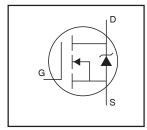


AUTOMOTIVE GRADE

AUIRFL014N


Features

- Advanced Planar Technology
- Low On-Resistance
- Dynamic dV/dT Rating
- 150°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Repetitive Avalanche Allowed up to Tjmax
- Lead-Free, RoHS Compliant
- Automotive Qualified *

Description

Specifically designed for Automotive applications, this Cellular design of HEXFET® Power MOSFETs utilizes the latest processing techniques to achieve low onresistance per silicon area. This benefit combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in Automotive and a wide variety of other applications.

HEXFET® Power MOSFET

V _{(BR)DSS}	55V
R _{DS(on)} max.	0.16Ω
I _D	1.9A

G	D	S
Gate	Drain	Source

Dana mant mumban	Dooks as True	Standard Pack					Oudoughle Bout Neumbou
Base part number	Package Type	Form	Quantity	Orderable Part Number			
AUIRFL014N	SOT-223	Tube	95	AUIRFL014N			
AUINFLU14N	301-223	Tape and Reel	2500	AUIRFL014NTR			

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T_A) is 25°C, unless otherwise specified.

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V [®]	2.7	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V ^⑤	1.9	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V ^⑤	1.5	Α
I _{DM}	Pulsed Drain Current ①	15	
P _D @T _A = 25°C	Power Dissipation (PCB Mount)®	2.1	W
P _D @T _A = 25°C	Power Dissipation (PCB Mount)®	1.0	W
	Linear Derating Factor (PCB Mount)®	8.3	W/°C
V_{GS}	Gate-to-Source Voltage	±20	V
E _{AS}	Single Pulse Avalanche Energy ②	48	mJ
I _{AR}	Avalanche Current ①	1.7	Α
E _{AR}	Repetitive Avalanche Energy ①⑤	0.1	mJ
dv/dt	Peak Diode Recovery dv/dt ^③	5.0	V/ns
TJ	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient (PCB mount, steady state) ^⑤	90	120	°C/W
R _{e,JA}	Junction-to-Ambient (PCB mount, steady state) ®	50	60	C/VV

HEXFET® is a registered trademark of International Rectifier.

^{*}Qualification standards can be found at http://www.irf.com/

Static Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.054		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.16	Ω	V _{GS} = 10V, I _D =1.9A ④
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
gfs	Forward Transconductance	1.6			S	$V_{DS} = 25V, I_D = 0.85A$
I _{DSS}	Drain-to-Source Leakage Current			1.0		$V_{DS} = 44V$, $V_{GS} = 0V$
				25	μA	V _{DS} = 44V, V _{GS} = 0V, T _J = 150°C
I _{GSS}	Gate-to-Source Forward Leakage			100	^	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V

Dynamic Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

•	· · · · · · · · · · · · · · · · · · ·	•			•	•
Q_g	Total Gate Charge		7.0	11		I _D = 1.7A
Q_{gs}	Gate-to-Source Charge		1.2	1.8	nC	$V_{DS} = 44V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		3.3	5.0		V _{GS} = 10V, See Fig 6 and 9 ⊕
t _{d(on)}	Turn-On Delay Time		6.6			$V_{DD} = 28V$
t _r	Rise Time		7.1			I _D = 1.7A
t _{d(off)}	Turn-Off Delay Time		12		ns	$R_G = 6.0 \Omega$
t _f	Fall Time		3.3			$R_D = 16 \Omega$, See Fig.10 \oplus
C _{iss}	Input Capacitance		190			$V_{GS} = 0V$
Coss	Output Capacitance		72		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		33			f = 1.0MHz, See Fig.5

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)	_		1.3		MOSFET symbol pshowing the
I _{SM}	Pulsed Source Current (Body Diode) ①	_		15		integral reverse gp-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 1.7A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		41	61	ns	$T_J = 25^{\circ}C, I_F = 1.7A$
Q _{rr}	Reverse Recovery Charge		64	95	nC	di/dt = 100A/µs ⊕

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- \bigcirc V_{DD} = 25V, starting T_J = 25°C, L = 8.2mH, R_G = 25 Ω , I_{AS} = 3.4A. (See Figure 12)
- 4 Pulse width $\leq 300\mu s$; duty cycle $\leq 2\%$.
- S When mounted on FR-4 board using minimum recommended footprint.
- 6 When mounted on 1 inch square copper board, for comparison with other SMD devices.

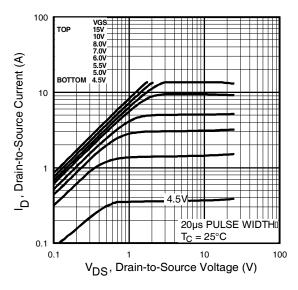


Fig 1. Typical Output Characteristics

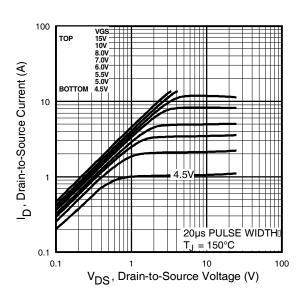


Fig 2. Typical Output Characteristics

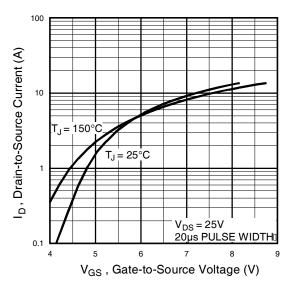
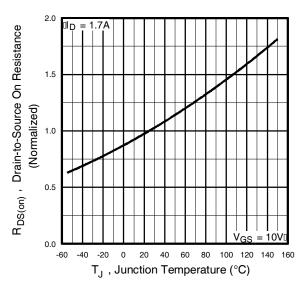
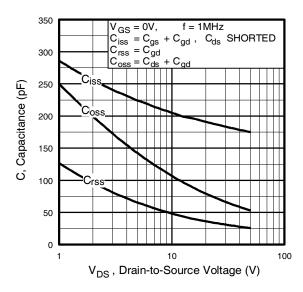




Fig 3. Typical Transfer Characteristics

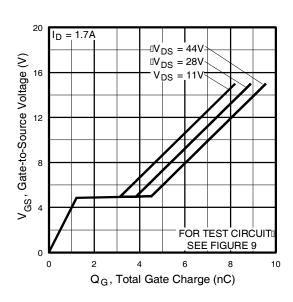


Fig 4. Normalized On-Resistance Vs. Temperature

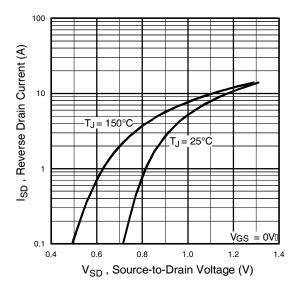


Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

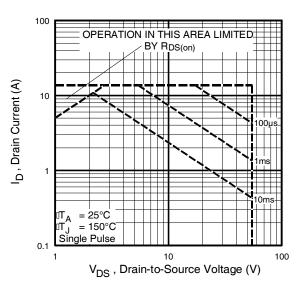
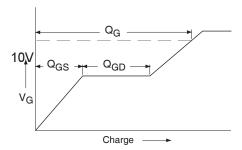



Fig 8. Maximum Safe Operating Area

 $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$

Fig 9a. Basic Gate Charge Waveform

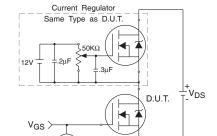


Fig 10a. Switching Time Test Circuit

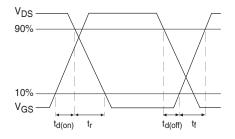


Fig 9b. Gate Charge Test Circuit

ľĞ

Current Sampling Resistors

ΪĎ

Fig 10b. Switching Time Waveforms

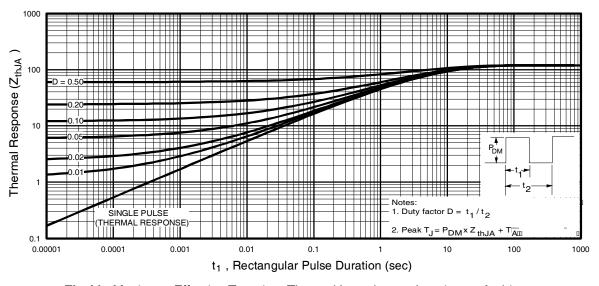


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

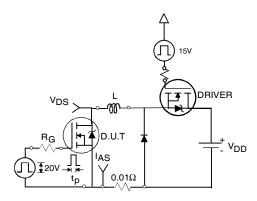
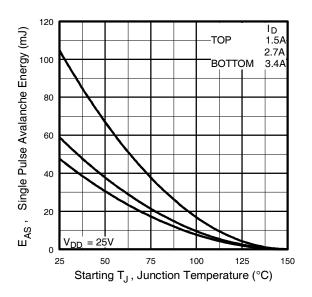



Fig 12a. Unclamped Inductive Test Circuit

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

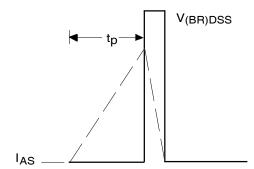
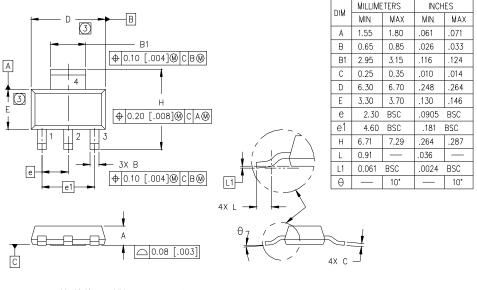
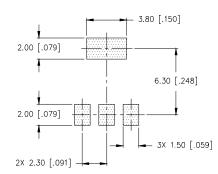



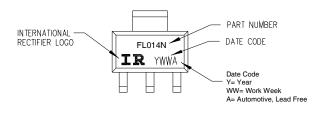
Fig 12b. Unclamped Inductive Waveforms



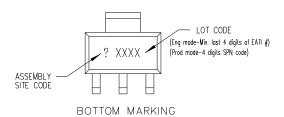
SOT-223 (TO-261AA) Package Outline

Dimensions are shown in milimeters (inches)

MINIMUM RECOMMENDED FOOTPRINT


LEAD ASSIGNMENTS

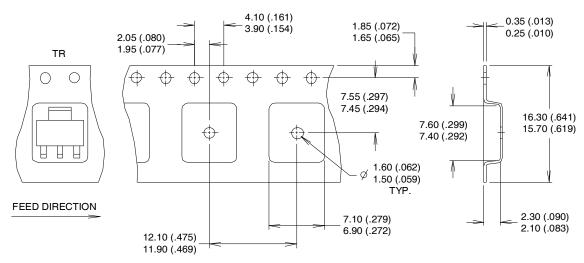
- = GATE
- 2 = DRAIN
- 3 = SOURCE
- 4 = DRAIN


NOTES;

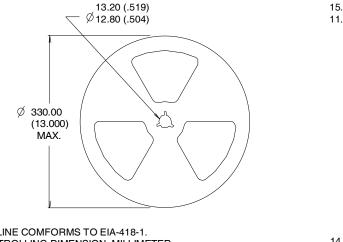
- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3 DIMENSIONS DO NOT INCLUDE MOLD FLASH.
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-261AA.
- 5. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

SOT-223 (TO-261AA) Part Marking Information

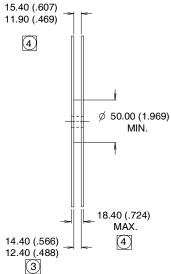
TOP MARKING



Note: For the most current drawing please refer to IR website at http://www.irf.com/package/


SOT-223 (TO-261AA) Tape & Reel Information

Dimensions are shown in milimeters (inches)


NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- 3. EACH Ø330.00 (13.00) REEL CONTAINS 2,500 DEVICES.

NOTES:

- 1. OUTLINE COMFORMS TO EIA-418-1.
- CONTROLLING DIMENSION: MILLIMETER..
- DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

		Automotive (per AEC-Q101) ††				
		qualification.	This part number(s) passed Automotive IR's Industrial and Consumer qualification ed by extension of the higher Automotive level.			
Moisture Sensitivity Level		SOT-223 MSL1				
Machine Model		Class M1A(+/- 50V) ^{†††} (per AEC-Q101-002)				
ESD	Human Body Model	Class H1A(+/- 350V) ^{†††} (per AEC-Q101-001)				
	Charged Device Model	Class C5(+/- 2000V) ^{†††} (per AEC-Q101-005)				
RoHS Compliant		Yes				

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/
- †† Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report.
- ††† Highest passing voltage

IMPORTANT NOTICE

Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and/or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment.

IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards.

Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements.

IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.

Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring military grade products, is solely at the Buyer's own risk and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements.

For technical support, please contact IR's Technical Assistance Center

http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

101 N. Sepulveda Blvd., El Segundo, California 90245

Tel: (310) 252-7105

Revision History

Date	Comments
3/26/2014	Updated part marking on page 7 Updated data sheet with new IR corporate template.