Operating Current (2.3mA)
- Leading Edge Blanking on Current Sense Input
- Complete Protection Coverage With Auto Self-Recovery
- External Programmable Over Temperature Protection (OTP)
- ◆ On-chip VDD OVP for System OVP
- Under Voltage Lockout with Hysteresis (UVLO)
- ◆ Gate Output Maximum Voltage Clamp (18V)
- Line Compensated Cycle-by-Cycle
 Over-current Threshold Setting For Constant
 Output Current Limiting Over Universal Input
 Voltage Range (OCP)
- ◆ Over Load Protection. (OLP)

APPLICATIONS

Offline AC/DC flyback converter for

- Laptop Power Adaptor
- PC/TV/Set-Top Box Power Supplies
- Open-frame SMPS
- Battery Charge

TYPICAL APPLICATION



GENERAL INFORMATION

Pin Configuration

The HT2269 is offered in DIP and SOP packages

shown as below.

Ordering Information

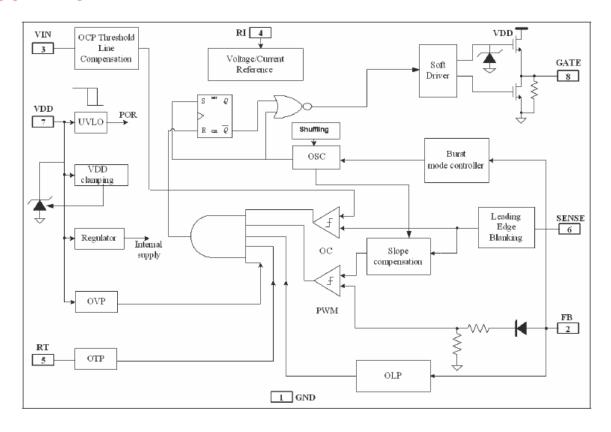
Part Number	Description
	With Frequency Shuffling,
HT2269AP	DIP8, Pb-free, Have OVP
	With Frequency Shuffling,
HT2269CP	SOP8, Pb-free, Have OVP

Package Dissipation Rating

Package	RθJA (°C/W)
DIP8	90
SOP8	150

Absolute Maximum Ratings

Parameter	Value
VDD/VIN DC Supply Voltage	30 V
VDD Zener Clamp	VDD_Clamp+
Voltage ^{Note}	0.1V
VDD Clamp Continuous	10 mA
Current	
V _{FB} Input Voltage	-0.3 to 7V
V _{SENSE} Input Voltage to ense	-0.3 to 7V
Pin	
V _{RT} Input Voltage to RT Pin	-0.3 to 7V
V _{RI} Input Voltage to RI Pin	-0.3 to 7V
Min/Max Operating Junction	-20 to 150 °C
Temperature T _J	
Min/Max Storage	-55 to 150 °C
Temperature T _{stg}	
Lead Temperature	260°C
(Soldering,10secs)	


Note: VDD_Clamp has a nominal value of 35V.

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.

TERMINAL ASSIGNMENTS

Pin Num	Pin Name	I/O	Description
1	GND	Р	Ground
2	FB	I	Feedback input pin. PWM duty cycle is determined by voltage level into this pin and current-sense signal level at Pin 6.
3	VIN	I	Connected through a large value resistor to rectified line input for Startup IC supply and line voltage sensing.
4	RI	I	Internal Oscillator frequency setting pin. A resistor connected between RI and GND sets the PWM frequency.
5	RT	1	Temperature sensing input pin. Connected through a NTC resistor to GND.
6	SENSE	I	Current sense input pin. Connected to MOSFET current sensing resistor node.
7	VDD	Р	DC power supply pin.
8	GATE	0	Totem-pole gate drive output for power MOSFET.

BLOCK DIAGRAM

RECOMMENDED OPERATING CONDITION

Symbol	Parameter	Min	Max	Unit
VDD	VDD Supply Voltage	12	23	V
RI	RI Resistor Value	24	31	Kohm
T _A	Operating Ambient Temperature	-20	85	°C

ESD INFORMATION

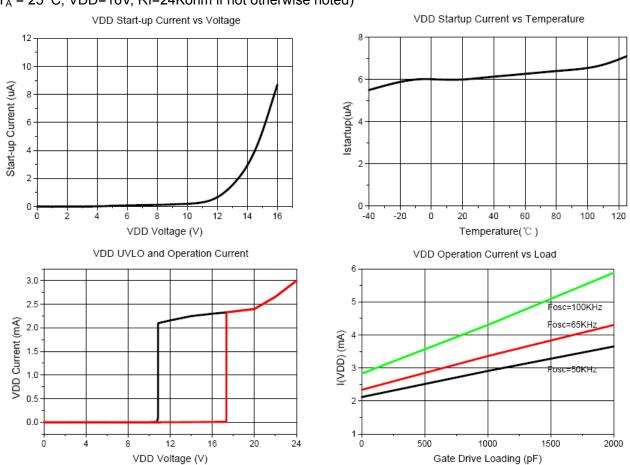
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
HBM ^{Note}	Human Body Model	MIL-STD		3		KV
	on All Pins Except					
	VIN and VDD					
MM	Machine Model on	JEDEC-STD		250		V
	All Pins					

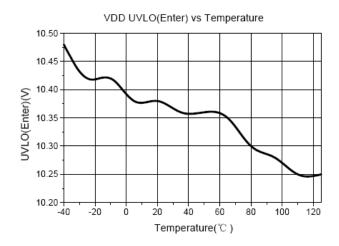
Note: HBM all pins pass 3KV except High Voltage Input pin. The details are VIN passes 1kV, VDD passes 1.5KV, all other I/Os pass 3KV. In system application, High Voltage Input pin is either a high impedance input or connected to a cap. The lower rating has minimum impacts on system ESD performance.

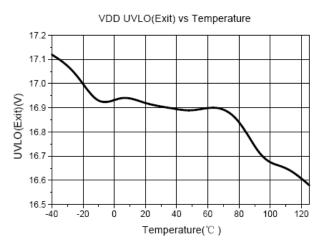
ELECTRICAL CHARACTERISTICS

(T_A = 25^OC, VDD=16V, RI=24Kohm if not otherwise noted)

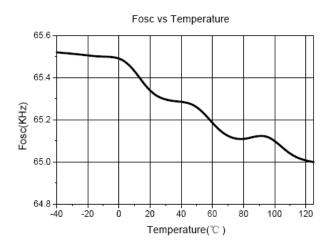
Parameter	Test Conditions	Min	Тур	Max	Unit
D)					l
VDD Start up Current	VDD =15V, Measure		6.5	20	uA
	current into VDD				
Operation Current	V _{FB} =3V		2.3		mA
VDD Under Voltage		9.5	10.5	11.5	V
Lockout Enter					
VDD Under Voltage		16	17	18	V
Lockout Exit					
(Startup)					
VDD Over Voltage		23.5	25	26.5	V
Protection Enter					
VDD Over Voltage		21.5	23.2	24.7	V
Protection Exit					
(Recovery)					
OVP Hysteresis	OVP(ON)-OVP(OFF)		2		V
VDD OVP			80		uSec
Debounce time					
V _{DD} Zener Clamp	I(V _{DD}) = 5mA		36		V
Voltage					
tion(FB Pin)		<u> </u>			
PWM Input Gain	$\Delta V_{FB} / \Delta V_{CS}$		2.6		V/V
V _{FB} Open Voltage			6		V
FB pin short circuit	Short FB pin to GND,		0.80		mA
current	measure current				
Zero Duty Cycle FB				0.95	V
Threshold Voltage					
Burst Mode FB			1.7		V
Threshold Voltage					
Power Limiting FB			4.4		V
Threshold Voltage					
Power limiting			80		mSec
Debounce Time					
Input Impedance			7.5		Kohm
	VDD Start up Current Operation Current VDD Under Voltage Lockout Enter VDD Under Voltage Lockout Exit (Startup) VDD Over Voltage Protection Enter VDD Over Voltage Protection Exit (Recovery) OVP Hysteresis VDD OVP Debounce time VDD Zener Clamp Voltage Ition(FB Pin) PWM Input Gain VFB Open Voltage FB pin short circuit current Zero Duty Cycle FB Threshold Voltage Burst Mode FB Threshold Voltage Power Limiting Poebounce Time	VDD Start up Current VDD =15V, Measure current into VDD Operation Current V _{FB} =3V VDD Under Voltage Lockout Enter VDD Under Voltage Lockout Exit (Startup) VDD Over Voltage Protection Enter VDD Over Voltage Protection Exit (Recovery) OVP Hysteresis OVP(ON)-OVP(OFF) VDD OVP Debounce time V _{DD} Zener Clamp I(V _{DD}) = 5mA Voltage tion(FB Pin) PWM Input Gain Δ V _{FB} /ΔV _{cs} V _{FB} Open Voltage FB pin short circuit current Short FB pin to GND, measure current Zero Duty Cycle FB Threshold Voltage Burst Mode FB Threshold Voltage Power Limiting FB Threshold Voltage Power limiting Debounce Time	VDD Start up Current	VDD Start up Current VDD =15V, Measure current into VDD 2.3	VDD Start up Current VDD =15V, Measure current into VDD Current VDD =15V, Measure current into VDD Current Current VDD Current Current

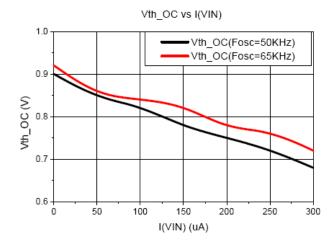

Current Sense Ir	nput(Sense Pin)				HT2	269
T_blanking	Sense Input Leading			300		nS
	Edge Blanking Time					
Z _{SENSE} _IN	Sense Input			39		Kohm
	Impedance					
T _D OC	Over Current	CL=1nf at GATE,		120		nSec
	Detection and					
	Control Delay					
V _{TH} _OC_0	Current Limiting	I(VIN) = 0uA	0.85	0.90	0.95	V
	Threshold at No					
	Compensation					
V _{TH} _OC_1	Current Limiting	I(VIN) = 150uA		0.81		V
	Threshold at					
	Compensation					
Oscillator	1	- 1	<u> </u>			l
Fosc	Normal Oscillation		60	65	70	KHZ
	Frequency					
Δf_Temp	Frequency	-20°C to 100°C		2		%
	Temperature					
	Stability					
Δf_VDD	Frequency Voltage	VDD = 12-25V		2		%
	Stability					
RI_range	Operating RI Range		12	24	60	Kohm
V_RI_open	RI open voltage			2.0		V
F_BM	Burst Mode Base			22		KHZ
	Frequency					
DC_max	Maxmum Duty		75	80	85	%
	Cycle					
DC_min	Minimum Duty		-	-	0	%
	Cycle					
Gate Drive Outpo	ut					
VOL	Output Low Level	Io = -20 mA			0.3	V
VOH	Output High Level	Io = +20 mA	11			V
VG_Clamp	Output Clamp	VDD=20V		18		V
	Voltage Level					
T_r	Output Rising Time	CL = 1nf		120		nSec
T_f	Output Falling Time	CL = 1nf		50		nSec

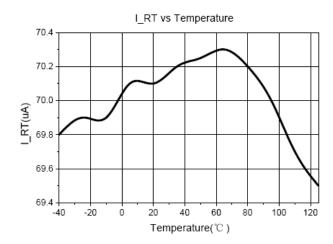

I_RT	Output Current of			70		uA
	RT pin					
V _{TH} _OTP	OTP Threshold		1.0	1.065	1.13	V
	Voltage					
V _{TH} _OTP_off	OTP Recovery			1.165		V
	Threshold Voltage					
T _D OTP	OTP De-bounce			100		uSec
	Time					
V_RT_Open	RT Pin Open			3.5		V
	Voltage					
Frequency Shuffling	,		•			
Δf_OSC	Frequency		-3		3	%
	Modulation range					
	/Base frequency					
Freq_Shuffling	Shuffling Frequency	RI = 24Kohm		32		HZ


CHARACTERIZATION PLOTS


(T_A = 25^OC, VDD=16V, RI=24Kohm if not otherwise noted)







OPERATION DESCRIPTION

The HT2269 is a highly integrated PWM controller IC optimized for offline flyback converter applications. The extended burst mode control greatly reduces the standby power consumption and helps the design easily meet the international power conservation requirements.

Startup Current and Start up Control

Startup current of HT2269 is designed to be very low so that VDD could be charged up above UVLO(exit) threshold level and device starts up quickly. A large value startup resistor can herefore be used to minimize the power loss yet reliable startup in application. For a typical AC/DC adaptor with universal input range design, a 2 M Ω , 1/8 W startup resistor could be used together with a VDD capacitor to provide a fast startup and yet low power dissipation design solution.

Operating Current

The Operating current of HT2269 is low at 2.3mA. Good efficiency is achieved with HT2269 low operating current together with extended burst mode control schemes.

Frequency shuffling for EMI improvement

The frequency Shuffling/jittering (switching frequency modulation) is implemented in HT2269. The oscillation frequency is modulated with a internally generated random source so that the tone energy is evenly spread out. The spread spectrum minimizes the conduction band EMI and therefore eases the system design in

meeting stringent EMI requirement.

Burst Mode Operation

At zero load or light load condition, most of the power dissipation in a switching mode power supply is from switching loss on the MOSFET transistor, the core loss of the transformer and the loss on the snubber circuit. The magnitude of power loss is in proportion to the number of switching events within a fixed period of time. Reducing switching events leads to the reduction on the power loss and thus conserves the energy.

HT2269 self adjusts the switching mode according to the loading condition. At from no load to light/medium load condition, the FB input drops below burst mode threshold level (1.8V). Device enters Burst Mode control. The Gate drive output switches only when VDD voltage drops below a preset level and FB input is active to output an on state. Otherwise the gate drive remains at off stateto minimize the switching loss thus reduce thestandby power consumption to the greatest extend. The nature of high frequency switching also reduces the audio noise at any loading conditions.

Oscillator Operation

A resistor connected between RI and GND sets the constant current source to

charge/discharge the internal cap and thus the PWM oscillator frequency is determined. The relationship between RI and switching frequency follows the below equation within the specified RI in Kohm range at nominal loading operational condition.

$$F_{OSC} = \frac{1560}{RI(Kohm)}(Khz)$$

Current Sensing and Leading Edge Blanking

Cycle-by-Cycle current limiting is offered in HT2269 current mode PWM control. The switch current is detected by a sense resistor into the sense pin. An internal leading edge blanking circuit chops off the sense voltage spike at initial MOSFET on state due to snubber diode reverse recovery so that the external RC filtering on sense input is no longer required. The current limit comparator is disabled and thus cannot turn off the external MOSFET during the blanking period. PWM duty cycle is determined by the current sense input voltage and the FB input voltage.

Internal Synchronized Slope Compensation

Built-in slope compensation circuit adds voltage ramp onto the current sense input voltage for PWM generation. This greatly improves the close loop stability at CCM and prevents the sub-harmonic oscillation and thus reduces the output ripple voltage.

Over Temperature Protection

A NTC resistor in series with a regular resistor should connect between RT and GND for temperature sensing and protection. NTC resistor value becomes lower when the ambient temperature rises. With the fixed internal current IRT flowing through the resistors, the voltage at RT pin becomes lower at high temperature. The internal OTP circuit is triggered and shutdown the MOSFET when the sensed input voltage is lower than VTH_OTP.

Gate Drive

HT2269 Gate is connected to the Gate of an external MOSFET for power switch control. Too weak the gate drive strength results in higher conduction and switch loss of MOSFET while too strong gate drive output compromises the EMI. Good tradeoff is achieved through the built-in totem pole gate drive design with right output strength and dead time control. The low idle loss and good EMI system design is easier to achieve with this dedicated control scheme. An internal 18V clamp is added for MOSFET gate protection at higher than expected VDD input.

Protection Controls

Good system reliability is achieved with HT2269's rich protection features including Cycle-by-Cycle current limiting (OCP), Over Load Protection (OLP), over temperature protection (OTP), on-chip VDD over voltage protection (OVP, optional) and

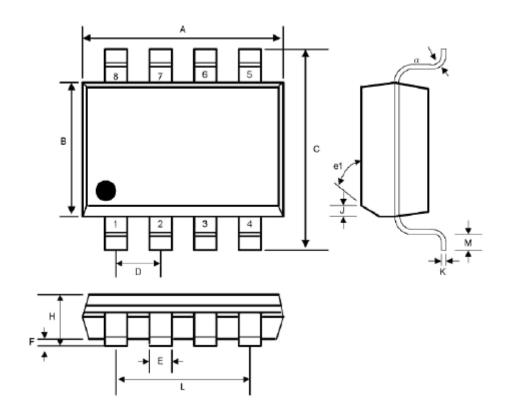
under voltage lockout (UVLO). The OCP

threshold value is self adjusted lower at higher current into VIN pin. This OCP threshold slope adjustment helps to compensate the increased output power limit at higher AC voltage caused by inherent Over-Current sensing and control delay. A constant output power limit is achieved with recommended OCP compensation scheme on HT2269.

At output overload condition, FB voltage is biased higher. When FB input exceeds power limit threshold value for more than 80mS, control circuit reacts to turnoff the

power MOSFET.

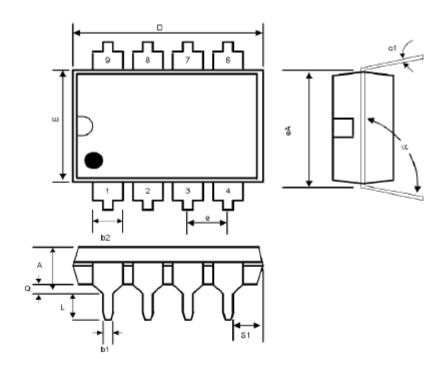
HT2269


Similarly, control circuit shutdowns the power MOSFET when an Over Temperature condition is detected. HT2269 resumes the operation when temperature drops below the hysteresis value.

VDD is supplied with transformer auxiliary winding output. It is clamped when VDD is higher than 35V. MOSFET is shut down when VDD drops below UVLO(enter) limit and device enters power on startup sequence thereafter.

PACKAGE MECHANICAL DATA

HT2269


SOP8 PACKAGE OUTLINE DIMENSIONS

SVMBOI	INCHES		MILLIN	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
A	0.188	0.197	4.80	5.00		
В	0.149	0.158	3.80	4.00	-	
C	0.228	0.244	5.80	6.20	-	
D	0.050	0.050 BSC		1.27 BSC		
E	0.013	0.020	0.33	0.51		
F	0.004	0.010	0.10	0.25	-	
H	0.053	0.069	1.35	1.75		
J	0.011	0.019	0.28	0.48		
K	0.007	0.010	0.19	0.25	-	
M	0.016	0.050	0.40	1.27		
L	0.150 REF		3.81 REF		-	
e1	4:	50	45°		-	
а	\mathbf{o}_0	80	00	80	-	

DIP8 PACKAGE OUTLINE DIMENSIONS

SYMBOL	INCHES		MILLIN	NOTES	
SIMBOL	MIN	MAX	MIN	MAX	NOTES
A	-	0.200	-	5.08	
b1	0.014	0.023	0.36	0.58	-
b2	0.045	0.065	1.14	1.65	-
c1	0.008	0.015	0.20	0.38	-
D	0.355	0.400	9.02	10.16	-
E	0.220	0.310	5.59	7.87	-
e	0.100	0.100 BSC		BSC	-
eA	0.300	0.300 BSC		BSC	
$\mathbf{L}_{:}$	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	+
s1	0.005	-	0.13	-	-
α	90^{0}	1050	90 ⁰	1050	-