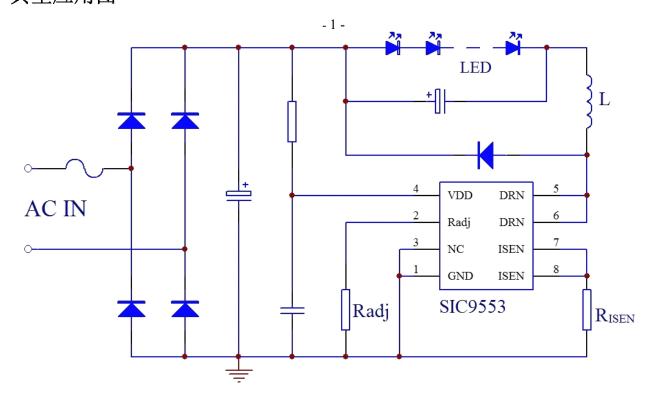
概述:

SIC9553是一款高精度的非隔离降压型LED控制器,适用于85V~265V全电压范围的小功率非隔离降压型LED照明应用。

SIC9553内置了高精度的采样、补偿电路,使得电路能够达到±3%以内的恒流精度,并且能够实现输出电流对电感与输出电压的自适应,从而取得优异的线型调整率和负载调整率。

SIC9553内部集成了500V功率MOSFET,无需次级反馈电路,也无需补偿电路,加之精准稳定的自适应技术,使得系统外围结构十分简单,可在外围器件数量少,参数范围宽松的条件下实现高精度恒流控制,极大地节约了系统成本和体积,并且能够确保在批量生产时LED灯具参数的一致性。

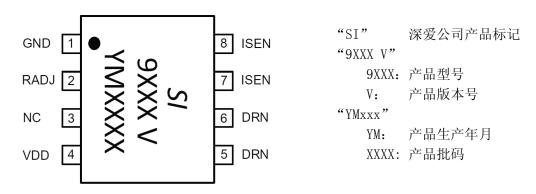

SIC9553具有丰富的保护功能:输出开短路保护、采样电阻开短路保护、欠压保护、输出过压保护、过温自适应调节等。

特性:

- · 内部集成500V 功率管
- ±3%以内的系统恒流精度
- 芯片超低工作电流
- 无需辅助供电电路
- 电感电流临界连续模式
- 宽输入电压

- 输出短路保护
- 采样电阻开短路保护
- 输出过压保护
- 欠压保护
- 过温自适应调节功能
- 简洁的系统拓补,外围器件极少

典型应用图


推荐工作范围

项目	符号	参数范围	单位
输入电压220V±20%	I _{LED} 1	$225@\mathbf{V}_{OUT} = 80 \text{V}$	mA
输入电压220V±20%	I _{LED} 2	$330@V_{OUT} = 36V$	mA
最小负载电压	V _{MIN}	>15	V

订购信息

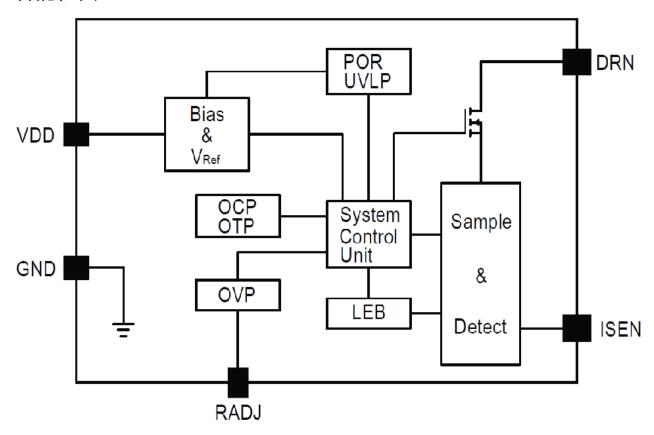
定购型号	封装	包装形式	打印
		编带	SI
SIC9553	SOP-8	3,000pcs/盘	9553
			YMXXXX

引脚图

引脚说明:

引脚号	符号	功能
1	GND	电源地
2	RADJ	设置开路保护电压,外接电阻
3	NC	空脚
4	VDD	工作电源
5	DRN	内部 MOSFET 的漏端
6	DRN	内部 MOSFET 的漏端
7	ISEN	电流采样,外接电阻到地
8	ISEN	电流采样,外接电阻到地

极限参数


项目	符号	参数 范围	单位
电源电压	$V_{ m DD}$	-0.3-20	V
漏极电压	Vdrn	-0.3-500	V
电流采样端电压	Visen	-0.3-6	V
最大工作电流	IDDMAX	5	mA
开路保护电压调节端	Vradj	-0.3-6	V
功耗	PMAX	450	mW
结热阻	⊖ ЈА	145	°C/W
工作结温范围	ТЈ	-40-155	$^{\circ}$ C
存储温度范围	Tstg	-55-160	$^{\circ}$ C
ESD		2000	V

注:超过极限参数范围,本产品的性能及可靠性将得不到保障,实际使用中不得超过极限参数范围

电气特性

Table 3:电气特性(Vdd=15V,Ttyp=25℃)					
项目	符号	测试条件	范围	单位	
Von钳位电压	V _{DD_CLP}	0.8mA	15.8~17.2	V	
工作电流	Idd	Fsys=65KHz	≦135	μА	
启动电压	V _{ST}	VDD上升	12.8~14.2	V	
启动电流	Ist	V _{DD} =V _{ST} - 1V	≦195	μА	
欠压保护迟滞	Vuvlo	VDD下降	8.1~9.1	V	
采样基准电压	VISEN		392~408	mV	
短路时电流检测阈值	VISEN_SHT	输出短路	198	mV	
动作消隐时间	TLEB		500	ns	
内部MOS关断延迟	TDELAY		150	ns	
DRN端MOS漏源极穿电压	VDSS (BV)	V _{GS} =0V/ I _{DS} =250uA	500	V	
内部MOS内阻	Rsw	V _{GS} =15V/ I _{DS} =0.5A	<10	Ω	
内部MOS漏电流	IDSS	V _{GS} =0V/ V _{DS} =5000V	0.5	uA	
RADJ引脚电压	Vradj		0. 55	V	
最大导通时间	Ton_max		45	uS	
最大退磁时间	Toff_max		255	uS	
最小退磁时间	Toff_min		5	uS	
过热温度调节点	Treg		155	$^{\circ}$ C	

功能框图

应用说明

功能说明:

SIC9553是一款专用于 LED 照明的恒流驱动芯片,芯片内部集成500V 高压 MOSFET,工作在 CRM 模式,适合全电压范围工作,具有良好的线性调整率、负载调整率以及优异的恒流特性,只需很少的外围元器件就能实现低成本高效率的 LED 恒流控制器。

启动:

SIC9553启动电流很低,当系统上电后,启动电阻对 V_{DD} 电容进行充电,当 V_{DD} 达到开启阈值时,电路即开始工作。SIC9553正常工作时,内部电路的工作电流可以低至 $135\,\mu$ A 以下,并且内部具有独特的供电机制,因此无需辅助绕组供电。

采样电阻与恒流控制:

SIC9553是工作在 CRM 模式中,其内部具有一个400mV 的基准电压,这个基准电压与系统中电感原边峰值电流进行比较计算,通过采样电阻的调节来实现 LED 驱动电流的大小:

Si semiconductors -4 - SIC9553_CN_Rev2.0

$$I_{LED} = \frac{400}{2R_{LSEN}} \,\mathrm{m}A$$

其中: ILED 是 LED 的驱动电流,

RISEN 是采样电阻

电感设计计算:

SIC9553工作在 CRM 模式,当电路上电后输出控制脉冲,内部 MOSFET 将不断工作在导通/关闭状态,内部 MOS 管打开时,电感也将导通,开始蓄能,直到达到电流峰值时内部 MOS 管关闭,此间的电感的导通时间为:

$$I_P = \frac{400}{R_{ISEN}} \,\text{mA}; \quad T_{ON} = \frac{L \times I_P}{V_{IN} - V_{LED}}$$

其中: Ip 为电感电流峰值;

L为电感值;

VIN 为交流输入整流后的直流值;

VLED 为 LED 负载的正向压降。

当内部 MOS 管关闭后, 电感电流将从峰值逐渐降低, 直到降低为0时, 内部 MOS 管将再次开启, 此间的电感关闭时间为:

$$T_{OFF} = \frac{L \times I_P}{V_{LED}}$$

由上可知,电感可计算为:
$$L = \frac{V_{LED} \times (V_{IN} - V_{LED})}{V_{IN} \times I_P \times F}$$

其中F为系统工作频率,在设计系统时,首先确定 ILED,ILED确定后 RISEN、IP等也就相应确定了,此时由上式可知,系统频率与输入电压成正比、与选择之电感 L 成反比: 当输入电压最低(或)电感取值较大时,系统频率较低,当输入电压最高(或)电感取值较小时,系统频率较高,因此,在系统输入电压范围确定时,电感的取值直接影响到系统频率的范围以及恒流特性。考虑到系统频率不可过低(例如进入音频范围),也不宜过高(导致功率管损耗过大以及 EMI 影响),同时 SIC9553设定了最小/大退磁时间以及最小/大励磁时间,因此在设计时,建议系统频率设定在50KHZ~100KHz之间。

开路过压保护电阻设置

在系统中,当 LED 开路时,由于无负载连接,输出电压会逐渐上升,进而导致退磁时间也会逐渐变短,因此通过 RADJ 外接电阻来控制相应的退磁时间,就能得到需要的开路保护电压。根据内部电路计算,可得出 RADJ与 Vovp 的关系公式:

$$R_{ADJ} \approx \frac{V_{ISEN} \times L \times 15}{R_{ISEN} \times V_{OVP}} \times 10^{6} (Kohm)$$

其中, V_{ISEN}是 ISEN 关断阈值(400mV);

L 是电感量:

RISEN 是采样电阻:

Vove是需要设定的过压保护点

保护功能:

SIC9553设定了多种保护功能,如LED开短路保护、ISEN电阻开短路保护、VDD过压/欠压、电路过温自适应调节等。

SIC9553在工作时,自动监测着各种工作状态,如果负载开路时,则电路将立刻进入过压保护状态,关断内部MOS管,同时进入间隔检测状态,当故障恢复后,电路也将自动回复到正常工作状态;若负载短路,系统将工作在5KHz左右的低频状态,功耗很低,同时不断监测系统,若负载恢复正常,则电路也将恢复正常工作;若当ISEN电阻短路,或者电感饱和等其他故障发生,电路内部快速保护机制也将立即停止MOS的开关动作,停止运行,此时,电路工作电源也将下降,当触发UVLO电路时,系统将会重启,如此,可以实现保护功能的触发、重启工作机制。

若工作过程中,SIC9553监测到电路结温度超过过温调节阈值(155℃)时,电路将进入过温调节控制状态,减小输出电流,以控制输出功率和温升,使得系统能够保持一个稳定的工作温度范围。

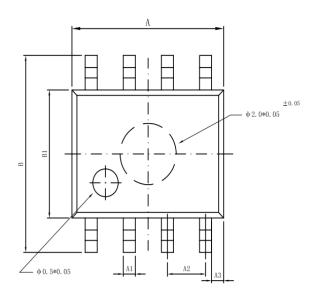
PCB 设计注意事项:

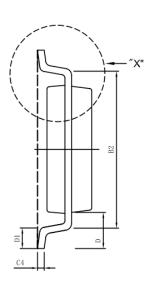
VDD 的旁路电容十分关键,PCB 板 layout 时需要尽量靠近 VDD 及 GND 引脚。

电感的充放电回路要尽量短,母线电容、续流二极管、输出电容等功率环路面积要尽量小,芯 片距离功率器件也尽量远,从而减小 EMI 以及保证电路安全稳定工作。

电路地线及其他小信号的地线须与采样电阻地线分开布线,尽量缩短与电容的距离。

RADJ 外接电阻需要尽量靠近 RADJ 引脚,并且就近接地。


NC 引脚建议连接到芯片地 (PIN1), 有条件时可用地线将 RADJ 电阻环绕。


DRN 引脚(PIN5、PIN6)的敷铜面积尽量大,以提高芯片散热。

SOP-8 封装机械尺寸 SOP-8 MECHANICAL DATA

单位:毫米/UNIT: mm

符号	最小值	典型值	最大值	符号	最小值	典型值	最大值
SYMBOL	min	nom	max	SYMBOL	min	nom	max
Α	4.80		5.00	C3	0.05		0.20
A1	0.37		0.47	C4		0.20TYP	
A2		1.27 TYP		D		1.05TYP	
A3		0.41 TYP		D1	0.40		0.60
В	5.80		6.20	R1		0.2TYP	
B1	3.80		4.00	R2		0.2TYP	
B2		5.0TYP		Θ1		17°TYP	
С	1.30		1.50	Θ2		13°TYP	
C1	0.55		0.65	Θ3		4°TYP	
C2	0.55		0.65	Θ4		8°TYP	

