User manual

Document information

Info	Content	
Keywords	UBA2015AT, dimmable, 2 × T5 35 W ballast	
Abstract	This document describes the UBA2015AT reference design for 120 V (AC). This dimmable design drives two 35 W T5 lamps. This user manual describes the performances, technical data and wiring of the reference design.	

20111206

v.1

UBA2015AT Reference Design 120 V (AC)

Revision history			
Rev	Date	Description	
v.1.1	20120131	second issue	

first issue

Contact information

For more information, please visit: http://www.nxp.com

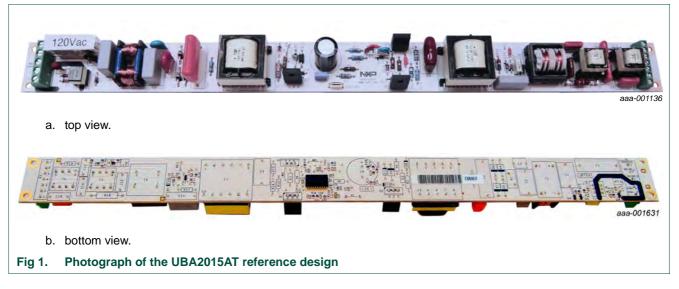
For sales office addresses, please send an email to: salesaddresses@nxp.com

UM10513 User manual

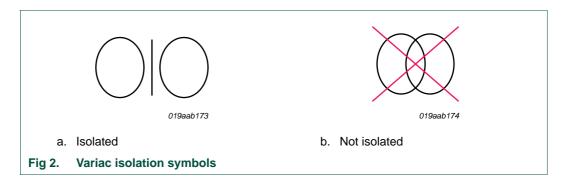
2 of 26

1. Introduction

WARNING


Lethal voltage and fire ignition hazard

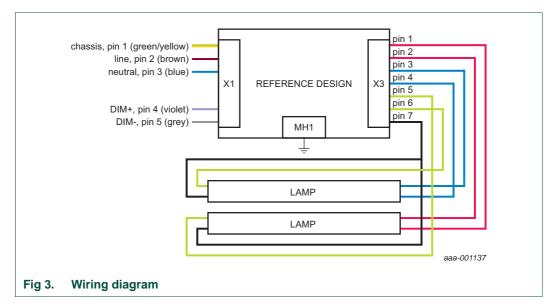
The non-insulated high voltages that are present when operating this product, constitute a risk of electric shock, personal injury, death and/or ignition of fire.


This product is intended for evaluation purposes only. It shall be operated in a designated test area by personnel qualified according to local requirements and labor laws to work with non-insulated mains voltages and high-voltage circuits. This product shall never be operated unattended.

The UBA2015AT reference design is intended to serve as a dimmable two lamp ballast example. This document describes the specification and use of the UBA2015AT board. This reference ballast design is intended to drive two T5 35 W lamps.

2. Safety warning

Connected the board to the mains voltage. Avoid touching the board while it is connected to the mains voltage. An isolated housing is obligatory when used in uncontrolled, non-laboratory environments. Galvanic isolation of the mains phase using a variable transformer is always recommended.


UBA2015AT Reference Design 120 V (AC)

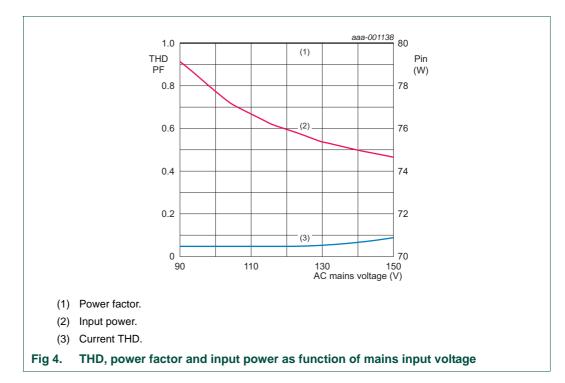
3. Specifications

Table 1. Specifications for the reference board		
Parameter	Comment	
ballast type	electronic	
starting method	programmed start with preheat	
starting time	<1s	
lamp terminals	7	
line voltage	120 V (AC)	
line frequency	50 Hz/60 Hz	
lamp type	T5 35 W	
number of lamps	2	
dimming interface	1 V to 10 V	
transient protection	complies with IEC 61547	

Table 2. Ballast performance

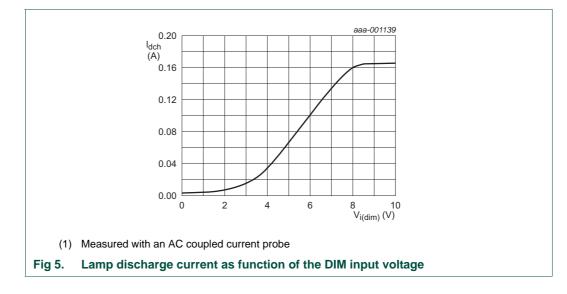
Lamp type	Number	Lamp			I _{lamp}		
	of lamps	power TH (W)	THD (%)	(1)	maximum crest factor	nominal (A)	minimum (mA)
T5 35 W	2	35	10	> 0.99	1.7	0.17	5

Remark: Connected the ballast as shown in <u>Figure 3</u>. When no dimming is needed, do not connect (floating) the dim input.


Remark: The chassis connection must connect to the earth using mounting hole MH1.

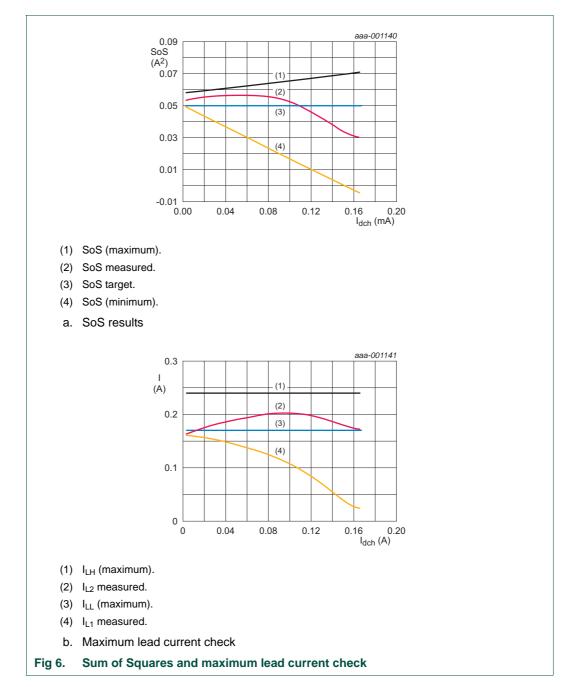
3.1 Dimming without using an external voltage source

The ballast is dimmed with a voltage source of 1 V (DC) to 10 V (DC) connected to connector X1.

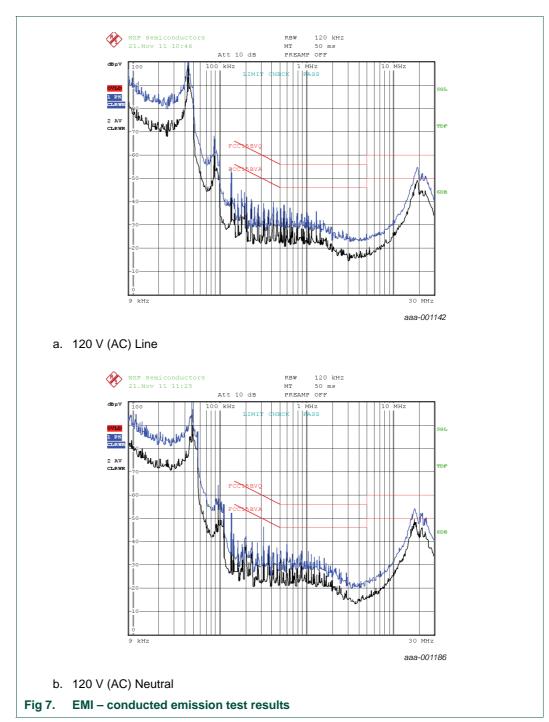

It is also possible to dim with an external logarithmic potentiometer of 470 k Ω (for example, no external voltage supply is available). The potentiometer must connect to pin 5 (gray wire, DIM–) and pin 4 (violet wire, DIM+) of connector X1.

4. Performance data

4.1 Efficiency, power factor and THD


UBA2015AT Reference Design 120 V (AC)

4.2 Dimming curve

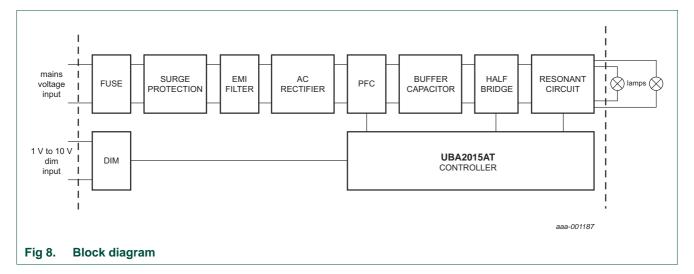

UM10513 User manual

UBA2015AT Reference Design 120 V (AC)

4.3 Sum of Squares (SoS) curve

UBA2015AT Reference Design 120 V (AC)

4.4 ElectroMagnetic Interference (EMI) emission tests

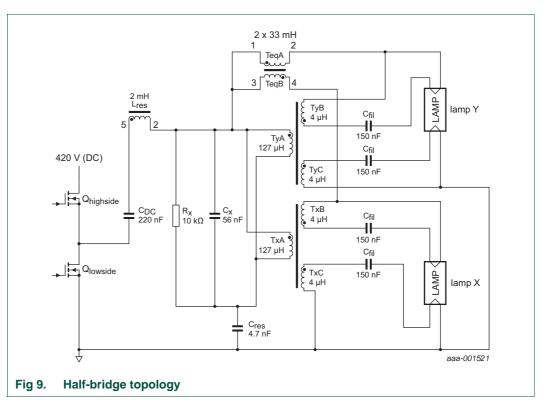

5. Board Information

The input section includes:

- the fuse
- surge protection against fast AC transients
- EMI filter
- full-wave rectifier
- pre-conditioner or Power Factor Correction (PFC)

The output of the PFC connects to a buffer electrolytic capacitor to supply the half-bridge circuit. The lamp connects to the half-bridge circuit. The UBA2015AT controller IC controls the PFC and the half-bridge circuit. A low-voltage control input is present to control the dimming of the lamp light output.

The PFC is implemented as an up-converter in boundary conduction mode. The resonant circuit voltage is supplied by the half-bridge which consists of two NMOST transistors. The resonant circuit includes a transformer for electrode preheating and heating.



The type of ballast presented here is used for most ballast for lamp powers above 25 W. It is a cost-effective application.

5.1 Half-bridge operating principle

This topology supports dimming and preheat times below 1 s for T5 lamps. It uses an additional transformer for preheating/heating the filaments.

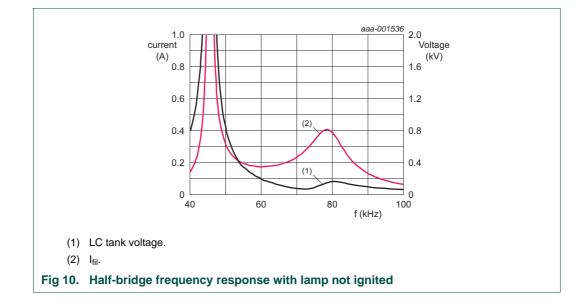
UBA2015AT Reference Design 120 V (AC)

When the lamp is off, two resonant frequencies can be distinguished. A main resonant frequency f_{res} and a second frequency f_{sec} . Approaching f_{res} ignites the lamp:

$$f_{res} = \frac{1}{2\pi \sqrt{L_{res} \cdot C_{res}}} \rightarrow f_{res} = 51.9 \ kHz \tag{1}$$

Preheating the electrodes near f_{sec} increases the preheat current without increasing the filament current during normal operation. In dimmable applications, this aids compliance with the lamp sum of squares requirement.

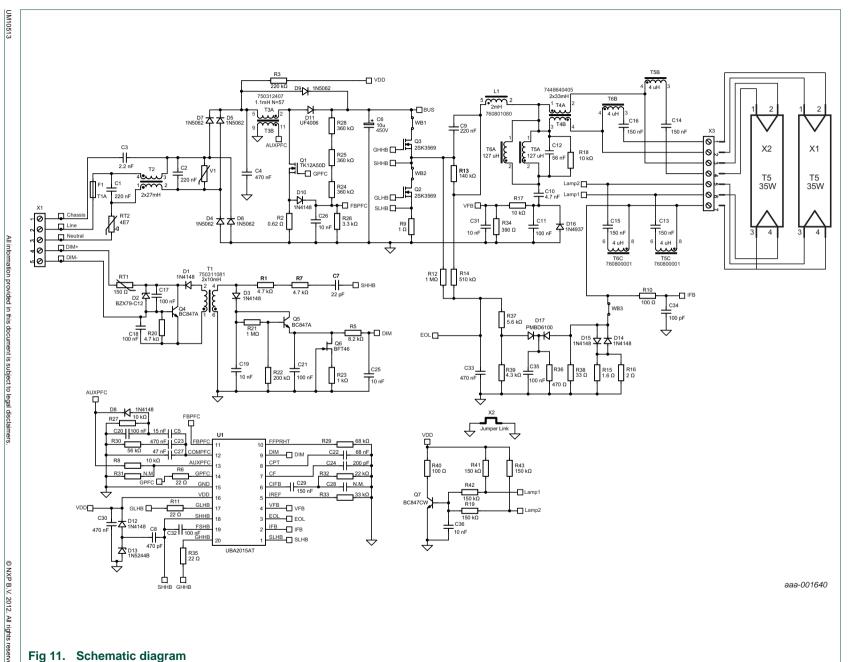
$$f_{sec} = \frac{1}{2\pi \sqrt{\frac{L_{TxA} \cdot L_{TyA}}{L_{TxA} + L_{TyA}} \cdot C_x}} \rightarrow f_{sec} = 84.8 \ kHz \tag{2}$$


Rx is used to limit the voltage when both lamps are removed.

An equalizer transformer T_{eq} is used to equalize the lamp currents needed in deep dim settings.

The UBA2015AT controller starts at 100 kHz and sweeps down until the preheat frequency is reached. The resistor on pin PH/EN sets the preheat frequency. During preheat, the LC tank voltage remains below 200 V to prevent early ignition and glow.

User manual


UBA2015AT Reference Design 120 V (AC)

User manual

Rev. 1.1 ---

31 January 2012

NXP Semiconductors

5.2

Schematic diagrams

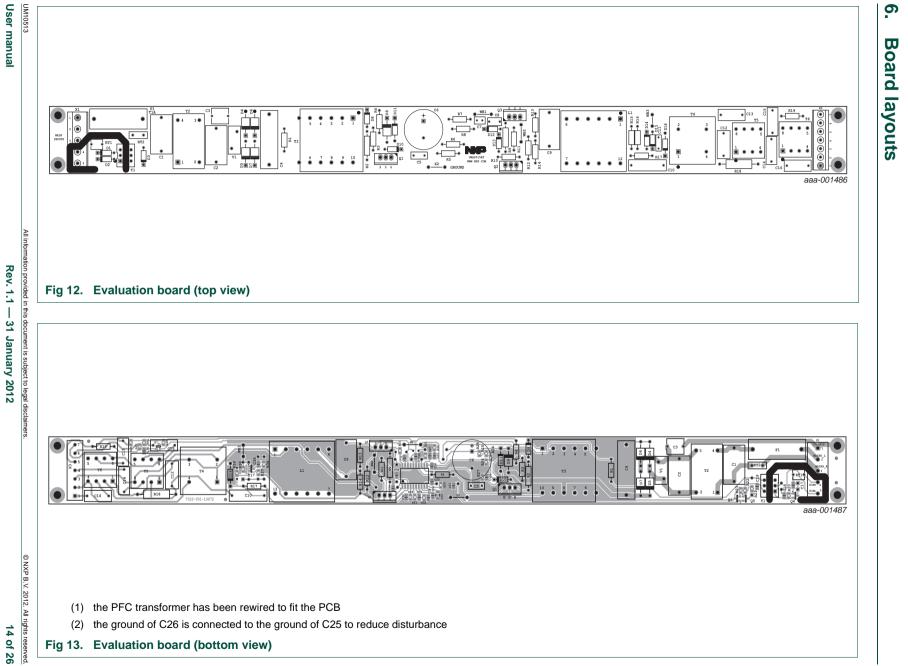
UM10513 UBA2015AT Reference Design 120 V (AC)

12 of 26

5.3 Functional description

The mains voltage is applied to the board and current flows through R3 and R4 to the supply of the controller (VDD pin). When the current through R3 and R4 is higher than 240 μ A (I_{stb(VDD)}) of the controller the VDD voltage rises. When the VDD voltage is above 4.2 V (V_{rst(VDD)}), the half-bridge circuit low-side MOSFET switches on and the floating supply capacitor C32 is pre-charged.

The controller starts oscillating when the VDD voltage is above the 12.4 V ($V_{startup(VDD)}$). The PFC gate driver starts and the HB gate drivers start oscillating at 100 kHz ($f_{sw(high)}$). The dV/dt supply with capacitor C8 takes over the VDD supply to supply the IC with enough energy for the gate drivers. The preheat timer starts and the controller sweeps down the frequency from 100 kHz to the preheat frequency set by the PH/EN pin. The oscillator remains at the preheat frequency until the preheat timer has ended.


When the preheat ends, the controller sweeps down the half-bridge switching frequency. The lamp ignites when the LC tank voltage reaches the lamp ignition voltage. The ignition frequency is typically 60 kHz. The lamp current increases and the LC tank voltage decreases. The controller senses the lamp current and LC tank voltage. When the lamp current is high enough and the LC tank voltage is low enough for 3 ms (V_{IFB} > V_{th(lod)/FB} and V_{VFB} < V_{th(lod)/FB} for t_{d(lod)}), the controller assumes that the lamp is on. The controller enters burn state.

In burn state, all the protective features are activated. The controller closes the lamp current control loop and the oscillator regulates the half-bridge switching frequency. The half-bridge frequency is controlled. It reaches the set point when the average absolute IFB pin voltage equals the DIM pin voltage.

5.3.1 Start-up current and relamp function

The VDD supply of the IC is charged with a start-up current derived from the rectified mains voltage. Resistors R3 and R4 provide the current path and determines the start-up voltage level.

When the lamp is removed while set to deep dimming, the protection must trigger the controller to shut down. In this board, transistor Q7 pulls down the VDD voltage. The signals Lamp 1 and Lamp 2 sense the filaments of the lamps and control transistor Q7. The pull down by Q7 is released when all lamps are inserted.

NXP Semiconductors

UBA2015AT Reference Design 120 V (AC)

UM10513

Rev. 1.1 ---31 January 2012

UBA2015AT Reference Design 120 V (AC)

7. Bill of materials

Table 3. E	Bill of materials		
Part reference	Description/Value	Part number	Manufacturer
0001	PCB UBA2015AT	7022-001-16672	NXP Semiconductors
C1	220 nF; 20 %;275 V	BFC233620224	Vishay
C2	220 nF; 20 %;275 V	BFC233620224	Vishay
C3	2.2 nF; 20 %; 250 V	DE2E3KH222MA3B	Murata
C4	470 nF; 10 %; 400 V	BFC236855474	Vishay
C5	15 nF; 10 %; 100 V	08051C153KAT2A	AVX
C6	10 μF; 20 %; 450 V	EEU-ED2W100	Panasonic
C7	22 pF; 5 %; 500 V	140-500N5-220J-RC	Xicon
C8	1 nF; 10 %; 1 kV	F102K39Y5RN6UK5R	Vishay
C9	220 nF; 10 %; 400 V	146-MEF2G224K	Xicon
C10	4.7 nF; 5 %; 2 kV	BFC238560472	Vishay
C11	100 nF; 5 %;100 V	R82EC3100DQ70J	KEMET
C12	56 nF; 10 %; 400 V	DME4S56K-F	Cornell Dubilier
C13	150 nF; 5 %;250 V	BFC230342154	Vishay
C14	150 nF; 5 %;250 V	BFC230342154	Vishay
C15	150 nF; 5 %;250 V	BFC230342154	Vishay
C16	150 nF; 5 %;250 V	BFC230342154	Vishay
C17	100 nF; 10 %; 50 V	CC0805KRX7R9BB104	Yageo
C18	100 nF; 10 %; 50 V	CC0805KRX7R9BB104	Yageo
C19	10 nF; 10 %;50 V	CC0805KRX7R9BB103	Yageo
C20	100 nF; 10 %; 50 V	CC0805KRX7R9BB104	Yageo
C21	100 nF; 10 %; 50 V	CC0805KRX7R9BB104	Yageo
C22	68 nF; 10 %;50 V	2222 581 15647	Philips
C23	470 nF; 10 %; 25 V	C0805X474K3RACTU	KEMET
C24	200 pF; 1 %; 50 V	GRM2165C1H201FA01D	Murata
C25	10 nF; 10 %;50 V	CC0805KRX7R9BB103	Yageo
C26	10 nF; 10 %;50 V	CC0805KRX7R9BB103	Yageo
C27	47 nF; 10 %;50 V	08051C473KAT2A	AVX
C29	150 nF; 10 %; 50 V	C0805C154K5RACTU	KEMET
C30	470 nF; 10 %; 25 V	C0805X474K3RACTU	KEMET
C31	10 nF; 10 %;50 V	CC0805KRX7R9BB103	Yageo
C32	100 nF; 10 %; 50 V	CC0805KRX7R9BB104	Yageo
C33	470 nF; 10 %; 25 V	C0805X474K3RACTU	KEMET
C34	100 pF; 2 %;50 V	08051A101FAT2A	AVX
C35	100 nF; 10 %; 50 V	CC0805KRX7R9BB104	Yageo
C36	10 nF; 5 %; 50 V (DC)	C0805C103J5GAC	KEMET
D1	1N4148	1N4148,133	NXP Semiconductors
D2	BZX79-C12	BZX79-C12, 133	NXP Semiconductors

UM10513

All information provided in this document is subject to legal disclaimers.

UBA2015AT Reference Design 120 V (AC)

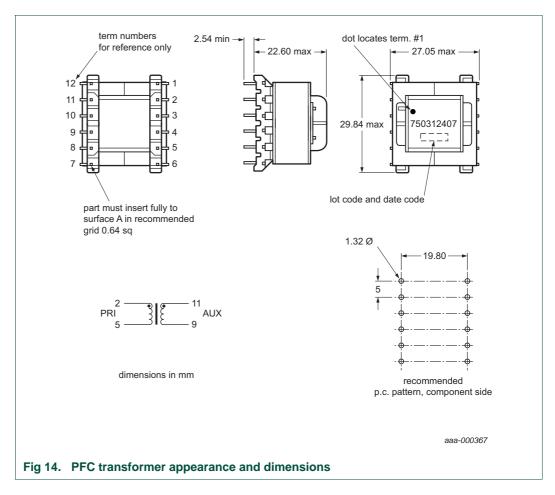
Part	Description/Value	Part number	Manufacturer
reference	414440		
D3	1N4148	1N4148,133	NXP Semiconductors
D4	1N5062; 800 V; 2 A	1N5062-TR	Vishay
D5	1N5062; 800 V; 2 A	1N5062-TR	Vishay
D6	1N5062; 800 V; 2 A	1N5062-TR	Vishay
D7	1N5062; 800 V; 2 A	1N5062-TR	Vishay
D8	1N4148	1N4148,133	NXP Semiconductors
D9	1N5062; 800 V; 2 A	1N5062-TR	Vishay
D10	1N4148	1N4148,133	NXP Semiconductors
D11	UF4006-E3/73	UF4006-E3; 73	Vishay
D12	1N4148	1N4148,133	NXP Semiconductors
D13	1N5244B	1N5244B	Fairchild
D14	1N4148	1N4148,133	NXP Semiconductors
D15	1N4148	1N4148,133	NXP Semiconductors
D16	1N4937/54 600 V; 1 A	1N4937-E3; 54	Vishay
D17	PMBD6100; 85 V; 0.2152 A	PMBD6100.215	NXP Semiconductors
F1	fuse ceramic; T1 A	0001.2504	SCHURTER
L1	HB inductor; 2 mH; 2.6 A	760801080	Würth Elektronik
Q1	TK12A50	TK12A50D(Q)	Toshiba
Q2	2SK3569	2SK3569	Toshiba
Q3	2SK3569	2SK3569	Toshiba
Q4	BC847A	BC847A	NXP Semiconductors
Q5	BC847A	BC847A	NXP Semiconductors
Q6	BFT46	BFT46	NXP Semiconductors
Q7	BC847CW	BC847CW,115	NXP Semiconductors
R1	4.7 kΩ; 1 %; 350 V; 0.6 W	MRS25000C4701FCT00	Vishay
R2	0.62 Ω; 5 %; 350 V; 1 W	MOSX1CT52RR62J	KOA speer
R3	220 kΩ; 1 %; 350 V; 0.6 W	MRS25000C2203FCT00	Vishay
R5	8.2 kΩ; 1 %; 350 V; 0.6 W	MRS25000C8201FCT00	Vishay
R6	22 Ω; 1 %; 350 V; 0.6 W	MRS25000C2209FCT00	Vishay
R7	4.7 kΩ; 1 %; 350 V; 0.6 W	MRS25000C4701FCT00	Vishay
R8	10 kΩ; 1 %; 350 V; 0.6 W	MRS25000C1002FCT00	Vishay
R9	1 Ω; 5 %; 350 V; 1 W	PR01000101008JR500	Vishay
R10	100 Ω; 1 %; 350 V; 0.6 W	MRS25000C1000FCT00	Vishay
R11	22 Ω; 1 %; 350 V; 0.6 W	MRS25000C2209FCT00	Vishay
R12	1 MΩ; 1 %; 350 V; 0.6 W	MRS25000C1004FCT00	Vishay
R13	140 kΩ; 1 %; 350 V; 0.6 W	MRS25000C1403FCT00	Vishay
R14	510 kΩ; 1 %; 350 V; 0.6 W	MRS25000C5103FCT00	Vishay
R15	1.6 Ω; 1 %; 350 V; 0.6 W	MRS25000C1608FCT00	Vishay
R16	2.0 Ω; 1 %; 350 V; 0.6 W	MRS25000C2008FCT00	Vishay
R17	10 Ω; 1 %; 350 V; 0.6 W	MRS25000C1002FCT00	Vishay

UM10513

All information provided in this document is subject to legal disclaimers.

UBA2015AT Reference Design 120 V (AC)

Table 3.	Bill of materials continued		
Part reference	Description/Value	Part number	Manufacturer
२१८	10 kΩ; 5 %; 500 V; 2 W	PR02000201002JR500	Vishay
R19	150 kΩ; 1 %; 350 V; 0.6 W	MRS25000C1503FCT00	Vishay
R20	4.7 Ω; 1 %; 150 V; 0.125 W	RC0805FR-074K7L	Yageo
R21	1 MΩ; 1 %; 150 V; 0.125 W	RC0805FR-071ML	Yageo
R22	200 kΩ; 1 %; 150 V; 0.1 W	2322 734 62004	Yageo
R23	1 kΩ; 1 %; 150 V; 0.125 W	RC0805FR-071KL	Yageo
R24	360 kΩ; 1 %; 150 V; 0.1 W	2322 734 63604	Yageo
R25	360 kΩ; 1 %; 150 V; 0.1 W	2322 734 63604	Yageo
R26	3.3 kΩ; 1 %; 150 V; 0.125 W	RC0805FR-073K3L	Yageo
R27	10 kΩ; 1 %; 150 V; 0.125 W	RC0805FR-0710KL	Yageo
R28	360 kΩ; 1 %; 150 V; 0.1 W	2322 734 63604	Yageo
R29	68 kΩ; 1 %; 150 V; 0.125 W	RC0805FR-0768KL	Yageo
R30	56 kΩ; 1 %; 150 V; 0.125 W	RC0805FR-0756KL	Yageo
32	22 kΩ; 1 %; 150 V; 0.125 W	RC0805FR-0722KL	Yageo
33	33 kΩ; 1 %; 150 V; 0.125 W	RC0805FR-0733KL	Yageo
R34	390 Ω; 1 %; 150 V; 0.125 W	RC0805FR-07330RL	Yageo
35	22 Ω; 1 %; 150 V; 0.125 W	RC0805FR-0722RL	Yageo
R36	470 Ω; 1 %; 150 V; 0.125 W	RC0805FR-07470RL	Yageo
R37	5.6 kΩ; 1 %; 150 V; 0.125 W	RC0805FR-075K6L	Yageo
38	33 Ω; 1 %; 150 V; 0.125 W	RC0805FR-0733RL	Yageo
R39	4.3 kΩ; 1 %; 150 V; 0.1 W	MC 0.1 W 0805 1 % 4K3	Multicomp
R40	100 Ω; 1 %; 150 V; 0.125 W	RC0805FR-07100RL	Yageo
R41	150 kΩ; 1 %; 150 V; 0.125 W	RC0805FR-07150KL	Yageo
R42	150 kΩ; 1 %; 150 V; 0.125 W	RC0805FR-07150KL	Yageo
R43	150 kΩ; 1 %; 150 V; 0.125 W	RC0805FR-07150KL	Yageo
RT1	150 Ω; 25 %; 0;2 A;+85°C	PTGL05AR151H8P52B0	Murata
RT2	4.7 Ω; 20 %; 265 V; 1.4 W	B57153S479M	EPCOS
1	DIM transformer; Lp = 10 mH; N = 1	750311081	Würth Elektronik
2	choke; frame core 27 mH; 0.9 A	B82732F2901B001	EPCOS
Γ3	PFC transformer; Lp = 1.1 mH; 2.7 A; Np: Ns = 57	750312407	Würth Elektronik
4	equalizer transformer; 2×33 mH; 0.3 A	7448640405	Würth Elektronik
5	heater transformer; Lp = 127 μ H; 1.8 A Ls = 4.1 μ H	760800001	Würth Elektronik
6	heater transformer; Lp = 127 μ H; 1.8 A; Ls = 4.1 μ H	760800001	Würth Elektronik
J1	UBA2015AT	UBA2015AT	NXP Semiconductors
′1	275 V (AC); 85°C; 3.5 kA; 710 V	V10E275P	Littelfuse
VB1	wire-bridge-3E	923345-03-C	3M
VB2	wire-bridge-3E	923345-03-C	3M
VB3	wire-bridge-2E	923345-02-C	3M
M10513	All information provided in the	nis document is subject to legal disclaimers.	© NXP B.V. 2012. All rights rese


Table 3. Bill of materials ...continued

Part reference	Description/Value	Part number	Manufacturer
X1	screw terminal; MKDSN1;5; 5-5.08	1729157	Phoenix Contact
X2	jumper link	LB 03 G	Fischer Elektronik
Х3	screw terminal; MKDS 1; 7-3;81	1727065	Phoenix Contact

8. Inductor appearance and dimensions

8.1 PFC transformer

Wurth Electronics Midcom Inc.; part number: 750312407

Table 4. PFC transformer electrical specifications

Parameter	Value	
Inductance (2 to 5)	1.1 mH	
Saturation current (2 to 5)	2.7 A	
Turns ratio (2 to 5): (11 to 9)	57	
Leakage inductance	465 μΗ	
Dielectric rating (5 to 9)	1.5 kV (AC)	
DC resistance (2 to 5)	1.35 Ω	
DC resistance (8 to 10)	0.11 Ω	
Operating temperature	–40 °C to +125 °C	

8.2 Half-bridge inductor

Wurth Electronics Midcom Inc.; part number: 760801080

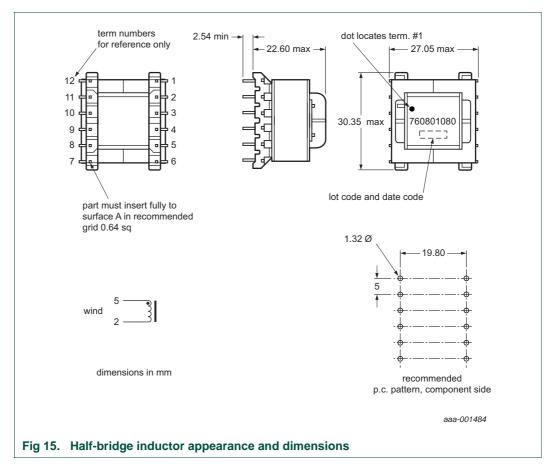
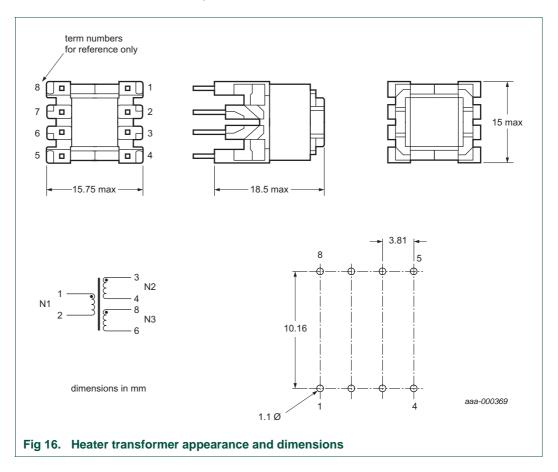



 Table 5.
 Half-bridge inductor electrical specifications

Parameter	Value		
Inductance (5 to 2)	2 mH		
Saturation current (5 to 2)	2.6 A		
DC resistance (5 to 2)	2.15 Ω		
Operating temperature	–40 °C to +125 °C		

8.3 Heater transformer

Wurth Electronics Midcom Inc.; part number: 760800001

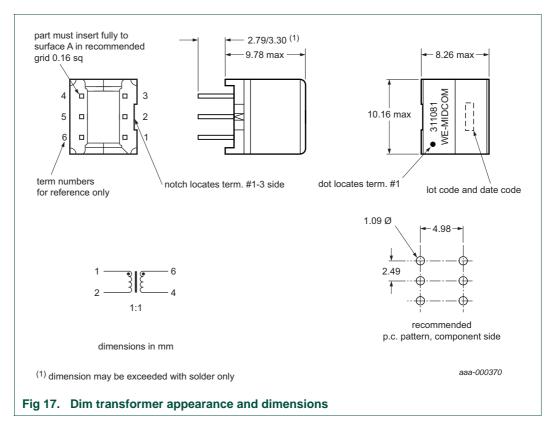


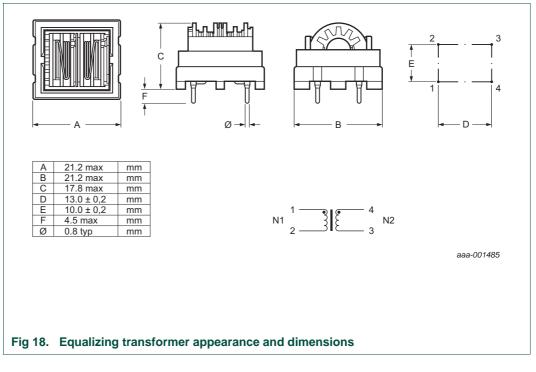
Table 6. Heater transformer electrical specifications

Parameter	Value
Inductance (1 to 2)	127 μH
Inductance (3 to 4) and (8 to 6)	4.1 μΗ
Saturation current (1 to 2)	2.5 A
Rated current (1 to 2)	0.7 A
Dielectric rating (5 to 9)	2 kV (AC)
DC resistance (1 to 2)	0.30 Ω
DC resistance (3 to 4) and (8 to 6)	0.11 Ω
Operating temperature	–40 °C to +125 °C

8.4 Dim transformer

Wurth Electronics Midcom Inc.; part number: 750311081

Table 7. Dim transformer electrical specifications


Parameter	Value	
Inductance (1 to 2) and (6 to 4)	10 mH	
Turns ratio (1 to 2): (6 to 4)	1	
Leakage inductance	10 μH	
Dielectric rating (5 to 9)	1.5 kV (AC)	
DC resistance (1 to 2)	2.30 Ω	
DC resistance (6 to 4)	2.70 Ω	
Operating temperature	–40 °C to +125 °C	

UM10513 User manual

UBA2015AT Reference Design 120 V (AC)

8.5 Equalizing transformer

Wurth Electronics Midcom Inc.; part number: 7448640405

Table 8. Equalizing transformer electrical specifications

Parameter	Value	
Inductance L0	33 mH	
Turns ratio (1 to 2): (6 to 4)	1	
Rated current	0.3 A	
Dielectric rating	2 kV; 50 Hz	
DC resistance	2 Ω	
Operating temperature	–25 °C to +125 °C	

9. Abbreviations

Table 9.	Abbreviations	
Acronym	Description	
EMI	ElectroMagnetic Interference	
MOSFET	Metal-Oxide Semiconductor Field-Effect Transistor	
OLP	Open-Loop Protection	
PCB	Printed-Circuit Board	
PFC	Power Factor Correction	
SoS	Sum of Squares	
THD	Third order Harmonic Distortion	

UBA2015AT Reference Design 120 V (AC)

10. Legal information

10.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

10.2 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Evaluation products — This product is provided on an "as is" and "with all faults" basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of non-infringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages.

Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer's exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US\$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose.

10.3 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

UBA2015AT Reference Design 120 V (AC)

11. Contents

1	Introduction 3
2	Safety warning 3
3	Specifications 4
3.1	Dimming without using an external voltage
	source 5
4	Performance data 5
4.1	Efficiency, power factor and THD 5
4.2	Dimming curve 6
4.3	Sum of Squares (SoS) curve
4.4	ElectroMagnetic Interference (EMI) emission
	tests 8
5	Board Information 9
5.1	Half-bridge operating principle
5.2	Schematic diagrams
5.3	Functional description
5.3.1	Start-up current and relamp function 13
6	Board layouts 14
7	Bill of materials 15
8	Inductor appearance and dimensions 19
8.1	PFC transformer 19
8.2	Half-bridge inductor 20
8.3	Heater transformer 21
8.4	Dim transformer 22
8.5	Equalizing transformer 23
9	Abbreviations 24
10	Legal information 25
10.1	Definitions
10.2	Disclaimers 25
10.3	Trademarks 25
11	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 31 January 2012 Document identifier: UM10513