£— RM0004
YI Reference manual

Programmer’s reference manual for Book E processors

Introduction

This reference manual gives an overview of Book E, a version of the PowerPC architecture
intended for embedded processors. To ensure application level compatibility with the
PowerPC architecture developed by Apple, IBM, and Freescale, Book E incorporates the
user level resources defined in the user instruction set architecture (UISA), Book I, of the
AIM architectural definition.

November 2007 Rev 1 11176

www.st.com

http://www.st.com

RMO0004 Contents

Contents
About thisboOK. i i ittt 24
AUdIENCE. . . . e 24
Organization 25
Suggestedreadingoiiiiiiiiii i it e 27
General information e 27
Related documentation. e 27
CoNVENTIONS . . . e 28
Acronyms and abbreviations. i i i i e 29
Terminology conventions.ttt ettt et i 31
Part I: Book E and Book E implementation standards 32
1 OVeIVIEW ...ttt e et e e e 33
1.1 Overview Book E and the Book E implementation standards (EIS) 33
1.1.1 Auxiliary processing units (APUS) i i 34
1.2 Instruction set 34
1.3 Register set 35
1.4 Interrupts and exceptionhandling 36
1.41 Exceptionhandling 36
1.4.2 Interruptclasses i 36
1.4.3 Interrupt categories 36
1.4.4 Interruptregisters 37
1.5 Memory management 40
1.5.1 Addresstranslation 40
15.2 MMU assist registers (MAS1-MAS7) i, 41
1.5.3 Process ID registers (PIDO-PID2), 42
1.5.4 TLB CONBIENCY . . . o ot e 42
1.5.5 Atomic update memory references, 42
1.5.6 Memory access ordering e 42
1.5.7 Cache control instructions i 43
1.5.8 Programmable page characteristics 43

Ky_l 2/1176

Contents RMO0004
1.6 Performance monitoring 43
1.6.1 Global control register i 43

1.6.2 Performance monitor counter registers 43

1.6.3 Local control registers 44

1.7 Legacy support of PowerPC architecture 44
1.71 Instruction set compatibility L. 44

1.7.2 Memory subsystem 45

1.7.3 Interrupthandling 45

1.7.4 Memory management 45

1.75 Requirements for system reset generation 45

1.7.6 Little-endianmode 45

2 Registermodelo i i s 46
2.1 OVEIVIBW .. 46
2.2 Register model for 32-bit Book E implementations 47
221 Special-purpose registers (SPRs) L 50

2.3 Registers for integer operations 55
2.31 General purpose registers (GPRs) o .. 55

2.3.2 Integer exception register (XER) 56

2.4 Registers for floating-point operations 58
241 Floating-point registers (FPRs) 58

242 Floating-point status and control register (FPSCR) 58

2.5 Registers for branch operations 61
2.5.1 Condition register (CR) 61

25.2 Linkregister (LR) e e 66

253 Countregister (CTR) e e e 67

2.6 Processor control registers e 68
2.6.1 Machine state register (MSR) i 68

2.7 Hardware implementation-dependent registers 71
2.7.1 Hardware implementation dependent register 0 (HIDO) 71

2.7.2 Hardware implementation dependent register 1 (HID1) 74

2.7.3 Processor ID register (PIR) i 74

274 Processor version register (PVR) L. 75

2.7.5 System version register (SVR) 75

2.8 Timer registers e 75
2.8.1 Timer control register (TCR) e 76

3/1176 Ky_l

RMO0004 Contents

2.8.2 Timer status register (TSR) i i 78

2.8.3 Timebase (TBUand TBL)t 79

284 Decrementerregister 80

2.8.5 Decrementer auto-reload register (DECAR) 80

2.9 Interrupt registers e 81

2.9.1 Interrupt registers defined by book E 81

2.10 Software use sprs (SPRG0-SPRG7 and USPRGO) 89

211 Llcacheregisters 90

2.11.1 L1 cache control and status register 0 (L1CSRO) 90

2.11.2 L1 cache control and status register 1 (L1CSR1) 92

2.11.3 L1 cache configuration register 0 (L1ICFGO) 94

2.11.4 L1 cache configuration register 1 (L1ICFG1) 95

2.11.5 L1 flush and invalidate control register 0 (L1FINVO) 96

212 MMU registers e 97

2.12.1 Process ID registers (PIDO-PIDn) 97

2.12.2 MMU control and status register 0 (MMUCSRO) 98

2.12.3 MMU configuration register (MMUCFG) 99

2.12.4 TLB configuration registers (TLBnCFG) 100

2.12.5 MMU assist registers (MASO-MAS7) 101

213 Debugregisters 107

2.13.1 Debug control registers (DBCRO-DBCR3) 108

2.13.2 Debug status register (DBSR) i 116

2.13.3 Instruction address compare registers (IAC1-IAC4) 117

2.13.4 Data address compare registers (DAC1-DAC2) 118

2.13.5 Data value compare registers (DVC1andDVC2) 118

214 SPE and SPFP APUregisters 118
2.14.1 Signal processing, embedded floating-point status, control register

(SPEFSCR) . ..t e 119

2.14.2 Accumulator (ACC)o e e 122

2.15 Alternate time base registers (ATBLand ATBU) 123

2.16 Performance monitor registers (PMRs) 124

2.16.1 Global control register 0 (PMGCO) v, 125

2.16.2 User global control register 0 (UPMGCO) 126

2.16.3 Local control A registers (PMLCa0O-PMLCa3) 127

2.16.4 User local control A registers (UPMLCa0O-UPMLCa3) 128

2.16.5 Local control B registers (PMLCbO-PMLCb3) 128

4/1176

Contents RMO0004
2.16.6 User local control B registers (UPMLCbO-UPMLCb3) 129

2.16.7 Performance monitor counter registers (PMCO-PMC3) 129

2.16.8 User performance monitor counter registers (UPMCO-UPMC3) 129

2.17 Device control registers (DCRS)t e 130
218 BookESPRmModel. 130
2.18.1 Invalid SPRreferences 130

2.18.2 Synchronization requirementsfor SPRs 130

2183 Reserved SPRS 131

2.18.4 Allocated SPRS 131

3 Instructionmodelc.ciiiiiiii e 133
3.1 Operandconventions 133
3.1.1 Data organization in memory and datatransfers 133

3.1.2 Alignment and misaligned accesses 133

3.2 Instruction setsummary 134
3.2.1 Classes of instructions 135

3.2.2 Instruction forms L 138

3.2.3 Addressing modes 139

3.3 Instruction setoverview 146
3.3.1 Book E user-level instructions o L 146

3.3.2 Supervisor level instructions 182

3.3.3 Recommended simplified mnemonics 185

3.34 Book E instructions with implementation-specific features 185

3.3.5 EISinstructions 185

3.3.6 Context synchronization i 186

3.4 Instruction fetching 186
3.5 Memory synchronization 186
3.6 ElIS-specificinstructions 186
3.6.1 SPE and embedded floating-point APUs 186

3.6.2 Integer select (isel) APU 197

3.6.3 Performance monitor APU 197

3.6.4 Cache locking APU 200

3.6.5 Machine check APU 201

3.6.6 VLE extension 201

3.7 Instruction listing 230

5/1176

RMO0004 Contents
4 Interrupts and exceptionsccciiiiiiiiii i 244
4.1 OVIVIBW . o 244

4.2 Els interrupt definitions 246

4.2.1 Recoverability frominterrupts 247

4.3 Interrupt registers 247

4.4 EXCeptions e 252

4.5 Interrupt classes 253

451 Requirements for system reset generation 254

4.6 Interrupt processing oot 255

4.7 Interrupt definitions 256

4.7.1 Critical inputinterrupt 258

4.7.2 Machine check interrupt 259

4.7.3 Data storage interrupt 260

4.7.4 Instruction storage interrupt 262

4.7.5 External inputinterrupt 263

4.7.6 Alignmentinterrupt 263

4.7.7 Programinterrupt 265

4.7.8 Floating-point unavailable interrupt 267

4.7.9 Systemcallinterrupt 267

4.7.10 Auxiliary processor unavailable interrupt 267

4.7.11 DecrementerInterrupt 268

4.7.12 Fixed-interval timerinterrupt 268

4.7.13 Watchdog timerinterrupt 269

4.714 Datatlberrorinterrupt 269

4.715 Instructiontlb errorinterrupt 270

4716 Debuginterrupt 271

4717 ElIS-definedinterrupts 271

4.8 Performance monitorinterrupt 273

4.9 Partially executed instructions L. 274

4.10 Interrupt orderingand masking 275

4.10.1 Guidelines for system software 276

4.10.2 Interruptorder 277

411 Exceptionpriorities 278

5 Storage architecture i i e 282
5.1 L0 - 282

Ky_l 6/1176

Contents RMO0004
5.2 Memory and cache coherency, 282

5.2.1 Memory/Cache access attributes 283

5.2.2 Shared Mmemory 290

5.3 Cachemodel 296

5.3.1 Cache programming model i, 296

5.3.2 Primary (L1) cachemodel 301

54 Storage model 301

541 Storage programmingmodel e 301

5.4.2 The storage architecture i 303

5.4.3 Virtual address (VA)o 305

544 AdAress SPaCES . . .o\ttt e 305

545 Process ID 307

5.4.6 Addresstranslation 308

5.4.7 Address translationandthe STEIS 310

5.4.8 Permission attributes 315

5.4.9 Translation lookaside buffer (TLB) arrays 317

5410 TLBmanagement 318

TLB configuration information 319

TLB eNtries. . .. e 319

Readingand writing TLB entries i 319

Invalidating TLB entries 321

5.4.11 MAS registers and exceptionhandling 325

6 Instructionset i s 330
6.1 Notation 330

6.2 Instructionfields 331

6.3 Description of instruction operations 333

6.3.1 SPE APU saturation and bit-reverse models 336

6.3.2 Embedded floating-point conversionmodels 337

6.3.3 Integer saturation models 348

6.3.4 Embedded floating-pointresults 348

6.4 Instruction set 348

Part Il: EIS-defined extensions to the Book E architecture................. 822
7 Auxiliary processing units (APUS)ccoiiiiiiiiiirnnnn 823
711176 Kﬁ

RMO0004 Contents
71 Integerselect APU e 823
711 Integer select APU programming model 823
71.2 Using isel to Improve conditional branch performance 824
7.2 Performance monitor APU 824
7.21 Performance monitor APU programming model 824
7.3 Signal processing engine APU (SPEAPU) 826
7.3.1 OVIVIBW L 826
7.3.2 Nomenclature and conventions 827
7.3.3 Programmingmodel 827
7.3.4 Instruction definitions 832
7.4 Embedded vector and scalar single-precision floating-point APUs
(SPFP APUS) ... e 832
7.41 Nomenclature and conventions 832
74.2 Embedded floating-point APUs programming model 832
7.4.3 Embedded floating-point APU operations 839
7.4.4 Implementation options summary 842
7.5 Machine check APU 843
7.51 Machine check APU programming model 843
7.6 Debug APU ... 844
7.6.1 Debug APU programmingmodel 844
7.6.2 Debug APU registermodel 845
7.6.3 Debug APU instructionmodel 846
7.7 Alternate timebase 846
7.71 Programmingmodel e 846
8 Storage-related APUsttt iiinaeennns 848
8.1 Cachelinelocking APU 848
8.1.1 Programmingmodel 848
8.2 Directcache flush APU i 850
8.2.1 OVBIVIBW . . o e 850
8.2.2 Programmingmodel e 850
8.3 Cache way partitioning APU 851
8.3.1 Programmingmodel 851
8.3.2 Interaction with the cache locking APU 851
9 VLE introductionttt eeenaannnnns 852
Ky_l 8/1176

Contents RM0004
9.1 Compatibility with PowerPC Book E 852

9.2 Instruction mnemonics and operands 853

10 VLE storageaddressingccuiiiiiiinnnnernnnnnnns 854
10.1 Data memory addressingmodes 854

10.2 Instruction memory addressingmodes 854

11 VLE compatibility withthe EIS it 856
111 OVeIVIEW . e 856

11.2 VLE extension processor and storage control extensions 856

11.2.1 EISinstructionextensions 856

11.2.2 Book E instruction extensions 857

11.23 EISMMUextensionst 857

11.2.4 EISdebug APU extensionsoiiiiiiieaiean.. 859

12 VLE instructionclassescoiiiiiiiiniirnnnnnnnnns 860
12.1 Processor control instructions 860

12.1.1 Systemlinkage instructions 860

12.1.2 Processor control register manipulation instructions 860

12.1.3 Instruction synchronization instruction 861

12.2 Branch operation instructions o o L 861

12.2.1 Registers for branch operations 861

12.2.2 Branchinstructions 864

12.3 Condition register instructions 865

12.4 Integerinstructions i 866

12.4.1 Integerloadinstructions i 866

12.4.2 Integerstoreinstructions 867

12.4.3 Integer arithmetic instructions 869

12.4.4 Integerlogical and move instructions 870

12.4.5 Integer compare and bit test instructions 872

12.4.6 Integer selectinstruction 873

12.4.7 Integertrapinstructions i 873

12.4.8 Integer rotate and shift instructions 874

12.5 Storage control instructions 876

12.5.1 Storage synchronization instructions 876

12.5.2 Cache managementinstructions 876

9/1176 Kﬁ

RMO0004 Contents
12.5.3 TLB managementinstructions 877
12.5.4 Instruction alignment and byte ordering 877
12.6 Instructionlistings 877
13 VLE instructionsetttt iiinanens 891
13.1 Book E- and EIS-defined instructions 891
13.2 Immediate field and displacement field encodings 895
14 VLE instructionindex iiiiiiannnnnns 967
14.1 Instruction index sorted by opcode 967
14.2 Instruction index sorted by mnemonic 984
14.3 Instruction index sorted by opcode, 1000
14.4 Instruction index sorted by mnemonic 1014
Appendix A Instructionsetlistings it 1028
A1 Instructions sorted by mnemonic (decimal and hexadecimal). 1028
A.2 Instructions sorted by primary opcodes (decimal and hexadecimal) .. 1048
A.3 Instructions sorted by mnemonic (binary). 1063
A.4 Instructions sorted by opcode (binary) 1083
A5 Instructionsetlegend L. 1097
Appendix B Simplified mnemonics for PowerPC instructions............ 1110
B.1 OVeIVIBW . . oo e e 1110
B.2 Subtract simplified mnemonics 1110
B.2.1 Subtractimmediate. 1110
B.2.2 Subtract 1111
B.3 Rotate and shift simplified mnemonics 1111
B.3.1 Operations on wWords.o 1111
B.4 Branch instruction simplified mnemonics 1112
B.4.1 Key facts about simplified branch mnemonics 1114
B.4.2 Eliminatingthe BOoperand 1114
B.4.3 Incorporating the BO branch prediction 1116
B.4.4 The Bl operand—CR bit and field representations. 1117
B.4.5 Simplified mnemonics that incorporate the BO operand 1120
B.4.6 Simplified mnemonics that incorporate CR conditions (eliminates BO and
replaces BlwitherS) 1123
K7_I 10/1176

Contents RMO0004
B.5 Compare word simplified mnemonics 1128
B.6 Condition register logical simplified mnemonics 1128
B.7 Trap instructions simplified mnemonics. 1129
B.8 Simplified mnemonics for accessingSPRs. 1131
B.9 Recommended simplified mnemonics. 1131

B.9.1 NO-OP (NOP) . . o oot e e e 1131
B.9.2 Loadimmediate (li). 1132
B.9.3 Loadaddress (1a) 1132
B.9.4 Move register (mr) 1132
B.9.5 Complementregister(not) 1132
B.9.6 Move to condition register (mter) L. 1132
B.10 EIS-specific simplified mnemonics 1133
B.10.1 Integerselect(isel). i 1133
B.10.2 SPEMNEMONICS. it 1133
B.11 Comprehensive list of simplified mnemonics 1133
Appendix C Programmingexamplesccciiiiiinnnrrnnnnnns 1143
CA1 Synchronization. 1143
C1.1 Synchronization primitives 1144
C1.2 Lock acquisition andrelease 1146
C13 Listinsertiont 1146
C1.4 Synchronizationnotes 1147
C.2 Multiple-precision shifts. 1148
C.3 Floating point conversions.t 1150
C.3.1 Conversion from floating-point number to signed integer word 1150
C.3.2 Conversion from floating-point number to unsigned integer word . .. 1151
C.4 Floating pointselection. i 1151
C.4.1 NOtES . . e 1152

Appendix D Guidelines for 32-bitbook E............................. 1154
D.1 Registers on 32-bit book E implementations. 1154
D.2 Addressing on 32-bit book E implementations 1154
D.3 TLB fields on 32-bit book E implementations 1154
D.4 32-bit book E software guidelines, 1155

D.41 32-bit instruction selection 1155
D.4.2 32-bitaddressing 1155

11/1176

RMO0004 Contents

Appendix E Embedded floating-pointresults 1156
E.1 Notation conventions and generalrules 1156
E.2 Add, subtract, multiply, and divideresults 1157
E.3 Double- to single-precision conversion 1160
E.4 Single- to double-precision conversion 1161
E.5 Conversiontounsigned. i 1161
E.6 Conversiontosigned. 1162
E.7 Conversionfromunsigned 1162
E.8 Conversionfromsigned i 1162
E.9 *abs, *nabs, and *negoperations L 1163

15 GloSSarY . ..ottt e e e e 1164

A 1164
B 1164
G 1165
D 1166
B e 1166
F oo e 1166
G e 1166
He o 1167
D 1167
K 1168
Lo e 1168
M e 1168
N 1169
O e 1169
P 1170
L 1170
R e 1170
S 1171
T 1173
U 1173
Ve 1173
WV e e 1174
16 Revision history i i i i 1175

Ky_l 12/1176

List of tables RMO0004

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 18.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 28.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 38.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.

13/1176

CONVENTIONS . ..o e e 28
Acronyms and abbreviatedterms 29
Terminology CONVENtIONS e e 31
Instruction field conventions e 31
INterrupt registerso 37
Interrupt vector registers and exception conditionso 39
Book E special purpose registers (by SPR abbreviation). 50
EIS—defined SPRs (by SPR abbreviation) 53
XER field desCriptions. e e 57
FPSCR field descriptions i e e et 59
Floating-pointresult flags o 61
Bl operand settings for CRfields 62
CRO bit descCriptions e 63
CR setting for floating-point instructions 64
CR setting for compare instructions 64
CRO ENCOAINGS .« o v ittt e e 66
Condition register setting for compare instructions. L. 66
Branch to link register instruction comparison oo 67
Branch to count register instruction comparison. oo 68
MSR field desCriptions e e 69
Floating-point exception bits—MSR[FEO,FE1]. i 71
HIDO field descCriptions e e 72
PVR field descriptions. e 75
TCR field desCriptions.t e e e 77
TSR field desCriptions. e e 78
IVOR aSSignments oo 83
Exception syndrome register (ESR) definition i oL 84
MCSR field descCriptions e 89
L1CSRO field descriptions i e e e 91
L1CSR1 field descriptions i e e e e 93
L1CFGO field descriptions i e e e e e 94
L1CFG1 field descCriptions i e e e e e 95
L1FINVO fields—L1 directcache flush i 96
MMUCSRO field descriptions i e e e 98
MMUCEFG field descriptions i e e e 929
TLBNCFG field descriptions e e e e 100
MASO field descCriptions e 101
MASH1 field descriptions—descriptor context and configuration control 102
MAS2 field descriptions—EPN and page attributes 103
MASS3 field descriptions—RPN and accesscontrol 104
MAS4 field descriptions—hardware replacement assist configuration. 105
MASS field descriptions—extended search pIDs 106
MAS 6 field descriptions—search pidsand search AS. 106
MAS 7 field descriptions—high order RPN. 107
DBCRO field descriptionsot e e 108
DBCR1 field descriptions e e 110
DBCR2 field descriptions e e 113
DBSR field descCriptions i e e 116

RMO0004

List of tables

Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.

574

SPEFSCR field descriptions o 119
ATBL field descriptions o e 123
ATBU field descriptions e 123
Performance monitor registers—supervisorlevel. 124
Performance monitor registers—user level (read-only) 124
PMGCO field descriptionso 125
PMLCa0-PMLCa3 field descriptionsot e 127
PMLCbO —PMLCDb3 field descriptions 128
PMCO-PMC3 field descriptions i e 129
System response to aninvalid sprreference i 130
Synchronization requirements for sprs. 130
Allocated SPRs defined by the EIS 131
Address characteristics of alignedoperands 134
Allocated INStruUCtioNS e 136
Preserved instructions e 137
Synchronization requirements 142
Integer arithmetic instructions. 147
Integer 32-Bit compare instructions (L=10). 148
Integer logical iNStrUCtioNS e 148
Integer rotate iNStrUCLIONS 149
Integer shiftinstructions 149
Floating-point load instruction set. 151
Floating-point store instructions 152
Floating-point move instructions. 153
Floating-point elementary arithmetic instructions 154
Floating-point multiply-add instructions 154
Floating-point rounding and conversion instructions 155
CRAield settingsot 155
Floating-point compare and select instructions 155
Floating-point status and control register instructions 156
Integer load iNStrUCLIONSo 159
Integer store iNStructions e 160
Integer load and store with byte-reverse instructions 161
Integer load and store multiple instructions 161
Integer load and store string instructions 161
Floating-point load instructions. e 162
Floating-point store instructions 162
Store floating-point single behavior 163
Store floating-point double behavior. 163
BO bit descriptionso 167
BO operand enCodiNgsSo ottt 168
Branch instructions e 169
Condition register logical instructions 169
Trap iNStruUCtioNS e 170
System linkage instruction 170
Move to/from condition register instructions 170
Move to/from special-purpose register instructions, 170
Book E special-purpose registers (by SPR abbreviation). 171
Implementation-specific SPRs (by SPR abbreviation) 173
Memory synchronization instructions 175
User-level cache instructions 180
System linkage instructions—supervisor-level o o .. 182

14/1176

List of tables RMO0004

Table 101.
Table 102.
Table 108.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
Table 112,
Table 113.
Table 114.
Table 115.
Table 116.
Table 117.
Table 118.
Table 119.
Table 120.
Table 121.
Table 122.
Table 123.
Table 124.
Table 125.
Table 126.
Table 127.
Table 128.
Table 129.
Table 130.
Table 131.
Table 132.
Table 138.
Table 134.
Table 135.
Table 136.
Table 137.
Table 138.
Table 139.
Table 140.
Table 141.
Table 142,
Table 143.
Table 144.
Table 145.
Table 146.
Table 147.
Table 148.
Table 149.
Table 150.
Table 151.
Table 152,

15/1176

Move to/from machine state register instructions o o L. 183
Supervisor-Level cache managementinstruction. 183
TLB management instructions e 184
Implementation-specific instructions summary oL 185
EIS-defined instructions (except SPE and SPFP instructions). 185
SPE APU vector multiply instruction mnemonic structure 188
Mnemonic extensions for multiply-accumulate instructions 189
SPE APU vectorinstructions 189
Vector and scalar floating-point APU instructions. 196
Integer select APU instruction 197
Performance monitor APU instructions. 198
Performance monitor registers—supervisorlevel. 198
Performance monitor registers—user level (read-only) 199
Cache locking APU instructions e 200
Machine check APU instruction e 201
System linkage instruction setindex. 202
System register manipulation instruction setindex. 202
Instruction Synchronization Instruction SetIndex. 202
VLE extension BO32 encodingsot ittt e 203
VLE extension BO16 encodingsot vttt e 204
Branch instruction setindex e 204
Condition register instruction setindex. i 204
Basic integer load instruction setindex i 205
Integer load byte-reverse instruction setindex. 206
Integer load multiple instruction setindex. i i 206
Integer load and reserve instruction setindex 206
Basic integer store instruction setindex. 207
Integer store byte-reverse instruction setindex 207
Integer store multiple instruction setindex 207
Integer store conditional instruction setindex. 207
Integer arithmetic instruction setindex. i 208
Integer logical instruction setindex. 210
CR settings for compare instructions 211
CR settings for integer bit test instructions L 212
Integer compare and bit test instruction setindex 212
Integer select instruction setindex 212
Integer trap conditions e 213
Integer trap instruction setindex. 213
Integer rotate instruction setindex 214
Integer rotate with mask instruction setindex. L. 214
Integer shift instruction setindex 214
Storage synchronization instruction setindex 216
Cache management instruction setindex. i 216
TLB management instruction setindex 217
Instructions listed by name 217
Instructions listed by mnemonic 224
List of INStrUCtiONS oo e 230
INterrUPt By DS . . 244
Interrupt registers defined by the PowerPC architecture 248
Asynchronous and synchronous interrupts. 253
Interrupt and exception types 256
Critical input interrupt register settings 258

RMO0004

List of tables

Table 158.
Table 154.
Table 155.
Table 156.
Table 157.
Table 158.
Table 159.
Table 160.
Table 161.
Table 162.
Table 163.
Table 164.
Table 165.
Table 166.
Table 167.
Table 168.
Table 169.
Table 170.
Table 171.
Table 172.
Table 173.
Table 174.
Table 175.
Table 176.
Table 177.
Table 178.
Table 179.
Table 180.
Table 181.
Table 182.
Table 183.
Table 184.
Table 185.
Table 186.
Table 187.
Table 188.
Table 189.
Table 190.
Table 191.
Table 192.
Table 198.
Table 194.
Table 195.
Table 196.
Table 197.
Table 198.
Table 199.
Table 200.
Table 201.
Table 202.
Table 208.
Table 204.

574

Machine check interrupt settings 259
Data storage interrupt exception conditions 260
Data Storage Interrupt Register Settings 262
Instruction storage interrupt exception conditions oL 262
Instruction storage interrupt registersettings o L 263
External input interrupt register settings 263
Alignment interrupt register settings 264
Program interrupt exception conditions i 265
MSRIFEQ,FE1] Settingsot e e e e 266
Program interrupt register settings 266
Floating-point unavailable interrupt register settings 267
System call interrupt register settings. 267
Auxiliary processor unavailable interrupt register settings 268
Decrementer interrupt register settings 268
Fixed-interval timer interrupt register settings. oL 269
Watchdog timer interrupt register settings i 269
Data tlb error interrupt exception conditions. 269
Data tlb error interrupt register settings 270
Instruction TLB error interrupt exception conditions 270
Instruction TLB error interrupt register settings 271
Debug interrupt register settings. 271
SPE/embedded floating-point APU unavailable interrupt register settings. 272
Embedded floating-point data interrupt register settings 272
Embedded floating-point round interrupt register settings 273
Operations 10 avoid.ot e 276
EIS asynchronous exception priorities 279
EIS synchronous exception priorities 280
Load and Store orderingo oot 291
Memory barrier when coherencyisrequired (M=1) 291
Cumulative memory barrier 292
Storage related MSR fields. 297
Exception syndrome register (ESR) definition o oL 298
Page size and EPN field comparison e 313
Real address generation. e 314
Permission control for instruction, data read, and data write accesses 315
Permission control and cache instructions 316
T NIy ..o e 318
Fields for EA format of tlbivax. 323
MAS register update SUMMary e 324
MAS settings for an instruction or data TLB errorinterrupt. 327
MAS settings for permissions violation ISIorDSL. o .. 328
MMU assist register field updates—EIS definition 329
Notation CoNventions e 330
Instruction field descriptions e 331
RTL notation e 333
Operator preCedencCeot e 336
Conversion models. e 337
Bl operand settings for CRfields 367
Bl operand settings for CRfields 370
Bl operand settings for CRfields 372
Datasamples and Sizes i 378
Operations with special values 689

16/1176

List of tables RMO0004

Table 205.
Table 206.
Table 207.
Table 208.
Table 209.
Table 210.
Table 211.
Table 212.
Table 213.
Table 214.
Table 215.
Table 216.
Table 217.
Table 218.
Table 219.
Table 220.
Table 221.
Table 222.
Table 223.
Table 224.
Table 225.
Table 226.
Table 227.
Table 228.
Table 229.
Table 230.
Table 231.
Table 232.
Table 238.
Table 234.
Table 235.
Table 236.
Table 237.
Table 238.
Table 239.
Table 240.
Table 241.
Table 242,
Table 243.
Table 244.
Table 245.
Table 246.
Table 247.
Table 248.
Table 249.
Table 250.
Table 251.
Table 252.
Table 258.
Table 254.
Table 255.
Table 256.

17/1176

Operations with special values 695
Operations with special values 697
Effect of SPRN[5] and MSR[PRYI. i 739
Recodingwithiselvuir i i e e st a s nam s aannnnns 824
Performance monitor registers—supervisorlevel. 825
Performance monitor registers—user level (read-only) 825
Performance monitor apu instructions 826
Mnemonic extensions for multiply accumulate instructions 830
Embedded vector floating-point instruction opcodes 833
Embedded scalar single-precision floating-point instruction opcodes 834
Embedded scalar double-precision floating-point instruction opcodes. 834
EIS-defined DBSR field descriptions 845
DBCRO field descriptions i e 845
Data storage addressing modes. 854
Instruction storage addressingmodes 854
TLBEntry Oresetvalue e 857
MAS2 field descriptions e 858
MAS4 field descriptions i 858
System linkage instruction setindex. 860
System register manipulation instruction setindex. 860
Instruction Synchronization Instruction SetIndex. 861
CRO BNCOAINGS . . . o ottt et e e e e 862
Condition register setting for compare instructions. 863
Branch to link register instruction comparison o oo 863
Branch to count register instruction comparison. oL 864
VLE extension BO32 encodings oot v ittt 864
VLE extension BO16 encodingsot i ittt e 865
Branch instruction setindex e 865
Condition register instruction setindex. i 866
Basic integer load instruction setindex 866
Integer Load Byte-Reverse Instruction SetIndex. 867
Integer load multiple instruction setindex. i 867
Integer load and reserve instruction setindex 867
Basic integer store instruction setindex. 868
Integer store byte-reverse instruction setindex oL 868
Integer store multiple instruction setindex 868
Integer store conditional instruction setindex. 868
Integer arithmetic instruction setindex. i 869
Integer logical instruction setindex. 871
CR settings for compare instructions 872
CR settings for integer bit test instructions L 873
Integer compare and bit test instruction setindex 873
Integer select instruction setindex 873
Integer trap conditions e 874
Integer trap instruction setindex. 874
Integer rotate instruction setindex 875
Integer rotate with mask instruction setindex. 875
Integer shift instruction setindex 875
Storage synchronization instruction setindex 876
Cache management instruction setindex. 877
TLB management instruction setindex 877
Instructions listed by name 878

RMO0004

List of tables

Table 257.
Table 258.
Table 259.
Table 260.
Table 261.
Table 262.
Table 263.
Table 264.
Table 265.
Table 266.
Table 267.
Table 268.
Table 269.
Table 270.
Table 271.
Table 272.
Table 273.
Table 274.
Table 275.
Table 276.
Table 277.
Table 278.
Table 279.
Table 280.
Table 281.
Table 282.
Table 283.
Table 284.
Table 285.
Table 286.
Table 287.
Table 288.
Table 289.
Table 290.
Table 291.
Table 292.
Table 298.
Table 294.
Table 295.
Table 296.
Table 297.
Table 298.
Table 299.
Table 300.
Table 301.
Table 302.
Table 303.
Table 304.
Table 305.
Table 306.
Table 307.
Table 308.

574

Instructions listed by mnemonic 884
Book E— and EIS-defined instructions listed by mnemonic 891
Immediate field and displacement field encodings 895
Notation Conventions 967
Instruction index sorted by opcode 967
32-bit instruction encodings e 969
16-Bit VLE instructions sorted by mnemonic 984
32-bit instruction encodings (by mnemonic) 986
Instruction index sorted by opcode 1000
32-bit instruction encodings 1003
Instruction index sorted by mnemonic 1014
32-bit instructions by mnemonic (ignoring the e_prefix) 1017
Instructions sorted by mnemonic (decimal and hexadecimal) 1028
Instructions sorted by primary opcodes (decimal and hexadecimal) 1048
Instructions sorted by mnemonic (binary). 1063
Instructions sorted by opcode (binary) 1083
PowerPC instruction setlegend 1098
PowerPC instruction setlegend 1103
Subtract immediate simplified mnemonics 1111
Subtract simplified mMNemMoONICS 1111
Word rotate and shift simplified mnemonics. L. 1112
Branch instructions 1112
BO bit encodingsot 1115
BO operand encodingsot i e 1115
CRO and CRH1 fields as updated by integer instructions 1118
Bl operand settings for CR fields for branch comparisons 1119
CR field identification symbols 1120
Branch simplified mnemonics. 1120
Branch instructions 1121
Simplified mnemonics for be and beca without LR update 1121
Simplified mnemonics for belr and beetr without LR update 1122
Simplified mnemonics for bel and bela with LR update 1122
Simplified mnemonics for belrl and beetrl with LR update 1123
Standard coding for branch conditions 1124
Branch instructions and simplified mnemonics that incorporate CR conditions 1124
Simplified mnemonics with comparison conditions. 1125

Simplified mnemonics for be and bea without comparison conditions or LR Update. . . 1126
Simplified mnemonics for belr and beetr without comparison conditions or LR update 1126

Simplified mnemonics for bel and bela with comparison conditions, LR update 1127
Simplified mnemonics for belrl and beetrl with comparison conditions, LR update. . .. 1127
Word compare simplified mnemonics. 1128
Condition register logical simplified mnemonics. 1128
Standard codes for trap instructions 1129
Trap simplified MNEMONICS e 1130
TOoperand bitencodingot e 1130
Additional simplified mnemonics for accessing SPRGs 1131
Simplified MNeMONICS. 1133
Shifts. . o 1149
ComparisON 10 ZEr0ottt 1152
Minimum and maximum e 1152
Simple if-then-else constructions 1152
Notation conventions and generalrules i 1156

18/1176

List of tables RMO0004

Table 309.
Table 310.
Table 311.
Table 312.
Table 318.
Table 314.
Table 315.
Table 316.
Table 317.

19/1176

Floating-point results summary—add, sub, mul, div. 1157
Floating-point results summary—single convert fromdouble. 1160
Floating-point results summary—double convert fromsingle. 1161
Floating-point results summary—converttounsigned 1161
Floating-point results summary—converttosigned 1162
Floating-point results summary—convert from unsigned 1162
Floating-point results summary—convert fromsigned 1162
Floating-point results summary—*abs, *nabs, *neg.............. 1163
Document revision history e 1175

RMO0004

List of figures

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

574

EIS programming model registerset 35
Effective-to-Real Address Translation Flow 41
Register model e 49
SPE and floating point APU GPR USageot 56
Relationship of timer facilities to the time base. 76
Register indirect with immediate index addressing for integer loads/stores. 158
Register indirect with index addressing for integer loads/stores. 158
Register indirect addressing for integer loads/stores 159
Branch relative addressing 164
Branch conditional relative addressing. 165
Branch to absolute addressing 165
Branch conditional to absolute addressing. 166
Branch conditional to link register addressing 166
Branch conditional to count register addressing. 167
Integer and fractional operations e 188
Virtual Address Space inBooK E 305
Current address SPaACE v vttt e 305
Current PID Value e e 307
Virtual address and TLB-entry comparison 309
Effective-to-real address translation. 309
Granting of Access Permission. e 314
TLBs accessed through MAS registers and TLB instructions. 320
Instruction descCription. e 349
Vector absolute value (evabs) 468
Vector add immediate word (evaddiw) 469
Vector add signed, modulo, integer to accumulator word (evaddsmiaaw) 470
Vector add signed, saturate, integer to accumulator word (evaddssiaaw) 471
Vector add unsigned, modulo, integer to accumulator word (evaddumiaaw) 472
Vector add unsigned, saturate, integer to accumulator word (evaddusiaaw) 473
Vectoradd word (evaddw) e 474
Vector AND (evand) e e 475
Vector AND with complement (evande) 476
Vector Compare Equal (evempeq)t e 477
Vector compare greater than signed (evempgts) 478
Vector compare greater than unsigned (evempgtu) 479
Vector compare less than signed (evemplts) 480
Vector compare less than unsigned (evempltu) 481
Vector count leading signed bits word (eventlsw) L. 482
Vector count leading zeros word (eventlzw) L. 483
Vector divide word signed (evdivws) e 485
Vector divide word unsigned (evdivwu) 486
Vector equivalent (BVeqV)o e 487
Vector extend sign byte (evextsb) 488
Vector extend sign half word (evextsh) 489
evldd results in big- and little-endianmodes o 513
evlddx results in big- and little-endian modes L 514
evldhx results in big- and little-endian modes L. 516
evldw results in big- and little-endian modes o i 517

20/1176

List of figures RMO0004

Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.
Figure 87.

Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.

21/1176

evldwx results in big- and little-endianmodes o L 518
evlhhesplat results in big- and little-endianmodes 519
evlhhesplatx results in big- and little-endianmodes 520
evlhhossplat results in big- and little-endianmodes 521
evlhhossplatx results in big- and little-endianmodes 522
evlhhousplat results in big- and little-endianmodes 523
evlhhousplatx results in big- and little-endianmodes.. 524
eviwhe results in big- and little-endian modes L. 525
eviwhex results in big- and little-endianmodes L 526
evlwhos results in big- and little-endianmodes. 527
evilwhosx results in big- and little-endianmodes. 528
eviwhou results in big- and little-endian modes. 529
evlwhoux results in big- and little-endianmodes. oL 530
evlwhsplat results in big- and little-endian modes. o ... 531
evlwhsplatx results in big- and little-endianmodes. 532
evlwwsplat results in big- and little-endianmodes 533
evlwwsplatx results in big- and little-endianmodes 534
High order element merging (evmergehi) 535
High order element merging (evmergehilo). 536
Low order element merging (evmergelo). 537
Low order element merging (evmergelohi) L. 538
evmhegsmfaa (even form) 539
evmhegsmfan (evenform) 540
evmhegsmiaa (even form). 541
evmhegsmian (even form) 542
evmhegumiaa (even form) 543
evmhegumian (even form) 544
Even multiply of two signed modulo fractional elements (to accumulator) (evmhesmf) . 545
Even form of vector half-word multiply (evmhesmfaaw) 546
Even form of vector half-word multiply (evmhesmfanw) 547
Even form for vector multiply (to accumulator) (evmhesmi) 548
Even form of vector half-word multiply (evmhesmiaaw) 549
Even form of vector half-word multiply (evmhesmianw) 550
Even multiply of two signed saturate fractional elements (to accumulator) (evmhessf) . 552
Even form of vector half-word multiply (evmhessfaaw). 554
Even form of vector half-word multiply (evmhessfanw). 555
Even form of vector half-word multiply (evmhessiaaw). 557
Even form of vector half-word multiply (evmhessianw). 559
Vector multiply half words, even, unsigned, modulo, integer (to accumulator)

(evmheumi) 560
Even form of vector half-word multiply (evmheumiaaw) 561
Even form of vector half-word multiply (evmheumianw) 562
Even form of vector half-word multiply (evmheusiaaw). 564
Even form of vector half-word multiply (evmheusianw). 566
evmhogsmfaa (odd form) e 567
evmhogsmfan (odd form) 568
evmhogsmiaa (odd form) 569
evmhogsmian (odd form) e 570
evmhogumiaa (odd form) e 571
evmhogumian (odd form) 572
Vector multiply half words, odd, signed, modulo, fractional (to accumulator)

(evmhosmI) 573

RMO0004

List of figures

Figure 99.

Figure 100.
Figure 101.
Figure 102.
Figure 103.
Figure 104.

Figure 105.
Figure 106.
Figure 107.
Figure 108.
Figure 109.

Figure 110.
Figure 111.
Figure 112.
Figure 113.
Figure 114.
Figure 115.
Figure 116.
Figure 117.
Figure 118.
Figure 119.

Figure 120.
Figure 121.
Figure 122.

Figure 123.
Figure 124.

Figure 125.
Figure 126.
Figure 127.

Figure 128.
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 140.

574

Odd form of vector half-word multiply (evmhosmfaaw). 574
Odd form of vector half-word multiply (evmhosmfanw). 575
Vector multiply half words, odd, signed, modulo, integer (to accumulator) (evmhosmi) . 576
Odd form of vector half-word multiply (evmhosmiaaw).......................... 577
Odd form of vector half-word multiply (evmhosmianw). 578
Vector multiply half words, odd, signed, saturate, fractional (to accumulator)

(BVMRNOSST). e 580
Odd form of vector half-word multiply (evmhossfaaw) 582
odd Form of Vector Half-Word Multiply (evmhossfanw) 584
Odd form of vector half-word multiply (evmhossiaaw) 586
Odd form of vector half-word multiply (evmhossianw) 588
Vector multiply half words, odd, unsigned, modulo, integer (to accumulator)

(eVMROUMI) 589
Odd form of vector half-word multiply (evmhoumiaaw). 590
Odd form of vector half-word multiply (evmhoumianw). 591
Odd form of vector half-word multiply (evmhousiaaw) 593
Odd form of vector half-word multiply (evmhousianw) 595
Initialize accumulator (evmra) 596
Vector multiply word high signed, modulo, fractional (to accumulator) (evmwhsmf). . . . 597
Vector multiply word high signed, modulo, integer (to accumulator) (evmwhsm) 598
Vector multiply word high signed, saturate, fractional (to accumulator) (evmwhssf). . . . 600

Vector multiply word high unsigned, modulo, integer (to accumulator) (evmwhumi) . . . 601
Vector multiply word low signed, modulo, integer & accumulate in words

EVIMWISMIAAW). 602
Vector multiply word low signed, modulo, integer and accumulate negative in words
(evmwlismianw) 603
Vector multiply word low signed, saturate, integer & accumulate in words
(evmwissiaaw). e 605
Vector multiply word low signed, saturate, integer & accumulate negative in words
(evmWISSIaNW) 607
Vector multiply word low unsigned, modulo, integer (evmwlumi) 608
Vector multiply word low unsigned, modulo, integer & accumulate in words
(evmwlumiaaw) 609
Vector multiply word low unsigned, modulo, integer & accumulate negative in words
(evmwlumianw) 610
Vector multiply word low unsigned, saturate, integer & accumulate in words
(evmwlusiaaw) e 612
Vector multiply word low unsigned, saturate, integer & accumulate negative in words
(evmwlusianw) 614
Vector multiply word signed, modulo, fractional (to accumulator) (evmwsmf). 615
Vector multiply word signed, modulo, fractional & accumulate (evmwsmfaa)......... 616
Vector multiply word signed, modulo, fractional & accumulate negative (evmwsmfan) . 617
Vector multiply word signed, modulo, integer (to accumulator) (evmwsmi). 618
Vector multiply word signed, modulo, integer & accumulate (evmwsmiaa). 619
Vector multiply word signed, modulo, integer & accumulate negative (evmwsmian) . . . 620
Vector multiply word signed, saturate, fractional (to accumulator) (evmwssf). 621
Vector multiply word signed, saturate, fractional, & accumulate (evmwssfaa) 622
Vector multiply word signed, saturate, fractional & accumulate negative (evmwssfan) . 624
Vector multiply word unsigned, modulo, integer (to accumulator) (evmwumi) 625
Vector multiply word unsigned, modulo, integer & accumulate (evmwumiaa). 626
Vector multiply word unsigned, modulo, integer & accumulate negative (evmwumian) . 627
Vector NAND (evnand) e 628
22/1176

List of figures RMO0004

Figure 141.
Figure 142.
Figure 143.
Figure 144.
Figure 145.
Figure 146.
Figure 147.
Figure 148.
Figure 149.
Figure 150.
Figure 151.
Figure 152.
Figure 153.
Figure 154.
Figure 155.
Figure 156.
Figure 157.
Figure 158.
Figure 159.
Figure 160.
Figure 161.
Figure 162.
Figure 163.
Figure 164.
Figure 165.
Figure 166.
Figure 167.
Figure 168.
Figure 169.
Figure 170.
Figure 171.
Figure 172.
Figure 173.
Figure 174.
Figure 175.
Figure 176.
Figure 177.
Figure 178.
Figure 179.
Figure 180.

23/1176

Vector negate (BVNEQG)ottt e 629
Vector NOR (BVNOK)o e e 630
Vector OR (BVOK)ottt e e e e e 631
Vector OR with complement (BVOre) i e e 632
Vector rotate left word (evrlw) 633
Vector rotate left word immediate (evrlwi) 634
Vector round word (€VINAW) e 635
Vector select (eVSel). e 636
Vector shift leftword (evsIw) e 637
Vector shift left word immediate (evslwi) 638
Vector splat fractional immediate (evsplatfi) 639
evsplati sign extend. e 640
Vector shift right word immediate signed (evsrwis) 641
Vector shift right word immediate unsigned (evsrwiu). 642
Vector shift right word signed (VSIWS) e 643
Vector shift right word unsigned (€VSIWU) e 644
evstdd results in big- and little-endianmodes oL 645
evstddx Results in big- and little-endianmodes 646
evstdh Results in big- and little-endianmodes L. 647
evstdhx Results in big- and little-endianmodes 648
evstdw results in big- and little-endianmodes. oL 649
evstdwx Results in big- and little-endianmodes oL 650
evstwhe Results in big- and little-endianmodes 651
evstwhex Results in big- and little-endianmodes, 652
evstwho Results in big- and little-endianmodeso L. 653
evstwhox Results in big- and little-endianmodes o ... 654
evstwwe Results in big- and little-endianmodes..o ... 655
evstwwex Results in big- and little-endianmodes. o L 656
evstwwo Results in big- and little-endianmodes. oL 657
evstwwox Results in big- and little-endian modes. oL 658
Vector subtract signed, modulo, integer to accumulator word (evsubfsmiaaw) 659
Vector subtract signed, saturate, integer to accumulator word (evsubfssiaaw) 660
Vector subtract unsigned, modulo, integer to accumulator word (evsubfumiaaw) 661
Vector subtract unsigned, saturate, integer to accumulator word (evsubfusiaaw) 662
Vector subtract from word (evsubfw). 663
Vector subtract immediate from word (evsubifw) 664
Vector XOR (BVXOK) . .. oottt e e e e e e e e e e 665
Two-element vector operations e 829
Floating-point data formats. 839
Bl field (Bits 11-14 of the instruction encoding) 1118

[S74

RMO0004 About this book

About this book

The primary objective of this reference is to provide a view of the programming model
defined by Book E and the Book E implementation standards (EIS).

Book E is a PowerPC™ architecture definition for embedded processors that ensures binary
compatibility with the user instruction set architecture (UISA) portion of the PowerPC
architecture as it was jointly developed by Apple, IBM, and Motorola (now Freescale
Semiconductor, Inc.).

This book should be used with the user documentation for individual implementations; such
documents provide a high-level summary of the information that appears here, as well as
implementation-specific features and implementation differences that are not described
here.

This document distinguishes between the three levels of the architectural and
implementation definition, as follows:

® The Book E architecture —Book E defines a set of user-level instructions and registers
that are drawn from the UISA portion of the AIM definition of the PowerPC architecture.
Book E also include numerous other supervisor-level registers and instructions as they
were defined in the AIM version of the PowerPC architecture for the virtual environment
architecture (VEA) and the operating environment architecture (OEA).
Because Book E defines a much different model for operating system resources such
as the MMU and interrupts, it defines many new registers and instructions.

® Book E implementation standards (EIS). In many cases, the Book E architecture
definition provides a very general framework, leaving many higher-level details up to
the implementation.
To ensure consistency among its Book E implementations, working standards were
defined, providing an additional layer of architecture between Book E and actual
devices. This layer includes more specific definitions of Book E features as well as
extensions to the architecture, typically in the form of auxiliary processing units (APUs),
which define additional registers, instructions, and interrupts that provide specially
targeted capabilities. Note that some APUs are implementation-specific and are
available only on individual devices. The APUs described here are those that are
implemented on multiple processors or families of processors.
The EIS guarantees that if an APU is implemented, it conforms to the EIS architecture
described here.

Information in this book is subject to change without notice, as described in the disclaimers
on the title page of this book. As with any technical documentation, it is the readers’
responsibility to be sure they are using the most recent version of the documentation.

Audience

It is assumed that the reader has the appropriate general knowledge regarding operating
systems, microprocessor system design, and the basic principles of RISC processing to use
the information in this manual.

Ky_l 24/1176

About this book RMO0004

Organization

Following is a summary and a brief description of the major sections of this manual:

® Part I: Book E and Book E implementation standards,” describes the programming
model defined by the PowerPC Book E architecture and the EIS. It consists of the
following chapters:

— Chapter 1: Overview,” provides a general discussion of the programming,
interrupt, cache, and memory management models as they are defined by Book E
and the EIS.

— Chapter 2: Register model,” is useful for software engineers who need to
understand the programming model in general and the functionality of each
register.

— Chapter 3: Instruction model” provides an overview of the addressing modes and
a description of the instructions. Instructions are organized by function.

— Chapter 4: Interrupts and exceptions,” provides an overview of the Book E— and
EIS-defined interrupts and exception conditions that can cause them.

— Chapter 5: Storage architecture,” describes the cache and MMU portions of the
EIS.

— Chapter 6: Instruction set,” functions as a handbook for the instruction set.
Instructions are sorted by mnemonic. Each instruction description includes the
instruction formats and an individualized legend that provides such information as
the level or levels of the architecture in which the instruction may be found and the
privilege level of the instruction.

® Part Il: EIS-defined extensions to the Book E architecture,” describes the auxiliary
procession units (APUs) defined by the EIS. It consists of the following chapters:

— Chapter 7: Auxiliary processing units (APUs),” describes extensions to the Book E
architecture defined by the EIS. These include the following:

- Chapter 7.1: Integer select APU’
- Chapter 7.2: Performance monitor APU’
- Chapter 7.3: Signal processing engine APU (SPE APU)’

- Chapter 7.4: Embedded vector and scalar single-precision floating-point APUs
(SPFPAPUSs)

- Chapter 7.5: Machine check APU’
- Chapter 7.6: Debug APU’

— Chapter 8: Storage-related APUs.” describes the following APUs defined by the
storage architecture:

- Chapter 8.1: Cache line locking APU’
- Chapter 8.2: Direct cache flush APU’
- Chapter 8.3: Cache way partitioning APU’

25/1176 Ky_’

RMO0004 About this book

Subsequent chapters describe the VLE extension
- Chapter 9: VLE introduction”
- Chapter 10: VLE storage addressing’
- Chapter 11: VLE compatibility with the EIS”
- Chapter 12: VLE instruction classes”
- Chapter 13: VLE instruction sef’
- Chapter 14: VLE instruction index”
® The following appendixes are included:

— Appendix A: Instruction set listings,” lists all instructions except those defined by
the VLE extension instructions by both mnemonic and opcode, and includes a
quick reference table with general information, such as the architecture level,
privilege level, form, and whether the instruction is optional. VLE instruction
opcodes are listed in Section 13: VLE instruction set”

— Appendix B: Simplified mnemonics for PowerPC instructions,” describes simplified
mnemonics, which are provided for easier coding of assembly language programs.
Simplified mnemonics are defined for the most frequently used forms of branch
conditional, compare, trap, rotate and shift, and certain other instructions defined
by the PowerPC™ architecture and by implementations of and extensions to the
PowerPC architecture.

— Appendix C: Programming examples,” gives examples of how memory
synchronization instructions can be used to emulate various synchronization
primitives and to provide more complex forms of synchronization. It also describes
multiple precision shifts.

— Appendix D: Guidelines for 32-bit book E,” provides guidelines used by 32-bit
Book E implementations; a set of guidelines is also outlined for software
developers. Application software written to these guidelines can be labeled 32-bit
Book E applications and can be expected to execute properly on all
implementations of Book E, both 32-bit and 64-bit implementations.

— Appendix E: Embedded floating-point results,” provides guidelines used by 32-bit
Book E implementations; a set of guidelines is also outlined for software
developers. Application software written to these guidelines can be labeled 32-bit
Book E applications and can be expected to execute properly on all
implementations of Book E, both 32-bit and 64-bit implementations.

This book includes a glossary and an index.

Ky_l 26/1176

Suggested reading RMO0004

Suggested reading

This section lists additional reading that provides background for the information in this
manual as well as general information about the architecture.

General information

The following documentation, published by Morgan-Kaufmann Publishers, 340 Pine Street,
Sixth Floor, San Francisco, CA, provides useful information about the PowerPC architecture
and computer architecture in general:

® The PowerPC Architecture: A Specification for a New Family of RISC Processors,
Second Edition, by International Business Machines, Inc.

Related documentation

ST documentation is available from the sources listed on the back cover of this manual; the
document order numbers are included in parentheses for ease in ordering:

® Reference manuals—These books (formerly called user’s manuals) provide details
about individual implementations and are intended for use with the EREF.

® Addenda/errata to reference manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and functionality
changes. These addenda are intended for use with the corresponding reference
manuals.

® Hardware specifications—Hardware specifications provide specific data regarding bus
timing, signal behavior, and AC, DC, and thermal characteristics, as well as other
design considerations.

® Technical summaries—Each device has a technical summary that provides an
overview of its features. This document is roughly the equivalent to the overview
(Chapter 1) of an implementation’s reference manual.

® Application notes—These short documents address specific design issues useful to
programmers and engineers working with ST processors.

Additional literature is published as new processors become available.

2711176 Kﬁ

RMO0004 Suggested reading

Conventions

This document uses the following notational conventions:

Table 1. Conventions

Convention Description

When a bit takes the value zero, it is said to be cleared; when it

cleared/set takes a value of one, it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, beetrx.
italics Book titles in text are set in italics.

Internal signals are set in italics, for example, qual BG

0x Prefix to denote hexadecimal number

Ob Prefix to denote binary number

rA, rB Instruction syntax used to identify what is typically a source GPR
rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

Abbreviations for registers are shown in uppercase text. Specific
bits, fields, or ranges appear in brackets. For example, MSR[LE]

REG[FIELD] refers to the little-endian mode enable bit in the machine state
register.

x In some contexts, such as signal encodings, an unitalicized x
indicates a don't care.

X An italicized x indicates an alphanumeric variable.

n An italicized n indicates an numeric variable.

- NOT logical operator

& AND logical operator

| OR logical operator

Il Concatenation operator; for example, 010 |l 111 is the same as
010111

Indicates a reserved field in a register. Although these bits can be
written to as ones

Additional conventions used with instruction encodings are described in Table 195.

Ky_l 28/1176

Acronyms and abbreviations

RMO0004

Acronyms and abbreviations

29/1176

Table 2 contains acronyms and abbreviations that are used in this document.

Table 2. Acronyms and abbreviated terms
Term Meaning
CR Condition register
CTR Count register
DTLB Data translation lookaside buffer
EA Effective address
ECC Error checking and correction
FPR Floating-point register
FPU Floating-point unit
GPR General-purpose register
IEEE Institute of Electrical and Electronics Engineers
ITLB Instruction translation lookaside buffer
L2 Secondary cache
LIFO Last-in-first-out
LR Link register
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
MMU Memory management unit
MSB Most-significant byte
msb Most-significant bit
MSR Machine state register
NaN Not a number
NIA Next instruction address
No-op No operation
OEA Operating environment architecture
PTE Page table entry
RISC Reduced instruction set computing
RTL Register transfer language
SIMM Signed immediate value
SPR Special-purpose register
B Time base register
TLB Translation lookaside buffer

RMO0004 Acronyms and abbreviations

Table 2. Acronyms and abbreviated terms (continued)

Term Meaning

UIMM Unsigned immediate value

UISA User instruction set architecture
VA Virtual address

VEA Virtual environment architecture

VLE Variable length encoding

Register used primarily for indicating conditions such as carries and overflows for

XER . .
integer operations

Ky_l 30/1176

Terminology conventions

RM0004

Terminology conventions

Table 3 lists certain terms used in this manual that differ from the architecture terminology

conventions.

Table 3. Terminology conventions

The architecture specification

This manual

Extended mnemonics

Simplified mnemonics

Privileged mode (or privileged state)

Supervisor level

Problem mode (or problem state)

User level

Real address

Physical address

Relocation

Translation

QOut-of-order memory accesses

Speculative memory accesses

Storage (locations)

Memory

Storage (the act of)

Access

Table 4 describes instruction field notation conventions used in this manual.

Table 4. Instruction field conventions

The architecture specification

Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)
BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)
FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

Sl SIMM

u IMM

ul UMM

100 0...0 (shaded)

RM0004 Part I: Book E and Book E implementation standards

Part |: Book E and Book E implementation standards

Part | describes the registers and instructions defined by the Book E architecture and by the
Book E implementation standards (EIS). It contains the following chapters:

® Chapter 1: Overview, provides a general discussion of the programming, interrupt,
cache, and memory management models as they are defined by Book E and the EIS.

® Chapter 2: Register model is useful for software engineers who need to understand
the programming model in general and the functionality of each register.

® Chapter 3: Instruction model,” provides an overview of the addressing modes and a
description of the instructions. Instructions are organized by function.

® Chapter 4: Interrupts and exceptions,” provides an overview of the Book E— and EIS-
defined interrupts and exception conditions that can cause them.

® Chapter 5: Storage architecture,” describes the cache and MMU portions of the EIS.

Ky_l 32/1176

Overview

RMO0004

1.1

33/1176

Overview

This document describes the Book E version of the PowerPC™ architecture as it is further
defined by the Book E implementation standards (EIS) and implemented on Book E cores.
This chapter includes overviews of the following:

® Features of the Book E version of the PowerPC architecture and implementation-
details defined by the EIS

The Book E and EIS programming model
The Book E and EIS interrupt model
The Book E and EIS memory management model

Architectural compatibility and migration from the original version of the PowerPC
architecture as defined by Apple, IBM, and Motorola (referred to as the AIM version of
the PowerPC architecture)

Overview Book E and the Book E implementation standards
(EIS)

Book E is a version of the PowerPC architecture intended for embedded processors. To
ensure application-level compatibility with the PowerPC architecture developed by Apple,
IBM and Freescale, Book E incorporates the user-level resources defined in the user
instruction set architecture (UISA), Book I, of the AIM architectural definition.

Because operating systems for embedded processors have different needs than those for
desktop systems, Book E defines more flexible interrupt and memory management models.
Instead of the segmented memory model defined by the AIM architecture, Book E provides
a page-based memory system that supports multiple variable-sized pages managed
through translation lookaside buffers (TLBs). Interrupt offsets can be programmed through
interrupt-specific interrupt vector offset registers (IVORs). Book E defines the interrupt
vector prefix register (IVPR), which is programmed with a prefix value that is concatenated
with the IVOR values to place the interrupt vector table anywhere in memory.

As a consequence, some resources defined by the AIM version of the architecture are no
longer supported and new ones are provided. For example, segment and block address
translation (BAT) registers are gone, and new instructions, registers, and interrupts have
been defined for managing page translation and protection through TLBs.

Moreover, the Book E architecture allows greater flexibility. For example, Book E defines the
TLB Write Entry (tlbwe) and TLB Read Entry (tlbre) instructions only very generally, leaving
details of their execution and behavior up to the implementation. However, to ensure
compatibility among Book E implementations, the Book E implementation standard (EIS)
defines more specifically how these instructions work.

RMO0004

Overview

1.1.1

1.2

Auxiliary processing units (APUs)

Book E supports the use of auxiliary processing units (APUs), which allocate opcode and
register space for extending the instruction set without affecting the instruction set defined
by Book E. This facilitates the development of special-purpose resources that are useful to
some embedded environments but impractical for others. Note that instructions from
multiple APUs may be assigned the same opcode numbers of the allocated opcode space.

The EIS defines many APUs. These APUs are not required on all devices, but devices that
implement them do so strictly following the EIS architectural definition. In addition, an
implementation may also provide an APU that is not a part of the EIS.

APUs may consist of any combination of instructions, optional behavior of Book E—defined
instructions, registers, register files, fields within Book E—defined registers, interrupts, or
exception conditions within Book E—defined interrupts.

Chapter 7: Auxiliary processing units (APUs),” provides an overview of specific APUs.

Instruction set

The instruction set of a ST 32-bit Book E—compliant device includes the following:

® The Book E instruction set for 32-bit implementations. This is composed primarily of the
user-level instructions defined by the UISA. Some implementations do not include the
Book E floating-point instructions or the Load String Word Indexed instruction (Iswx).

® Instructions defined by EIS APUs. These include the following:

— Integer select APU. This APU consists of the Integer Select instruction (isel),
which incorporates an if-then-else statement that selects between two source
registers by comparison to a CR bit. This instruction eliminates conditional
branches, decreases band latency, and reduces the code footprint.

— SPE (signal processing engine) APU instructions. SPE instructions treat 64-bit
GPRs as a vector of two 32-bit elements (some instructions also read or write 16-
bit elements). Chapter 3.6.1: SPE and embedded floating-point APUs on
page 186" lists SPE APU vector instructions.

— The embedded vector floating-point APU provides instructions that use the upper
and lower words of the 64-bit GPRs for single-precision, vector floating-point
calculations.

— The embedded scalar single-precision APU provides instructions that use the
lower 32 bits of the GPRs for single-precision, scalar floating-point calculations.

— The embedded scalar double-precision APU instructions use the 64-bit GPRs for
floating-point calculations.

— Performance monitor APU—This APU defines two instructions, mfpmr and
mtpmr, used for reading and writing the performance monitor registers (PMRs).

— Cache block lock and unlock APU, consisting of the following instructions:
- Data Cache Block Lock Clear (dcblc)
- Data Cache Block Touch and Lock Set (dcbtls)
- Data Cache Block Touch for Store and Lock Set (dcbtstls)
- Instruction Cache Block Lock Clear (icblc)
- Instruction Cache Block Touch and Lock Set (icbtls)

34/1176

Overview RMO0004

1.3 Register set

Note: Devices that implement a particular core may not implement all registers defined by that core.

Figure 1. EIS programming model register set

// User-Level Registers \\

Register Files Instruction-Accessible Registers User General SPR (Read/Write)
0 3182 63 0 31 32 63 32 63
(upper) GPRO' (lower) Condition register spr256] USPRGO? | User SPR
GPR1 General-purpose general 0
— registers (GPRs) spr9| CTR Count register General SPRs (Read-Only)
GPR31
| spr 8 Link register spr259| SPRG3
FPRo Floating-point spr1]__XER | Integer excoption Spr260| SPRG4 SPR general
FPR1 registers (FPRs) - :‘glst.er int registers -
DD oating-poin
FPR31 | FPSCR status/go%trol register spr263| SPRG7
3| SP/embedded FP ime- i -
Performance Monitor Registers (PMRs) spr512| SPEFSCR” | Status/control register Time-Base Registers (Read-Only)
ACC® | Accumulator spr 268 TBL .
3| Local control Time base
pmr 128-131] UPMLCas registers AO-A3 spr269| TBU lower/upper
pmr 256-259| UPMLCbs® | BO-B3 L1 Cache (Read-Only)
3
3 ; 3 ') spr526| ATBL Alternate Time base
pmr384| UPMGCO® | Global control register spr515| L1CFGO 'r‘;g?s"’}gfocf{“'g”rat")” spr527| ATBU lower/Upper

L1CFG1®
K pmr0-3| UPMCs 3 | counters 0-3 spr 516 /

Supervisor-Level Registers

Interrupt Registers Configuration Registers
32 63 3 63 32 63
spr 63| IVPR Ipnrgli';ur%tg\ilggfr spr400[IVORO MSR Machine state register
spr401| IVOR1 Interrupt vector offset 3 System version
spr26| SRRO Save/restore registers 0-15 spr1023[SVR® | reygister

spr 27 SRR1 registers 0/1

415 IVOR15 286
spr58] CSRRO Spr spr

Critical SRR 0/1

Processor ID register

spr59| CSRRI spr528] IVOR32? spr2g7[PVR | Fracessorversion
spr570| MCSRR0® | Machine check spr 529 IVOR33° Interru,
rrupt vector offset Timer/Decrementer Registers
spr571] MCSRR1® | SRR 0/1 spr530] IVOR343 | registers 32-85 9
spr574| DSRRO® spr 531 IVOR35°3 spr 22 DEC Decrementer

Debug SRR 0/1

spr575| DSRR13

: Decrementer
) MMU Control and Status (Read/Write) spr54| DECAR auto-reload register
spr62 ESR Exception syndrome
register spr 1012[MMUCSR0?] MMy coptrolandstatus spr284] TBL | Time base
Machine check lower/upper
spr572 MCSR syndrome register spr624] MASO3 spr 285 TBU PP
spr573| MCARS Machine check spr625] MAS13 spr 340 Timer control register
address register MMU assist
Data exception registers 0-7 i i
spré1| DEAR address repgister spr 630] MASE 9 spr 336 TSR Timer status register
. spro44| MAS73 Miscellaneous Registers
Debug Registers P 9
48 PIDO 272-279| SPRGO-7 | G | SPRs 0-7
spr308-310[DBCR0-2 | Debug control 0-2 :f;ss o] Process ID SPr eneral SRS
spr561| DBCR3 | Debug control 3 P 3 registers 0-2 spr1008] HIDO® | Hardware
spr 634 PID2 3 implementation
spr1009| HID1 dependent 01

spr304| DBSR Debug status register
MMU Control and Status (Read Only) Performance Monitor Registers
spr312-315 IACs Instruction address

comparei-4 spr 1015 MMUCFG® | MMU configuration
P P d pmr 400 PMGCO Global control

spr 316-317 DACs Data address 3
compare 1-2 spr 688 TLBOCFG

spr 318-319 DVCs Data value spr 689 TLB1CFG®
compare 1-2

TLB configuration 0/1 pmr 16-19 PMC0-3% | Counter registers 0-3

pmr 144-147] PMCa0-3°% | Local control a0-a3
pmr 272-275| PMCb0-3° | Local control b0-b3

L1 Cache (Read/Write)

3
spr1010| L1CSRO L1 cache control/status
spr1011| L1CSR1® | registers 0/1

L1 flush and invalidate
K spr1015[L1FINVO® | control register 0 /

(1.) The 64-bit GPR registers are accessed by the SPE as separate 32-bit operands by SPE instructions. Only SPE vector
instructions can access the upper word. (2.) USPRGO is a separate physical register from SPRG0. (3.) EIS-defined
registers; not part of the Book E architecture.

35/1176 ﬁ

RMO0004

Overview

1.4

1.4.1

1.4.2

1.4.3

Interrupts and exception handling

Book E and the EIS support an extended exception handling model, with nested interrupt
capability and extensive interrupt vector programmability. The following sections define the
exception model, including an overview of exception handling as implemented in a ST Book
E device, a brief description of the exception classes, and an overview of the registers
involved.

Exception handling

In general, interrupt processing begins with an exception that occurs due to external
conditions, errors, or program execution problems. When the exception occurs, the
processor checks to verify that interrupt processing is enabled for that particular exception.
If enabled, the interrupt causes the state of the processor to be saved in the appropriate
registers, and prepares to begin execution of the handler located at the associated vector
address for that particular exception.

Once the handler is executing, the implementation may need to check one or more bits in
the exception syndrome register (ESR) or the SPEFSCR, depending on the exception type,
to verify the specific cause of the exception and take appropriate action.

The interrupts are described in Chapter 1.4.4: Interrupt registers,” and in Table 6.

Interrupt classes

All interrupts may be categorized as asynchronous/synchronous and critical/noncritical.

® Asynchronous interrupts are caused by events that are independent of instruction
execution. The address reported in the save/restore register is that of the instruction
that would have executed next had the asynchronous interrupt not occurred.

® Synchronous interrupts are caused directly by the execution or attempted execution of
instructions. Synchronous inputs can be precise or imprecise:

— Synchronous precise interrupts are those that precisely indicate the address of the
instruction causing the exception that generated the interrupt or, in some cases,
the address of the next instruction in program order. The interrupt type and status
bits allow determination of which of the two instructions has been addressed in the
appropriate save/restore register.

— Synchronous imprecise interrupts may indicate the address of the instruction
causing the exception that generated the interrupt or some instruction after the
instruction causing the interrupt. If the interrupt was caused by either the context
synchronizing mechanism or the execution synchronizing mechanism, the
address in the appropriate save/restore register is the address of the interrupt
forcing instruction. If the interrupt was not caused by either of those mechanisms,
the address in the save/restore register is the last instruction to start execution and
may not have completed. No instruction following the instruction in the
save/restore register has executed.

Interrupt categories

Book E defines critical and noncritical interrupt categories, and the EIS defines the machine
check and debug interrupt categories. Each category has a separate set of save and restore
registers to which machine state and a return address are automatically written when an
interrupt is taken. Each category has a return from interrupt instruction that uses the save
and restore registers to reestablish the machine state of the interrupted process and

36/1176

Overview

RMO0004

provides the address within that process at which to resume execution after the interrupt
handler completes. Additional resources are provided for masking some of these interrupt
categories, as described in the following:

® Debug APU interrupt (if present)—Although Book E defines debug as a critical
interrupt, the EIS defines a separate debug APU. Debug save and restore registers
(DSRRO0/DSRR1) save state when a debug interrupt is taken; rdci restores state at the
end of the interrupt handler. These interrupts are masked by setting the machine check
enable bit, MSR[DE].

® Machine check APU interrupt (if present)—Although Book E defines machine check as
a critical interrupt, the EIS defines a separate machine check APU. Machine check
save and restore registers (MCSRRO/MCSRR1) save state when a machine check
interrupt is taken; rfmci restores state at the end of the interrupt handler. These
interrupts are masked by setting the machine check enable bit, MSR[ME].

® Noncritical interrupts—First-level interrupts that allow the processor to change program
flow to handle conditions generated by external signals, errors, or unusual conditions
arising from program execution or from programmable timer-related events. These
interrupts are largely identical to those defined by the OEA portion of the Power PC
architecture. They use save and restore registers (SRR0/SRR1) to save processor
state and the rfi instruction to restore state. Asynchronous noncritical interrupts can be
masked by the external interrupt enable bit, MSR[EE].

® Critical interrupts—Can be taken during a noncritical interrupt or during regular
program flow. They use the critical save and restore registers (CSRR0/CSRR1) to save
state when they are taken; they use the rfci instruction to restore state. These
interrupts can be masked by the critical enable bit, MSR[CE]. Book E defines the
critical input and watchdog timer interrupts as critical interrupts.

One interrupt of each category can be reported at a time; when it is taken, no program state
is lost. Save/restore register pairs are serially reusable, so program state may be lost when
an unordered interrupt is taken. See Section 4.10: Interrupt ordering and masking”

1.4.4 Interrupt registers
The registers associated with interrupt and exception handling are described in Table 5.
Table 5. Interrupt registers
Register Description
Non critical interrupt registers
SRRO Sav.e/restor.e register_ 0—Stores the addre_sg of the.instruction causing the exception or the address of
the instruction that will execute after the rfi instruction.
SRR1 Save/restore register 1—Saves machine state on noncritical interrupts and restores machine state

after an rfi instruction is executed.

Critical interrupt registers

Critical save/restore register 0—On critical interrupts, CSRRO stores either the address of the

CSRRO instruction causing the exception or the address of the instruction that will execute after the rfci
instruction.
CSRR1 Critical save/restore register 1—CSRR1 saves machine state on critical interrupts and restores

machine state after an rfci instruction is executed.

37/1176

RMO0004

Overview

Table 5.

Interrupt registers (continued)

Register

Description

Machine check interrupt registers

Machine check save/restore register 0—Stores the address of the instruction that executes after rfmci

MCSRRO

executes.

Machine check save/restore register 1—MCSRR1 stores machine state on machine check interrupts
MCSRR1 : . I, L

and restores machine state (if recoverable) after an rfmeci instruction is executed.

Machine check address register—MCAR holds the address of the data or instruction that caused the
MCAR machine check interrupt. MCAR contents are not meaningful if a signal triggered the machine check

interrupt.
Debug interrupt registers
DSRRO Debug save/restore register 0—Stores the address of the instruction that executes after rfdi executes.

Debug save/restore register 1—Stores machine state on machine check interrupts and restores
DSRR1 ; . .

machine state (if recoverable) after rfmci executes.
Syndrome registers

Machine check syndrome register—MCSR saves machine state information on machine check
MCSR . ? A, A

interrupts and restores machine state after an rfmci instruction is executed.

Exception syndrome register—ESR provides a syndrome to differentiate between the different kinds of
ESR exceptions that generate the same interrupt type. Upon generation of a specific exception type, the

associated bit is set and all other bits are cleared.

SPE and embedded floating-point APU interrupt registers

Signal processing and embedded floating-point status and control register—Provides interrupt control

SPEFSCR | and status as well as various condition bits associated with the operations performed by the SPE APU
and the embedded floating-point APUs.
Other interrupt registers
Data exception address register—DEAR contains the address that was referenced by a load, store, or
DEAR : . .) .
cache management instruction that caused an alignment, data TLB miss, or data storage interrupt.
Interrupt vector prefix register—IVPR[32—47] contains the high-order 16 bits of the address of the
IVPR ; : ; . . .
exception processing routines defined in the IVOR registers.
IVORs Interrupt vector offset registers—The IVORs contain the low-order offset of the address of the

exception processing routines defined in the IVOR registers. See Table 6.

Table 6 lists IVOR registers and associated interrupts.

38/1176

Overview

RMO0004

Table 6.

Interrupt vector registers and exception conditions

Register

Interrupt

Book E—defined IVORs

IVORO

Critical input

IVORT1

Machine check interrupt offset

IVOR2

Data storage interrupt offset

IVOR3

Instruction storage interrupt offset

IVOR4

External input interrupt offset

IVOR5

Alignment interrupt offset

IVOR6

Program interrupt offset

IVOR7

Floating-point unavailable interrupt offset

IVORS8

System call interrupt offset

IVOR9

Auxiliary processor unavailable interrupt offset

IVOR10

Decrementer interrupt offset

IVOR11

Fixed-interval timer interrupt offset

IVOR12

Watchdog timer interrupt offset

IVOR13

Data TLB error interrupt offset

IVOR14

Instruction TLB error interrupt offset

IVOR15

Debug interrupt offset

EIS-Defined IVORs

IVOR32

SPE APU unavailable interrupt offset

IVOR33

Embedded floating-point data exception interrupt offset

IVOR34

Embedded floating-point round exception interrupt offset

IVOR35

Performance monitor interrupt offset

Each interrupt has an associated interrupt vector address, obtained by concatenating the
IVPR and IVOR values (IVPR[32-47]IlIVORN[48-59]1I0b0000). The resulting address is that
of the instruction to be executed when that interrupt occurs. IVPR and IVOR values are
indeterminate on reset, and must be initialized by the system software using mtspr. For
more information, see Chapter 4: Interrupts and exceptions.”

39/1176

RMO0004

Overview

1.5

1.5.1

Memory management

The EIS supports demand-paged virtual memory as well other memory management
schemes that depend on precise control of effective-to-physical address translation and
flexible memory protection as defined by Book E. The mapping mechanism consists of
software-managed TLBs that support variable-sized pages with per-page properties and
permissions. The following properties can be configured for each TLB:

User mode page execute access

User mode page read access

User mode page write access
Supervisor mode page execute access
Supervisor mode page read access
Supervisor mode page write access
Write-through required (W)

Caching inhibited (1)

Memory coherence required (M)
Guarded (G)

Endianness (E)

User-definable (U0-U3), a 4-bit implementation-specific field

Address translation

Figure 2 shows a typical translation flow, although each implementation may differ in the
specific details. The MMU translates 32-bit effective addresses generated by loads, stores,
and instruction fetches into 32-bit real addresses (used for memory bus accesses) using an
interim 41-bit virtual address.

40/1176

Overview RMO0004

Figure 2. Effective-to-Real Address Translation Flow

oo IS| DY eee MSR

Instruction Access—GD
GD—Data

/ 32-bit Effective Address (EA) \
| 8 bits 15-20 bits* 12-17 bits*
AS PIDO Effective Page Number Byte Address
PID1
PID2
Three 41-bit Virtual Addresses (VAs)
L1 MMUsl
L2 MMU (unified) Instruction L1 MMU ~ Data L1 MMU
16-Entry Fully-Assoc. VSP Array > 2 TLBs 2 TLBs
256-Entry 2-Way Set Assoc. Array (TLBO)
15-20 bits* v 12-17 bits*
32-bit Real Address Real Page Number Byte Address

* Number of bits depends on page size (4 Kbytes—256 Mbytes)

As Figure 2 shows, address translation starts with an effective address that is prepended
with an address space (AS) value and a process ID to construct a virtual address (VA). The
virtual address is then translated into a real address based on the translation information
found in the on-chip TLB of the appropriate L1 MMU. The AS bit for the access is selected
from the value of MSR[IS] or MSR[DS], for instruction or data accesses, respectively.

The appropriate L1 MMU (instruction or data) is checked for a matching address translation.
The instruction L1 MMU and data L1 MMU operate independently and can be accessed in
parallel, so that hits for instruction accesses and data accesses can occur in the same clock.
If an L1 MMU misses, the request for translation is forwarded to the unified (instruction and
data) L2 MMU. If found, the contents of the TLB entry are concatenated with the byte
address to obtain the physical address of the requested access. On misses, the L1 TLB
entries are replaced from their L2 TLB counterparts using a true LRU algorithm.

1.5.2 MMU assist registers (MAS1-MAS7)

Book E defines SPR numbers for the MMU assist registers, used to hold values either read
from or to be written to the TLBs and information required to identify the TLB to be
accessed. Book E leaves MAS register bit definitions up to the implementations. To ensure
consistency among ST Book E processors, certain aspects of the implementation are
defined by the Book E standard; more specific details are left to individual implementations.
MASS implements the real page number (RPN), the user attribute bits (U0-U3), and

41/1176 Ky_’

RMO0004

Overview

1.5.3

1.5.4

1.5.5

1.5.6

permission bits (UX, SX, UW, SW, UR, SR) that specify user and supervisor read, write, and
execute permissions.

Some cores may not does not implement all of the MAS registers.

MAS registers are affected by the following instructions:
® MAS registers are accessed with the mtspr and mfspr instructions.

® The TLB Read Entry instruction (tlbre) causes the contents of a single TLB entry from
the L2 MMU to be placed in defined locations in MAS0-MASS. The TLB entry to be
extracted is determined by information written to MASO and MAS2 before the tlbre
instruction is executed.

® The TLB Write Entry instruction (tlbwe) causes the information stored in certain
locations of MASO-MASS to be written to the TLB specified in MASO.

® The TLB Search Indexed instruction (tlbsx) updates MAS registers conditionally, based
on success or failure of a lookup in the L2 MMU. The lookup is specified by the
instruction encoding and specific search fields in MAS6. The values placed in the MAS
registers may differ, depending on a successful or unsuccessful search.

For TLB miss and certain MMU-related DSI/ISI exceptions, MAS4 provides default values
for updating MASO-MAS2.

Process ID registers (PID0-PID2)

The Book E architecture identifies a single process ID register (PID). The EIS defines
additional PIDs to hold values used to construct the virtual addresses for each access.
Among these PIDs, PIDO is the Book E—defined PID. These process IDs provide an
extended page sharing capability. Which of these three virtual addresses is used for
translation is controlled by the TID field of a matching TLB entry, and when TID = 0x00
(identifying a page as globally shared), the PID values are ignored.

A hit to multiple TLB entries in the L1 MMU (even if they are in separate arrays) or a hit to
multiple entries in the L2 MMU is considered to be a programming error.

TLB coherency

TLB entries can be invalidated as defined in the Book E architecture. The tlbivax instruction
invalidates a matching local TLB entry.

Atomic update memory references

Book E supports atomic update memory references for both aligned word forms of data
using the load and reserve and store conditional instruction pair, lwarx and stwcx..
Typically, a load and reserve instruction establishes a reservation and is paired with a store
conditional instruction to achieve the atomic operation. However, the programmer is
responsible for preserving reservations across context switches and for protecting
reservations in multiprocessor implementations.

Memory access ordering

To optimize performance, Book E supports weakly ordered references to memory. Thus, a
processor manages the order and synchronization of instructions to ensure proper
execution when memory is shared between multiple processes or programs. The cache and
data memory control attributes, along with msync and mbar, provide the required access

42/1176

Overview

RMO0004

1.5.7

1.5.8

1.6

1.6.1

1.6.2

43/1176

control; msync and mbar are also broadcast to provide the appropriate control in the case
of multiprocessor or shared memory systems.

Cache control instructions

Book E cache control instructions perform a full range of cache control functions, including
cache locking by line. The EIS defines the following cache locking instructions:

e Data Cache Block Lock Clear (dcblc)

Data Cache Block Touch and Lock Set (dcbtls)

Data Cache Block Touch for Store and Lock Set (dcbtstls)
Instruction Cache Block Lock Clear (icblc)

°
°
°
® Instruction Cache Block Touch and Lock Set (icbtls)

Programmable page characteristics

Cache and memory attributes are programmable on a per-page basis. In addition to the
write-through, caching-inhibited, memory coherency enforce, and guarded characteristics
defined by the WIMG bits, Book E defines an endianness bit, E, that selects big- or little-
endian byte ordering on a per-page basis.

Performance monitoring

The EIS provides a performance monitoring capability that supports counting of events such
as processor clocks, instruction cache misses, data cache misses, mispredicted branches,
and others. The count of these events may be configured to trigger a performance monitor
exception. This interrupt is assigned to vector offset register IVOR35.

The register set associated with performance monitoring consists of counter registers, a
global control register, and local control registers. These registers are read/write from
supervisor mode, and each register is reflected to a corresponding read-only register for
user mode. The mtpmr and mfpmr instructions move data to and from these registers. An
overview of the performance monitoring registers is provided in the following sections. For
more information, see Chapter 7.2: Performance monitor APU.”

Global control register

The performance monitor global control register 0 (PMGCO) provides global control of the
performance monitor from supervisor mode. From this register all counters may be frozen,
unfrozen, or configured to freeze on an enabled condition or event. Additionally, the
performance monitoring facility may be disabled or enabled from this register. The PMGCO
contents are reflected to UPMGCO, which may be read from user mode using mfpmr.

Performance monitor counter registers

There are four counter registers (PCM0-PCM3) provided in the performance monitor facility.
These 32-bit registers hold the current count for software-selectable events and can be
programmed to generate an exception on overflow. They can be accessed from supervisor
mode using mtpmr and mfpmr. Their contents are reflected to UPCM0-UPCMS3, which can
be read from user mode with mfpmr.

The exception generated on overflow can be masked by clearing MSR[EE].

RMO0004

Overview

1.6.3

1.7

1.71

Local control registers

For each counter register, there are two corresponding local control registers. These two
registers specify which of the 128 available events is to be counted, the action to be taken
on overflow, and options for freezing a counter value under given modes or conditions.

® PMLCa0-PMLCa3 provide fields that allow freezing of the corresponding counter in
user mode, supervisor mode, or under software control. The overflow condition may be
enabled or disabled from these registers. Register contents are reflected to UPMCLa0—
UPMLCa3, which can be read from user mode with mfpmr.

e PMLCb0-PMLCb3 provide count scaling for each counter register using configurable
threshold and multiplier values. The threshold is a 6-bit value and the multiplier is a 3-
bit encoded value, allowing 8 multiplier values in the range of 1 to 128. Any counter
may be configured to increment only when an event occurs more than [threshold x
multiplier] times. The contents of these registers are reflected to UPMCLbO-UPMLCDb3,
which can be read from user mode with mfpmr.

Legacy support of PowerPC architecture

In general, ST Book E processors support the user-level portion of the AIM architecture. The
following subsections highlight the main differences. For specific details, refer to the relevant
chapter.

Instruction set compatibility

The following sections generally describe compatibility between Book E and AIM PowerPC
instruction sets.

User instruction set

The user mode instruction set defined by the AIM version of the PowerPC architecture is
compatible with ST Book E processors with the following exceptions:

® Floating-point functionality provided by the embedded floating-point APUs differs from
the AIM defined floating-point ISA. Also, the vector and double-precision floating-point
APUs use 64-bit GPRs rather than the FPRs defined by the UISA. Most porting of
floating-point operations can be handled by recompiling; however, there are new
instructions specific to the APUs.

® String instructions are typically not implemented; therefore, trap emulation must be
provided to ensure backward compatibility.

Supervisor instruction set
The supervisor mode instruction set defined by the AIM version of the PowerPC architecture
is compatible with the EIS with the following exceptions:

® The MMU architecture is different, so some TLB manipulation instructions have
different semantics.

® Instructions that support the BATs and segment registers are not implemented.
® Interrupt vectors are defined by the Book E IVORn and IVPR SPRs.

® Additional instructions are defined for returning from Book E—defined critical interrupts
(rfci) and APU-specific interrupts.

44/1176

Overview

RMO0004

1.7.2

1.7.3

1.7.4

1.7.5

1.7.6

45/1176

Memory subsystem

Both Book E and the AIM version of the PowerPC architecture provide separate instruction
and data memory resources. The EIS provides additional cache control features, including
cache locking.

Interrupt handling

Interrupt handling is generally the same as that defined in the AIM version of the PowerPC
architecture, with the following differences: (see Chapter 1.4)

® Book E defines a new critical interrupt, providing an extra level of interrupt nesting. The
critical interrupt includes external critical and watchdog timer time-out inputs.

® The machine check APU implements the machine check exception differently from the
Book E and from the AIM definition. It defines the Return from Machine Check Interrupt
instruction, rfmci, and two machine check save/restore registers, MCSRRO and
MCSRR1.

® Book E processors can use IVPR and IVORs to set exception vectors individually. To
provide compatibility, they can be set to the address offsets defined in the OEA.

® Unlike the AIM version of the PowerPC architecture, Book E does not define a reset
vector; execution begins at a fixed virtual address, OxFFFF_FFFC.

® Some SPRs are different from those defined in the AIM version of the PowerPC
architecture, particularly those related to the MMU functions. Much of this information
has been moved to a new exception syndrome register (ESR).

® Timer services are generally compatible, although Book E defines a new decrementer
auto reload feature and the fixed-interval timer critical interrupt.

Memory management

ST Book E processors implement a straightforward virtual address space that complies with
the Book E MMU definition, which eliminates segment registers and block address
translation resources. Book E defines resources for fixed 4-Kbyte pages and multiple,
variable page sizes that can be configured in a single implementation. TLB management is
provided with new instructions and SPRs.

Requirements for system reset generation

Book E does not specify a system reset interrupt as was defined in the AIM version of the
PowerPC architecture, but typically, system reset is initiated either by asserting a signal or
by software (for example, writing a 1 to DBCRO0[34], if MSR[DE] = 1

At reset, instead of invoking a reset interrupt, fetching at address OxFFFF_FFFC, as defined
by Book E. In addition to the Book E reset definition, the EIS and the implementation define
specific aspects of MMU page translation and protection mechanisms. Unlike the AIM
version of the PowerPC core, as soon as instruction fetching begins, the core is in virtual
mode with a hardware-initialized TLB entry.

Little-endian mode

Unlike the AIM version of the PowerPC, where the little-endian mode is controlled on a
system basis, Book E supports control of byte ordering on a memory page basis.
Additionally, true little-endian mode is supported by byte swapping.

RMO0004

Register model

2

2.1

Register model

This chapter describes the register model and indicates the architecture level at which each
register is defined.

Overview

Although this chapter organizes registers according to their functionality, they can be
differentiated according to how they are accessed, as follows:

Register files. These user-level registers are accessed explicitly through source and
destination operands of computational, load/store, logical, and other instructions. Book
E defines two types of register files:

— General-purpose registers (GPRs), used as source and destination operands for
most operations (except Book E—defined floating-point instructions, which use
FPRs). See Chapter 2.3.1: General purpose registers (GPRS)”

— Floating-point registers (FPRs), used for Book E—defined floating-point
instructions. See Chapter 2.4.1: Floating-point registers (FPRs).

Special-purpose registers (SPRs)—SPRs are accessed by using the Book E—defined

Move to Special-Purpose Register (mtspr) and Move from Special-Purpose Register

(mfspr) instructions. Chapter 2.2.1: Special-purpose registers (SPRs),” lists SPRs.

System-level registers that are not SPRs. These are as follows:

— Machine state register (MSR). MSR is accessed with the Move to Machine State
Register (mtmsr) and Move from Machine State Register (mfmsr) instructions.
See Chapter 2.6.1: Machine state register (MSR).”

— Condition register (CR) bits are grouped into eight 4-bit fields, CRO—CR7, which
are set as follows (see Chapter 2.5.1: Condition register (CR)’):

- Specified CR fields can be set by a move to the CR from a GPR (mtcrf).
- A specified CR field can be set by a move to the CR from another CR field
(mcrf), from the FPSCR (mcrfs), or from the XER (mcrxr).
- CRO can be set as the implicit result of an integer instruction.
- CR1 can be set as the implicit result of a floating-point instruction.
- A specified CR field can be set as the result of an integer or floating-point
compare instruction (including SPE and SPFP compare instructions).

— The floating-point status and control register (FPSCR). See Chapter 2.4.2:
Floating-point status and control register (FPSCR).”

— The EIS-defined accumulator, which is accessed by signal processing engine
(SPE) APU instructions that update the accumulator. See Chapter 2.14.2:
Accumulator (ACC)”

Device control registers (DCRs). Book E defines the existence of a DCR address space
and the instructions to access them, but does not define particular DCRs. The on-chip
DCRs exist architecturally outside the processor core and thus are not part of Book E.
The contents of DCR DCRN can be read into a GPR using mfdcr rD,DCRN. GPR
contents can be written into DCR DCRN using mtder DCRN,rS. See Chapter 2.17:
Device control registers (DCRs).”

Performance monitor registers (PMRs). (Performance monitor APU) Similar to SPRs,
PMRs are accessed by using the EIS-defined Move to Performance Monitor Register

46/1176

Register model

RMO0004

2.2

4711176

(mtpmr) and Move from Performance Monitor Register (mfspr) instructions. See
Chapter 2.16: Performance monitor registers (PMRs).

Register model for 32-bit Book E implementations

Book E implementations include the following types of software-accessible registers:

® Registers that are accessed as part of instruction execution. These include the
following:

The following registers are used for integer operations and are described in
Chapter 2.3: Registers for integer operations’:

- General-purpose registers (GPRs)—Book E defines a set of 32 GPRs used to
hold source and destination operands for load, store, arithmetic, and
computational instructions, and to read and write to other registers.

- Integer exception register (XER)—XER bits are set based on the operation of an
instruction considered as a whole, not on intermediate results. (For example, the
Subtract from Carrying instruction (subfc), the result of which is specified as the
sum of three values, sets bits in the XER based on the entire operation, not on an
intermediate sum.)

Registers for floating-point operations. These include the following:

- Floating-point registers (FPRs)—32 registers used to hold source and
destination operands for Book E defined floating-point operations. Note that the
embedded floating-point APUs do not implement FPRs; they use GPRs for
floating-point operands.

- Floating-point status and control register (FPSCR)—Used with floating-point
operations. These registers are described in Chapter 2.4: Registers for floating-
point operations.”

Condition register (CR)—Used to record conditions such as overflows and carries
that occur as a result of executing arithmetic instructions (including those
implemented by the SPE and SPFP APUs). The CR is described in Chapter 2.5:
Registers for branch operations”

Machine state register (MSR)—Used by the operating system to configure
parameters such as user/supervisor mode, address space, and enabling of

RMO0004

Register model

asynchronous interrupts. MSR is described in Chapter 2.6.1: Machine state
register (MSR)”

Special-purpose registers (SPRs).

— Book E—defined special-purpose registers (SPRs) that are accessed explicitly
using mtspr and mfspr instructions. These registers are listed in Table 7 in
Chapter 2.2.1: Special-purpose registers (SPRs).

— EIS-defined SPRs that are accessed explicitly using the mtspr and mfspr
instructions. These registers are listed in Table 8in Chapter 2.2.1: Special-
purpose registers (SPRs).”

— SPRs are described by function in the following sections:
- Chapter 2.5: Registers for branch operations”
- Chapter 2.6: Processor control registers’
- Chapter 2.7: Hardware implementation-dependent registers’
- Chapter 2.8: Timer registers”
- Chapter 2.9: Interrupt registers”
- Chapter 2.10: Software use sprs (SPRG0O-SPRG7 and USPRGO)’
- Chapter 2.11: L1 cache registers’
- Chapter 2.12: MMU registers”
- Chapter 2.13: Debug registers’
- Chapter 2.14: SPE and SPFP APU registers’
- Chapter 2.15: Alternate time base registers (ATBL and ATBU)”

EIS-defined performance monitor registers, described in Chapter 2.16: Performance
monitor registers (PMRs).” PMRs are like SPRs, but are accessed with EIS-defined
move to and move from PMR instructions (mtpmr and mfpmr).

EIS-defined device control registers (DCRs). Book E defines a format for implementing
device-specific device-control registers. See Chapter 2.17: Device control registers
(DCRs)”

Book E defines 32- and 64-bit registers. However, except for the 64-bit FPRs, only bits 32—
63 of Book E’s 64-bit registers (such as LR, CTR, the GPRs, SRR0, and CSRRO) are
required to be implemented in hardware in a 32-bit Book E implementation.

Likewise, all Book E integer instructions defined to return a 64-bit result return only bits 32—
63 of the result on a 32-bit Book E implementation. SPE APU vector instructions return 64-
bit values; SPFP APU instructions return single-precision 32-bit values.

As with the instruction set and other aspects of the architecture, Book E defines some
features very specifically, for example, resources that ensure compatibility with
implementations of the PowerPC ISA. Other resources are either defined as optional or are
defined in a very general way, leaving specific details up to the implementation.

48/1176

Register model

RMO0004

Figure 3. Register model
// User-Level Registers \\
Register Files Instruction-Accessible Registers User General SPR (Read/Write)
[3132 63 31 32 63 32 63
(upper) GPRO (lower) Condition register spr 256 USPRGO? ggﬁégrg
GPR1 General-purpose
— registers (GPRs) spr9 CTR Count register General SPRs (Read-Only)
GPR31
| spr 8 Link register spr259| SPRG3
FRRo Floating-point spr 1 XER Integer exception Spr260| SPRG4 SPBtgen%gl
FPR1 registers (FPRs) — 'r:elglst.er int registers
DD oating-poin
FPR31 | FPSCR status/go%trol register spr263| SPRG7

Performance Monitor Registers (PMRs)

3 | SP/embedded FP
spr 512| SPEFSCR status/control register

pmr 128-131] UPMLCas® | Local control |

ACC® | Accumulator

reglsters AO0-A3
BO-B3

pmr 256-259| UPMLCbs®

pmr 384] UPMGCO0®

K pmr0-3| UPMCs Counters 0-3

Global control register

L1 Cache (Read-Only)

L1CFGO?®
L1CFG13

spr515
spr516

L1 cache configuration
registers 0-1

Time-Base Registers (Read-Only)

spr 268 TBL Time base
spr 269 TBU lower/upper
spr526| ATBL ° Alternate Time base
spr527| ATBU3 | lower/upper

/

32 63
spr 63 IVPR Interrupt vector

prefix register

spra6 SRRO Save/restore
spr 27 SRR1 registers 0/1
spr58/ CSRRO "
Critical SRR 0/1
spr59 CSRR1 riiea
SPr570] MCSRRO® | Machine check
spr571] MCSRR13 SRR 0/1
spr574| DSRR0®
P 3 Debug SRR 0/1
spr575| DSRR1
Exception syndrome
spr 62 ESR regisﬁ-}r v

Machine check
syndrome register

Machine check
address register

Data exception
address register

spr572] MCSR®

spr573| MCAR?

spr 61 DEAR

Debug Registers

spr 308-310 DBCR0-2 | Debug control 0-2
spr561| DBCR3 Debug control 3
spr 304 DBSR Debug status register
spr 312—315 Instruction address
comparei1—4
spr 316—317 Data address
compare 1-2
spr318-319[DVCs | Data value
compare 1-2

_

Supervisor-Level Registers

Interrupt Registers

32 63
spr 400 IVORO
spr401| IVOR1 Interrupt vector offset
registers 0-15
spr415| IVOR15
spr528) IVOR323
3
spr529| IVORS3 Interrupt vector offset
spr530 IVOR343 registers 32-35
spr531 IVORS35%

MMU Control and Status (Read/Write)

3 MMU control and status
spr 1012| MMUCSRO! register 0

spr624) MAS0®
spr625| MAS13
MMU assist
s30l MASE registers 0-7
spr
spr944| MAS73
spr 48 PIDO
3 Process ID
spr sz :g;s registers 0-2
spr

MMU Control and Status (Read Only)

spr 1015 MMUCFG® | MMU configuration

spr 688 TLBOCFGS®
spr 689 TLB1CFG®

TLB configuration 0/1

L1 Cache (Read/Write)

L1CSR0®
L1CSR13

spr 1010
spr 1011

L1 flush and invalidate
spr1015[L1FINVO® | control register 0

L1 cache control/status
registers 0/1

Configuration Registers

32 63
MSR Machine state register

3 System version
spr 1023 reygister

spr 286 Processor ID register

Processor version

spr 287 register

PVR

Timer/Decrementer Registers

spr 22 Decrementer
Decrementer
spr54| DECAR | ;uto-reload register
spr 284 TBL Time base
spr2gs| TBU lower/upper

spr 340 TCR Timer control register

spr 336 TSR Timer status register

Miscellaneous Registers

spr272-279| SPRGO0-7

General SPRs 0-7

spr1008/ HIDO® | Hardware
5 implementation
spr1009| HID1 dependent 0-1

Performance Monitor Registers

pmr 400| PMGCO Global control
pmr 16-19| PMC0-3 Counter registers 0-3

pmr 144-147[PMCa0-3°
pmr 272-275| PMCb0-3°

Local control a0-a3
Local control b0-b3

_

(1.) The 64-bit GPR registers are accessed by the SPE as separate 32-bit operands by SPE instructions. Only SPE

49/1176

vector instructions can access the upper word.
(2.) USPRGO is a separate physical register from SPRGO.
(3.) EIS-defined registers; not part of the Book E architecture.

RMO0004

Register model

2.2.1

Special-purpose registers (SPRs)

SPRs are on-chip registers that are architecturally part of the processor core. They control
the use of the debug facilities, timers, interrupts, memory management unit, and other

architected processor resources and are accessed with the mtspr and mfspr instructions.
Unlisted encodings are reserved for future use.

Table 7 summarizes SPRs defined in Book E. The SPR numbers are used in the instruction
mnemonics. Bit 5 in an SPR number indicates whether an SPR is accessible from user or
supervisor software. An mtspr or mfspr instruction that specifies an unsupported SPR
number is considered an invalid instruction. Invalid instructions are treated as follows:

e |If the invalid SPR falls within the range specified as user mode (SPR[5] = 0), an illegal
exception is taken.

® If supervisor software attempts to access an invalid supervisor-level SPR (SPR[5] = 1),
results are undefined.

® If user software attempts to access an invalid supervisor-level SPR, a privilege
exception is taken.

Table 7. Book E special purpose registers (by SPR abbreviation)
SPR Defined SPR number Supervisor
Abbreviation Name Access onl
Decimal Binary y
Critical save/restore register 0 .
CSRRO (CSRRO0) 58 00001 11010 | Read/Write Yes
Critical save/restore register 1 .

CSRR1 (CSRR1) 59 00001 11011 | Read/Write Yes
CTR Count register (CTR) 9 00000 01001 | Read/Write No
Data address compare .

DACH1 registers (DAC1-DAC2) 316 01001 11100 | Read/Write Yes
Data address compare .

DAC2 registers (DAC1-DAC2) 317 01001 11101 | Read/Write Yes
Debug control registers .

DBCRO (DBCRO-DBCR3) 1 308 01001 10100 | Read/Write Yes
DBCR{ | Debug control registers 309 | 0100110101 | Read/Write | Yes

(DBCR0O-DBCR3) 2
Debug control registers .
DBCR2 (DBCRO-DBCR3) 3 310 01001 10110 | Read/Write Yes
. Read/Clear
DBSR Debug status register (DBSR) 304 01001 10000) Yes
Data exception address .
DEAR register (DEAR) 61 00001 11101 | Read/Write Yes
DEC Decrementer register 22 00000 10110 | Read/Write Yes
Decrementer auto-reload .
DECAR register (DECAR) 54 00001 10110 | Write-only Yes
Data value compare registers .
DVC1 (DVC1 and DVC2) 1 318 01001 11110 | Read/Write Yes
50/1176

Register model

RMO0004

51/1176

registers (IVORs)
Instruction storage interrupt
offset

Table 7. Book E special purpose registers (by SPR abbreviation) (continued)
SPR Defined SPR number Supervisor
Abbreviation Name Access onl
Decimal Binary y
Data value compare registers .
DvC2 (DVC1 and DVC2) 2 319 01001 11111 | Read/Write Yes
ESR Exception syndrome register | g5 | 00001 11110 | ReadMWrite | Yes
(ESR)
IAC1 312 01001 11000
IAC2 Instruction address compare 313 01001 11001)
. Read/Write Yes
IAC3 registers (IAC1-IAC4) 314 | 01001 11010 '
IAC4 315 01001 11011
IVORO Interrupt vector offset 400 01100 10000 | Read/Write Yes
registers (IVORs)
Critical input
IVOR1 Interrupt vector offset 401 01100 10001 | Read/Write Yes
registers (IVORs)
Machine check interrupt offset
IVOR10 Interrupt vector offset 410 01100 11010 | Read/Write Yes
registers (IVORs)
Decrementer interrupt offset
IVOR11 Interrupt vector offset 411 01100 11011 | Read/Write Yes
registers (IVORs)
Fixed-interval timer interrupt
offset
IVOR12 Interrupt vector offset 412 01100 11100 | Read/Write Yes
registers (IVORs)
Watchdog timer interrupt
offset
IVOR13 Interrupt vector offset 413 01100 11101 | Read/Write Yes
registers (IVORs)
Data TLB error interrupt offset
IVOR14 Interrupt vector offset 414 01100 11110 | Read/Write Yes
registers (IVORs)
Instruction TLB error interrupt
offset
IVOR15 Interrupt vector offset 415 01100 11111 | Read/Write Yes
registers (IVORs)
Debug interrupt offset
IVOR2 Interrupt vector offset 402 01100 10010 | Read/Write Yes
registers (IVORs)
Data storage interrupt offset
IVOR3 Interrupt vector offset 403 01100 10011 | Read/Write Yes

RMO0004

Register model

Table 7. Book E special purpose registers (by SPR abbreviation) (continued)
SPR Defined SPR number Supervisor
Abbreviation Name . . Access only
Decimal Binary
IVOR4 Interrupt vector offset 404 01100 10100 | Read/Write Yes
registers (IVORs)
External input interrupt offset
IVOR5 Interrupt vector offset 405 01100 10101 | Read/Write Yes
registers (IVORs)
Alignment interrupt offset
IVOR6 Interrupt vector offset 406 01100 10110 | Read/Write Yes
registers (IVORs)
Program interrupt offset
IVOR7 Interrupt vector offset 407 01100 10111 | Read/Write Yes
registers (IVORs)
Floating-point unavailable
interrupt offset
IVOR8 Interrupt vector offset 408 01100 11000 | Read/Write Yes
registers (IVORs)
System call interrupt offset
IVOR9 Interrupt vector offset 409 01100 11001 | Read/Write Yes
registers (IVORs)
APU unavailable interrupt
offset
IVPR Interrupt vector offset 63 00001 11111 | Read/Write Yes
registers (IVORs)
Interrupt vector
LR Link register (LR) 8 00000 01000 | Read/Write No
PID Process ID registers (PIDO- 48 00001 10000 | Read/Write Yes
PIDn)
PIR Processor ID register (PIR) 286 01000 11110 | Read-only Yes
PVR Processor version register 287 01000 11111 | Read-only Yes
(PVR)
SPRGO Software use sprs (SPRGO- 272 01000 10000 | Read/Write Yes
SPRGH1 SPRG7 and USPRGO) 273 01000 10001
SPRG2 274 01000 10010
SPRG3 275 01000 10011
SPRG4 276 01000 10100
SPRG5 277 01000 10101
SPRG6 278 01000 10110
SPRG7 279 01000 10111
SRRO Save/restore register 0 26 00000 11010 | Read/Write Yes
(SRRO)
SRR1 Save/restore register 1 27 00000 11011 | Read/Write Yes
(SRR1)
TBL Time base (TBU and TBL) 284 01000 11100 | Write-only Yes
TBU 285 01000 11101
52/1176

Register model

RMO0004

Table 7. Book E special purpose registers (by SPR abbreviation) (continued)
SPR Defined SPR number Supervisor
Abbreviation Name . . Access only
Decimal Binary
TCR Timer control register (TCR) 340 01010 10100 | Read/Write Yes
TSR Timer status register (TSR) 336 01010 10000 Reac(i/?lear Yes
2

USPRGO Software use sprs (SPRGO- 256 01000 00000 | Read/Write No

USPRG3 | SPRG7 and USPRGO)®®) 259 | 01000 00011 | Read-only

USPRG4 260 01000 00100 | Read-only

USPRG5 261 01000 00101 | Read-only

USPRG6 262 01000 00110 | Read-only

USPRG7 263 01000 00111 | Read-only
UTBL Time base (TBU and TBL) 268 01000 01100 | Read-only No
UTBU Time base (TBU and TBL) 269 01000 01101 | Read-only No
XER Integer exception register 1 00000 00001 | Read/Write No

(XER)

1. The DBSR is read using mfspr. It cannot be directly written to. Instead, DBSR bits corresponding to 1 bits

in the GPR can be cleared using mtspr.

2. The TSR is read using mfspr. It cannot be directly written to. Instead, TSR bits corresponding to 1 bits in

the GPR can be cleared using mtspr.

3. User-mode read access to SPRGS is implementation-dependent

Table 8 lists EIS-defined SPRs. Compilers should recognize the mnemonic name given in

this table when parsing instructions.

Table 8. EIS-defined SPRs (by SPR abbreviation)
SPB . Name SPR Access Supervisor Section/page
abbreviation number only
ATBL Alternate time base lower 506 Read-only No Section 2.15
on page 123
ATBU Alternate time base upper 507 Read-only No Section 2.15
on page 123
DBCR3 Debug control register 3 561 Read/Write Yes on page 115
DSRRO Debug save/restore register 0 574 R/W Yes on page 86
DSRR1 Debug save/restore register 1 575 R/W Yes on page 87
HIDO Hardware implementation dependent register 1008 | Read/Write Yes Section 2.7.1
0 on page 71
HID1 Hardware implementation dependent register 1009 | Read/Write Yes Section 2.7.2
1 on page 74
IVOR32 SPE/e_mbed_d ed floating-point APU 528 Read/Write Yes on page 83
unavailable interrupt offset
I\VOR33 !Embedded floating-point data exception 509 Read/Write Yes on page 83
interrupt offset
IVOR34 Embedded floating-point round exception 530 Read/Write Yes on page 83
interrupt offset
53/1176 17

RMO0004

Register model

Table 8. EIS-defined SPRs (by SPR abbreviation) (continued)
SPB . Name SPR Access Supervisor Section/page
abbreviation number only
IVOR35 Performance monitor 531 Read/Write Yes on page 83
I\VOR36 Processor dporbgll interrupt. Defined by 532 Read/Write Yes on page 83
processor signalling APU.
I\VOR37 Processor doo_rbell <_:r|t|cal interrupt. Defined 533 Read/Write Yes on page 83
by processor signalling APU.
L1CFGO L1 cache configuration register 0 515 Read-only No Section 2.11.1
on page 90
L1CFG1 L1 cache configuration register 1 516 Read-only No Section 2.11.2
on page 92
L1CSRO L1 cache control and status register 0 1010 | Read/Write Yes Section 2.11.1
on page 90
L1CSR1 L1 cache control and status register 1 1011 | Read/Write Yes Section 2.11.2
on page 92
L1FINVO L1 flush and invalidate control register O 1016 | Read/Write Yes Section 2.11.5
on page 96
MASO MMU assist register 0 624 Read/Write Yes Section 2.12.5
on page 101
MAS1 MMU assist register 1 625 Read/Write Yes Section 2.12.5
on page 101
MAS2 MMU assist register 2 626 Read/Write Yes Section 2.12.5
on page 101
MAS3 MMU assist register 3 627 Read/Write Yes Section 2.12.5
on page 101
MAS4 MMU assist register 4 628 Read/Write Yes Section 2.12.5
on page 101
MAS5 MMU assist register 5. 629 Read/Write Yes Section 2.12.5
on page 101
MAS6 MMU assist register 6 630 Read/Write Yes Section 2.12.5
on page 101
MAS7 MMU assist register 7 944 Read/Write Yes Section 2.12.5
on page 101
MCAR Machine check address register 573 Read-only Yes on page 88
MCARU Machine check address register upper 569 Read-only Yes on page 88
MCSR Machine check syndrome register 572 Read/Write Yes on page 88
MCSRRO | Machine-check save/restore register 0 570 Read/Write Yes on page 87
MCSRR1 | Machine-check save/restore register 1 571 Read/Write Yes on page 87
MMUCFG MMU configuration register 1015 | Read-only Yes Section 2.12.3
on page 99
MMUCSRO MMU control and status register 0 1012 | Read/Write Yes Section 2.12.2
on page 98
Ays 54/1176

Register model

RMO0004

Table 8. EIS-defined SPRs (by SPR abbreviation) (continued)
SPR SPR Supervisor .
abbreviation Name number Access only Section/page
Process ID register 0. Book E defines only .
PIDO this PID register and refers to as PID, not 48 Read/Write Yes Section 2.12.1
on page 97
PIDO.
PID1 Process ID register 1 633 Read/Write Yes Section 2.12.1
on page 97
PID2 Process ID register 2 634 | Read/Write Yes Section 2.12.1
on page 97
SPEFSCR Signal processing and embgdded floating- 512 Read/Write No Section 2.14.1
point status and control register on page 119
SVR System version register 1023 Read-only Yes Section 2.7.5
on page 75
TLBOCFG TLB configuration register 0 688 Read-only Yes Section 2.12.4
on page 100
TLB1CFG TLB configuration register 1 689 Read-only Yes Section 2.12.4
on page 100
2.3 Registers for integer operations
The following sections describe registers defined for integer computational instructions.
2.3.1 General purpose registers (GPRs)
Book E implementations provide 32 GPRs (GPR0O-GPR31) for integer operations. The
instruction formats provide 5-bit fields for specifying the GPRs to be used in the execution of
the instruction.
The Book E architecture defines 32-bit GPRs for 32-bit implementations; however, several
APUs make use of GPRs that are extended to 64 bits to accommodate either vector
operands or embedded double-precision floating point operands. The following APUs use
the extended 64-bit GPRs:
® The signal processing engine (SPE) APU and the embedded vector single-precision
floating-point APU treat the 64-bit operands as consisting of two, 32-bit elements, as
shown in Figure 4.
® The embedded scalar double-precision floating-point APU treats the GPRs as single
64-bit operands that accommodate IEEE double-precision values.
55/1176 17

RMO0004

Register model

Figure 4. SPE and floating point APU GPR usage
Register Model Instruction Model
[|
User-Level Registers Supervisor-Level Registers Computation Load/Store
0 31 32 63 32 63 brinc evidh...
Int/Frac Int/Frac MSR[SPE] | Machine state :zm ra Szlg‘g
Int/Frac Int/Frac . evabs evl...splat...
T nFra General-purpose Interrupt Registers evadg... evlwnos...
— i) nd...
registers (GPRs) spr 62| ESR[SPE] | Exception syndrome :z?sti}uiz gzs"fgﬂ
evcentl... evstdh...
SPE APU Int/Frac ‘ Int/Frac | Interrupt Vector Offset Registers evdiv... evstdw...
405 IVORS Ali t evmerge... evstwh...
| ACC | Accumulator spr 'gnmen evsub...
Original SPE spr528| IVOR32 EIPEt/'Embeddted Iogf|cal, rotate,
. . oating-poin shift, extend
I 12[SPEFSCR | SPE/floating-point g)
APU spro12] SPEFSCR | e eamar " round, select,
compare
0 31 32 63 32 63 efvcf... From SPE:
Single-prec. | Single-prec. MSR[SPE] | Machine state g:zg},s gaggx
Single-prec. | Single-prec. i efvadd evstdd
Vector Single-prec. | Single-prec. | | General-purpose, Interrupt Registers g;xgmp evstddx
Single-Precision registers (GPRs)" spr 62[ESR[SPE] | Exception syndrome efvmul
Floating-Point | 5 :) efvneg
APU S|ng|e-prec.‘ Single-prec. | Interrupt Vector Offset Registers e;vnabs
405[IVOR5 | Ali t etvsu
‘ ACC ‘ Accumulator spr ‘gnmen efvtst...
spr528| IVOR32 glPEt/.Embeddted From SPE:
SPE/floating-point oating-poin evmergehi
spr512| SPEFSCR | Gatusioontiol evmergelo
0 3 132 63 32 63 e:sc{... gses PG
: MrarcpE] efsct... ower|
Single-prec. MSR[SPE] ‘ Machine state efsabs UISA 32-bit
Single-prec. i efsadd loads and
Scalar Single-prec. General-purpose ; Interrupt Registers ::gg:t‘;p stores
Single-Precision registers (GPRs) * spr 62[ESR[SPE] | Exception syndrome efsmul
D -) efsne
Floating PAOII;E ‘ | Single-prec. | Interrupt Vector Offset Registers e;snaEs
405 IVOR5 | Ali t eissu
‘ ACC ‘ Accumulator spr ‘gnmen efstst...
— spr528| IVOR32 EIPEt/.Embeddted
SPE/floating-point oating-poin
spr512] SPEFSCR | gifisioontiol
0 63 32 63 efdcf... From SPE:
Double-precision MSR[SPE] | Machine state g;gg})s gzlggx
Double-precision i efdadd evstdd
Scalar Double-predision General-purpose Interrupt Registers g;ggmp evstddx
Double-Precision registers (GPRs) © spr 62 ESRISPE] | Exception syndrome gtqmul
ina-Poi efdne:
Floating-Point | Double-precision | Interrupt Vector Offset Registers efdnags
APU spr405| IVOR5 Alignment efdsub
‘ ACC ‘ Accumulator efdtst...
spr528| IVORS32 gIPEt/_Embeddted From SPE:
SPE/floating-point oating-poin evmergehi
Spr 512 Statusicontrol evmergelo

Gray text indicates that the APU does not use this register or register field.

Formatting of floating-point operands is as defined by IEEE 754, as described in the APU chapter of the EREF.

As shown in Figure 4, the embedded scalar single-precision floating-point APU uses 32-bit

operands that, like 32-bit Book E instructions, do not affect the upper word of the 64-bit

GPRs. For 32-bit implementations that implement 64-bit GPRs, all instructions except SPE
APU, embedded vector single-precision APU, and embedded scalar double-precision APU

instructions use and return 32-bit values in GPR bits 32—63.

2.3.2

Bits in the integer exception register (XER) are set based on the operation of an instruction
considered as a whole, not on intermediate results. (For example, the subtract from carrying

Integer exception register (XER)

instruction (subfc), the result of which is specified as the sum of three values, sets bits in

the XER based on the entire operation, not on an intermediate sum.)

56/1176

Register model RMO0004

Integer exception register (XER)

SPR1 Access: User read-write
32 ‘ ‘ ‘ 56 57 63
R
W SO|OV|CA — Number of bytes
Reset All zeros

Table 9 describes XER bit definitions.

Table 9. XER field descriptions

Bits |Name Description

Summary overflow. Set when an instruction (except mtspr) sets the overflow bit (OV). Once set,
SO remains set until it is cleared by mtspr[XER] or mcrxr. SO is not altered by compare

32 SO |instructions or by other instructions (except mtspr[XER] and mcrxr) that cannot overflow.
Executing mtspr[XERY], supplying the values 0 for SO and 1 for OV, causes SO to be cleared and
OV to be set.

Overflow. X-form add, subtract from, and negate instructions having OE=1 set OV if the carry out
of bit 32 is not equal to the carry out of bit 33, and clear OV otherwise to indicate a signed
overflow. X-form multiply low word and divide word instructions having OE=1 set OV if the result
cannot be represented in 32 bits (mullwo, divwo, and divwuo) and clear OV otherwise. OV is not
altered by compare instructions or by other instructions (except mtspr[XER] and mcrxr) that
cannot overflow.

33 ov

Carry. Add carrying, subtract from carrying, add extended, and subtract from extended
instructions set CA if there is a carry out of bit 32 and clear it otherwise. CA can be used to
indicate unsigned overflow for add and subtract operations that set CA. Shift right algebraic word
instructions set CA if any 1 bits are shifted out of a negative operand and clear CA otherwise.
Compare instructions and instructions that cannot carry (except Shift Right Algebraic Word,
mtspr[XER], and mcrxr) do not affect CA.

34 CA

35-56 — | Reserved, should be cleared.

No. of | Supports emulation of load and store string instructions. Specifies the number of bytes to be

57-63 Bytes | transferred by a load string indexed or store string indexed instruction.

57/1176 Ky_’

RMO0004

Register model

2.4

2.4.1

2.4.2

Registers for floating-point operations

This section details floating-point registers and their field descriptions.

Floating-point registers (FPRs)

Book E defines 32 floating-point registers (FPRO—FPR31). Floating-point instruction formats
provide 5-bit fields for specifying FPRs used in instruction execution.

Each FPR contains 64 bits that support the floating-point format. Instructions that interpret
FPR contents as floating-point values use double-precision format for this interpretation.

The computational instructions and the move and select instructions operate on data in
FPRs and, except for compare instructions, place the result into an FPR, and optionally
place status information into the CR.

Load and store double instructions are provided that transfer 64 bits of data between
memory and the FPRs with no conversion. Load single instructions are provided to transfer
and convert floating-point values in floating-point single format from memory to the same
value in floating-point double format in the FPRs. Store single instructions are provided to
transfer and convert floating-point values in floating-point double format from the FPRs to
the same value in floating-point single format in memory.

Instructions are provided that manipulate the FPSCR and the CR explicitly. Some of these
instructions copy data between an FPR and the FPSCR.

The computational instructions and the select instruction accept values from the FPRs in
double format. For single-precision arithmetic instructions, all input values must be
representable in single format; if they are not, the result placed into the target FPR, and the
setting of status bits in the FPSCR and in the CR (if Rc = 1), are undefined.

Floating-point status and control register (FPSCR)

The FPSCR, shown below, controls how floating-point exceptions are handled and records
status resulting from floating-point operations. FPSCR[32-55] are status bits; FPSCR[56—
63] are control bits.

Floating-point status and control register (FPSCR)

Access: User read/write

32 33 34 g4 | g 37 38 39 40 41 42 43 | 44 45 46 47
; FX | FEX | VX | OX | UX ZX XX |[VXSNAN|VXISI|VXIDIVXZDZ|VXIMZ|VXVC| FR | FI | C
Reset All zeros

48 51 | 52 53 54 55 56 57 58 59 60 61 62 63
VTI FPCC — |VXSOFT|VXSQRT| VXCVI | VE | OE | UE ZE | XE | NI RN
Reset All zeros

58/1176

Register model RMO0004

The exception bits, FPSCR[35-45,53-55], are sticky; once set they remain set until they are
cleared by an mcrfs, mtfsfi, mtfsf, or mtfsb0. Exception summary bits
FPSCRIFX,FEX,VX] are not considered to be exception bits, and only FX is sticky.

FEX and VX are simply the ORs of other FPSCR bits, and so are not listed among the
FPSCR bits affected by the various instructions. FPSCR fields are described in Table 10.

Table 10. FPSCR field descriptions

Bits | Name Description
Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf,

32 FX implicitly sets FX if that instruction causes any of the floating-point exception bits in the FPSCR to
change from 0 to 1. mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 can alter FPSCR[FX] explicitly.
Floating-point enabled exception summary. FEX is the OR of all the floating-point exception bits

33 FEX masked by their respective enable bits. merfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 cannot alter
FPSCRIFEX] explicitly.

34 VX Floating-point invalid operation exception summary. VX is the OR of all the invalid operation
exception bits. mcrfs, mifsfi, mtfsf, mtfsb0, and mtfsb1 cannot alter FPSCR[VX] explicitly.

35 OX Floating-point overflow exception

36 UX Floating-point underflow exception

37 ZX Floating-point zero divide exception
Floating-point inexact exception.
FPSCR[XX] is a sticky version of FPSCR[FI] (see below). Thus the following rules completely

38 XX describe how FPSCR[XX] is set by a given instruction:
If the instruction affects FPSCRIFI], the new FPSCR[XX] value is obtained by ORing the old
value of FPSCR[XX] with the new value of FPSCRI[FI].
If the instruction does not affect FPSCRIFI], the value of FPSCR[XX] is unchanged.

39 | VXSNAN | Floating-point invalid operation exception (SNaN)

40 VXISI | Floating-point invalid operation exception (oo — o)

41 VXIDI | Floating-point invalid operation exception (e + o)

42 | VXZDZ |Floating-point invalid operation exception (0 + 0)

43 VXIMZ | Floating-point invalid operation exception (w0 x 0)

44 VXVC | Floating-point invalid operation exception (invalid compare).

45 FR Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction
incremented the fraction during rounding. This bit is not sticky.
Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction either

46 Fl produced an inexact result during rounding or caused a disabled overflow exception. This bit is
not sticky. The definition of FPSCR[XX] describes the relationship between FPSCRI[FI] and
FPSCR[XX].

47— Floating-point result flags. Set as described below in Table 10. For arithmetic, rounding, and

51 FPRF | conversion instructions, FPRF is set based on the result placed into the target register, except
that if any portion of the result is undefined, the value placed into FPRF is undefined.

47 c Floating-point result class descriptor. Arithmetic, rounding, and conversion instructions may set

this bit with the FPCC bits, to indicate the class of the result.

59/1176 Ky_’

RMO0004 Register model
Table 10. FPSCR field descriptions (continued)
Bits | Name Description
Floating-point condition code. Floating-point Compare instructions set one of the FPCC bits and
clear the other three FPCC bits. Arithmetic, rounding, and conversion instructions may set the
FPCC bits with the C bit to indicate the class of the result. In this case, the three high-order FPCC
bits retain their relational significance indicating that the value is less than, greater than, or equal
48— | poc |tozero.
51 48Floating-point less than or negative (FL or <)
49Floating-point greater than or positive (FG or >)
50Floating-point equal or zero (FE or =)
51Floating-point unordered or NaN (FU or ?)
52 — Reserved, should be cleared.
Floating-point invalid operation exception (software request). Can be altered only by mcrfs,
53 | VXSOFT -
mtfsfi, mtfsf, mtfsb0, or mtfsb1.
Floating-point invalid operation exception (invalid square root).
Note that VXSQRT is defined even for implementations that do not support either of the two
54 | VXSQRT optional instructions that set it, fsqrt[.] and frsqgrte[.]. Defining it for all implementations gives
software a standard interface for handling square root exceptions. If an implementation does not
support fsqrt[.] or frsqrte[.], software can simulate the instruction and set VXSQRT to reflect the
exception.
55 VXCVI | Floating-point invalid operation exception (invalid integer convert)
56 VE Floating-point invalid operation exception enable
57 OE Floating-point overflow exception enable
58 UE Floating-point underflow exception enable
59 ZE Floating-point zero divide exception enable
60 XE Floating-point inexact exception enable
Floating-point non-IEEE mode. If NI = 1, the remaining FPSCR bits may have meanings other
than those given in this document and results of floating-point operations need not conform to the
IEEE standard. If the IEEE-conforming result of a floating-point operation would be a
denormalized number, the result of that operation is 0 (with the same sign as the denormalized
number) if FPSCR[NI] = 1 and other requirements specified in the user’'s manual for the
implementation are met. The other effects of setting NI may differ among implementations.
Setting Nl is intended to permit results to be approximate and to cause performance to be more
61 NI predictable and less data-dependent than when NI = 0. For example, in non-IEEE mode, an
implementation returns 0 instead of a denormalized number and may return a large number
instead of an infinity. In non-IEEE mode an implementation should provide a means for ensuring
that all results are produced without software assistance (that is, without causing an enabled
exception type program interrupt or a floating-point unimplemented instruction exception type
program interrupt and without invoking an emulation assist). The means may be controlled by
one or more other FPSCR bits (recall that the other FPSCR bits have implementation-dependent
meanings if NI = 1).
Floating-point rounding control (RN).
62 00Round to nearest
63_ RN | 01Round toward zero
10Round toward +infinity
11Round toward —infinity

60/1176

Register model

RMO0004

Table 11 describes floating-point result flags.

Table 11. Floating-point result flags
Result flags
Result value class
C < > = ?
1 0 0 0 1 Quiet NaN
0 1 0 0 1 —Infinity
0 1 0 0 0 —Normalized number
1 1 0 0 0 |-Denormalized number
1 0 0 1 0 |-Zero
0 0 0 1 0 +Zero
1 0 1 0 0 +Denormalized number
0 0 1 0 0 +Normalized number
0 0 1 0 1 +Infinity

2.5

This section describes registers used by Book E branch and CR operations.

2.5.1

Condition register (CR)

Registers for branch operations

The 32-bit CR reflects the result of certain operations and provides a mechanism for testing
and branching.

Condition register (CR)

Access: User read/write

32 35|36 39|40 43|44 47|48 51|52 55|56 59|60 63
R
W CRO CR1 CR2 CRS3 CR4 CR5 CR6 CR7
Reset All zeros
CR bits are grouped into eight 4-bit fields, CRO—-CR7, which are set as follows:
® Specified CR fields can be set by a move to the CR from a GPR (mtcrf).
® A specified CR field can be set by a move to the CR from another CR field (mcrf), from
the FPSCR (mcrfs), or from the XER (mcrxr).
® CRO can be set as the implicit result of an integer instruction.
® CR1 can be set as the implicit result of a floating-point instruction.
® A specified CR field can be set as the result of either an integer or a floating-point
compare instruction (including SPE and SPFP compare instructions).
Instructions are provided to perform logical operations on individual CR bits and to test
individual CR bits (see Condition register instructions on page 204’).
Note that instructions that access CR bits (for example, Branch Conditional (bc), CR
logicals, and Move to Condition Register Field (mtcrf)) determine the bit position by adding
61/1176 17

RMO0004 Register model

32 to the operand value. For example, in conditional branch instructions, the Bl operand
accesses bit Bl + 32, as shown in Table 12.

Table 12. Bl operand settings for CR fields

CRn CR
Bits Bits

BI Description

Negative (LT)—Set when the result is negative.
For SPE compare and test instructions:

Set if the high-order element of rA is equal to the high-order element of rB; cleared
otherwise.

CRO[0] | 32 |00000

Positive (GT)—Set when the result is positive (and not zero).
For SPE compare and test instructions:

Set if the low-order element of rA is equal to the low-order element of rB; cleared
otherwise.

CRO[1] | 33 |00001

Zero (EQ)—Set when the result is zero.
CRO[2] 34 | 00010 | For SPE compare and test instructions:
Set to the OR of the result of the compare of the high and low elements.

Summary overflow (SO). Copy of XER[SO] at the instruction’s completion. For SPE
CRO[3] 35 | 00011 |compare and test instructions:

Set to the AND of the result of the compare of the high and low elements.

Copy of FPSCR[FX] at the instruction’s completion. Negative (LT)
For SPE and SPFP compare and test instructions:

Set if the high-order element of rA is equal to the high-order element of rB; cleared
otherwise.

CR1[0] | 36 |00100

Copy of FPSCR[FEX] at the instruction’s completion. Positive (GT)

For SPE and SPFP compare and test instructions:

Set if the low-order element of rA is equal to the low-order element of rB; cleared
otherwise.

CR1[2] Copy of FPSCR[VX] at the instruction’s completion. Zero (EQ)

38 | 00110 | For SPE and SPFP compare and test instructions:

Set to the OR of the result of the compare of the high and low elements.

CR1[3] Copy of FPSCR[OX] at the instruction’s completion. Summary overflow (SO)
39 | 00111 | For SPE and SPFP compare and test instructions:
Set to the AND of the result of the compare of the high and low elements.

CR1[1] | 37 |00101

CRnN[0] 40 | 01000 Less than or floating-point less than (LT, FL).

44 01100 For integer compare instructions:
rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned comparison).

48 | 10000
For floating-point compare instructions: frA < frB.
52 110100 . .
For SPE and SPFP compare and test instructions:
56 | 11000) . . .
Set if the high-order element of rA is equal to the high-order element of rB; cleared
60 11100 otherwise

Ky_l 62/1176

Register

model

RMO0004

Table 12.

Bl operand settings for CR fields (continued)

CRn
Bits

CR

Bits Bl

Description

CRn[1]

41 01001
45 | 01101
49 10001
53 10101
57 11001
61 11101

Greater than or floating-point greater than (GT, FG).

For integer compare instructions:
rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned comparison).

For floating-point compare instructions: frA > frB.
For SPE and SPFP compare and test instructions:

Set if the low-order element of rA is equal to the low-order element of rB; cleared
otherwise.

CRn2]

42 | 01010
46 | 01110
50 10010
54 10110
58 11010
62 11110

Equal or floating-point equal (EQ, FE).

For integer compare instructions: rA = SIMM, UIMM, or rB.

For floating-point compare instructions: frA = frB.

For SPE and SPFP compare and test instructions:

Set to the OR of the result of the compare of the high and low elements.

CRn[3]

43 | 01011
47 | 01111
51 10011
55 10111
59 11011
63 11111

Summary overflow or floating-point unordered (SO, FU).

For integer compare instructions, this is a copy of XER[SO] at the completion of the
instruction.

For floating-point compare instructions, one or both of frA and frB is a NaN.
For SPE and SPFP vector compare and test instructions:
Set to the AND of the result of the compare of the high and low elements.

Table 13.

CR setting for integer instructions

For all integer word instructions in which the Rc bit is defined and set, and for addic., andi.,

and andis.,

CRO0[32-34] are set by signed comparison of bits 32—-63 of the result to zero;

CRI[35] is copied from the final state of XER[SO]. The Rc bit is not defined for double-word
integer operations.

if
else if
else

(target register);,_¢3 < 0 then ¢ <« 0bl00
(target register);,_¢3 > 0 then ¢ <« 0b010

c < 0bo00O1

CRO « c Il XERgq

The value of any undefined portion of the result is undefined, and the value placed into the
first three bits of CRO is undefined. CRO bits are interpreted as described in Table 13.

CRO bit descriptions

CR
bit

Name

Description

32

Negative (LT)

Bit 32 of the result is equal to one.

33

Positive (GT)

Bit 32 of the result is equal to zero, and at least one of bits 33-63 of the result is non-
zero.

34

Zero (EQ)

Bits 32—63 of the result are equal to zero.

35

Summary overflow | This is a copy of the final state of XER[SO] at the completion of the instruction.

(SO)

63/1176

Note that CRO may not reflect the true (infinitely precise) result if overflow occurs.

574

RMO0004 Register model
CR setting for store conditional instructions
CRO is also set by the integer store conditional instruction, stwex.. See instruction
descriptions in Chapter 3, for detailed descriptions of how CRO is set.
CR setting for floating-point instructions
For all floating-point instructions in which the Rc bit is defined and set, CR1 (CR[36-39]) is
copied from FPSCR[32-35]. These bits are interpreted as shown in Table 14.
Table 14. CR setting for floating-point instructions
Bit | Name Description
36| Fx Floating-point exception summary. Copy of final state of FPSCR[FX] at instruction
completion.
37 | FEX Floating-point enabled exception summary. Copy of final state of FPSCR[FEX] at
instruction completion.
38 | vx Floating-point invalid operation exception summary. Copy of final state of FPSCR[VX] at
completion.
39| ox Floating-point overflow exception. Copy of final state of FPSCR[OX] at instruction
completion.
CR setting for compare instructions
For compare instructions, a CR field specified by the Bl field in the instruction is set to reflect
the result of the comparison, as shown in Table 15.
Table 15. CR setting for compare instructions
CR Bits Bl
CRn Bit expression Description
bit pressio AIM (BI | Book | o 5|4 4 P
Operand) E
4*cr0+It(orlt) 0 32 | 000 Less than or floating-point less than (LT, FL).
4*cr1 +1lt 4 36 | 001 For integer compare instructions:
4*cr2 + It 8 40 |010 rA < SIMM or rB (signed comparison) or rA <
4*cr3+ It 12 44 | 011 UIMM or rB (unsigned comparison).
CRn[0] 4%crd + It 16 48 |100 00 ::cér floating-point compare instructions: frA <
4%cr5 + It 20 52 | 101 e
4*cré+It 24 56 110
4*cr7 +1t 28 60 111
4 * cr0 + gt (or gt) 1 33 | 000 Greater than or floating-point greater than (GT,
4*crl +gt 5 37 | o001 FG).
4*cr2 + gt 9 41 010 For integer compare instructions:
CRA1] 4+ cr3+ gt 13 45 | 011 o BA“\;SIMMBor rB _(sigr:jed Comp_arison) orrA >
4*cra + gt 17 49 |100 ot 0; r (”',‘S‘t'g”e Com,pa?sort‘,)' A
4% cr5 + gt 1 53 |101 frcL;’r oating-point compare instructions: frA >
4*cré + gt 25 57 [110 '
4*cr7 + gt 29 61 111

64/1176

Register model

RMO0004

Table 15. CR setting for compare instructions (continued)
CR Bits Bl
CRn Bit expression Description
bit 1 expressi AIM (BI | Book |0 |5 4 L
Operand) E
4 *cr0 + eq (or eq) 2 34 | 000 Equal or floating-point equal (EQ, FE).
4*crl +eq 6 38 | 001 For integer compare instructions: rA = SIMM,
4*cr2 +eq 10 42 1010 UIMM, or rB.
4* 14 4 11 For floating-point compare instructions: frA =
CRA2] cr3+ eq 6 |0 10 |18
4*crd4 +eq 18 50 100 :
4*cr5+eq 22 54 101
4*cré+eq 26 58 |110
4*cr7 +eq 30 62 |111
4 * cr0 + solun (or 3 35 | 000 Summary overflow or floating-point unordered
so/un) (SO, FU).
N 7 39 | 001 ; . . .
4 * cri1 + so/un For integer compare instructions, this is a copy
4 * cr2 + so/un 1 43 1010 of XER[SQ] at instruction completion.
CRn[3] |4 * cr3 + so/un 15 47 | 011 11 | For floating-point compare instructions, one or
4* crd + sofun 19 51 100 both of frA and frB is a NaN.
23 55 101
4 * cr5 + so/un
27 59 |110
4 * cr6 + so/un] 111
4 * cr7 + so/un 3 63
CR bit settings in VLE mode
The VLE extension implements the entire CR, but some comparison operations and all
branch instructions are limited to using CR0-CR3. However, all Book E CR field and logical
operations are provided.
CR bits are grouped into eight 4-bit fields, CRO-CR7, which are set in one of the following
ways.
® Specified CR fields can be set by a move to the CR from a GPR (mtcrf).
® A specified CR field can be set by a move to the CR from another CR field (e_mecrf).
® CRfield 0 can be set as the implicit result of an integer instruction.
® A specified CR field can be set as the result of an integer compare instruction.
® CRfield 0 can be set as the result of an integer bit test instruction.
Instructions are provided to perform logical operations on individual CR bits and to test
individual CR bits.
CR settings for integer instructions
For all integer word instructions in which the Rc bit is defined and set, and for addic., the
first three bits of CR field 0 (CR[32—-34]) are set by signed comparison of bits 32—63 of the
result to zero, and the fourth bit of CR field 0 (CR[35]) is copied from the final state of
XER[SO].
if (target register);,.4.3 < 0 then ¢ <« 0bl00
else if (target register);,.,3 > 0 then c <« 0b010
else c <« 0bo0O01
CRO « c Il XERgq
65/1176 17

RMO0004

Register model

2.5.2

If any portion of the result is undefined, the value placed into the first three bits of CR field 0
is undefined. The bits of CR field 0 are interpreted as shown in Table 16.

Table 16. CRO encodings
CR bit Description

32 | Negative (LT). Bit 32 of the result is equal to 1.

Positive (GT). Bit 32 of the result is equal to 0 and at least one of bits 33—-63 of the result is
non-zero.

34 | Zero (EQ). Bits 32-63 of the result are equal to 0.

33

Summary overflow (SO). This is a copy of the final state XER[SO] at the completion of the

35 instruction.

CR setting for compare instructions supported by the VLE extension

For compare instructions, a CR field specified by the crD operand in the instruction for the
e_cmph, e_cmphl, e_cmpi, and e_cmpli instructions, or CRO for the e_cmp16i,
e_cmphi6i, e_cmphl16i, e_cmpl16i, se_cmp, se_cmph, se_cmphl, se_cmpi, and
se_cmpli instructions is set to reflect the result of the comparison. The CR field bits are
interpreted as shown in Table 17. A complete description of how the bits are set is given in
Chapter 6, and in Integer instructions on page 205”

Table 17. Condition register setting for compare instructions

CR bit Description

4xCRD + 32 | Less than (LT). For signed-integer compare, GPR(rA or rX) < SCI8 or Sl or GPR(rB or
ryY).

For unsigned-integer compare, GPR(rA or rX) <, SCI8 or Ul or UI5 or GPR(rB or rY).
4xCRD + 33 | Greater than (GT). For signed-integer compare, GPR(rA or rX) > SCI8 or Sl or UI5 or

GPR(rB or rY).
For unsigned-integer compare, GPR(rA or rX) >, SCI8 or Ul or UI5 or GPR(rB or rY).

4xCRD + 34 | Equal (EQ). For integer compare, GPR(rA or rX) = SCI8 or UI5 or Sl or Ul or GPR(rB
orry).

4xCRD + 35 | Summary overflow (SO). For integer compare, this is a copy of the final state of
XER[SO] at the completion of the instruction.

CR setting for the VLE bit test instruction

The Bit Test Immediate instruction, se_btsti, also sets CR field 0. See the instruction
description and also Integer instructions on page 205

Link register (LR)

The link register can be used to provide the branch target address for a Branch Conditional
to LR (bclrx) instruction, and it holds the return address after branch and link instructions.

66/1176

Register model RMO0004

2.5.3

67/1176

Link register (LR)

SPR 8 Access: user read/write
32 63
R
Link address
w
Reset All zeros

The LR contents are read into a GPR using mfspr. The contents of a GPR can be written to
the LR using mtspr. LR[62-63] are ignored by bclr instructions.

Link register usage in VLE mode

VLE instructions use the LR as defined in Book E, although the VLE extension defines a
subset of all variants of Book E conditional branches involving the LR, as shown in Table 18.
Note that because VLE instructions can reside on half-word boundaries, in VLE mode,
LR[30] is examined when the LR holds an instruction address.

Table 18. Branch to link register instruction comparison

Book E VLE Subset
Instruction Syntax Instruction Syntax
Branch Conditional to Link Register | belr BO,BI | Branch (Absolute) to Link se_blr
Branch Conditional to Link Register | bclrl BO,BI | Register se_blrl
& Link Branch (Absolute) to Link
Register & Link
Branch Conditional & Link e_bcl Branch Conditional & Link e_bcl
BO,BI,BD BO32,BI32,BD
15
Branch (Absolute) & Link e_bl BD24
se_bl BD8

Count register (CTR)

CTR can be used to hold a loop count that can be decremented and tested during execution
of branch instructions that contain an appropriately encoded BO field. If the CTR value is 0
before being decremented, it is —1 afterward. The entire CTR can be used to hold the
branch target address for a Branch Conditional to CTR (bectrx) instruction.

Note that because VLE instructions can reside on half-word boundaries, in VLE mode,
CTRI[30] is examined when the CTR holds an instruction address.

Count register (CTR)

SPR 9 Access: user read/write
2 | | | | s
R
Count value
w
Reset All zeros
KYI

RMO0004

Register model

Count register usage in VLE mode

VLE instructions use the CTR as defined by in Book E, although the VLE extension defines
a subset of the variants of Book E conditional branches involving the CTR, as shown in
Table 19.

Table 19. Branch to count register instruction comparison
Book E VLE
Instruction Syntax Instruction Syntax
Branch conditional to count register beetr BO,BI | Branch (absolute) to count register se_bctr
Branch conditional to count register & link beetrl BO,BI | Branch (absolute) to count register & se_bctrl
link

2.6

2.6.1

Processor control registers

This section addresses machine state, processor ID, and processor version registers.

Machine state register (MSR)

The MSR defines the state of the processor (that is, enabling and disabling of interrupts and
debugging exceptions, enabling and disabling of address translation for instruction and data
memory accesses, enabling and disabling some APUs, and specifying whether the
processor is in supervisor or user mode).

MSR contents are automatically saved, altered, and restored by the interrupt-handling
mechanism. If a non-critical interrupt is taken, MSR contents are automatically copied into
SRR1. If a critical interrupt is taken, MSR contents are automatically copied into CSRR1.
When an rfi or rfci is executed, MSR contents are restored from SRR1 or CSRR1.

The EIS-defined machine check APU defines additional save/restore resources. When a
machine check interrupt is taken, MCSRRO and MCSRR1 hold the return address and MSR
information. The return from machine check interrupt instruction, rfmci, restores MCSRR1
contents to the MSR.

MSR contents are read into a GPR using mfmsr. The contents of a GPR can be written to
MSR using mtmsr. The write MSR external enable instructions (wrtee and wrteei) can be
used to set or clear MSR[EE] without affecting other MSR bits.

Machine state register (MSR)

Book E/ R
EIS W
Els R
APUs W
Reset

IYI

Access: supervisor-only
32 36 37 38 39 4344 45 46 47/48 49 50 51| 52 53 54 55 565758 5960 61 6263

— AP|WE|CE|—|EE|PR|FP|ME|FEO|—|DE|FE1| — |IS|DS —

— |UCLE|SPE — PMM| —

All zeros

68/1176

Register model

RMO0004

69/1176

Table 20. MSR field descriptions

Bits | Name Description

32— __ | Reserved, should be cleared.()

36
(Cache-locking APU) User-mode cache lock enable. Used to restrict user-mode
cache-line locking by the operating system.
0Any cache lock instruction executed in user-mode takes a cache-locking DSI

37 | UCLE |exception and sets either ESR[DLK] or ESR[ILK]. This allows the operating system
to manage and track the locking/unlocking of cache lines by user-mode tasks.
1Cache-locking instructions can be executed in user-mode and they do not take a
DSI for cache-locking. (They may still take a DSI for access violations though.)
(SPE, SPFP, DPFP APUs) SPE enable. Enables use of 64-bit extended GPRs used
by SPE, single-precision vector, and double-precision floating-point APUs/
0Olf software attempts to execute an SPE APU instruction, the SPE APU unavailable

38 SPE exception is taken. . '
1Software can execute any of the SPE APU instructions.
Embedded floating-point instructions require MSR[SPE] to be set. An attempt to
execute an embedded floating-point instruction when MSR[SPE] is O results in an
SPE APU unavailable interrupt.

39— . Reserved, should be cleared. 1

43
APU available. Book E defines the operation of AP as follows:

44 AP | 0The processor cannot execute APU instructions.
1The processor can execute APU instructions.
Wait state enable. Allows the core complex to signal a request for power
management, according to the states of HIDO[DOZE], HIDO[NAP], and
HIDO[SLEEP].

45 WE 0The processor is not in wait state and continues processing. No power
management request is signaled to external logic.
1The processor enters wait state by ceasing to execute instructions and entering
low-power mode. Details of how wait state is entered and exited and how the
processor behaves in the wait state are implementation-dependent.
Critical enable

46 CE | OCritical input and watchdog timer interrupts are disabled.
1Critical input and watchdog timer interrupts are enabled.

47 — Preserved for Book Il ILE
External enable
OExternal input, decrementer, fixed-interval timer, and performance monitor

48 EE |interrupts are disabled.
1External input, decrementer, fixed-interval timer, and performance monitor
interrupts are enabled.
User mode (problem state)
0The processor is in supervisor mode, can execute any instruction, and can access

49 PR any resource (for example, GPRs, SPRs, and the MSR).
1The processor is in user mode, cannot execute any privileged instruction, and
cannot access any privileged resource.
PR also affects memory access control.

RMO0004

Register model

Table 20. MSR field descriptions (continued)
Bits | Name Description
Floating-point available.
50 FP 0The processor cannot execute floating-point instructions, including floating-point
loads, stores, and moves.
1The processor can execute floating-point instructions.
Machine check enable.
51 ME | OMachine check interrupts are disabled.
1Machine check interrupts are enabled.
Floating-point exception mode 0. The Book E definition of this bit is shown in
52 FEO
<Cross Refs>Table 21.
53 — | Allocated for implementation-dependent use.
Debug interrupt enable
54 DE 0Debug interrupts are disabled.
1Debug interrupts are enabled if DBCRO[IDM] = 1.
See the description of the DBSR[UDE] in Chapter 2.13.2.
Floating-point exception mode 1. The Book E definition of this bit is shown in
55 FE1
Table 21.
56 — | Reserved, should be cleared.
57 — | Preserved for Book Il IP
Instruction address space
0The processor directs all instruction fetches to address space 0 (TS = 0 in the
58 IS relevant TLB entry).
1The processor directs all instruction fetches to address space 1 (TS = 1 in the
relevant TLB entry).
Data address space
0The processor directs data memory accesses to address space 0 (TS = 0 in the
59 DS |relevant TLB entry).
1The processor directs data memory accesses to address space 1 (TS =1 in the
relevant TLB entry).
60 — Reserved, should be cleared. 1
(Performance monitor APU) Performance monitor mark bit. System software can set
PMM when a marked process is running to enable statistics gathering only during
the execution of the marked process. PMM and MSR[PR] together define a state
61 PMM .
that the processor (supervisor or user) and the process (marked or unmarked) may
be in at any time. If this state matches an individual state specified in the PMLCax,
the state for which monitoring is enabled, counting is enabled.
62— | Preserved for Book Il Rl and LE, respectively.
63

1. An MSR bit that is reserved may be altered by return from interrupt instructions.

The floating-point exception mode bits FEO and FE1 are described in Table 21.

70/1176

Register model RMO0004

2.7

Note: 1
2

2.71

Table 21. Floating-point exception bits—MSR[FEOQ,FE1]

FEO FE1 Mode
0 0 Ignore exceptions
0 1 Imprecise nonrecoverable
1 0 Imprecise recoverable
1 1 Precise

Hardware implementation-dependent registers

Each ST Book E processor implements hardware implementation-dependent registers,
HIDO and HID1,which contain fields defined either by the EIS or by the implementation. This
section provides architectural information about HID registers and describes only those bits
that are defined by the EIS.

Not all processors implement HID fields defined by the EIS. Consult the user
documentation.

An integrated device may not use all HID fields implemented on an embedded core or may
define those fields more specifically. Always begin by looking at the core register
descriptions in the reference manual for the integrated device.

Hardware implementation dependent register 0 (HIDO)

HIDO is used for configuration and control. Figure below shows the HIDO bits that are
defined either generally by the EIS or as part of an EIS-defined APU. Note that not all EIS-
compliant device implement all HIDO fields; see the user documentation.

Writing to HIDO typically requires synchronization, as described in Chapter 2.18.2”

Hardware implementation dependent register 0 (HIDO)

SPR 1008 Access: Supervisor-only
32 33 34 35 3940 42 43 47
3 EMCP PWRMGMT DPM EDPM PR |EN-MAS7_
W - - UPDATE
Reset All zeros
48 49 50 51 55 |56 57 58 62 63
R
EIEC |TBEN|SEL_TBCLK — DAPUEN |SGE |— |EIEIO_EN| LWSYNC_EN | — | NOPTST | NOPDST | NOPTI
w
Reset All zeros

711176

HIDO fields are described in Table 22.

RMO0004

Register model

Table 22,

HIDO field descriptions

Bits

Name

Description

32

EMCP

Enable machine check pin. Used to mask machine check exceptions
delivered to the core from the machine check input.

OMachine check exceptions from the machine check signal are disabled.
1Machine check exceptions from the machine check signal are enabled. If
MSR[ME] = 0, asserting the machine signal check causes a checkstop. If
MSR[ME] = 1, asserting the machine check signal causes a machine check
exception.

33

Implementation dependent.

34

SFR

Sixty-four bit results. Determines how the upper 32 bits of 64-bit registers in
a 64-bit implementation are computed when the processor is executing in
32-bit mode (MSR[CM] = 0).

0In 32-bit mode, bits 0—31 of all 64-bit registers are not modified. Explicit 64-
bit instructions generate an unimplemented instruction exception when
executed.

1In 32-bit mode, bits 0—31 are written with the same value that is written as
when the processor is executing in 64-bit mode (except for the LR and any
EAs generated that clear bits 0-31. Explicit 64-bit instructions are allowed to
execute and do not generate an unimplemented instruction exception unless
they would have when the processor is in 64-bit mode.

35—
39

Implementation dependent.

40-
42

PWRMGMT

Power management control. The semantics of PWRMGMT are
implementation dependent.

43

DPM

Dynamic power management. Used to enable power-saving by shutting off
functional resources not in use. Setting or clearing DPM should not affect
performance.

ODynamic power management is disabled.
1Dynamic power management is enabled.

44

EDPM

Enhanced dynamic power management. Used to enable additional power-
saving by shutting off functional resources not in use. Setting EDPM may
have adverse effects on performance.

OEnhanced dynamic power management is disabled.
1Enhanced dynamic power management is enabled.

45

Implementation dependent.

46

ICR

Interrupt inputs clear reservation. Controls whether external input and
critical input interrupts cause an established reservation to be cleared.

OExternal and critical input interrupts do not affect reservation status.

1External and critical input interrupts, when taken, clear an established
reservation.

47

EN_MAS7_UP
DATE

Enable hot-wire update of MAS7 register. Implementations that support this
bit do not update MAS7 (upper RPN field) when hardware writes MAS
registers via a tlbre, tibsx, or an interrupt unless this bit is set. This provides
a compatibility path for processors that originally offered only 32 bits of
physical addressing but have since extended past 32 bits.

OHardware updates of MAS7 are disabled.

1Hardware updates of MAS7 are enabled.

72/1176

Register model

RMO0004

73/1176

Table 22.

HIDO field descriptions

Bits

Name

Description

48

EIEC

Enable internal error checking. Used to control whether internal processor

errors cause a machine check exception.

0 Internal error reporting is disabled. Internally detected processor errors
do not generate a machine check interrupt.

1 Internal error reporting is enabled. Internally detected processor errors
generate a machine check interrupt.

49

TBEN

Time base enable. Used to control whether the time base increments.
0 The time base is not enabled and will not increment.

1 The time base is enabled and will increment. The rate at which the time
base increments is determined by the value of HIDO[SEL_TBCLK].

50

SEL_TBCLK

Select time base clock. Used to select the source of the time base clock.
0 The time base is updated based on a core implementation specific rate.
1 The time base is updated based on an external signal to the core

51—
54

Implementation dependent.

55

DAPUEN

Debug APU enable. Controls whether the debug APU or enhanced debug
APU is enabled.

0 The debug APU is disabled. Debug interrupts use CSRR0 and CSRR1 to
save state and the rfci instruction to return from the debug interrupt.

1 The debug APU is enabled; debug interrupts use DSRR0 and DSRR1 to
save state and the rfdi instruction to return from the debug interrupt.

56

SGE

Store gathering enable. Turns on store gathering for non-guarded cache
inhibited or write-through stores. Details and characteristics of how stores
are gathered is implementation dependent.

0 Store gathering is disabled.
1 Store gathering is enabled.

57

Implementation dependent.

58

EIEIO_EN

eieio synchronization enable. Allows mbar instructions to provide the same

synchronization semantics as the eieio instruction.

0 Synchronization provided by mbar is performed in the Book E manner.
Additional forms of synchronization, if implemented, are determined by
the MO value.

1 Synchronization provided by mbar is equivalent to eieio synchronization.
The MO field is ignored.

59

LWSYNC_EN

Lightweight synchronization enable. Allows msync instructions to provide
the same synchronization semantics as the sync instructions from the
PowerPC 2.xx architecture.

0 The synchronization provided by the msync instruction is performed in
the Book E manner.

1 The synchronization provided by the msync instruction is based on the L
field defined in PowerPC 2.xx architecture sync instruction.

60

Implementation dependent.

RMO0004 Register model

Table 22. HIDO field descriptions

Bits Name Description

No-op cache touch for store instructions. Controls whether data cache touch

for store instructions perform no operation.

0 dcbtst, dstst, and dststt and other forms of cache touch for store
instructions operate as defined by the EIS and Book E unless disabled by
NOPDST or NOPTI.

1 dcbtst, dstst, and dststt and other forms of cache touch for store
instructions are treated as no-ops. Cache line touch for store and lock
instructions defined in the cache line locking APU operate as defined.

61 NOPTST

No-op dst, dstt, dstst, and dststt instructions. Instructions that start data

stream prefetching through the dst instructions produce no-operation.

0 dst, dstt, dstst, and dststt operate as defined by the EIS unless disabled
by NOPTST or NOPTI.

1 dst, dstt, dstst, and dststt are treated as no-ops and all current dst
prefetch streams are terminated.

62 NOPDST

No-op cache touch instructions. Data and instruction cache touch

instructions perform no operations.

0 dcbt, dcbtst, icbt and other forms of cache touch instructions operate as

63 NOPTI defined by the EIS and Book E unless disabled by NOPDST or NOPTST.

1 dcbt, dcbtst, icbt and other cache touch instruction forms are treated as
no-ops. Cache line touch and lock instructions defined in the cache line
locking APU operate as defined.

2.7.2 Hardware implementation dependent register 1 (HID1)

The EIS defines a HID1 register. HID1 contents are implementation dependent. HID1 is
used for bus configuration and control. Writing to HID1 requires synchronization, as
described in Chapter 2.18.2: Synchronization requirements for SPRS.”

Hardware implementation dependent register 1 (HID1)

SPR 1009 Access: supervisor-only
2 | | | 63
R
Implementation dependent
W
Reset Implementation dependent

2.7.3 Processor ID register (PIR)

The processor ID register (PIR), shown below, contains a value that can be used to
distinguish the processor from other processors in the system.

Processor ID register (PIR)

SPR 286 Access: Supervisor read-only
32 | | 63
R Processor ID
W
Reset Processor specific value

Ky_l 74/1176

Register model RMO0004

2.7.4

2.7.5

2.8

75/1176

Processor version register (PVR)

The read-only processor version register (PVR), contains a value identifying the version and
revision level of the processor. The PVR distinguishes between processors that differ in
attributes that may affect software.

Processor version register (PVR)

SPR 287 Access: supervisor read-only
2 | | we | e
R Version Revision
W
Reset Processor specific value

Table 23 describes PVR fields.

Table 23. PVR field descriptions

Bits | Name Description
32— | Version |A 16-bit number that identifies the version of the processor. Different version
47 numbers indicate major differences between processors, such as which optional
facilities and instructions are supported.
48— | Revisio |A 16-bit number that distinguishes between implementations of the version.
63 n Different revision numbers indicate minor differences between processors having

the same version number, such as clock rate and engineering change level.

System version register (SVR)

The system version register (SVR), contains a read-only SoC-dependent value; consult the
documentation for the implementation.

System version register (SVR)

SPR 1023 Access: supervisor read-only
e ||] e
R System version ‘
W
Reset SoC-specific value

Timer registers

The time base (TB), decrementer (DEC), fixed-interval timer (FIT), and watchdog timer
provide timing functions for the system. The relationship of these timer facilities to each
other is shown in Figure 5 and is described as follows:

RMO0004

Register model

2.8.1

Figure 5. Relationship of timer facilities to the time base

1 Time Base (incrementer)

|
1 32 63 32 63 1
: TBU TBL o Timer Clock
Lo - - - - c--e--—--=-=C[= c——==1—= .| (Time Base Clock)
(J core_tbclk
Watchdog timer events based on one of the TB bits B
selected by the EIS—defined TCR[WPEXT] .
concatenated with the Book E—defined TCR[WP] .
H
Fixed-interval timer events based on one of TB bits <
selected by the EIS—defined TCR[FPEXT] .
concatenated with the Book E—defined TCR[FP] .
D S
DEC —
Decrementer event = 0/1 detect -] Auto-reload
32 63
DECAR

® The TBis a long-period counter driven at an implementation-dependent frequency.

® The decrementer, updated at the same rate as the TB, provides a way to signal an
exception after a specified period unless one of the following occurs:

— DEC is altered by software in the interim.
— The TB update frequency changes.
® The DEC is typically used as a general-purpose software timer.

® The time base for the TB and DEC is selected by the time base enable (TBEN) and
select time base clock (SEL_TBCLK) bits in HIDO, as follows:
— If HIDO[TBEN] = 1 and HIDO[SEL_TBCLK] = 0, the time base is updated every 8
bus clocks.
— IfHIDO[TBEN] = 1 and HIDO[SEL_TBCLK] = 1, the time base is updated by an
implementation-specific clock input).
® Software can select one from of four TB bits to signal a fixed-interval interrupt
whenever the bit transitions from 0 to 1. It is typically used to trigger periodic system
maintenance functions. Bits that may be selected are implementation-dependent.

® The watchdog timer, also a selected TB bit, provides a way to signal a critical exception
when the selected bit transitions from 0 to 1. It is typically used for system error
recovery. If software does not respond in time to the initial interrupt by clearing the
associated status bits in the TSR before the next expiration of the watchdog timer
interval, a watchdog timer-generated processor reset may result, if so enabled.

All timer facilities must be initialized during start-up.

Timer control register (TCR)

The TCR, provides control information for the on-chip timer of the core complex. The core
complex implements two fields not specified in Book E: TCR[WPEXT] and TCR[FPEXT].

The 32-bit timer control register (TCR), controls the decrementer. (See Chapter 2.8.4.)

76/1176

Register model

RMO0004

Timer control register (TCR)

SPR 340 Access: Supervisor read/write
32 333435/ 36 37 3839/40 41 42 43‘ 46 47‘ 50 51‘ ‘ ‘ 63
R
W WP |WRCWIEDIE| FP [FIEARE—| WPEXT | FPEXT —
Reset Processor specific value

Table 24 describes the TCR fields.

TCR field descriptions

Description

Watchdog timer period. When concatenated with WPEXT, specifies one of 64-bit
locations of the time base used to signal a watchdog timer exception on a transition
fromOto 1.

WPEXT,WP = 0000_00 selects TBU[32] (the msb of the TB)

WPEXT,WP = 1111_11 selects TBL[63] (the Isb of the TB)

Watchdog timer reset control. When a watchdog reset event occurs, the value
programmed into WRC is reflected on core_wrs and into TSR[WRS], but the WRC bits
are reset to 00. At this point, software can reprogram WRC. Although WRC can be set
by software, it cannot be cleared by software (except by a software-induced reset).
Once written to a non-zero value, WRC may no longer be altered by software.

00No watchdog timer reset will occur. TCR[WRC] resets to 00; it can be set by
software, but cannot be cleared by software (except by a software-induced reset).

xx Other values: Force processor to be reset on second time-out of watchdog timer.
The exact function of any of these settings is implementation-dependent.

Watchdog timer interrupt enable
OWatchdog timer interrupts disabled
1Watchdog timer interrupts enabled

Decrementer interrupt enable
0 Decrementer interrupts disabled
1 Decrementer interrupts enabled

Fixed interval timer period. When concatenated with FPEXT, FP specifies one of 64 bit
locations of the time base used to signal a fixed-interval timer exception on a transition
fromOto 1.

FPEXTIIFP = 0000_00 selects TBU[32] (the msb of the TB)

FPEXTIIFP = 1111_11 selects TBL[63] (the Isb of the TB)

Fixed interval interrupt enable
0 Fixed interval interrupts disabled
1 Fixed interval interrupts enabled

Auto-reload enable. Controls whether the value in DECAR is reloaded into the DEC
when the DEC value reaches 0000_0001.

0 Auto-reload disabled
1 Auto-reload enabled

Reserved, should be cleared.

Table 24.
Bits | Name
32— |WP
33
34— |WRC
35
36 |WIE
37 DIE
38- |FP
39
40 FIE
41 ARE
42 |—
43— |WPE
46 | XT

(EIS) Watchdog timer period extension (see the description for WP)

7711176

RMO0004

Register model

Table 24. TCR field descriptions (continued)

Bits | Name Description

47— | FPEX | (EIS) Fixed-interval timer period extension (see the description for FP)
50

T

51— |— Reserved, should be cleared.
63

2.8.2 Timer status register (TSR)

As shown below, the 32-bit TSR contains status on timer events and the most recent
watchdog timer-initiated processor reset. All TSR bits function as write-1-to-clear.

Note: Register fields designated as write-1-to-clear are cleared only by writing ones to them.
Writing zeros to them has no effect.

Timer status register (TSR)
SPR 336

336

R [ENWWIS|WRS|DIS|FIS

W |wic|wic|wic wicwic

Access: supervisor wic

32 33 3435/36 37 38 ‘ ‘ ‘ ‘ ‘ ‘ 63

Reset All zeros

Table 25 describes TSR fields.

Table 25. TSR field descriptions

Bits | Name Description
Enable next watchdog time. When a watchdog timer time-out occurs while WIS = 0 and the next
watchdog time-out is enabled (ENW = 1), a watchdog timer exception is generated and logged by
setting WIS. This is referred to as a watchdog timer first time out. A watchdog timer interrupt
occurs if enabled by TCR[WIE] and MSR[CE]. To avoid another watchdog timer interrupt once
MSR[CE] is reenabled (assuming TCR[WIE] is not cleared instead), the interrupt handler must

32 ENW | reget TSR[WIS] by executing an mtspr, setting WIS and any other bits to be cleared and a 0 in all
other bits. The data written to the TSR is not direct data, but a mask. A 1 causes the bit to be
cleared; a 0 has no effect.
0 Action on next watchdog timer time-out is to set TSR[ENW].
1 Action on next watchdog timer time-out is governed by TSR[WIS].
Watchdog timer interrupt status. See the ENW description for more information about how WIS is
used.

33 WIS |0 A watchdog timer event has not occurred.
1 A watchdog timer event occurred. When MSR[CE] = 1 and TCR[WIE] = 1, a watchdog timer

interrupt is taken.
Watchdog timer reset status. Defined at reset (value = 00). Set to TCR[WRC] when a reset is
caused by the watchdog timer.
34-35| WRS 00 No watchdog timer reset has occurred.

xx All other values are implementation-dependent.

78/1176

Register model RMO0004

Table 25. TSR field descriptions (continued)
Bits | Name Description
Decrementer interrupt status.
36 DIS 0 A decrementer event has not occurred.
1 A decrementer event occurred. When MSR[EE] = TCRI[DIE] = 1, a decrementer interrupt is
taken.
Fixed-interval timer interrupt status.
37 FIS 0 A fixed-interval timer event has not occurred.
1 A fixed-interval timer event occurred. When MSR[EE] = 1 and TCR[FIE]= 1, a fixed-interval
timer interrupt is taken.
38-63 — Reserved, should be cleared.
2.8.3 Time base (TBU and TBL)

The time base (TB), seen below, is composed of two 32-bit registers, the time base upper
(TBU) concatenated on the right with the time base lower (TBL). TB provides timing
functions for the system. TB is a volatile resource and must be initialized during start-up.

Time base upper/lower registers (TBU/TBL)

SP6D Read/285 write 268 read/284 write Access: user read supervisor write
2 0 e | e
) TBU TBU
W
Reset All zeros

79/1176

The TB is interpreted as a 64-bit unsigned integer that is incremented periodically. Each
increment adds 1 to the least-significant bit. The frequency at which the integer is updated is
implementation-dependent.

TBL increments until its value becomes OxFFFF_FFFF (232 —1). At the next increment, its
value becomes 0x0000_0000 and TBU is incremented. This process continues until the
TBU value becomes OxFFFF_FFFF and value TBL value becomes OxFFFF_FFFF (TB is
interpreted as OxFFFF_FFFF_FFFF_FFFF (264 —1)). At the next increment, the TBU value
becomes 0x0000_0000 and the TBL value becomes 0x0000_0000. There is no interrupt (or
any other indication) when this occurs.

The period depends on the driving frequency. For example, if TB is driven by 100 MHz
divided by 32, the TB period is as follows:

T1g = 264 X = 5.90 x 1012 seconds (approximately 187,000 years)

10MHz

The TB is implemented such that the following requirements are satisfied:
® Loading a GPR from the TB has no effect on the accuracy of the TB.
® Storing a GPR to the TB replaces the value in the TB with the value in the GPR.

Book E does not specify a relationship between the frequency at which the TB is updated
and other frequencies, such as the CPU clock or bus clock in a Book E system. The TB

574

RMO0004

Register model

Note:

2.8.4

2.8.5

1

update frequency is not required to be constant. One of the following is required to ensure
that system software can keep time of day and operate interval timers:

® The system provides an (implementation-dependent) interrupt to software whenever
the update frequency of the TB changes and a way to determine the current update
frequency.

® The update frequency of the TB is under the control of system software.

Disabling the TB or making reading the time base privileged prevents the TB from being
used to implement a covert channel in a secure system.

If the operating system initializes the TB on power-on to some reasonable value and the
update frequency of the TB is constant, the TB can be used as a source of values that
increase at a constant rate, such as for time stamps in trace entries.

Even if the update frequency is not constant, values read from the TB are monotonically
increasing (except when the TB wraps from 24 _1to 0). If a trace entry is recorded each
time the update frequency changes, the sequence of TB values can be post-processed to
become actual time values.

Successive readings of the TB may return identical values.

It is intended that the TB be useful for timing reasonably short sequences of code (a few
hundred instructions) and for low-overhead time stamps for tracing.

Decrementer register

The 32-bit decrementer (DEC), shown below, is a decrementing counter that is updated at
the same rate as the TB. It provides a way to signal a decrementer interrupt after a specified
period unless one of the following occurs:

® DEC is altered by software in the interim.

® The TB update frequency changes.

DEC is typically used as a general-purpose software timer. The decrementer auto-reload
register is used to automatically reload a programmed value into DEC, as described in
Section 2.8.5: Decrementer auto-reload register (DECAR).

Decrementer register (DEC)

SPR 22 Access: Supervisor read/write

° | | | | | e

R
W

Decrementer value

Reset All zeros

Decrementer auto-reload register (DECAR)

The decrementer auto-reload register is shown in figure below. If the auto-reload function is
enabled (TCR[ARE] = 1), the auto-reload value in DECAR is written to DEC when DEC
decrements from 0x0000_0001 to 0x0000_0000. Note that writing DEC with zeros by using
an mtspr[DEC] does not automatically generate a decrementer exception.

80/1176

Register model RMO0004

2.9

2.9.1

81/1176

Decrementer auto-reload register (DECAR)

SPR 54 Access: supervisor write-only
e | | |]] e
R
w Decrementer auto-reload value
Reset All zeros

Interrupt registers

Chapter 2.9.1: Interrupt registers defined by book E on page 81, describes registers used
for interrupt handling.

Interrupt registers defined by book E

This section describes the following register bits and their fields:
Save/restore register 0 (SRRO) on page 871"

Save/restore register 1 (SRR1) on page 81"

Critical save/restore register 0 (CSRRO0) on page 82’
Critical save/restore register 1 (CSRR1) on page 82’

Data exception address register (DEAR) on page 82
Interrupt vector prefix register (IVPR) on page 83’
Interrupt vector offset registers (IVORs) on page 83’
Exception syndrome register (ESR) on page 84"

Save/restore register 0 (SRR0)

On a noncritical interrupt, SRRO, shown in figure below, holds the address of the instruction
where the interrupted process should resume. The instruction is interrupt-specific, although
for instruction-caused exceptions, it is typically the address of the instruction that caused the
interrupt. When rfi executes, instruction execution continues at the address in SRRO.

Save/restore register 0 (SRRO0)

SPR 26 Access: sup[ervisor read/write
2 | | | | | e
R
Next instruction address
W
Reset All zeros

Save/restore register 1 (SRR1)

SRR1 is provided to save and restore machine state on noncritical interrupts. When a
noncritical interrupt is taken, MSR contents are placed in SRR1. When rfi executes, SRR1
contents are placed into MSR. SRR1 bits that correspond to reserved MSR bits are also
reserved. These registers are not affected by rfci or rfmci. Reserved MSR bits may be
altered by rfi, rfci, or rfmci.

574

RMO0004

Register model

Save/restore register 1 (SRR1)

SPR 27 Access: supervisor read/write
2 | | | | | e
R
MSR state information
W
Reset All zeros

Critical save/restore register 0 (CSRRO)

CSRRO, is provided to save and restore machine state on critical interrupts. It is used by
critical interrupts like SRRO is used for standard interrupts: to hold the address of the
instruction to which control is passed at the end of the interrupt handler. When rfci executes,
instruction execution continues at the address in CSRRO.

Critical save/restore register 0 (CSRRO0)

SPR 58 Access: supervisor read/write
2 | | | | | e
R
Next instruction address
W
Reset All zeros

Critical save/restore register 1 (CSRR1)

CSRR1, is used to save and restore machine state on critical interrupts. When a critical
interrupt is taken, MSR contents are placed into CSRR1. When rfci executes, CSRR1
contents are restored into the MSR. CSRR1 bits that correspond to reserved MSR bits are
also reserved; reserved MSR bits may be altered.

Critical save/restore register 1 (CSRR1)

SPR 59 Access: supervisor read/write
32 63
R
MSR state information
w
Reset All zeros

Data exception address register (DEAR)

DEAR, is loaded with the effective address of a data access (caused by a load, store, or
cache management instruction) that results in an alignment, data TLB miss, or DSI
exception.

Data exception address register (DEAR)

SPR 61 Access: supervisor read/write
2 | | | | | e
R
Exception address
w
Reset All zeros

82/1176

Register model RMO0004

83/1176

Interrupt vector prefix register (IVPR)

IVPR is used with IVORs to determine the vector address. IVPR[32-47] provides the high-
order 16 bits of the address of the exception processing routines. The 16-bit vector offsets
are concatenated to the right of IVPR[32—47] to form the address of the exception
processing routine. IVPR[48—63] are reserved.

Interrupt vector prefix register (IVPR)

SPR 63 Access: supervisor read/write
32 ‘ ‘ ‘ 4748 ‘ ‘ ‘ 63
R
Interrupt vector prefix —
w
Reset All zeros

Interrupt vector offset registers (IVORs)

IVORs, hold the quad-word index from the base address provided by the IVPR for each
interrupt type.

Interrupt vector offset registers (IVOR)

SPR (see Table 26) Access: Supervisor read/write
32 ‘ ‘ ‘ 47/48 ‘ ‘ 5960 63
R
— Interrupt vector prefix —
w
Reset All zeros

SPR numbers corresponding to IVOR16-IVOR31 are reserved. IVOR32-IVOR47 and
IVOR60-IVOR63 are reserved. SPR numbers for IVOR32-IVORG63 are allocated for
implementation-dependent use. IVOR assignments are shown in Table 26.

Table 26. IVOR assignments

IVOR Number | SPR Interrupt type
IVORO 400 | Critical input
IVOR1 401 | Machine check
IVOR2 402 | Data storage
IVOR3 4083 | Instruction storage
IVOR4 404 | External input
IVOR5 405 | Alignment
IVOR6 406 | Program
IVOR7 407 | Floating-point unavailable
IVOR8 408 | System call
IVOR9 409 | Aucxiliary processor unavailable (optional)
IVOR10 410 | Decrementer

RMO0004

Register model

Table 26.

IVOR assignments (continued)

IVOR Number

SPR Interrupt type

IVOR11 411 | Fixed-interval timer interrupt

IVOR12 412 | Watchdog timer interrupt

IVOR13 413 | Data TLB error

IVOR14 414 | Instruction TLB error

IVOR15 415 | Debug

IVOR16—
IVOR31

Reserved for future architectural use

IVOR36-IVORG63 allocated for implementation dependent use

IVOR32 528 | SPE APU unavailable

IVOR33 529 | (Embedded FP APUs) embedded floating-point data exception

IVOR34 530 | (Embedded FP APUs) embedded floating-point round exception

IVOR35 531

(Performance monitor APUs) performance monitor

Exception syndrome register (ESR)

The ESR, provides a syndrome to differentiate between different kinds of exceptions that
can generate the same interrupt type. When such an interrupt is generated, bits
corresponding to the specific exception that generated the interrupt are set and all other
ESR bits are cleared. Other interrupt types do not affect ESR contents. The ESR does not
need to be cleared by software. Table 27 shows ESR bit definitions.

EIS storage defines ESR[DLK] and ESRJ[ILK] to indicate user cache line locking exceptions,
ESR[XTE] for precise external transaction errors, and ESR[EPID] external PID load and
store exceptions.

The ESR is defined in Book E. Bits architected by EIS storage are defined here.
Exception syndrome register (ESR)

SPR62 Access: Supervisor read/write
32 35/36 37 38 39/4041 42 43 |44 45 46 47‘ ‘ 55‘ 56 57 58 59 6162 63
R
Book E — |PIL|PPR|PTR|FP|ST|—|DLKO|DLK1|AP|PUO|BO —
w
R
EIS — DLK| ILK — SPE| — |VLEMI| — |MIF|XTE
w
Reset All zeros
Table 27 describes ESR bit definitions.
Table 27. Exception syndrome register (ESR) definition
Bits Name Syndrome Interrupt types
32-35 — Reserved, should be cleared. (Defined by Book E as allocated.) —
36 PIL | lllegal instruction exception Program
37 PPR | Privileged instruction exception Program
IYI 84/1176

Register model RMO0004

Table 27. Exception syndrome register (ESR) definition (continued)

Bits Name Syndrome Interrupt types
38 PTR | Trap exception Program
Floating-point operations Alignment, data
39 FP storage, data TLB,
program
Store operation Alignment, data
40 ST storage, data TLB
error
41 — Reserved, should be cleared. —
Defined by cache line locking APU. Instruction cache locking attempt. | Data storage
Set when a DSI occurs because a dcbtls, dcbtstls, or dcblc was
executed in user mode (MSR[PR] = 1) while MSR[UCLE] = 0.
42 DLK
0 Default
1 DSI occurred on an attempt to lock line in data cache when
MSR[UCLE] = 0.
Defined by cache line locking APU. Instruction cache locking attempt. | Data storage
Set when a DSI occurs because an icbtls or icblc was executed in
user mode (MSR[PR] = 1) while MSR[UCLE] = 0.
43 ILK
0 Default
1 DSl occurred on an attempt to lock line in instruction cache when
MSR[UCLE] = 0.
Auxiliary processor operation. Defined by Book E. Alignment, data
44 APU storage, data TLB,
program
45 PUO | Unimplemented operation exception. Defined by Book E. Program
46 BO Byte-ordering exception. Defined by Book E and the VLE extension. Data storage,
instruction storage
47 PIE |Imprecise exception. Defined by Book E. Program
48-55 — Reserved. —
Defined by SPE, embedded floating-point APU. SPE/embedded Data storage,
floating-point exception bit Data TLB error,
0 Default A|ignment’
56 SPE 1 Any exception caused by an SPE/embedded floating-point SPE unavailable,
instruction occurred. Embedded FP
unavailable,
Embedded FP data,
Embedded FP round
57 — Reserved, should be cleared

85/1176 Ky_’

RMO0004 Register model

Table 27. Exception syndrome register (ESR) definition (continued)

Bits Name Syndrome Interrupt types

Defined by VLE extension. VLEMI indicates that an interrupt was Data storage,
caused by a VLE instruction. VLEMI is set on an exception associated | Data TLB error,
with execution or attempted execution of a VLE instruction.

0 The instruction page associated with the instruction causing the

Instruction storage,

-) i Program,
exception does not have the VLE attribute set or the VLE extension
is not implemented. System Call,

58 VLEMI 1 The instruction page associated with the instruction causing the Alignment,)
exception has the VLE attribute set and the VLE extension is SPE unavailable,
implemented. Embedded FP

unavailable,
Embedded FP data,
Embedded FP round
59-61 — Reserved. Defined by Book E as allocated. —
Defined by the VLE extension. MIF indicates that an interrupt was Instruction TLB error,
caused by a misaligned instruction fetch (NIAg, != 0) and the VLE Instruction Storage

attribute is cleared for the page or the second half of a 32-bit VLE

instruction caused an instruction TLB error.

0 Default.

1 NIAg, != 0 and the instruction page associated with NIA does not
have the VLE attribute set or the second half of a 32-bit VLE
instruction caused an instruction TLB error.

62 MIF

External transaction error. An external transaction reported an error but | Instruction storage,

the error was handled precisely by the core. The contents of SRRO Data storage

contain the address of the instruction that initiated the transaction.

0 Default. No external transaction error was precisely detected.

1 An external transaction reported an error that was precisely
detected.

63 XTE

Note: ESR information is incomplete, so system software may need to identify the type of
instruction that caused the interrupt and examine the TLB entry and the ESR to fully identify
the exception or exceptions. For example, a data storage interrupt may be caused by both a
protection violation exception and a byte-ordering exception. System software would have to
look beyond ESR[BQO], such as the state of MSR[PR] in SRR1 and the TLB entry page
protection bits to determine if a protection violation also occurred.

EIS-defined interrupt registers

This section describes machine check save/store and syndrome registers.

Debug save/restore register 0 (DSRRO0)

On a debug interrupt, DSRRO, holds the address of the instruction where the interrupted
process should resume. The instruction is interrupt specific. See Chapter 4.7.16: Debug
interrupt on page 271 When rfdi executes, instruction execution continues at the address
in DSRRO. DSRRO and DSRR1 are not affected by rfi, rfci, or other return from interrupt
instructions

Ky_l 86/1176

574

574

574

Register model RMO0004

87/1176

Debug save/restore register 0 (DSRRO)

SPR 574 Access: Supervisor read/write
32 | | 63
R
Next instruction address
W
Reset Undefined

Debug Save/restore register 1 (DSRR1)

DSRR1, is provided to save and restore machine state on debug interrupts. When a debug
interrupt is taken, MSR contents are placed into DSRR1. When rfdi executes, the contents
of DSRR1 are restored into MSR. DSRR1 bits that correspond to reserved MSR bits are
also reserved. (See Section 2.6.1: Machine state register (MSR),” for more information.)
DSRRO0 and DSRR1 are not affected by rfi or rfci. Reserved MSR bits may be altered by rfi,
rfci, or rfdi.

Debug save/restore register 1 (DSRR1)

SPR 575 Access: Supervisor read/write
2 | | | | | | e
R
MSR state information
w
Reset Implementation-specific

Machine check save/restore register 0 (MCSRRO)

When a machine check interrupt is taken, MCSRRO, is set to the address of the instruction
where the interrupted process should resume. The instruction is interrupt-specific, although
typically MCSRRO holds address of the instruction that caused the interrupt. When rfmci is
executed, instruction execution continues at this address.

Machine check save/restore register 0 (MCSRRO)

SPR 570 Access: Supervisor read/write
2 | | | | | e
R
Next instruction address
W
Reset All zeros

Machine check save/restore register 1 (MCSRR1)

MCSRR1 is used to save and restore machine state on machine check interrupts. When a
machine check interrupt is taken, MSR contents are placed into MCSRR1. When rfmci
executes, MCSRR1 contents are restored to MSR. MCSRR1 bits that correspond to
reserved MSR bits are also reserved; reserved MSR bits may be altered.

574

574

RMO0004

Register model

Machine check save/restore register 1 (MCSRR1)

SPR 571 Access: Supervisor read/write
32 | | 63
R
MSR state information
W
Reset All zeros

Machine check address register (MCAR/MCARU)

When the core complex takes a machine check interrupt, it updates MCAR, to indicate the
address of the data associated with the machine check. Note that if a machine check
interrupt is caused by a signal, MCAR contents are not meaningful. Errors that cause MCAR
contents to be updated are implementation-dependent. If MCSR[MAV] = 1, the address is
an effective address; if MAV = 0, the address is a real address.

Machine check address register (MCAR/MCARU)

SPR MCAR: 573 Access: Supervisor read-only
MCARU: 569
MCARU
|
e | | L e | e
R Machine check address 0-31 Machine check address 32—63 ‘
w
Reset All zeros

For 32-bit implementations that support physical addresses greater than 32 bits, MCARU
provides an alias to the upper address bits that reside in MCAR[0-31].

Machine check syndrome register (MCSR)

The MCSR, is used to record the cause of the machine check interrupt. In general, machine
check syndrome bits correlating to specific hardware error conditions are implementation
dependent. Consult the users manual for a complete definition of machine check error
syndromes for a specific processor.

Machine check syndrome register 1 (MCSR)

SPR 572 Access: Read/wic
32 ’ ’ 43 44 | 45 46 47 ‘ ‘ ‘ ‘ 63
R
MCP — NMI{MAV [MEA —
w
Reset All zeros

Table 28 describes the MCSR fields.

88/1176

Register mod

el

RMO0004

Table 28. MCSR field descriptions

Bits | Name Description
Machine check input to core. Processor cores with a machine check input pin (signal)
respond to a signal input by producing an asynchronous machine check. The

32 | MCP - . ;) L .
existence of such a signal and how such a signal is generated is implementation
dependent and may be tied to a an external pin on the IC package.

33— __ | Implementation-dependent.

42

43 NMI Nonmaskable Interrupt. Set if a non-maskable interrupt (NMI) has been sent to the
virtual processor.
MCAR address valid. The address contained in MCAR was updated by the processor
and corresponds to the first detected error condition that contained an associated
address. Any subsequent machine check errors that have associated addresses are
not placed in MCAR unless MAV is 0 when the error is logged.

44 | MAV 1 The address in MCAR is not valid.
1 The address in MCAR is valid.
Note: Software should read MCAR before clearing MAV. MAV should be cleared
before setting MSR[ME].
MCAR effective address. Denotes the type of address in MCAR. MEA has meaning
only if MCSR[MAV] is set.

45 | MEA . . .
0 The address in MCAR is a physical address.
1 The address in MCAR is an effective address (untranslated).

46— __ | Implementation-dependent.

63

Note: The machine check interrupt handler should always write what is read back to the MCSR

after the error information has been logged. Writing contents that were read from the MCSR
back to the MCSR clears only those status bits that were previously read. Failure to clear all
MCSR bits causes an asynchronous machine check interrupt when MSR[IME] is set.

2.10 Software use sprs (SPRG0-SPRG7 and USPRGO)

Software-use SPRs (SPRG0-SPRG7 and USPRGO0), have no defined functionality. These
are shown below:

SPRGO0-SPRG2—can be accessed only in supervisor mode.

SPRG3—can be written only in supervisor mode. It is readable in supervisor mode, but
whether it can be read in user mode is implementation-dependent.

SPRG4-SPRG7—can be written only in supervisor mode; readable in supervisor or
user mode.

USPRGO—can be accessed in supervisor or user mode.

89/1176

RMO0004 Register model

Software-use sprs (SPRG0-SPRG7 and USPRGO)

SPR SPRGO 272 Read/write Supervisor
SPRG1 273 Read/write Supervisor
SPRG2 274 Read/write Supervisor

SPRG3 259 Read-only User (Implementation-dependent)/supervisor
275 Read/write Supervisor
SPRG4 260 Read-only User/supervisor
276 Read/write Supervisor
SPRG5 261 Read-only User/supervisor
277 Read/write Supervisor
SPRG6 262 Read-only User/supervisor
278 Read/write Supervisor
SPRG7 263 Read-only User/supervisor
279 Read/write Supervisor

USPRGO 256 Read/write User/supervisor

32 63
R
MSR state information
w
Reset All zeros
Software-use SPRs are read into a GPR by using mfspr and are written by using mtspr.
2.11 L1 cache registers

The EIS defines registers that provide control and configuration and status information for
the L1 cache implementation.

2111 L1 cache control and status register 0 (L1CSRO)

The L1CSRO, is defined by the EIS. It is used for general control and status of the L1 data
cache.

L1 cache control and status register 0 (L1CSRO0)
SPR 1010 Supervisor read/write

Cache way partitioning APU Bits

32 35 | 36 39 40 41 42 43 ‘ 46 47
R
W WID WDD AWID |AWDD\WAM — CPE
Reset All zeros
Cache Line Locking APU Bits
48 49 51| 52 53 54 55 56 57 60 61 62 63
R
CPI — CSLC|CUL |[CLO|CLFR|CLOA — CABT| CFl | CE
w
Reset All zeros

Table 29 describes the L1CSRO fields.

Ky_l 90/1176

Register model RMO0004

Table 29. L1CSRO field descriptions

Bits Name Description

Cache way partitioning APU. Way instruction disable. (bit 32 = way 0, bit 33 = way 1, ... bit
35 = way 3).

32-35 WID 0 The corresponding way is available for replacement by instruction miss line refills.
1 The corresponding way is not available for replacement by instruction miss line refills.
Cache way partitioning APU. Way data disable (bit 36 = way 0, bit 37 = way 1, ... bit 39 = way
3).

36-39 | WDD)

0 The corresponding way is available for replacement by data miss line refills.
1 The corresponding way is not available for replacement by data miss line refills

Cache way partitioning APU. Additional ways instruction disable.
40 AWID |0 Additional ways beyond 0—-3 are available for replacement by instruction miss line fills.
1 Additional ways beyond 0-3 are not available for replacement by instruction miss line fills.

Cache way partitioning APU. Additional ways data disable.
41 AWDD |0 Additional ways beyond 0-3 are available for replacement by data miss line fills.
1 Additional ways beyond 0-3 are not available for replacement by data miss line fills.

Cache way partitioning APU. Way access mode.
42 WAM |0 All ways are available for access.
1 Only ways partitioned for the specific type of access are used for a fetch or read operation.

43-46 — Reserved for implementation dependent use.
CPE [Data] Cache parity enable.
47 DCPE 0 Parity checking of the cache disabled
1 Parity checking of the cache enabled
[Data] Cache parity error injection enable.
0 Parity error injection disabled
48 CPI 1 Parity error injection enabled. Note that cache parity must also be enabled
DCPI (L1CSRO[CPE] = 1) when this bit is set. If DCPE is not set, results are undefined and erratic
behavior may occur. It is recommended that an attempt to set this bit when L1CSRO[CPE] =
0 cause the bit not to be set (that is, L1CSRO[CPI] = L1CSRO[CPE] & L1CSRO[CPI)).
49-51 — Reserved, should be cleared.
[Data]Cache snoop lock clear. Sticky bit set by hardware if a cache line lock was cleared by a
csLC snoop operation which caused an invalidation. Note that the lock for that line is cleared

52 whenever the line is invalidated. This bit can be cleared only by software.

DCSLC 0 The cache has not encountered a snoop that invalidated a locked line.
1 The cache has encountered a snoop that invalidated a locked line.
CUL [Data]Cache unable to lock. Sticky bit set by hardware. This bit can be cleared only by software.
53 DCUL 0 Indicates a lock set instruction was effective in the cache
1 Indicates a lock set instruction was not effective in the cache
cLO [Data]Cache lock overflow. Sticky bit set by hardware. This bit can be cleared only by software.

54 DCLO 0 Indicates a lock overflow condition was not encountered in the cache
1 Indicates a lock overflow condition was encountered in the cache

91/1176 Ky_’

011

RMO0004

Register model

Table 29. L1CSRO field descriptions (continued)
Bits Name Description
[Data]Cache lock bits flash clear. Clearing occurs regardless of the enable (L1CSRO[CE]) value.
CLEC 0 Default.
55 DCLFC 1 Hardware initiates a cache lock bits flash clear operation. Cleared when the operation is
complete.
During a flash clear operation, writing a 1 causes undefined results; writing a 0 has no effect
[Data]Cache lock overflow allocate. Set by software to allow a lock request to replace a locked
CLOA line when a lock overflow situation exists. Implementation of this bit is optional.
56 DCLOA 0 Indicates a lock overflow condition does not replace an existing locked line with the
requested line
1 Indicates a lock overflow condition replaces an existing locked line with the requested line
57-60 — Reserved, should be cleared.
CABT [Data]Cache operation aborted.
61 DCABT 0 No cache operation completed improperly
1 Cache operation did not complete properly
[Data]Cache flash invalidate. Invalidation occurs regardless of the enable (L1CSRO[CE]) value.
CFI 0 No cache invalidate.
62 1 Cache flash invalidate operation. A cache invalidation operation is initiated by hardware.
DCFI L
Once complete, this bit is cleared.
During an invalidation operation, writing a 1 causes undefined results; writing a 0 has no effect.
CE [Data]Cache enable.
63 DCE 0 The cache is not enabled. (not accessed or updated)
1 Enables cache operation.
2.11.2 L1 cache control and status register 1 (L1CSR1)
L1CSR1, defined as part of the EIS, is used for general control and status of the L1
instruction cache.
L1 cache control and status register 1 (L1CSR1)
SPR 1011 Access: supervisor read/write
Cache line locking APU fields
32 ‘ ‘ ‘ 46 47 | 48 49 51 52 53 54 55 56 57 ‘60 61 62 63
R
W — ICPE|ICPI| — |ICSLC|ICUL|ICLO|ICLFR]| ICLOA — |ICABT|ICFI|ICE
Reset All zeros

Table 30 describes the L1CSR1 fields.

92/1176

Register model RMO0004

Table 30. L1CSR1 field descriptions

Bits | Name Description
3242 — Reserved, should be cleared.
43-46 — | Reserved for implementation dependent use.

Instruction cache parity enable. See Chapter 4.7.2: Machine check interrupt”
47 ICPE |0 Parity checking of the cache disabled
1 Parity checking of the cache enabled

Instruction cache parity error injection enable.

0 Parity error injection disabled

48 icpl |1 Parity errorinjection enabled. Note that cache parity must also be enabled (L1CSR1[ICPE] = 1)
when ICPl is set. If LICSRO[ICPE] is not set the results are undefined and erratic behavior may
occur. It is recommended that an attempt to set this bit when L1CSRO[ICPE] = 0 causes the bit
not to be set (that is, LICSRO[ICPI] = L1CSRO[ICPE] & L1CSRO[ICPI]).

49-51 — Reserved, should be cleared.

Cache line locking APU. Instruction cache snoop lock clear. Sticky bit set by hardware if a cache
line lock was cleared by a snoop operation that caused an invalidation. Note that the lock for that
52 IcSLC |line is cleared whenever the line is invalidated. This bit can be cleared only by software.

0 The cache has not encountered a snoop that invalidated a locked line.
1 The cache has encountered a snoop that invalidated a locked line.

Cache line locking APU. Instruction cache unable to lock. Sticky bit set by hardware. This bit can
ICUL |be cleared only by software.

53 0 Indicates a lock set instruction was effective in the cache
1 Indicates a lock set instruction was not effective in the cache
Cache line locking APU. Instruction cache lock overflow. Sticky bit set by hardware. This bit can be

54 ICLO |cleared only by software.

DCLO |0 Indicates a lock overflow condition was not encountered in the cache

1 Indicates a lock overflow condition was encountered in the cache
Cache line locking APU. Instruction cache lock bits flash clear. Clearing occurs regardless of the
enable (L1CSR1[ICE]) value.
0 Default.

55 ICLFC . . . s .
1 Hardware initiates a cache lock bits flash clear operation. This bit is cleared when the operation

is complete.

During a flash clear operation, writing a 1 causes undefined results; writing a 0 has no effect.
Cache line locking APU. Instruction cache lock overflow no allocate. Set by software to prevent a
lock request from replacing a locked line when a lock overflow situation exists. Implementation of
this bit is optional.

56 | ICLOA . . - . . .
0 Indicates a lock overflow condition replaces an existing locked line with the requested line
1 Indicates a lock overflow condition does not replace an existing locked line with the requested

line
57-60 — Reserved, should be cleared.

Instruction cache operation aborted.
61 ICABT |0 No cache operation completed improperly
1 Cache operation did not complete properly

93/1176 Ky_’

RMO0004

Register model

Table 30. L1CSR1 field descriptions (continued)
Bits | Name Description
Instruction cache flash invalidate. Invalidation occurs regardless of the enable (L1CSR1[ICE])
value.
62 ICF| 0 No cache invalidate.
1 Cache flash invalidate operation. A cache invalidation operation is initiated by hardware. Once
complete, this bit is cleared.
During an invalidation operation, writing a 1 causes undefined results; writing a 0 has no effect.
Instruction cache enable.
63 ICE |0 The cache is not enabled. (not accessed or updated)
1 Enables cache operation.
2113 L1 cache configuration register 0 (L1CFGO0)

The L1CFGO register, shown below, is defined by the EIS to provide configuration

information for the primary (L1) data cache of the processor. If a processor implements a
unified cache, L1CFGO applies to the unified cache and L1CFG1 is not implemented.

L1 cache configuration register 0 (L1CFGO)

SPR 515 Access: user read-only
32 33 34 35 36 3738 39 ‘40 41 42 43 | 44 45 ‘ ‘52 ‘ ‘ 63
R |CARCHCWPAICFAHAICFISWA| — |CBSIZE|CREPL|CLA|CPA| CNwAY | CSIZE
W
Reset Implementation-dependent value
Table 31. L1CFGO field descriptions
Bits Name Description
Cache architecture
32-33 | CARCH |00 Harvard
01 Unified
Cache way partitioning APU available.
34 CWPA |0 Unavailable
1 Available
Cache flush all by hardware available
35 CFAHA |0 Unavailable
1 Available
Direct cache flush APU available. (Cache flush by set and way available.)
36 CFISWA | 0 Unavailable
1 Available
37-38 — Reserved, should be cleared.
Ays 94/1176

Register model

RMO0004

Table 31.

L1CFGO field descriptions (continued)

Bits Name

Description

39-40 | CBSIZE

Cache line size
0032 bytes
0164 bytes
10128 bytes
11Reserved

41-42 | CREPL

Cache replacement policy
00 True LRU

01 Pseudo LRU

1x Reserved

43 CLA

Cache line locking APU available
0 Unavailable
1 Available

44 CPA

Cache parity available
0 Unavailable
1 Available

45-52 | CNWAY

Cache number of ways minus 1.

53-63 | CSIZE

Cache size in Kbytes.

2114

L1 cache configuration register 1 (L1CFG1)

The L1CFG1 register, provides configuration information for the L1 instruction cache. If a
processor implements a unified cache, L1CFGO applies to the unified cache and L1CFG1 is

not implemented.

L1 cache configuration register 1 (L1CFG1)

SPR 516 Access: user read-only
32 ‘ 38 39 ‘ 40 41 42 43 | 44 45 ‘ ‘52 53 ‘ ‘ 63
R — ‘ICBSIZE|ICREPL|ICLA ICPA‘ ICNWAY ‘ ICSIZE
W
Reset Implementation-dependent value
Table 32. L1CFG1 field descriptions
Bits Name Description
32-38 — Reserved, should be cleared.
Instruction cache block size
0032 bytes
39-40 ICBSIZ 0164 bytes
10128 bytes
11Reserved
95/1176 17

RMO0004

Register model

2.11.5

Table 32. L1CFG1 field descriptions (continued)

Bits Name Description
Cache replacement policy
00True LRU

41-42 ICREPL 01Pseudo LRU
1xReserved
Cache line locking APU available
43 ICLA OUnavailable
1Available
Cache parity available
44 ICPA OUnavailable
1Available
45-52 ICNWAY Cache number of ways minus 1.
53-63 ICSIZE Cache size in Kbytes.

L1 flush and invalidate control register 0 (L1FINVO)

The direct cache flush APU defines the L1 flush and invalidate control register 0 (L1FINVO),
shown in figure below. The direct cache flush APU allows the programmer to flush and/or
invalidate the cache by specifying the cache set and cache way. The direct cache flush APU
available bit, LICFGO[CFISWA], is set for implementations that contain the direct cache
flush APU.

To address a specific physical block of the cache, the L1FINVO is written with the cache set
(L1FINVO[CSET]) and cache way (L1FINVO[CWAY]) of the line that is to be flushed. No tag
match in the cache is required.

Only the L1 data cache (or unified cache) is manipulated by the direct cache flush APU. The
L1 instruction cache or any other caches in the cache hierarchy are not explicitly targeted by
this APU. See Chapter 8.2: Direct cache flush APU on page 850

L1 flush and invalidate control register 0 (L1FINVO0)

SPR 1016 Access: supervisor read/write
32 39/4041 42 ‘ ‘ ‘ ‘ 58 59‘ 61 62 63
R
CWAY — CSET — |CCMD
W
Reset All zeros

Table 33. L1FINVO fields—L1 direct cache flush

Bits | Name Descriptions

0-31 — Reserved, should be cleared.

32-39 | CWAY | Cache way. Specifies the cache way to be selected.

40-41 — Reserved, should be cleared.

42-58 | CSET | Cache set. Specifies the cache set to be selected.

96/1176

Register model RMO0004

2.12

2.12.1

97/1176

Table 33. L1FINVO fields—L1 direct cache flush

Bits | Name Descriptions

59-61 — Reserved, should be cleared.

Cache flush command.

00Implementation dependent. If implemented, the action performed on the line
should be synonymous with a dcbi instruction that references the same line.

01The line specified by CWAY and CSET is flushed if it is modified and valid. It is
implementation dependent whether it remains in the cache, or is invalidated. For

62-63 | CCMD an implementation, the action performed on the line should be synonymous with
a dcbst instruction that references the same line.

01The line specified by CWAY and CSET is flushed if it is modified and valid. It is
then invalidated. For an implementation, the action performed on the line should
be synonymous with a debf instruction that references that line.

11 Reserved for future use.

MMU registers

This section describes the following MMU registers and their fields:
® Process ID registers (PIDO-PID2)

MMU control and status register 0 (MMUCSRO)

MMU configuration register (MMUCFG)

TLB configuration registers (TLBnCFG)

°
°
°
® MMU assist registers (MASO-MAS7?)

Process ID registers (PID0-PIDn)

The Book E architecture specifies that a process ID (PID) value be associated with each
effective address (instruction or data) generated by the processor.

System software uses PIDs to identify TLB entries that the processor uses to translate
addresses for loads, stores, and instruction fetches. PID contents are compared to the TID
field in TLB entries as part of selecting appropriate TLB entries for address translation. PID
values are used to construct virtual addresses for accessing memory. Note that individual
processors may not implement all 14 bits of the process ID field.

Book E defines one PID register that holds the PID value for the current process. ST devices
may implement from 1 to 15 PID registers. The number of PIDs implemented is indicated by
the value of MMUCFG[NPIDS]. Consult the user documentation for the implementation to
determine if other PID registers are implemented.

The suggested PID usage is for PIDO to denote private mappings for a process and for other
PIDs to handle mappings that may be common to multiple processes. This method allows
for processes sharing address space to also share TLB entries if the shared space is
mapped at the same virtual address in each process.

RMO0004 Register model
Process ID registers (PID0-PID2)
SPR 48 (PIDO: PID in Book E); Access: Supervisor-only
SPR 633 PID1
SPR 634 PID2 (PID3-PID14 are currently not assigned to SPR numbers)
2 | | e | e
R
— Process ID
w
Reset All zeros
2.12.2 MMU control and status register 0 (MMUCSRO)
The MMUCSRO register is used for general control of the L1 and L2 MMUs.
MMU control and status register 0 (MIMUCSRO0)
SPR 1012 Access: supervisor read/write
32 ‘ ‘ 60 61 62 63
R
— TLBO_FI|TLB1_FI|—
w
Reset All zeros
Table 34. MMUCSRO field descriptions
Bits Name Description
32-60 — Reserved, should be cleared.
TLBO flash invalidate (write 1 to invalidate)
0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored.
61 L2TLBO_FI |1 TLBO invalidation operation. Hardware initiates a TLBO invalidation operation. When this
TLBO_FI operation is complete, this bit is cleared. Writing a 1 during an invalidation operation causes
an undefined operation. If the TLB array supports IPROT, entries that have IPROT set are
not invalidated.
TLB1 flash invalidate (write 1 to invalidate)
LoTLB1 FI 0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored.
62 TLB1 I_:I 1 TLB1 invalidation operation. Hardware initiates a TLB1 invalidation operation. When this
- operation is complete, this bit is cleared. Writing a 1 during an invalidation operation causes
an undefined operation. This invalidation typically takes 1 cycle.
63 — Reserved, should be cleared.

98/1176

Register model

RMO0004

2.12.3

99/1176

MMU configuration register (MMUCFG)
MMUCEFG, shown below, gives configuration information about the implementation’s MMU.
MMU configuration register 1 (MMUCFG)

SPR 1015 Access: supervisor read-only
32 ‘48 49 ‘52 53 ‘ 575859 60 61 62 63
R — | NPIDS ‘ PIDSIZE ‘ — |NTLBS|MAVN
w
Reset Implementation specific
Table 35. MMUCFG field descriptions
Bits | Name Description
32-48 — Reserved, should be cleared.
49-52 | NPIDS Num_ber of PID registers, a 4-bit field that indicates the number of PID registers
provided by the processor.
PIDSIZ PID register size. The PIDSIZE value is one fewer than the number of bits in each
53-57 E PID register implemented. The processor implements only the least significant
PIDSIZE+1 bits in the PID registers.
58-59 — Reserved, should be cleared.
Number of TLBs. The value of NTLBS is one less than the number of software-
accessible TLB structures that are implemented by the processor. NTLBS is set to
one less than the number of TLB structures so that its value matches the maximum
value of MASO[TLBSEL].)
60-61 | NTLBS |50 1 TLB
01 2TLBs
10 3TLBs
11 4 TLBs
MMU architecture version number. Indicates the version number of the architecture
of the MMU implemented by the processor.
62-63| MAVN 00 Version 1.0
a 01 Reserved
10 Reserved
11 Reserved

RMO0004

Register model

2124

TLB configuration registers (TLBnNCFG)

TLBnCFG registers, shown below, provide information about each specific TLB that is
visible to the programming model. TLBOCFG corresponds to TLBO, TLB1CFG corresponds
to TLB1, etc.

TLB configuration register n (TLBOCFG)

SPR 688 (TLBOCFG)
689 (TLB1CFG)

32

39|40

Access: Supervisor read-only

43|44 47| 48 49 505152 ‘ ‘ 63

ASSOC

MINSIZE

MAXSIZE

IPROT|AVAIL‘ — NENTRY

Reset

Table 36.

Implementation-specific value

TLBnNCFG field descriptions

Bits

Name

Description

32-39

ASSOC

Associativity of TLBn. Number of ways of associativity of TLB array.
0000_0000 Fully associative (A value equal to NENTRY also indicates fully
associative.)

0000_0001 1-way set associative

0000_0002 2-way set associative

40-43

MINSIZE

Minimum page size of TLBn
0001 Indicates smallest page size is 4 Kbytes
0002 Indicates smallest page size is 8 Kbytes

44-47

MAXSIZE

Maximum page size of TLBn
0001 Indicates maximum page size is 4 Kbytes
0002 Indicates maximum page size is 8 Kbytes

48

IPROT

Invalidate protect capability of TLBn array.
0 Indicates invalidate protection capability not supported.
1 Indicates invalidate protection capability supported.

49

AVAIL

Page size availability of TLBn array.

0 Fixed selectable page size from MINSIZE to MAXSIZE (all TLB entries are
the same size).

1 Variable page size from MINSIZE to MAXSIZE (each TLB entry can be sized
separately).

50-51

Reserved, should be cleared.

52-63

NENTRY

Number of entries in TLBn

100/1176

Register model RMO0004

2.12.5

101/1176

MMU assist registers (MAS0-MAS?7)

MMU assist registers are defined by the EIS and used by the MMU to manage pages and
TLBs. Note that some fields in these registers are redefined by implementations.

MAS register 0 (MASO)

MASOQ, is used for MMU read/write and replacement control.

MAS register 0 (MASO0)

SPR 624 Access: Supervisor read/write
3233 34 3536 ‘ ‘ 47|48 51|52 ‘ ‘ 616263
R TLBSE
— ESEL — NV
w L
Reset All zeros

Table 37. MASO field descriptions

Bits Name Comments or function when set

32-33 — Reserved, should be cleared.

Selects TLB for access.
00 TLBO
34-35 | TLBSEL |01 TLB1
10 TLB2
11 TLB3

Entry select. Identifies an entry in the selected array to be used for tibwe and
tibre. Valid values for ESEL are from 0 to TLBNnCFG[ASSOC] - 1. That is, ESEL
36-47 | ESEL |selects the way from a set of entries determined by MAS3[EPN]. For fully
associative TLB arrays, ESEL ranges from 0 to TLBNnCFG[NENTRY] - 1. ESEL is
also updated on TLB error exceptions (misses) and tlbsx hit and miss cases.

48-51 — Reserved, should be cleared.

Next victim. For those TLBs that support the NV field, provides a hint to software
to identify the next victim to be targeted for a TLB miss replacement operation. If
the TLB selected by MASO[TLBSEL] does not support NV, this field is undefined.
The computation of NV is implementation-dependent. NV is updated on TLB error
exceptions (misses), tlbsx hit and miss cases, as shown in Table 194, and on
execution of tlbre if the accessed TLB array supports NV. If NV is updated by a
supported TLB array, NV always presents a value that can be used in
MASO[ESEL].

52-63 NV

RMO0004 Register model

MAS register 1 (MAS1)
Below is the format of MAS1.
MAS register 1 (MAS1) format

SPR 625 Access: Supervisor read/write
32 33 34 ‘ ‘ ’ 47/48 50 51|52 55|56 63
R
V [IPROT TID — |TS| TSIZE —
w
Reset All zeros

Table 38. MASH1 field descriptions—descriptor context and configuration control

Bits Name Descriptions

TLB valid bit.
32 Vv 0 This TLB entry is invalid.
1 This TLB entry is valid.

Invalidate protect. Set to protect this TLB entry from invalidate operations due the
execution of tibivax, broadcast invalidations from another processor, or flash
invalidations. Note that not all TLB arrays are necessarily protected from

33 IPROT | invalidation with IPROT. Arrays that support invalidate protection are denoted as
such in the TLB configuration registers.

0 Entry is not protected from invalidation.
1 Entry is protected from invalidation.

34-35 — Reserved, should be cleared.

Translation identity. During translation, TID is compared with the current process
36-47 TID |IDs (PIDs) to select a TLB entry. A TID value of 0 defines an entry as global and
matches with all process IDs.

48-50 — Reserved, should be cleared.

Translation space. During translation, TS is compared with AS (MSR[IS] or

51 s MSRIDS], depending on the type of access) to select a TLB entry.

Translation size. Defines the page size of the TLB entry. For TLB arrays that
contain fixed-size TLB entries, TSIZE is ignored. For variable page-size TLB
arrays, the page size is 4T5'2E Kbytes. TSIZE must be between
TLBnCFGI[MINSIZE] and TLBnCFG[MINSIZE]. Note that the EIS standard
supports all 16 page sizes defined in Book E.

52-55 | TSIZE |0001 4Kbyte 0111 16 Mbyte
0010 16Kbyte 1000 64 Mbyte
0011 64 Kbyte 1001 256 Mbyte
0100 256 Kbyte 1010 1 Gbyte
0101 1Mbyte 1011 4 Gbyte
0110 4Mbyte

5663 — Reserved, should be cleared.

‘y_l 102/1176

Register model RMO0004

MAS register 2 (MAS2)

MAS2, contains fields for specifying the effective page address and the storage attributes for

a TLB entry.
MAS register 2 (MAS2)
SPR 626 Access: supervisor read/write
32 ‘ ‘ ‘ ’ 5152 55|56 57 58 596061 62 63
VF:I EPN — A)((:(')\A V);EW I IM|G|E
Reset Undefined

Table 39. MAS2 field descriptions—EPN and page attributes

Bits | Name

Description

32-51| EPN

Effective page number. Depending on page size, only the bits associated with a page boundary are
valid. Bits that represent offsets within a page are ignored and should be zero. EPN[0-31] are
accessible only in 64-bit implementations as the upper 32 bits of the logical address of the page.

52-55| —

Reserved, should be cleared.

ACM

56-57
X0

Alternate coherency mode. Allows an implementation to employ multiple coherency methods. If the
M attribute (memory coherence required) is not set for a page (M=0), the page has no coherency
associated with it and ACM is ignored. If the M attribute is set for a page (M=1), ACM determines the
coherency domain (or protocol) used. ACM values are implementation dependent.

Note: Some previous implementations may have a storage bit in the bit 57 position labeled as X0.

VLE

58
X1

VLE mode. Identifies pages which contain instructions from the VLE instruction set. The VLE
attribute is only implemented if the processor supports the VLE extension. Setting the VLE attribute
to 1 and setting the E attribute to 1 is considered a programming error and an attempt to fetch
instructions from a page so marked produces an instruction storage interrupt byte ordering exception
and sets ESR[BO].
0 Instructions fetched from the page are decoded and executed as PowerPC (and associated EIS
APUs) instructions.
1 Instructions fetched from the page are decoded and executed as VLE (and associated EIS APUs)
instructions.Implementation-dependent page attribute.
Note: Some implementations have a bit in this position labeled as X1. Software should not use the
presence of this bit (the ability to set to 1 and read a 1) to determine if the implementation
supports the VLE extension.

59 w

Write-through
0 This page is considered write-back with respect to the caches in the system.
1 All stores performed to this page are written through the caches to main memory.

60 |

Caching-inhibited

0 Accesses to this page are considered cacheable.

1 The page is considered caching-inhibited. All loads and stores to the page bypass the caches and
are performed directly to main memory. A read or write to a caching-inhibited page affects only
the memory element specified by the operation.

61 M

Memory coherence required

0 Memory coherence is not required.

1 Memory coherence is required. This allows loads and stores to this page to be coherent with loads
and stores from other processors (and devices) in the system, assuming all such devices are
participating in the coherence protocol.

103/1176

574

RMO0004

Register model

Table 39. MAS2 field descriptions—EPN and page attributes (continued)

Bits

Name Description

62

Guarded
0 Accesses to this page are not guarded and can be performed before it is known if they are
G required by the sequential execution model.

required).

1 Loads and stores to this page are performed without speculation (that is, they are known to be

63

endian, which differs from the modified little-endian byte-ordering model optionally available in
E |previous devices that implement the PowerPC architecture.

0 The page is accessed in big-endian byte order.

1 The page is accessed in true little-endian byte order.

Endianness. Determines endianness for the corresponding page. Little-endian operation is true little

MAS register 3 (MAS3)

MASS contains fields for specifying the real page address and the permission attributes for

a TLB entry.
MAS register 3 (MAS3)
SPR 627 Access: Supervisor read/write
32 ‘ ‘ ‘ ‘ 515253 54 57 58 59|60 61 62 63
R
W RPN(32-51) — | U0-U3 |UX|SX|UWSW|URSR
Reset All zeros

Table 40. MASS field descriptions—RPN and access control

Bits Name Description

Real page number bits 32-51. Depending on page size, only the bits
associated with a page boundary are valid. Bits that represent offsets within a
page are ignored and should be zero. If the physical address space exceeds
32 bits, RPN[0—-31] are accessed through MAS?7.

32-51 | RPN[32-51]

52-53 — Reserved, should be cleared.

User bits. Associated with a TLB entry and used by system software. For
54-57 U0-U3 | example, these bits may be used to hold information useful to a page
scanning algorithm or be used to mark more abstract page attributes.

UX,SX Permission bits (UX, SX, UW, SW, UR, SR). User and supervisor read, write,
58-63 UW,SW |and execute permission bits. Effects of the permission bits are defined by

UR,SR Book E.

104/1176

Register model

RMO0004

MAS register 4 (MAS4)

MAS4,contains fields for specifying default information to be pre-loaded on certain MMU
related exceptions.

MAS register 4 (MAS4)

SPR 628 Access: Supervisor read/write
3233 34 35 |36 4344 47 48 5152 55/56 57 58 59|60 61 62 63
R
— [TLBSELD — TIDSELD — TSIZED ACMDIVLED WD|ID|MD|GD|ED
W XO0D | X1D
Reset All zeros
The MAS4 fields are described in Table 41.
Table 41. MASA4 field descriptions—hardware replacement assist configuration
Bits Name Description
32-33 — Reserved, should be cleared.
34-35 | TLBSELD TLBSEL default value: Specifies the default value loaded in MASO[TLBSEL]
on a TLB miss exception.
36-43 — Reserved, should be cleared.
TID default selection value. Specifies which of the current PID registers
should be used to load MAS1[TID] on a TLB miss exception.
PID registers are addressed as follows:
0000 = PIDO (PID)
44-47 | TiDSELD | 0001 = PID1
1110 = PID14
A value that references a non-implemented PID register causes a value of 0
to be placed in MAS1[TID]. See the implementations documentation for a list
of supported PIDs.
48-51 — Reserved, should be cleared.
50_55 TSIZED Default TSIZE valu_e. Specifies the default value loaded into MAS1[TSIZE] on
a TLB miss exception.
56-57 ACMD Default. ACM valge Specifies the default value loaded into MAS2[ACM] on a
TLB miss exception.
Default VLE value. Specifies the default value loaded into MAS2[VLE] on a
58 VLED .)
TLB miss exception.
59 WD Default W value. Specifies the default value loaded into MAS2[W] on a TLB
miss exception.
60 D Default | value. Specifies the default value loaded into MAS2[I] on a TLB miss
exception.
61 MD Default M value. Specifies the default value loaded into MAS2[M] on a TLB
miss exception.
62 GD Default G value. Specifies the default value loaded into MAS2[G] on a TLB
miss exception.
63 ED Default E value. Specifies the default value loaded into MAS2[E] on a TLB
miss exception.
105/1176 17

RMO0004 Register model

MAS register 5 (MAS5)

The optional MASS5 register, contains fields for specifying PID values to be used when
searching TLB entries with the tlbsx instruction.

MAS register 5 (MAS5)

SPR 629 Access: supervisor read/write
323334 ‘ 47|48 49 50 ‘ 63
R
— SPID2 — SPID3
w
Reset All zeros

Table 42. MASS field descriptions—extended search pIDs

Bits Name Description

32-33 — Reserved, should be cleared.

Search PID2. Specifies the PID2 value used when searching the TLB during
34-47 | SPID2 |execution of tlbsx. This field is optional and if implemented is valid for only the
number of bits implemented for PID registers.

48-49 — Reserved, should be cleared.

Search PID3. Specifies the PID3 value used when searching the TLB during
50-63 | SPID3 |execution of tibsx. This field is optional and if implemented is valid for only the
number of bits implemented for PID registers.

MAS register 6 (MAS6)

MASBG, contains fields for specifying PID and AS values to be used when searching TLB
entries with the tlbsx instruction.

MAS register 6 (MAS6)

SPR 630 Access: supervisor read/write
323334 ‘ 47|48 49 ‘ ‘ ‘ 62 63
R
— SPIDO — SPID1 SAS
w
Reset All zeros

Table 43. MAS 6 field descriptions—search pids and search AS

Bits Name Description

32-33 — Reserved, should be cleared.

Search PIDO. Specifies the value of PIDO used when searching the TLB
34-47 SPIDO | during execution of tlbsx. SPIDO is valid for only the number of bits
implemented for PID registers.

48 — Reserved, should be cleared.

Ky_l 106/1176

Register model RMO0004

2.13

107/1176

Table 43. MAS 6 field descriptions—search pids and search AS (continued)

Bits Name Description

Search PID1. Specifies the value of PID1 used when searching the TLB
49-62 SPID1 | during execution of tlbsx.SPID1 is optional, and if implemented is valid for
only the number of bits implemented for PID registers.

Address space value for searches. Specifies the AS value used when

63 SAS executing tlbsx to search the TLB.

MAS register 7 (MAS7)

MAS?7, contains the high-order address bits of the RPN only for implementations that
support more than 32 bits of physical address.

MAS register 7 (MAS7)

SPR 944 Access: supervisor read/write
32 ‘ ‘ ‘ ‘ ‘ ‘ 59‘60 63
R
RPN (0-31)
w
Reset All zeros

Table 44. MAS 7 field descriptions—high order RPN

Bits Name Description

32-63 | RPN[0-31] |Real page number (bits 0-31). RPN[32—63] are accessed through MAS3.

Debug registers

This section describes debug-related registers that are accessible to software running on
the processor. These registers are intended for use by special debug tools and debug
software, and not by general application or operating system code.

RMO0004

Register model

2.13.1

Debug control registers (DBCR0-DBCR3)

The debug control registers are used to enable debug events, reset the processor, control
timer operation during debug events, and set the debug mode of the processor.

Debug control register 0 (DBCRO0)
Below is the DBCRO.
Debug control register 0 (DBCRO)

SPR 308 Access: Supervisor-only
32 33 34 3|3 37 38 39| 40 M 42 43 | 44 45 46 47
R |EDM
W IDM| RST |[ICMP| BRT |IRPT |TRAP|IAC1 | IAC2 | IAC3 | IAC4| DAC1 DAC2
Reset All zeros
Debug APU
48 49 ‘ 56 57 58 59 | 60 62 63
RET — CIRPT|CRET|VLES — FT
Reset All zeros
Table 45. DBCRO field descriptions
Bits Name Description
External debug mode. Indicates whether the processor is in external debug
mode.
0 The processor is not in external debug mode.
32 EDM |1 The processor is in external debug mode. In some implementations, if EDM =
1, some debug registers are locked and cannot be accessed. Refer to the
implementation documentation for any additional implementation-specific
behavior.
Internal debug mode.
0 Debug interrupts are disabled. No debug interrupts are taken and debug
events are not logged.
1 If MSRI[DE] = 1, the occurrence of a debug event or the recording of an earlier
33 IDM debug event in the DBSR when MSR[DE] = 0 or DBCRO[IDM] = 0 causes a
debug interrupt.
Programming note: Software must clear debug event status in the DBSR in the
debug interrupt handler when a debug interrupt is taken before re-enabling
interrupts through MSR[DE]. Otherwise, redundant debug interrupts are taken for
the same debug event.
Reset. Book E defines RST such that 00 is always no action and all other settings
34-35 RST are implementation
a 0x Default (No action)
1x A hard reset is performed on the processor.

108/1176

Register model

RMO0004

109/1176

Table 45.

DBCRO field descriptions (continued)

Bits

Name

Description

36

ICMP

Instruction completion debug event enable

0 ICMP debug events are disabled.

1 ICMP debug events are enabled.

Note: Instruction completion does not cause an ICMP debug event if MSR[DE]=0.

37

BRT

Branch taken debug event enable

0 BRT debug events are disabled.

1 BRT debug events are enabled.

Note: Taken branches do not cause a BRT debug event if MSR[DE]=0.

38

IRPT

Interrupt taken debug event enable.
0 IRPT debug events are disabled.
1 IRPT debug events are enabled

39

TRAP

Trap debug event enable
0 TRAP debug events cannot occur.
1 TRAP debug events can occur.

40

IAC1

Instruction address compare 1 debug event enable
0 IAC1 debug events cannot occur.
1 IAC1 debug events can occur.

41

IAC2

Instruction address compare 2 debug event enable.
0 IAC2 debug events cannot occur.
1 1AC2 debug events can occur.

42

IAC3

Defined by Book E as instruction address compare 3 debug event enable
0 IAC3 debug events cannot occur.
1 IAC3 debug events can occur.

43

IAC4

Defined by Book E as instruction address compare 4 debug event enable
0 IAC4 debug events cannot occur.
1 IAC4 debug events can occur.

44-45

DAC1

Data address compare 1 debug event enable

00 DAC1 debug events cannot occur.

01 DAC1 debug events can occur only if a store-type data storage access.
10 DAC1 debug events can occur only if a load-type data storage access.
11 DAC1 debug events can occur on any data storage access.

46-47

DAC2

Data address compare 2 debug event enable

00 DAC2 debug events cannot occur.

01 DAC2 debug events can occur only if a store-type data storage access.
10 DAC2 debug events can occur only if a load-type data storage access.
11 DAC2 debug events can occur on any data storage access.

48

RET

Return debug event enable
0 RET debug events cannot occur.
1 RET debug events can occur.

Note: An rfci does not cause an RET debug event if MSR[DE] = 0 at the time that
rfci executes.

49-56

Reserved, should be cleared.

574

RMO0004

Register model

Table 45.

DBCRO field descriptions (continued)

Bits

Name

Description

57

CIRPT

Debug APU, Critical interrupt taken debug event. A critical interrupt taken debug
event occurs when DBCRO[CIRPT] = 1 and a critical interrupt (any interrupt that
uses the critical class, that is, uses CSRR0 and CSRR1) occurs.

0 Critical interrupt taken debug events are disabled.
1 Critical interrupt taken debug events are enabled.

58

CRET

Debug APU. Critical interrupt return debug event. A critical interrupt return debug
event occurs when DBCRO[CRET] = 1 and a return from critical interrupt (an rfci
instruction is executed) occurs.

0 Critical interrupt return debug events are disabled.
1 Critical interrupt return debug events are enabled.

59

VLES

VLE status. (VLE APU). Undefined for IRPT, CIRPT, DEVT[1,2], DCNT[1,2], and
UDE events.

0 CRET debug events are disabled.

1 AnICMP, BRT, TRAP, RET, CRET, IAC, or DAC debug event occurred on a
VLE instruction.

60-62

Reserved

63

FT

Freeze timers on debug event
0 Enable clocking of timers.
1 Disable clocking of timers if any DBSR bit is set (except MRR).

Debug control register 1 (DBCR1)
DBCR1 is shown below.
Debug control register 1 (DBCR1)

SPR 309 Access: supervisor read/write
32 33 34 35/ 36 37 38 39| 40 4142 47/ 48 49 50 51|52 53 54 55 56 57 58 63
R
W IAC1US|IAC1ER|IAC2US|IAC2ER|IAC12M — IAC3US|IAC3ER|IAC4US|IAC4ER|IAC34M —
Reset All zeros

Table 46 provides bit definitions for the DBCR1.

Table 46. DBCRI1 field descriptions
Bits Name Description
Instruction address compare 1 user/supervisor mode
00 IAC1 debug events can occur.
32-33 | IAC1US |01 Reserved
10 IAC1 debug events can occur only if MSR[PR]=0.
11 1AC1 debug events can occur only if MSR[PR]=1.

110/1176

Register model

RMO0004

111/1176

Table 46.

DBCR1 field descriptions (continued)

Bits

Name

Description

34-35

IAC1ER

Instruction address compare 1 effective/real mode

00 IAC1 debug events are based on effective addresses.

01 IAC1 debug events are based on real addresses.

10 IAC1 debug events are based on effective addresses and can occur only if
MSRIIS]=0.

11 IAC1 debug events are based on effective addresses and can occur only if
MSRIJIS]=1.

36-37

IAC2US

Instruction address compare 2 user/supervisor mode
00 IAC2 debug events can occur.

01 Reserved

10 1AC2 debug events can occur only if MSR[PR]=0.
11 1AC2 debug events can occur only if MSR[PR]=1.

38-39

IAC2ER

Instruction address compare 2 effective/real mode

00 IAC2 debug events are based on effective addresses.

01 IAC2 debug events are based on real addresses.

10 IAC2 debug events are based on effective addresses and can occur only if
MSRIIS]=0.

11 1AC2 debug events are based on effective addresses and can occur only if
MSRI[IS]=1.

40-41

IAC12M

Instruction address compare 1/2 mode

00 Exact address compare. IAC1 debug events can occur only if the instruction
fetch address equals the value in IAC1. IAC2 debug events can occur only if
the instruction fetch address equals the value in IAC2.

01 Address bit match. IAC1 and IAC2 debug events can occur only if the
instruction fetch address, ANDed with the contents of IAC2, equals the value
in IAC1, also ANDed with the contents of IAC2.

If IAC1US#IAC2US or IAC1ER=IAC2ER, results are boundedly undefined.

10 Inclusive address range compare. IAC1 and IAC2 debug events can occur
only if the instruction fetch address lies between the values specified in IAC1
and IAC2.

If IAC1US#IAC2US or IAC1ER=IAC2ER, results are boundedly undefined.

11 Exclusive address range compare. IAC1 and IAC2 debug events can occur
only if the instruction fetch address lies between the values specified in IAC1
and IAC2.

If IAC1US#IAC2US or IAC1ER=IAC2ER, results are boundedly undefined.

42-47

Reserved, should be cleared.

48-49

IAC3US

Instruction address compare 3 user/supervisor mode
00 IAC3 debug events can occur.

01 Reserved

10 IAC3 debug events can occur only if MSR[PR]=0.
11 1AC3 debug events can occur only if MSR[PR]=1.

RMO0004 Register model

Table 46. DBCR1 field descriptions (continued)

Bits Name Description

Instruction address compare 3 effective/real mode

00 IAC3 debug events are based on effective addresses.

01 IAC3 debug events are based on real addresses.

50-51 | IAC3ER |10 IAC3 debug events are based on effective addresses and can occur only if
MSRIIS]=0.

11 IAC3 debug events are based on effective addresses and can occur only if
MSRIJIS]=1.

Instruction address compare 4 user/supervisor mode
00 IAC4 debug events can occur.

52-53 | IAC4US |01 Reserved

10 1AC4 debug events can occur only if MSR[PR]=0.
11 1AC4 debug events can occur only if MSR[PR]=1.

Instruction address compare 4 effective/real mode

00 IAC4 debug events are based on effective addresses.

01 IAC4 debug events are based on real addresses.

54-55 | IAC4ER |10 IAC4 debug events are based on effective addresses and can occur only if
MSRIIS]=0.

11 1AC4 debug events are based on effective addresses and can occur only if
MSRIIS]=1.

Instruction address compare 3/4 mode

00 Exact address compare. IAC3 debug events can occur only if the instruction
fetch address equals the value in IAC3. IAC4 debug events can occur only if
the instruction fetch address equals the value in IAC4.

01 Address bit match. IAC3 and IAC4 debug events can occur only if the data
storage access address, ANDed with the contents of IAC4, equals the value
in IAC3, also ANDed with the contents of IAC4.

If IAC3US#IAC4US or IAC3ER=IACA4ER, results are boundedly undefined.

10 Inclusive address range compare. IAC3 and IAC4 debug events can occur
only if the instruction fetch address lies between the values specified in IAC3
and IAC4.

If IAC3US#IAC4US or IAC3ER=IACA4ER, results are boundedly undefined.

11 Exclusive address range compare. IAC3 and IAC4 debug events can occur
only if the instruction fetch address lies between the values specified in IAC3
and IAC4.

If IAC3US#IAC4US or IAC3ER=IACA4ER, results are boundedly undefined.

56-57 | IAC34M

58-63 — Reserved, should be cleared.

Ky_l 112/1176

Register model

RMO0004

Debug control register 2 (DBCR2)
DBCR2 is shown below.
Debug control register 2 (DBCR2)

SPR 310

Access: Supervisor read/write

32 33 34 35‘36 37 38 39‘40 41 42 43 44 45 46 47|48 ‘ 55|56 ’ 63

DAC1USD‘AC1ER

DAC2US

DAC2ER

DAC12MDAC1LNK|DAC2LNK|DVC1MDVC2M| DVC1BE | DVC2BE

Reset

Table 47.

All zeros

DBCR2 field descriptions

Bits

Name

Description

32-33

DAC1US

Data address compare 1 user/supervisor mode

00 DAC1 debug events can occur.

01 Reserved

10 DAC1 debug events can occur only if MSR[PR]=0.
11 DAC1 debug events can occur only if MSR[PR]=1.

34-35

DAC1ER

Data address compare 1 effective/real mode

00 DAC1 debug events are based on effective addresses.

01 DAC1 debug events are based on real addresses.

10 DAC1 debug events are based on effective addresses and can occur only if
MSR[DS]=0.

11 DAC1 debug events are based on effective addresses and can occur only if
MSR[DS]=1.

36-37

DAC2US

Data address compare 2 user/supervisor mode

00 DAC2 debug events can occur.

01 Reserved

10 DAC2 debug events can occur only if MSR[PR]=0.
11 DAC2 debug events can occur only if MSR[PR]=1.

38-39

DAC2ER

Data address compare 2 effective/real mode

00 DAC2 debug events are based on effective addresses.

01 DAC2 debug events are based on real addresses.

10 DAC2 debug events are based on effective addresses and can occur only if
MSR[DS]=0.

11 DAC2 debug events are based on effective addresses and can occur only if
MSR[DS]=1.

113/1176

RMO0004

Register model

Table 47.

DBCR?2 field descriptions (continued)

Bits

Name

Description

4041

DAC12M

Data address compare 1/2 mode

00 Exact address compare. DAC1 debug events can occur only if the data
access address equals the value in DAC1. DAC2 debug events can occur
only if the data access address equals the value in DAC2.

01 Address bit match. DAC1 and DAC2 debug events can occur only if the data
access address, ANDed with the contents of DAC2, equals the value in
DAC1, also ANDed with the DAC2 contents.

If DAC1US=DAC2US or DAC1ER=DAC2ER, results are boundedly
undefined.

10 Inclusive address range compare. DAC1 and DAC2 debug events can occur
only if the data access address lies between the values specified in DAC1
and DAC2.

If DAC1US=DAC2US or DAC1ER=DAC2ER, results are boundedly
undefined.

11 Exclusive address range compare. DAC1 and DAC2 debug events can
occur only if the data access address lies between the values specified in
DAC1 and DAC2.

If DAC1US#DAC2US or DAC1ER+#DAC2ER, results are boundedly
undefined.

42

DAC1LNK

Data address compare 1 linked

0 No effect

1 DACT1 debug events are linked to IAC1 debug events. IAC1 debug events do
not affect DBSR.
When linked to IAC1, DAC1 debug events are conditioned based on
whether the instruction also generated an IAC1 debug event.

43

DAC2LNK

Data address compare 2 linked

0 No effect

1 DAC 2 debug events are linked to IAC3 debug events. IAC3 debug events do
not affect DBSR.
When linked to IAC3, DAC2 debug events are conditioned based on
whether the instruction also generated an IAC3 debug event. DAC2 can only
be linked if DAC12M specifies exact address compare because DAC2
debug events are not generated in the other compare modes.

44-45

DVC1M

Data value compare 1 mode

00 DAC1 debug events can occur.

01 DAC1 debug events can occur only when all bytes in DBCR2[DVC1BE] in
the data value of the data storage access match their corresponding bytes
in DVCI.

10 DAC1 debug events can occur only when at least one of the bytes in
DBCR2[DVC1BE] in the data value of the data storage access matches its
corresponding byte in DVC1.

11 DAC1 debug events can occur only when all bytes in DBCR2[DVC1BE]
within at least one of the half words of the data value of the data storage
access match their corresponding bytes in DVC1.

114/1176

Register model RMO0004

115/1176

Table 47. DBCR2 field descriptions (continued)

Bits Name Description

Data value compare 2 mode

00 DAC2 debug events can occur.

01 DAC?2 debug events can occur only when all bytes in DBCR2[DVC2BE] in
the data value of the data storage access match their corresponding bytes
in DVC2.

46-47 | DVC2M |10 DAC2 debug events can occur only when at least one of the bytes in
DBCR2[DVC2BE] in the data value of the data storage access matches its
corresponding byte in DVC2.

11 DAC2 debug events can occur only when all bytes in DBCR2[DVC2BE]
within at least one of the half words of the data value of the data storage
access match their corresponding bytes in DVC2.

Data value compare 1 byte enables. Specifies which bytes in the aligned data
48-55 | DVC1BE |value being read or written by the storage access are compared to the
corresponding bytes in DVC1.

Data value compare 2 byte enables. Specifies which bytes in the aligned data
56-63 | DVC2BE |value being read or written by the storage access are compared to the
corresponding bytes in DVC2.

Debug control register 3 (DBCR3)

The debug APU defines the DBCR3, however its contents are implementation specific.
Debug control register 2 (DBCR2)

SPR 561 Access: Supervisor-only
32 || es

R

W Implementation-specific fields

Reset Implementation-specific

RMO0004 Register model

2.13.2 Debug status register (DBSR)

The DBSR, provides status debug events information for the most recent processor reset.
Debug status register (DBSR)

SPR: 304 Access: Supervisor: wic
32 33 34 3 |36 37 38 39 40 41 42 43 44 45 46 47
R | IDE | UDE |MRR ICMP| BRT |IRPT [TRAP|IAC1 | IAC2 | IAC3 [IAC3 DAC1RDAC1WDAC2RDAC2W,|
W | wic | wic | wic [wic | wic | wic | wic | wic | wic | wic | wic | wlc | wilc | wic | wic | wilc
Reset 0 0 undefined | O 0 0 0 0 0 0 0 0 0 0 0
Debug APU
]
48 49 ‘ 56 57 58 59 ‘ 63
R |RET CIRPT|CRET
W | wic - wic | wic N
Reset 0 0 0 0 ‘ 0 0 0 0 ‘ 0 0 0 0 ‘ 0 0 0 0

The DBSR is set through hardware, but is read through software using mfspr and cleared
by writing ones to them; writing zeros has no effect.

Table 48. DBSR field descriptions

Bits Name Description
32 IDE Imprecise debug event. Set if MSR[DE] = 0 and a debug event causes its
respective DBSR bit to be set.
Unconditional debug event. Set if an unconditional debug event occurred. If the
UDE signal (level sensitive, active low) is asserted, DBSR[UDE] is affected as
follows:
33 UDE |MSRI[DE] DBCRO[IDM] Action
X 0 No action.
0 1 DBSR[UDE] is set.
1 1 DBSR[UDE] is set and a debug interrupt is taken.
Most recent reset. Set when a reset occurs. Undefined at power-up. See the
34-35 | MRR |. . .
implementation documentation.
36 ICMP Instruction complete debug event. Set if an instruction completion debug event
occurred and DBCRO[ICMP] = 1.
37 BRT Branch taken debug event. Set if a branch taken debug event occurred
(DBCRO[BRT]=1).
a8 IRPT Interrupt taken debug event. Set if an interrupt taken debug event occurred
(DBCRO[IRPT]=1).
39 TRAP Trap instruction debug event. Set if a trap Instruction debug event occurred
(DBCRO[TRAP]=1).
40 IACH Instruction address compare 1 debug event. Set if an IAC1 debug event occurred
(DBCRO[IAC1]=1).
41 IAC2 Instruction address compare 2 debug event. Set if an IAC2 debug event occurred
(DBCRO[IAC2]=1).

Ky_l 116/1176

Register model RMO0004

2.13.3

117/1176

Table 48. DBSR field descriptions (continued)

Bits Name Description

Instruction address compare 3 debug event. Set if an IAC3 debug event occurred

42 IAC3 (DBCRO[IAC3]=1).

43 IAC4 Instruction address compare 4 debug event. Set if an IAC4 debug event occurred
(DBCRO[IACA4]=1).

44 DAC1R Data address compare 1 read debug event. Set if a read-type DAC1 debug event
occurred (DBCRO[DAC1]=10 or 11).

45 DACIW Data address compare 1 write debug event. Set if a write-type DAC1 debug
event occurred (DBCRO[DAC1]=01 or 11).

46 DAC2R Data address compare 2 read debug event.Set if a read-type DAC2 debug event
occurred (DBCRO[DAC2]=10 or 11).

47 DAC2W Data address compare 2 write debug event. Set if a write-type DAC2 debug
event occurred (DBCRO[DAC2] =01 or 11).

48 RET | Return debug event. Set if a return debug event occurred (DBCRO[RET]=1).

49-56 — Reserved, should be cleared.

Debug APU. Critical interrupt taken debug event. A critical interrupt taken debug
event occurs when DBCRO[CIRPT] = 1 and a critical interrupt (any interrupt that
57 CIRPT | uses the critical class, that is, uses CSRR0 and CSRR1) occurs.

0 No critical interrupt taken debug event has occurred.
1 A critical interrupt taken debug event occurred.

Debug APU. Critical interrupt return debug event. A critical interrupt return debug
event occurs when DBCRO[CRET] = 1 and a return from critical interrupt (an rfci
58 CRET |instruction is executed) occurs.

0 No critical interrupt return debug event has occurred.
1 A critical interrupt return debug event occurred.

59-63 — Reserved, should be cleared.

Instruction address compare registers (IAC1-1AC4)

The instruction address compare registers (IAC1-1AC4) are each 64 bits, with bits 62—63
being reserved.

Instruction address compare registers (IAC1-1AC4)

SPR 312 (IAC1) Access: supervisor read/write
313 (IAC2)
314 (IAC3)
315 (IAC4)
32 | | | | | | | 616263
R
instruction address —
w
Reset All zeros

A debug event may be enabled to occur upon an attempt to execute an instruction from an
address specified in an IAC, inside or outside a range specified by IAC1 and IAC2 or, inside
or outside a range specified by IAC3 and IAC4, or to blocks of addresses specified by the

574

RMO0004 Register model
combination of the IAC1 and IAC2, or to blocks of addresses specified by the combination of
the IAC3 and IAC4. Because all instruction addresses are required to be word-aligned, the
two low-order bits of the IACs are reserved and do not participate in the comparison to the
instruction address.

2134 Data address compare registers (DAC1-DAC2)

The data address compare registers (DAC1 and DAC2), are each 32 bits. A debug event
may be enabled to occur upon loads, stores, or cache operations to an address specified in
either DAC1 or DAC2, inside or outside a range specified by the DAC1 and DAC2, or to
blocks of addresses specified by the combination of the DAC1 and DAC2.
Data address compare registers (DAC1-DAC2)
SPR 316 (DAC1) : ; i
317 (DAC2) Access: Supervisor read/write
2 | | | | | | e
R
Data address
w
Reset All zeros
The contents of DAC1 or DAC2 are compared to the address generated by a data storage
access instruction.
2.13.5 Data value compare registers (DVC1 and DVC2)
The data value compare registers (DVC1 and DVC2) are shown below. A DAC1R, DAC1W,
DAC2R, or DAC2W debug event may be enabled to occur upon loads or stores of a specific
data value specified in either or both of DVC1 and DVC2. DBCR2[DVC1M] and
DBCR2[DVC1BE] control how the contents of DVC1 is compared with the value and
DBCR2[DVC2M] and DBCR2[DVC2BE] control how the contents of DVC2 is compared with
the value. Table 47 describes the modes provided.
Data value compare registers (DVC1-DVC2)
SPR 318 (DVC1) . ; ;
319 (DVC2) Access: Supervisor read/write
2 | | | | | e
R
Data value
w
Reset All zeros
2.14 SPE and SPFP APU registers

The SPE and SPFP include the signal processing and embedded floating-point status and
control register (SPEFSCR), which is described in Chapter 2.14.1 on page 119, and the
SPE implements a 64-bit accumulator, described in Chapter 2.14.2 on page 122’

118/1176

Register model

RMO0004

2.14.1

(SPEFSCR)

SPEFSCR, is used by the SPE and by the embedded floating-point APUs. Vector floating-
point instructions affect both the high element (bits 34-39) and low element floating-point
status flags (bits 50-55). Double- and single-precision floating-point instructions affect only
the low-element floating-point status flags and leave the high-element floating-point status
flags undefined.

Signal processing, embedded floating-point status, control register

Signal processing, embedded floating-point status and control register (SPEFSCR)

SPR: 512 Access: supervisor-only
—High-Word Error Bits —————— — StatusBits ————
32 33 34 35| 36 37 38 39 40 M 42 43 44 45 46 47
R MODE
W SOVH|OVH|FGH|FXH|FINVHIFDBZH|FUNFH|[FOVFH| — [FINXS| FINVS |FDBZS|FUNFS|FOVFS
Reset 0 0 undefined] 0 0 0 0 0 o 0 0 0 0 0 0
———— Enable Bits ———
48 49 50 51| 52 53 54 55 |56 57 58 59 60 61 62 63
R
SOV | OV | FG | FX | FINV | FDBZ | FUNF | FOVF |—|FINXE|FINVE|FDBZE|FUNFE|FOVFE FRMC
w
Reset 0 0O 0 O 0 0 0 0O |0 O 0 0 0 0 0 0
Table 49. SPEFSCR field descriptions
Bits Name Description
32 SOVH (SPE APU) Summary integer overflow high. Set when an SPE instruction sets
OVH. This is a sticky bit that remains set until it is cleared by an mtspr instruction.
33 OVH (SPE APU) Integer overflow high. Set when an overflow or underflow occurs in
the upper word of the result of an SPE instruction.
(FP APUs) Embedded floating-point guard bit high. Used by the floating-point
round interrupt handler. FGH is an extension of the low-order bits of the fractional
34 FGH result produced from a floating-point operation on the high word. FGH is zeroed if
an overflow, underflow, or invalid input error is detected on the high element of a
vector floating-point instruction.
Execution of a scalar floating-point instruction leaves FGH undefined.
(SPFP APU) Embedded floating-point inexact bit high. Used by the floating-point
round interrupt handler. FXH is an extension of the low-order bits of the fractional
result produced from a floating-point operation on the high word. FXH represents
35 FXH |the logical OR of all of the bits shifted right from the guard bit when the fractional
result is normalized. FXH is zeroed if an overflow, underflow, or invalid input error
is detected on the high element of a vector floating-point instruction.
Execution of a scalar floating-point instruction leaves FXH undefined.
119/1176 /4

RMO0004

Register model

Table 49.

SPEFSCR field descriptions (continued)

Bits

Name

Description

36

FINVH

(FP APUs) Embedded floating-point invalid operation/input error high. Set under
any of the following conditions:

Any operand of a high word vector floating-point instruction is Infinity, NaN, or
Denorm

The operation is a divide and the dividend and divisor are both 0
A conversion to integer or fractional value overflows.
Execution of a scalar floating-point instruction leaves FINVH undefined.

37

FDBZH

(FP APUs) Embedded floating-point divide by zero high. Set when a vector
floating-point divide instruction is executed with a divisor of 0 in the high word
operand and the dividend is a finite non-zero number.

Execution of a scalar floating-point instruction leaves FDBZH undefined.

38

FUNFH

(FP APUs) Embedded floating-point underflow high. Set when the execution of a
vector floating-point instruction results in an underflow on the high word
operation.

Execution of a scalar floating-point instruction leaves FUNFH undefined.

39

FOVFH

(FP APUs) Embedded floating-point overflow high. Set when the execution of a
vector floating-point instruction results in an overflow on the high word operation.

Execution of a scalar floating-point instruction leaves FOVFH undefined.

40-41

Reserved, should be cleared.

42

FINXS

(FP APUs) Embedded floating-point inexact sticky flag. Set under the following

conditions:

— Execution of any scalar or vector floating-point instruction delivers an inexact
result for either the low or high element and no floating-point data interrupt is
taken for either element

— A floating-point instruction results in overflow (FOVF=1 or FOVFH=1), but
floating-point overflow exceptions are disabled (FOVFE=0).

— A floating-point instruction results in underflow (FUNF=1 or FUNFH=1), but
floating-point underflow exceptions are disabled (FUNFE=0), and no floating-
point data interrupt occurs.

FINXS remains set until it is cleared by software.

43

FINVS

(FP APUs) Embedded floating-point invalid operation sticky flag. The sticky result
of any floating-point instruction that causes FINVH or FINV to be set. That is,
FINVS <- FINVS | FINV | FINVH. This action may optionally be performed by
hardware. To ensure proper operation, software should set this bit on the
detection of FINV or FINVH set to one. FINVS remains set until it is cleared by
software. ()

44

FDBZS

(FP APUs) Embedded floating-point divide by zero sticky flag. Set when a
floating-point divide instruction sets FDBZH or FDBZ. That is, FDBZS <- FDBZS |
FDBZH | FDBZ. FDBZS remains set until it is cleared by software.

45

FUNFS

(FP APUs) Embedded floating-point underflow sticky flag. Defined to be the sticky
result of any floating-point instruction that causes FUNFH or FUNF to be set. That
is, FUNFS <- FUNFS | FUNF | FUNFH. This action may optionally be performed
by hardware. To ensure proper operation, software should set this bit on the
detection of FUNF or FUNFH being set. FUNFS remains set until it is cleared by
software. !

120/1176

Register model

RMO0004

121/1176

Table 49.

SPEFSCR field descriptions (continued)

Bits

Name

Description

46

FOVFS

(FP APUs) Embedded floating-point overflow sticky flag. defined to be the sticky
result of any floating-point instruction that causes FOVH or FOVF to be set. That
is, FOVFS <- FOVFS | FOVF | FOVFH. This action may optionally be performed
by hardware. To ensure proper operation, software should set this bit on the
detection of FOVF or FOVFH being set. FOVFS remains set until it is cleared by
software.

47

MODE

(FP APUs) Embedded floating-point operating mode. Controls the operating
mode of the embedded floating-point operations defined in the SPE, and the
embedded floating-point APUs.

0 Default hardware results operating mode
1 Reserved.

48

SOV

(SPE APU) Summary integer overflow low. Set when an SPE instruction sets OV.
This sticky bit remains set until an mtspr writes a 0 to this bit.

49

ov

(SPE APU) Integer overflow low. OV is set when an overflow or underflow occurs
in the lower word of the result of an SPE instruction.

50

FG

(FP APUs) Embedded floating-point guard bit (low/scalar) Used by the floating-
point round interrupt handler. FG is an extension of the low-order bits of the
fractional result produced from a floating-point operation on the low word or any
scalar floating-point operation. FG is cleared if an overflow, underflow, or invalid
input error is detected on either the low element of a vector floating-point
instruction or any scalar floating-point instruction.

51

FX

(FP APUs) Embedded floating-point inexact bit (low/scalar). Used by the floating-
point round interrupt handler. FX is an extension of the low-order bits of the
fractional result produced from a floating-point operation on the low word or any
scalar floating-point instruction. FX represents the logical OR of all of the bits
shifted right from the guard bit when the fractional result is normalized. FX is
zeroed if an overflow, underflow, or invalid input error is detected on either the low
element of a vector floating-point instruction or any scalar floating-point
instruction.

52

FINV

(FP APUs) Embedded floating-point invalid operation/input error (low/scalar). Set
by the following conditions:

— Any operand of a low-word vector or scalar floating-point operation is Infinity,
NaN, or Denorm

— The operation is a divide and the dividend and divisor are both 0
— A conversion to integer or fractional value overflows

53

FDBZ

(FP APUs) Embedded floating-point divide by zero (low/scalar). Set when a
scalar or vector floating-point divide instruction is executed with a divisor of 0 in
the low word operand and the dividend is a finite non-zero number.

54

FUNF

(FP APUs) Embedded floating-point underflow (low/scalar). Set when execution
of a scalar or vector floating-point instruction results in an underflow on the low
word operation.

55

FOVF

(FP APUs) Embedded floating-point overflow (low/scalar). Set when the
execution of a scalar or vector floating-point instruction results in an overflow on
the low word operation.

56

Reserved, should be cleared.

RMO0004 Register model

Table 49. SPEFSCR field descriptions (continued)

Bits Name Description

(FP APUs) Embedded floating-point round (inexact) exception enable

0 Exception disabled

1 Exception enabled. A floating-point round interrupt is taken if no other interrupt

57 EINXE is taken, and if FG | FGH | FX | FXH (signifying an inexact result) is set as a
result of a floating-point operation.

If a floating-point instruction operation results in overflow or underflow and the

corresponding underflow or overflow exception is disabled, a floating-point round

interrupt is taken.

(FP APUs) Embedded floating-point invalid operation/input error exception

enable

58 FINVE |0 Exception disabled

1 Exception enabled. A floating-point data interrupt is taken if a floating-point
instruction sets FINV or FINVH.

(FP APUs) Embedded floating-point divide by zero exception enable
0 Exception disabled

1 Exception enabled. A floating-point data interrupt is taken if a floating-point
instruction sets FDBZ or FDBZH.

59 FDBZE

(FP APUs) Embedded floating-point underflow exception enable
0 Exception disabled

1 Exception enabled. A floating-point data interrupt is taken if a floating-point
instruction sets FUNF or FUNFH.

60 FUNFE

(FP APUs) Embedded floating-point overflow exception enable
0 Exception disabled

1 Exception enabled. A floating-point data interrupt is taken if a floating-point
instruction sets FOVF or FOVFH.

61 FOVFE

(FP APUs) Embedded floating-point rounding mode control

00 Round to Nearest

01 Round toward Zero

10 Round toward +Infinity. If this mode is not implemented, embedded floating-

62-63 | FRMC point round Interrupts are generated for every floating-point instruction for
which rounding is indicated.

11 Round toward -Infinity. If this mode is not implemented, embedded floating-
point round Interrupts are generated for every floating-point instruction for
which rounding is indicated.

1. Software note: Software can detect hardware that manages this sticky bit by performing an operation on a
NaN and observing whether hardware sets this sticky bit. In the absence of doing this, if it desired that
software written will work on all processors that support embedded floating-point, software should check
the appropriate status bits and set the sticky bit itself (if hardware also performs this operation, the action is
redundant).

2.14.2 Accumulator (ACC)

The 64-bit architectural accumulator register holds the results of the multiply accumulate
(MAC) forms of SPE integer instructions. The accumulator allows back-to-back execution of
dependent MAC instructions, something that is found in the inner loops of DSP code such
as finite impulse response (FIR) filters. The accumulator is partially visible to the
programmer in that its results do not have to be explicitly read to use them. Instead, they are
always copied into a 64-bit destination GPR specified as part of the instruction. The

Ky_l 122/1176

Register model RMO0004

2.15

123/1176

accumulator, however, has to be explicitly cleared when starting a new MAC loop. Based
upon the type of instruction, an accumulator can hold either a single 64-bit value or a vector
of two 32-bit elements.

The Initialize Accumulator instruction (evmra) is provided to initialize the accumulator. This
instruction is described in Chapter 6 on page 330

Alternate time base registers (ATBL and ATBU)

The alternate time base counter (ATB), is formed by concatenating the upper and lower
alternate time base registers (ATBU and ATBL). ATBL (SPR 526) provides read-only access
to the 64-bit alternate time base counter, which is incremented at an implementation-defined
frequency. ATB registers are accessible in both user and supervisor mode.

Like the TB implementation, ATBL is an aliased name for ATB.

Alternate time base register lower (ATBL)

SPR 526 Access: User read-only
S N N N N N S S
R ATBCL
w
Reset All zeros

Table 50. ATBL field descriptions

Bits Name Description

Alternate time base counter lower.

82-63 ATBCL Lower 32 bits of the alternate time base counter

The ATBU register, provides read-only access to the upper 32 bits of the alternate time base
counter. It is accessible in both user and supervisor mode.

Alternate time base register upper (ATBU)

SPR 527 Access: User read-only
2 | | | | | e
R ATBCU
W
Reset All zeros

Table 51. ATBU field descriptions

Bits Name Description

30-63 ATBCU Alternate time base counter upper.

Upper 32 bits of the alternate time base counter

RMO0004 Register model
2.16 Performance monitor registers (PMRs)
The EIS defines a set of register resources used exclusively by the performance monitor.
PMRs are similar to the SPRs defined in the Book E architecture and are accessed by
mtpmr and mfpmr, which are also defined by the EIS. Table 52 lists supervisor-level PMRs.
User-level software that attempts to read or write supervisor-level PMRs causes a privilege
exception.
Table 52. Performance monitor registers—supervisor level
- . PMR .
Abbreviation Register name number pmr[0-4] | pmr[5-9] | Section/page
PMGCO Performance monitor global control register O 400 01100 10000 Chapter 2.16.1
PMLCa0 Performance monitor local control a0 144 00100 10000
PMLCat Performance monitor local control a1 145 00100 10001
Chapter 2.16.3
PMLCa2 Performance monitor local control a2 146 00100 10010
PMLCa3 Performance monitor local control a3 147 00100 10011
PMLCbO Performance monitor local control b0 272 01000 10000
PMLCb1 Performance monitor local control b1 273 01000 10001
Chapter2.16.5
PMLCb2 Performance monitor local control b2 274 01000 10010
PMLCb3 Performance monitor local control b3 275 01000 10011
PMCO Performance monitor counter 0 16 00000 10000
PMCA1 Performance monitor counter 1 17 00000 10001
Chapter 2.16.7
PMC2 Performance monitor counter 2 18 00000 10010
PMC3 Performance monitor counter 3 19 00000 10011

User-level PMRs in Table 53 are read-only and are accessed with mfpmr. Attempting to write user-level
registers in supervisor or user mode causes an illegal instruction exception.

Table 53. Performance monitor registers—user level (read-only)
Abbreviation Register name PMR mr[0-4] | pmr[5-9] | Section/page
9 number P P pag
User performance monitor global control
UPMGCO ; 384 01100 00000 | Chapter2.16.3
register 0
UPMLCa0 | User performance monitor local control a0 128 00100 00000
UPMLCa1 |User performance monitor local control a1 129 00100 00001
Chapter2.16.4
UPMLCa2 |User performance monitor local control a2 130 00100 00010
UPMLCa3 |User performance monitor local control a3 131 00100 00011
UPMLCbO |User performance monitor local control bO 256 01000 00000
UPMLCb1 | User performance monitor local control b1 257 01000 00001
Chapter 2.16.6
UPMLCb2 | User performance monitor local control b2 258 01000 00010
UPMLCDb3 | User performance monitor local control b3 259 01000 00011

574

124/1176

Register model RMO0004

Table 53.

Performance monitor registers—user level (read-only) (continued)

Abbreviation Register name

PMR

number | PMr[0-4]| pmr[5-9]| Section/page

UPMCO

User performance monitor counter 0 0 00000 00000

UPMCH1

User performance monitor counter 1 1 00000 00001

UPMC2

Chapter 2.16.7
User performance monitor counter 2 2 00000 00010

UPMC3

User performance monitor counter 3 3 00000 00011

2.16.1

125/1176

Global control register 0 (PMGCO0)

The performance monitor global control register (PMGCO), controls all performance monitor
counters.

Performance monitor global control register 0 (PMGCO0)/

User performance monitor global control register 0 (UPMGCO)

PMR PMGCO (PMR400) Access: PMGCO: supervisor-only
UPMGCO0 (PMR384) UPMGCO: supervisor/user read-only

32 33 34 35‘ ‘ ‘ ‘ 50 51‘52 5354 55 |56 63

R
w

FAC |PMIE | FCECE — TBSEL| — |TBEE —

Reset All zeros

PMGCO is cleared by a hard reset. Reading this register does not change its contents.

Table 54. PMGCO field descriptions

Bits Name Description

Freeze all counters. When FAC is set by hardware or software, PMLCx[FC]
maintains its current value until it is changed by software.

0 The PMCs are incremented (if permitted by other PM control bits).
1 The PMCs are not incremented.

32 FAC

Performance monitor interrupt enable
0 Performance monitor interrupts are disabled.

1 Performance monitor interrupts are enabled and occur when an enabled
condition or event occurs.

33 PMIE

Freeze counters on enabled condition or event

0 The PMCs can be incremented (if permitted by other PM control bits).

34 | FCECE |1 The PMCs can be incremented (if permitted by other PM control bits) only until
an enabled condition or event occurs. When an enabled condition or event
occurs, PMGCO[FAC] is set. It is up to software to clear FAC.

35-50 — Reserved, should be cleared.

RMO0004

Register model

2.16.2

Table 54.

PMGCO field descriptions (continued)

Bits

Name

Description

51-52

TBSEL

Time base selector. Selects the time base bit that can cause a time base
transition event (the event occurs when the selected bit changes from 0 to 1).
00 TB[63] (TBL[31])

01 TB[55] (TBL[23])

10 TB[51] (TBL[19])

11 TB[47] (TBL[15])

Time base transition events can be used to periodically collect information about
processor activity. In multiprocessor systems in which TB registers are
synchronized among processors, time base transition events can be used to
correlate the performance monitor data obtained by the several processors. For
this use, software must specify the same TBSEL value for all processors in the
system. Because the time-base frequency is implementation-dependent,
software should invoke a system service program to obtain the frequency before
choosing a value for TBSEL.

53-54

Reserved, should be cleared.

55

TBEE

Time base transition event exception enable
0 Exceptions from time base transition events are disabled.

1 Exceptions from time base transition events are enabled. A time base
transition is signalled to the performance monitor if the TB bit specified in
PMGCO[TBSEL] changes from 0 to 1. Time base transition events can be
used to freeze the counters (PMGCO[FCECE]) or signal an exception
(PMGCO[PMIE])).

Changing PMGCO[TBSEL] while PMGCO[TBEE] is enabled may cause a false
0 to 1 transition that signals the specified action (freeze, exception) to occur
immediately. Although the interrupt signal condition may occur with MSR[EE] =
0, the interrupt cannot be taken until MSR[EE] = 1.

55-63

Reserved, should be cleared.

User global control register 0 (UPMGCO)

The contents of PMGCO are reflected to UPMGCO, which is read by user-level software.
UPMGCO is read with the mfpmr instruction using PMR384.

126/1176

Register model

RMO0004

2.16.3 Local control A registers (PMLCa0-PMLCa3)

The local control A registers 0—3 (PMLCa0-PMLCa3), function as event selectors and give
local control for the corresponding performance monitor counters. PMLCa works with the
corresponding PMLCb register.

Local control A registers (PMLCa0-PMLCa3)/
User local control A registers (UPMLCa0-UPMLCa3)

UPMLCa0 (PMR128) Access: PMLCa0-PMLCa3: supervisor-only

PMLCa0 (PMR144)
PMLCa1 (PMR145)
PMLCa2 (PMR146)
PMLCa3 (PMR147)

UPMLCa1

(PMR129) UPMLCa0-UPMLCa3: supervisor/user read-only

UPMLCa2 (PMR130)
UPMLCa3 (PMR131)

32 33 34 g5 3 37 38 ‘40 4 ‘ 4748 ‘ ‘ ‘ 63
R
w FC|FCS|FCU|FCM1|[FCMO|CE| — EVENT —
Reset All zeros
Table 55. PMLCa0-PMLCaa3 field descriptions
Bits Name Description
Freeze counter
32 FC 0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented.
Freeze counter in supervisor state
33 FCS 0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PR] = 0.
Freeze counter in user state
34 FCU 0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PR] = 1.
Freeze counter while mark = 1
35 FCM1 |0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PMM] = 1.
Freeze counter while mark = 0
36 FCMO |0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PMM] = 0.
Condition enable
0 PMCx overflow conditions cannot occur. (PMCx cannot cause interrupts,
cannot freeze counters.)
37 CE 1 Overflow conditions occur when the most-significant-bit of PMCx is equal to
one.
It is recommended that CE be cleared when counter PMCx is selected for
chaining.
38-40 — Reserved, should be cleared.
41-47 EVENT | Event selector. Up to 128 events selectable.
4863 — Reserved, should be cleared.
127/1176 17

RMO0004

Register model

2.16.4

2.16.5

User local control A registers (UPMLCa0-UPMLCa3)

The contents of PMLCa0-PMLCa3 are reflected to UPMLCa0-UPMLCa3, which are read

by user-level software with mfpmr using PMR numbers in Table 53.

Local control B registers (PMLCb0-PMLCb3)

Local control B registers (PMLCb0-PMLCDb3), specify a threshold value and a multiple to
apply to a threshold event selected for the corresponding performance monitor counter.

PMLCb works with the corresponding PMLCa.

Local control B registers (PMLCb0-PMLCb3)/User local control B registers (UPMLCb0-UPMLCb3)

PMR PMR272 (PMLCb0) PMR256 (UPMLCbO)
PMR273 (PMLCb1) PMR257 (UPMLCb1)
PMR274 (PMLCb2) PMR258 (UPMLCb2)

()

PMR275 (PMLCb3) PMR259 (UPMLCb3

Access: PMLCb0-PMLCb3 Supervisor read/write
UPMLCb0O-UPMLCb3 User read-only

32 52 53 55 |56 57 58 63
R
— THRESHMU| - _ THRESHOLD
w L
Reset All zeros

Table 56. PMLCb0 —PMLCb3 field descriptions

Bits Name Description

32-52 — Reserved, should be cleared.

Threshold multiple

000 Threshold field is multiplied by 1 (PMLCbn[THRESHOLD] * 1)

001 Threshold field is multiplied by 2 (PMLCbn[THRESHOLD] * 2)

010 Threshold field is multiplied by 4 (PMLCbn[THRESHOLD] * 4)
53-55 | THRESHMUL | 011 Threshold field is multiplied by 8 (PMLCbn[THRESHOLD] * 8)

100 Threshold field is multiplied by 16 (PMLCbn[THRESHOLD] * 16)
101 Threshold field is multiplied by 32 (PMLCbn[THRESHOLD] * 32)
110 Threshold field is multiplied by 64 (PMLCbn[THRESHOLD] * 64)
111 Threshold field is multiplied by 128 (PMLCbn[THRESHOLD] * 128)

56-57 — Reserved, should be cleared.

the threshold value is interpreted.

a different threshold value each time.

Threshold. Only events that exceed this value are counted. Events to which
a threshold value applies are implementation-dependent as are the
dimension (for example duration in cycles) and the granularity with which

58-63 | THRESHOLD | By varying the threshold value, software can profile event characteristics.

For example, if PMC1 is configured to count cache misses that last longer
than the threshold value, software can obtain the distribution of cache miss
durations for a given program by monitoring the program repeatedly using

128/1176

Register model RMO0004

2.16.6

2.16.7

User local control B registers (UPMLCb0-UPMLCb3)

The contents of PMLCb0-PMLCb3 are reflected to UPMLCbO-UPMLCDb3, which are read
by user-level software with mfpmr using the PMR numbers in Table 53.

Performance monitor counter registers (PMC0-PMC3)

The performance monitor counter registers PMC0-PMCS, are 32-bit counters that can be
programmed to generate interrupt signals when they overflow. Each counter is enabled to
count 128 events.

Performance monitor counter registers (PMC0-PMC3)/User performance monitor counter registers (UPMCO-UPMC3)

PMCO (PMR16) UPMCO (PMRO) Access: PMCO0-PMC3: Supervisor-only
PMC1 (PMR17) UPMC1 (PMR1) UPMCO0-UPMCS3: Supervisor/user read-only
PMC2 (PMR18) UPMC2 (PMR2)
PMC3 (PMR19) UPMC3 (PMR3)
32 33 63
R
ov Counter value
w
Reset All zeros
Table 57. PMCO0-PMC3 field descriptions
Bits Name Description
32 oV Overflow. When this bit is set, it indicates this counter reaches its
maximum value.
33-63 | Counter Value |Indicates the number of occurrences of the specified event.
Counters overflow when the high-order bit (the sign bit) becomes set; that is, they reach the
value 2,147,483,648 (0x8000_0000). However, an exception is not signaled unless
PMGCO[PMIE] and PMLCax[CE] are also set as appropriate.
The interrupts are masked by clearing MSR[EE]. An interrupt that is signaled while
MSR[EE] is zero is not taken until MSR[EE] is set. Setting PMGCO[FCECE] forces counters
to stop counting when an enabled condition or event occurs.
Software is expected to use mtpmr to explicitly set PMCs to non-overflowed values. Setting
an overflowed value may cause an erroneous exception. For example, if both PMGCO[PMIE]
and PMLCax|CE] are set and the mtpmr loads an overflowed value into PMCx, an interrupt
may be generated without an event counting having taken place.
PMC registers are accessed with mtpmr and mfpmr using the PMR numbers in Table 52.
2.16.8 User performance monitor counter registers (UPMC0-UPMC3)
The contents of PMCO0—PMCS3 are reflected to UPMCO-UPMCS3, which are read by user-
level software with the mfpmr instruction using the PMR numbers in Table 53.
129/1176 17

RMO0004 Register model
2.17 Device control registers (DCRs)

Book E defines the existence of a DCR address space and the instructions to access them,

but does not define particular DCRs. The on-chip DCRs exist architecturally outside the

processor core and thus are not part of Book E.

DCRs may control the use of on-chip peripherals, such as memory controllers (specific DCR

definitions would be provided in the implementation’s user's manual).

The contents of DCR DCRN can be read into a GPR using mfdcr rD,DCRN. GPR contents

can be written into DCR DCRN using mtdcr DCRN,rS.

If DCRs are implemented, they are described as part of the implementation documentation.

2.18 Book E SPR model
This section describes SPR invalid references, synchronization requirements, and
preserved, reserved, and allocated registers.

2.18.1 Invalid SPR references

System behavior when an invalid SPR is referenced depends on the privilege level.

o |If the invalid SPR is accessible in user mode (SPR[5] = 0), an illegal instruction
exception is taken.

@ If the invalid SPR is accessible only in supervisor mode (SPR[5] = 1) and the core
complex is in supervisor mode (MSR[PR] = 0), the results of the attempted access are
boundedly undefined.

e If the invalid SPR address is accessible only in supervisor mode (bit 5 of an SPR
number = 1) and the core complex is not in supervisor mode (MSR[PR] = 1), a privilege
exception is taken. These results are summarized in Table 58.

Table 58. System response to an invalid spr reference

SPR address bit 5 MSRI[PR] Response
0 (User) X lllegal exception
0 (Supervisor) Boundedly undefined
1 (Supervisor)
1 (User) Privilege exception
2.18.2 Synchronization requirements for SPRs

Synchronization requirements for accessing certain SPRs are shown in Table 59. Except for
these SPRs, there are no synchronization requirements for accessing SPRs beyond those
stated in Book E. (Note that requirements may be different for different implementations.)

Table 59. Synchronization requirements for sprs

. . Instruction required Instruction required
Registers Instruction
before after
DBCRO mtspr dbcr0 None isync
DBCR1 mtspr dbcri None isync
130/1176

Register model

RMO0004

2.18.3

2.18.4

131/1176

Table 59. Synchronization requirements for sprs (continued)

Instruction required

Instruction required

Registers Instruction before after
HIDO mtspr hid0 None isync
HIDA1 mtspr hid1 None isync

L1CSRO mtspr I1csr0 msync, isync isync
L1CSR1 mtspr I1csr1 None isync
MASnH mtspr masn None isync

MMUCSRO mtspr mmucsr0 None isync
PIDn mtspr pidn None isync

SPEFSCR mtspr spefscr None isync

Reserved SPRs

An undefined SPR number in the range 0x000—0x1FF (0-511) that is not preserved is

reserved.

Allocated SPRs

SPR numbers allocated for implementation-dependent use are 0x200—0x3FF (512—1023).

Table 60. Allocated SPRs defined by the EIS

SPR Mnemonic

Register

48 PIDOM

Process ID register 0. This is not truly an allocated SPR; however, Book E
defines only this PID register and refers to it as PID rather than PIDO.

512 SPEFSCR

Signal processing and embedded floating-point status and control register

515 L1CFGO

L1 cache configuration register 0

516 L1CFG1

L1 cache configuration register 1

528 IVOR32 SPE APU unavailable exception

529 IVOR33 Embedded floating-point data exception

530 IVOR34 Embedded floating-point round exception

531 IVOR35 Performance monitor Interrupt vector offset register

570 MCSRRO

Machine-check save/restore register 0

571 MCSRR1

Machine-check save/restore register 1

572 MCSR Machine check syndrome register
573 MCAR Machine check address register
624 MASO MMU assist register 0

625 MAS1 MMU assist register 1

626 MAS2 MMU assist register 2

627 MAS3 MMU assist register 3

RMO0004

Register model

Table 60. Allocated SPRs defined by the EIS (continued)
SPR | Mnemonic Register
628 MAS4 MMU assist register 4
629 MAS5 MMU assist register 5
630 MAS6 MMU assist register 6
633 PID1 Process ID register 1
634 PID2 Process ID register 2

PIDn Additional PID registers may be defined in this space
688 TLBOCFG | TLB configuration register 0
689 TLB1CFG | TLB configuration register 1
944 MAS7 MMU assist register 7
1008 HIDO Hardware implementation dependent register O
1009 HIDA1 Hardware implementation dependent register 1
1010 L1CSRO L1 cache control and status register 0
1011 L1CSR1 L1 cache control and status register
1012 | MMUCSRO | MMU control and status register 0
1015 MMUCFG | MMU configuration register
1023 SVR System version register

1.

An update to a PID register must always be followed by an isync.

132/1176

Instruction model RMO0004

3

3.1

3.1.1

3.1.2

133/1176

Instruction model

The architecture specifications allow for different processor implementations, which may
provide extensions to or deviations from the architectural descriptions. This chapter provides
information about the Book E architecture and the Book E implementation standards (EIS),
which defines auxiliary processing units (APUs) and other architectural extensions that
define additional instructions, registers, and interrupts.

For more information, see Chapter 7: Auxiliary processing units (APUs) on page 823

Operand conventions

This section describes operand conventions as they are represented in the Book E
architecture. These conventions follow the basic descriptions in the classic PowerPC
architecture with some changes in terminology. For example, distinctions between user and
supervisor-level instructions are maintained, but the designations—UISA, VEA, and OEA—
do not apply. Detailed descriptions are provided of conventions used for storing values in
registers and memory, accessing processor registers, and representing data in these
registers.

Data organization in memory and data transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands can be bytes, half words, words, or double words or, for the load/store
multiple instruction type and load/store string instructions, a sequence of bytes or words.
The address of a memory operand is the address of its first byte (that is, of its lowest-
numbered byte). Operand length is implicit for each instruction.

Alignment and misaligned accesses

The operand of a single-register memory access instruction has an alignment boundary
equal to its length. An operand’s address is misaligned if it is not a multiple of its width.

The concept of alignment is also applied more generally to data in memory. For example, a
12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition,
alignment can affect performance. For single-register memory access instructions, the best
performance is obtained when memory operands are aligned.

Instructions are 32 bits (one word) long and must be word-aligned. Note, however, that the
VLE extension provides both 16- and 32-bit instructions.
See VLE instruction alignment and byte ordering on page 217”

Table 61 lists characteristics for memory operands for single-register memory access
instructions.

RMO0004 Instruction model

Table 61. Address characteristics of aligned operands

Operand Operand Length Addr[60-63] if Aligned
Byte (or string) 8 bits xxxx()
Half word 2 bytes Xxx0
Word 4 bytes xx00
Double word 8 bytes x000

1. An xin an address bit position indicates that the bit can be 0 or 1 independent of the state of other bits in
the address.

Note that Imw, stmw, lwarx, and stwex. instructions that are not word aligned cause an
alignment exception.

3.2 Instruction set summary

Instructions are divided into the following functional categories:

® Integer instructions—These include arithmetic and logical instructions. See Integer
instructions on page 146”

® Floating-point instructions—These include floating-point vector and scalar arithmetic
instructions. See Embedded vector and scalar floating-point APU instructions.” Note
that some implementations do not support Book E—defined floating-point instructions or
registers.

® Load and store instructions—See Load and store instructions on page 156"

® Flow control instructions—These include branching instructions, CR logical
instructions, trap instructions, and other instructions that affect the instruction flow.
See Branch and flow control instructions on page 163’

® Processor control instructions—These instructions are used for synchronizing memory
accesses. See Processor control instructions on page 201”

® Memory synchronization instructions—These instructions are used for memory
synchronizing. See Memory synchronization instructions on page 175”

® Memory control instructions—These instructions provide control of caches and TLBs.
See Memory control instructions,” and Supervisor-level memory control instructions”

® Signal processing instructions—These include a set of vector arithmetic and logic
instructions optimized for signal processing. See Chapter 3.6.1 on page 186.

Note: Instruction groupings used here do not indicate the execution unit that processes a
particular instruction or group of instructions. This information, which is useful for scheduling
instructions most effectively, is provided in the execution chapter for the implementation.”

Integer instructions operate on word operands. Book E floating-point instructions operate on
single-precision and double-precision floating-point operands. The PowerPC architecture
uses instructions that are 4 bytes long and word-aligned. It provides for byte, half-word, and
word operand loads and stores between memory and a set of 32 general-purpose registers
(GPRs). It provides for word and double-word operand loads and stores between memory
and a set of 32 floating-point registers (FPRs).

Arithmetic and logical instructions do not read or modify memory. To use the contents of a
memory location in a computation and then modify the same or another location, the
memory contents must be loaded into a register, modified, and then written to the target
location using load and store instructions.

Ky_l 134/1176

Instruction model RMO0004

3.2.1

135/1176

The description of each instruction includes the mnemonic and a formatted list of operands.
To simplify assembly language programming, a set of simplified mnemonics and symbols is
provided for some of the frequently used instructions; see Appendix B: Simplified
mnemonics for PowerPC instructions on page 1110, for a complete list of simplified
mnemonics. Programs written to be portable across the various assemblers for the
PowerPC architecture should not assume the existence of mnemonics not described in that
document.

Classes of instructions

Instructions belong to one of the following four classes:

@ Defined instructions (See Defined instruction class on page 135.)

® Allocated instructions (See Allocated instruction class on page 136.)

® Preserved instructions (See Preserved instruction class on page 137.)

® Reserved (illegal or no-op) instructions (See Reserved instruction class on page 138.)

The class is determined by examining the primary opcode and any extended opcode. If the
opcode, or combination of opcode and extended opcode, is not that of a defined, allocated,
preserved, or reserved instruction, the instruction is illegal.

Definition of boundedly undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on
execution can be said to be boundedly undefined. If a user-level program executes the
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious
change from user to supervisor state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded.
Boundedly undefined results for a given instruction can vary between implementations and
between execution attempts in the same implementation.

Defined instruction class

This class of instructions consists of all the instructions defined in Book E. In general,
defined instructions are guaranteed to be supported within a Book E system as specified by
the architecture, either within the processor implementation itself or within emulation
software supported by the system operating software.

For implementations that only provide the 32-bit subset of Book E, emulation of the 64-bit
behavior of the defined instructions is not supported. See Appendix D: Guidelines for 32-bit
book E on page 1154.

RMO0004

Instruction model

Any attempt to execute a defined instruction results in one of the following events:

® Anillegal instruction exception-type program interrupt, if an implementation does not
recognize the instruction

® An unimplemented instruction exception-type program interrupt, if the instruction is
recognized but not supported by the implementation and is not a floating-point
instruction

® An unimplemented instruction exception-type program interrupt, if the instruction is
recognized but not supported by the implementation, and is a floating-point instruction
and floating-point processing is enabled

® The floating-point unavailable interrupt if the instruction is recognized but is not
supported by the implementation or is a floating-point instruction and floating-point
processing is disabled

® The floating-point unavailable interrupt when floating-point processing is disabled and a
floating-point instruction is recognized and is not supported by the implementation

@ If aninstruction is recognized and supported by the implementation, the processor
performs the actions described in the rest of this document. The architected behavior
may cause other exceptions.

A defined instruction may be retained by future versions of Book E as a defined instruction,
or may be reclassified as a preserved instruction (process of removal from the architecture)
and eventually classified as reserved-illegal.

Allocated instruction class

This class of instructions contains the set of instructions (a set of primary opcodes, as well
as a set of extended opcodes for certain primary opcodes) used for implementation-specific
instructions. Table 62 lists blocks of opcodes allocated for implementation-dependent use.

Table 62. Allocated instructions

Primary opcode Extended opcodes
0 All instruction encodings (bits 6-31) except 0x0000_0000(").
4 All instruction encodings (bits 6-31)
SPE and embedded floating-point instructions
19 Extended opcodes (bits 21-30) Obuuuuu_Ou11u
31 Extended opcodes (bits 21-30) uuuuu_Ouiiu
59 Extended opcodes (bits 21-30) uuuuu_0u10u
63 Extended opcodes (bits 21-30) uuuuu_0Ou10u (except 00000_01100 frsp)

1. Instruction encoding 0x0000_0000 is and always will be reserved-illegal.

Allocated instructions are allocated to purposes that are outside the scope of Book E for
implementation-dependent and application-specific use.
Any attempt to execute an allocated instruction results in one of the following:

® Anillegal instruction exception-type program interrupt, if the instruction is not
recognized by the implementation

® An unimplemented instruction exception-type program interrupt, if the instruction is
recognized and enabled for execution but the implementation does not support direct

136/1176

Instruction model RMO0004

Note:

137/1176

execution of the instruction. This option may be used to allow emulation for
unsupported allocated instructions.

o A floating-point unavailable interrupt, if an allocated instruction that extends the
floating-point capabilities is recognized and floating-point processing is disabled

@ If an allocated instruction is implemented, the processor performs the actions
described in the user's manual. Implementation-dependent behavior may cause other
exceptions.

An allocated instruction is guaranteed by Book E to remain allocated.

Some allocated instructions may have associated new process state, and, therefore, may
provide an associated enable bit, similar in function to MSR[FP] for floating-point
instructions. For such instructions, being enabled for execution implies that any associated
enable bit is set to allow, or enable, instruction execution. For such instructions, the
architecture provides an auxiliary processor unavailable interrupt vector in case execution of
such an instruction is attempted when execution is disabled.

For example, MSR[SPE] enables the SPE unavailable interrupt. Other allocated instructions
may not have any associated new state and therefore may not require an associated enable
bit. If supported by an implementation, such instructions are assumed to be always enabled
for execution.

Preserved instruction class
The preserved instruction class supports backward compatibility with the PowerPC
architecture. An attempt to execute a preserved instruction results in one of the following:

e If the implementation does not recognize the instruction, an illegal instruction
exception-type program interrupt occurs.

@ If the instruction is recognized and supported by the implementation, the processor
performs the actions defined in the previous version of the architecture.

Future versions of Book E may retain a preserved instruction as a preserved instruction,
may reclassify it as an allocated instruction, or may adopt it as part of Book E.

Preserved opcodes are listed in Table 63.

Table 63. Preserved instructions

Primary opcode Extended opcodes

0 No preserved extended opcodes

4 No preserved extended opcodes

19 No preserved extended opcodes
Extended opcodes (bits 21-30)
210 0b00110_10010 (mtsr)
242 0b00111_10010 (mtsrin)
370 0b01011_10010 (tlbia)

31 306 0b01001_10010 (tlbie)
371 0b01011_10011 (mftb)
595 0b10010_10011 (mfsr)
659 0b10100_10011 (mfsrin)
310 0b01001_10110 (eciwx)
438 0b01101_10110 (ecowx)

59 No preserved extended opcodes

63 No preserved extended opcodes

RMO0004

Instruction model

3.2.2

Reserved instruction class

This class of instructions consists of all instruction primary opcodes (and associated
extended opcodes, if applicable) that do not belong to either the defined, allocated, or
preserved instruction classes.

Reserved instructions are available for future extensions of Book E. That is, some future
version of Book E may define any of these instructions to perform new functions or make
them available for implementation-dependent use as allocated instructions. There are two
types of reserved instructions, reserved-illegal and reserved-nop.

Attempts to execute a reserved-illegal instruction cause an illegal instruction exception-type
program interrupt (see Chapter 4.7.6: Alignment interrupt on page 263) on implementations
conforming to the current version of Book E. Reserved-illegal instructions are, therefore,
available for future extensions to Book E that would affect architected state. Such
extensions might include new forms of integer or floating-point arithmetic or new forms of
load or store instructions that write their result in an architected register.

Attempts to execute a reserved-nop instruction either do not affect implementations
conforming to the current version of Book E (that is, treated as a no-operation instruction),
or cause an illegal instruction exception-type program interrupt (see Chapter 4.7.7: Program
interrupt on page 265”). Reserved-nop instructions are available for future architecture
extensions that do not affect architected state. Such extensions might include performance-
enhancing hints such as new forms of cache touch instructions and could be added while
remaining functionally compatible with implementations of previous versions of Book E

A reserved-illegal instruction may be retained by future versions of Book E as a reserved-
illegal instruction, may be subsequently reclassified as an allocated instruction, or may even
be employed in the role of a subsequently defined instruction.

A reserved-nop instruction may be retained by future versions of Book E as a reserved-nop
instruction, may be subsequently reclassified as an allocated instruction, or may even be
employed in the role of a subsequently defined instruction that has no effect on architected
state.

Instruction forms

This section describes preferred instruction forms, addressing modes, and synchronization.

Preferred instruction forms (ho-op)
The Or Immediate (ori) instruction has the following preferred form for expressing a no-op:

ori 0,0,0

Invalid instruction forms

Some of the defined instructions have invalid forms. An instruction form is invalid if one or
more fields of the instruction, excluding the opcode field(s), are coded incorrectly in a
manner that can be deduced by examining only the instruction encoding.

Attempts to execute an invalid form of an instruction either causes an illegal instruction type
program interrupt or yields boundedly undefined results. Any exceptions to this rule are
stated in the instruction descriptions.

138/1176

Instruction model RMO0004

3.2.3

139/1176

Some kinds of invalid form instructions can be deduced just from examining the instruction
layout. These are listed below.

® Field shown as reserved but coded as nonzero
@ Field shown as containing a particular value but coded as some other value

These invalid forms are not discussed further.

Other invalid instruction forms can be deduced by detecting an invalid encoding of one or
more of the instruction operand fields. These kinds of invalid form are identified in the
instruction descriptions.

® Branch conditional and branch conditional extended instructions (undefined encoding
of BO field)

Load with update instructions (rD = rA or rA = 0)

Store with update instructions (rA = 0)

Load multiple instruction (rA or rB in range of registers to be loaded)
Load string immediate instructions (rA in range of registers to be loaded)
Load string indexed instructions (rD = rA or rD = rB)

Load/store floating-point with update instructions (rA = 0)

Addressing modes

This section describes conventions for addressing memory and for calculating effective
addresses (EAs) as defined by the Book E architecture for 32-bit implementations.

Memory addressing

A program references memory using the effective address computed by the processor when
it executes a memory access or branch instruction (or other instructions as described in
Chapter : User-level cache instructions on page 180,” and Chapter : Supervisor-level cache
instruction on page 183, or when it fetches the next sequential instruction.

Memory operands

Bytes in memory are numbered consecutively starting with 0. Each number is the address
of the corresponding byte.

Memory operands may be bytes, half words, words or, for the load/store multiple and
load/store string instructions, a sequence of words or bytes. The address of a memory
operand is the address of its first byte (that is, of its lowest-numbered byte). Byte ordering
can be either big endian or little endian (see Chapter : Byte ordering on page 141”). The
default byte and bit ordering is big endian.

Operand length is implicit for each instruction with respect to memory alignment. The
operand of a scalar memory access instruction has a natural alignment boundary equal to
the operand length. In other words, the natural address of an operand is an integral multiple
of the operand length. A memory operand is said to be aligned if it is aligned at its natural
boundary; otherwise it is said to be misaligned. For more information about alignment, see
Chapter 3.1.2: Alignment and misaligned accesses on page 133”

Effective address calculation

The 32-bit address computed by the processor when executing a memory access or branch
instruction (or certain other instructions described in User-level cache instructions on
page 180, Supervisor-level cache instruction,” and Supervisor-level tlb management

574

RMO0004

Instruction model

instructions on page 183’), or when fetching the next sequential instruction, is called the
effective address (EA) and specifies a byte in memory. For a memory access instruction, if
the sum of the EA and the operand length exceeds the maximum EA, the memory access is
considered to be undefined.

Effective address arithmetic, except for next sequential instruction address computations,
wraps around from the maximum address, 23°— 1, to address 0.

Data memory addressing modes

Book E supports the following data memory addressing modes:

® Base+displacement addressing mode—The 16-bit D field is sign-extended and added
to the contents of the GPR designated by rA or to zero if rA = 0. Instructions that use
this addressing mode are of the D instruction format.

® Base+index addressing mode—The contents of the GPR designated by rB (or the
value 0 for Iswi and stswi) are added to the contents of the GPR designated by rA or to
zero if rA = 0. Instructions that use this addressing mode are of the X instruction
format.

® Base+displacement extended addressing mode—The 12-bit DE field is sign-extended
and added to the contents of the GPR designated by rA or to zero if rA = 0 to produce
the 32-bit EA. Instructions that use this addressing mode are of the DE instruction
format.

® Base+displacement extended scaled addressing mode—The 12-bit DES field is
concatenated on the right with zeros, sign-extended, and added to the contents of the
GPR designated by rA or to zero if rA = 0 to produce the 32-bit EA. Instructions that
use this addressing mode are of the DES instruction format.

In addition, APUs may provide additional addressing modes.
Instruction memory addressing modes

Instruction memory addressing modes correspond with instructions forms, as follows:

@ |-form branch instructions—The 24-bit LI field is concatenated on the right with 0b00,
sign-extended, and then added to either the address of the branch instruction if AA = 0,
orto0if AA=1.

® Taken B-form branch instructions—The 14-bit BD field is concatenated on the right with
0b00, sign-extended, and then added to either the address of the branch instruction if
AA=0,orto 0if AA=1.

® Taken XL-form branch instructions—The contents of bits LR[32—-61] or CR[32—61] are
concatenated on the right with Ob0O.

® Sequential instruction fetching (or non-taken branch instructions)—The value 4 is
added to the address of the current instruction to form the 32-bit EA of the next
instruction. If the address of the current instruction is OxXFFFF_FFFC, the address of the
next sequential instruction is undefined.

® Any branch instruction with LK = 1—The value 4 is added to the address of the current
instruction and the 32-bit result is placed into the LR. If the address of the current
instruction is OXFFFF_FFFC, the result placed into the LR is undefined.

Although some implementations may support next sequential instruction address
computations wrapping from the highest address OxFFFF_FFFC to 0x0000_0000 as part of
the instruction flow, users are strongly encouraged not to depend on this behavior. Doing so
can reduce the portability of their software. If code must span this boundary, software should
place a non-linking branch at address OxFFFF_FFFC, which always branches to address

140/1176

Instruction model RMO0004

141/1176

0x0000_0000 (either absolute or relative branches work).
See also Appendix D: Guidelines for 32-bit book E on page 1154”

Byte ordering

If scalars (individual data items and instructions) were indivisible, there would be no such
concept as byte ordering. It is meaningless to consider the order of bits or groups of bits
within the smallest addressable unit of memory, because nothing can be observed about
such order. Only when scalars, which the programmer and processor regard as indivisible
quantities, can comprise more than one addressable unit of memory does the question of
order arise.

For a machine in which the smallest addressable unit of memory is the 64-bit double word,
there is no question of the ordering of bytes within double words. All transfers of individual
scalars between registers and memory are of double words, and the address of the byte
containing the high-order 8 bits of a scalar is no different from the address of a byte
containing any other part of the scalar.

For Book E, as for most computer architectures currently implemented, the smallest
addressable unit of memory is the 8-bit byte. Many scalars are half words and words (double
words in 64-bit implementations) which consist of groups of bytes. When a word-length
scalar is moved from a register to memory, the scalar occupies four consecutive byte
addresses. It thus becomes meaningful to discuss the order of the byte addresses with
respect to the value of the scalar: which byte contains the highest-order eight bits of the
scalar, which byte contains the next-highest-order 8 bits, and so on.

Given a scalar that contains multiple bytes, the choice of byte ordering is essentially
arbitrary. There are 4! = 24 ways to specify the ordering of 4 bytes within a word but only two
of these orderings are sensible:

® The ordering that assigns the lowest address to the highest-order (left-most) 8 bits of
the scalar, the next sequential address to the next-highest-order eight bits, and so on.
This ordering is called big endian because the big (most-significant) end of the scalar,
considered as a binary number, comes first in memory. The 68000 is an example of a
processor using this byte ordering.

® The ordering that assigns the lowest address to the lowest-order (right-most) 8 bits of
the scalar, the next sequential address to the next-lowest-order eight bits, and so on.
This ordering is called little endian because the little (least-significant) end of the scalar,
considered as a binary number, comes first in memory. The Intel 8086 is an example of
a processor using this byte ordering.

Book E provides support for both big- and little-endian byte ordering in the form of a memory
attribute. See Chapter 5.4.8: Permission attributes on page 315, and Chapter 5.2.1:
Memory/Cache access attributes on page 283”

Synchronization requirements

This section describes synchronization requirements for special registers and TLBs.
Changing the value in certain system registers and invalidating TLB entries can have the
side effect of altering the context in which data addresses and instruction addresses are
interpreted, and in which instructions are executed. For example, changing MSR[IS] =0 to
and MSR][IS] = 1 has the side effect of changing address space. Such effects need not
occur in program order (program order refers to the execution of instructions in the strict
order in which they occur in the program), and therefore may require explicit synchronization
by software.

574

RMO0004

Instruction model

Note:

An instruction that alters the context in which data addresses or instruction addresses are
interpreted, or in which instructions are executed, is called context altering. This section
covers all such context-altering instructions. The required software synchronization for each
is shown in Table 64.

The notation ‘CSI’ in the tables means any context-synchronizing instruction (such as, sc,
isync, rfci, or rfi). A context-synchronizing interrupt (that is, any interrupt except non-
recoverable machine check) can be used instead of a context-synchronizing instruction. If it
is, phrases like ‘the synchronizing instruction, below, should be interpreted as meaning the
instruction at which the interrupt occurs. If no software synchronization is required before
(after) a context-altering instruction, “the synchronizing instruction before (after) the context-
altering instruction” should be interpreted as meaning the context-altering instruction itself.

The synchronizing instruction before the context-altering instruction ensures that all
instructions up to and including that synchronizing instruction are fetched and executed in
the context that existed before the alteration. The synchronizing instruction after the context-
altering instruction ensures that all instructions after that synchronizing instruction are
fetched and executed in the context established by the alteration. Instructions after the first
synchronizing instruction, up to and including the second synchronizing instruction, may be
fetched or executed in either context.

If a sequence of instructions contains context-altering instructions and contains no
instructions that are affected by any of the context alterations, no software synchronization
is required within the sequence.

Sometimes advantage can be taken of the fact that certain instructions that occur naturally
in the program, such as the rfi/rfci at the end of an interrupt handler, provide the required
synchronization.

No software synchronization is required before altering the MSR (except perhaps when
altering the WE bit: see the tables), because mtmsr is execution synchronizing. No software
synchronization is required before most of the other alterations shown in the “Instruction
fetch and/or execution” section in Table 64, because all instructions before the context-
altering instruction are fetched and decoded before the context-altering instruction executes
(the processor must determine whether any of the preceding instructions are context
synchronizing)

Table 64 identifies the software synchronization requirements for data access for all context-
altering instructions.

Table 64. Synchronization requirements

Context altering instruction or event Required before Required after Notes
Data Accesses

interrupt None None
mtmsr (DS) None csl
mtmsr (ME) None (of3]] (1)
mtmsr (PR) None CSl
mtspr (DAC1, DAC2, DVC1, DVC2) — — @
mtspr (DBCRO, DBCR2) — — 2
mtspr (DBSR) — — 2

142/1176

Instruction model

RMO0004

143/1176

Table 64. Synchronization requirements (continued)
Context altering instruction or event Required before Required after | Notes

mtspr (PIDn) (O] (O]

rfci None None

rfi None None

sc None None

tibivax csl CSl or msync (3),(4)
tibwe csl CSl or msync 3.4
Instruction fetch and/or execution

Interrupt None None

mtmsr (CE) None None ()
mtmsr (DE) None CSli

mtmsr (EE) None None 3
mtmsr (FEO) None CSl

mtmsr (FE1) None CsSl

mtmsr (FP) None Csl

mtmsr (IS) None csl (6)
mtmsr (ME) None csl 1
mtmsr (PR) None CSli

mtmsr (WE) — —)
mtspr (DBCRO, DBCR1) — — 2
mtspr (DBSR) — — 2
mtspr (DEC) None None (8)
mtspr (IAC1, IAC2, IAC3, IAC4) — — 2
mtspr (IVORI) None None

mtspr (IVPR) None None

mtspr (PID) None csl 6
mtspr (TCR) None None 8
mtspr (TSR) None None 8
rfci None None

rfi None None

sc None None

tibivax None CSl or msync 3.4
tibwe None CSl or msync 34
wrtee None None 5
wrteei None None 5

RMO0004

Instruction model

1. A context synchronizing instruction is required after altering MSR[ME] to ensure that the alteration takes
effect for subsequent machine check interrupts, which may not be recoverable and therefore may not be
context synchronizing.

2. Synchronization requirements for changing any of the debug registers are implementation-dependent and
are specified in the user's manual for the implementation.

3. For data accesses, the context synchronizing instruction before the tilbwe or tlbivax instruction ensures
that all storage accesses due to preceding instructions have completed to a point at which they have
reported all exceptions they cause.

The context synchronizing instruction after the tlbwe or tibivax ensures that subsequent storage accesses
(data and instruction) use the updated value in any affected TLB entries. It does not ensure that all storage
accesses previously translated by the TLB entries being updated have completed with respect to storage; if
these completions must be ensured, the tlbwe or tlbivax must be followed by an msync instruction as well
as by a context synchronizing instruction.

The following sequence shows why it is necessary for data accesses to ensure that all storage accesses
due to instructions before a tlbwe or tlbivax have completed to a point at which they have reported all
exceptions they will cause. Assume that valid TLB entries exist for the target storage location when the
sequence starts.

1. A program issues a load or store to a page.

2. The same program executes a tlbwe or tlbivax that invalidates the corresponding TLB entry.

3. The load or store instruction finally executes, and gets a TLB miss exception. The TLB miss exception is
semantically incorrect. In order to prevent it, a context synchronizing instruction must be executed between
steps 1 and 2.

4. Multiprocessor systems have other requirements to synchronize what is called TLB shoot down’ (that is, to
invalidate one or more TLB entries on all processors in the multiprocessor system and to be able to
determine that the invalidations have completed and that all side effects of the invalidations have taken
effect).

5. The effect of changing MSR[EE] or MSR[CE] is immediate.
If an mtmsr, wrtee, or wrteei clears MSR[EE], an external input, decrementer, or fixed-interval timer
interrupt does not occur after the instruction executes.
If an mtmsr, wrtee, or wrteei changes MSR[EE] from 0 to 1 when an external input, decrementer, fixed-
interval timer, or higher priority enabled exception exists, the corresponding interrupt occurs immediately
after the mtmsr, wrtee, or wrteei executes and before the next instruction is executed in the program that
sets MSR[EE].
If an mtmsr clears MSR[CE], a critical input, or watchdog timer interrupt does not occur after the instruction
is executed.
If an mtmsr changes MSR[CE] from 0 to 1 when a critical input, watchdog timer, or higher priority enabled
exception exists, the corresponding interrupt occurs immediately after mtmsr executes, and before the next
instruction is executed in the program that set MSR[CE].

6. The alteration must not cause an implicit branch in real address space. Thus the real address of the
context-altering instruction and of each subsequent instruction, up to and including the next context
synchronizing instruction, must be independent of whether the alteration has taken effect.

7. Synchronization requirements for changing the wait state enable are implementation-dependent, and are
specified in the user’'s manual for the implementation.

8. The elapsed time between the decrementer reaching zero, or the transition of the selected time base bit for
the fixed-interval timer or the watchdog timer, and the signalling of the decrementer, fixed-interval timer or
the watchdog timer exception is not defined.

Context synchronization

An instruction or event is context synchronizing if it satisfies the requirements listed below.
Context-synchronizing operations include instructions isync, sc, rfi, rfci, rfdi, and rfmci,
and most interrupts.

1. The operation is not initiated or, in the case of isync, does not complete until all

instructions already in execution have completed to a point at which they have reported
all exceptions they cause.

2. The instructions that precede the operation complete execution in the context
(including such parameters as privilege level, address space, and memory protection)
in which they were initiated.

3. If the operation directly causes an interrupt (for example, sc directly causes a system
call interrupt) or is an interrupt, the operation is not initiated until no interrupt-causing

144/1176

Instruction model RMO0004

145/1176

exception exists having higher priority than the exception associated with the interrupt.
See Chapter 4.11: Exception priorities on page 278

4. The instructions that follow the operation are fetched and executed in the context
established by the operation as required by the sequential execution model. (This
requirement dictates that any prefetched instructions be discarded and that any effects
and side effects of executing them speculatively may also be discarded, except as
described in Memory access ordering on page 290

A context-synchronizing operation is necessarily execution synchronizing. Unlike msync
and mbar, such operations do not affect the order of memory accesses with respect to other
mechanisms.

Execution synchronization

An instruction is execution synchronizing if it satisfies items 1 and 2 of the definition of
context synchronization .msync is treated like isync with respect to item 1 (that is, the
conditions described in item 1 apply to completion of msync). Execution synchronizing
instructions include msync, mtmsr, wrtee, and wrteei. All context-synchronizing
instructions are execution synchronizing.

Unlike a context-synchronizing operation, an execution synchronizing instruction need not
ensure that the instructions following it execute in the context established by that execution
synchronizing instruction. This new context becomes effective sometime after the execution
synchronizing instruction completes and before or at a subsequent context-synchronizing
operation.

Instruction-related interrupts

Interrupts are caused either directly by the execution of an instruction or by an
asynchronous event. In either case, an exception may cause one of several types of
interrupts to be invoked.

Examples of interrupts that can be caused directly by the execution of an instruction include
but are not limited to the following:

® An attempt to execute a reserved-illegal instruction (illegal instruction exception-type
program interrupt)

® An attempt by an application program to execute a privileged instruction (privileged
instruction exception-type program interrupt)

® An attempt by an application program to access a privileged SPR (privileged instruction
exception-type program interrupt)

® An attempt by an application program to access an SPR that does not exist
(unimplemented operation instruction exception-type program interrupt)

® An attempt by a system program to access an SPR that does not exist (boundedly
undefined)

® Execution of a defined instruction using an invalid form (illegal instruction exception-
type program interrupt, unimplemented operation exception-type program interrupt, or
privileged instruction exception-type program interrupt)

® An attempt to access a memory location that is either unavailable (instruction TLB error
interrupt or data TLB error interrupt) or not permitted (instruction storage interrupt or
data storage interrupt)

® An attempt to access memory with an EA alignment not supported by the
implementation (alignment interrupt)

® Execution of a system call instruction (system call interrupt)

RMO0004

Instruction model

3.3

Note:

3.3.1

® Execution of a trap instruction whose trap condition is met (trap type program interrupt)

® Execution of a floating-point instruction when floating-point instructions are unavailable
(floating-point unavailable interrupt)

® Execution of a floating-point instruction that causes a floating-point enabled exception
to exist (floating-point enabled exception-type program interrupt)

® Execution of a defined instruction that is not implemented by the implementation (illegal
instruction exception or unimplemented operation exception-type program interrupt)

® Execution of an allocated instruction that is not implemented by the implementation
(ilegal instruction exception or unimplemented operation exception-type program
interrupt)

® Execution of an allocated instruction when the auxiliary instruction is unavailable
(auxiliary processor unavailable interrupt).

® Execution of an allocated instruction that causes an auxiliary enabled exception
(enabled exception-type program interrupt).

APUs, such as the SPE, may define additional instruction-caused exceptions and interrupts.
The invocation of an interrupt is precise, except that if one of the imprecise modes for
invoking the floating-point enabled exception-type program interrupt is in effect the
invocation of the floating-point enabled exception-type program interrupt may be imprecise.
When the interrupt is invoked imprecisely, the excepting instruction does not appear to
complete before the next instruction starts (because one of the effects of the excepting
instruction, namely the invocation of the interrupt, has not yet occurred).

Chapter 4: Interrupts and exceptions on page 244 describes interrupt conditions in detail.

Instruction set overview

This section provides a brief overview of the Book E and Book E instructions.

some instructions have the following optional features:
® CR update—The dot (.) suffix on the mnemonic enables the update of the CR.
e Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

Book E user-level instructions

This section discusses the user-level instructions defined in the Book E architecture.

Integer instructions

This section describes the integer instructions. These consist of the following:
® Integer arithmetic instructions

® Integer compare instructions

® Integer logical instructions

® Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into
GPRs and the XER and CR fields.

Integer arithmetic instructions

Table 65 lists the integer arithmetic instructions for the PowerPC processors.

146/1176

Instruction model RMO0004

Table 65. Integer arithmetic instructions

Name Mnemonic Syntax
Add add (add. addo addo.) rD,rA,rB
Add carrying addc (addc. addco addco.) rD,rA,rB
Add extended adde (adde. addeo addeo.) rD,rA,rB
Add immediate addi rD,rA,SIMM
Add immediate carrying addic rD,rA,SIMM
Add immediate carrying and record addic. rD,rA,SIMM
Add immediate shifted addis rD,rA,SIMM
Add to minus one extended addme (addme. addmeo addmeo.) rD,rA
Add to zero extended addze (addze. addzeo addzeo.) rD,rA
Divide word divw (divw. divwo divwo.) rD,rA,rB
Divide word unsigned divwu divwu. divwuo divwuo. rD,rA,rB
Multiply high word mulhw (mulhw.) rD,rA,rB
Multiply high word unsigned mulhwu (mulhwu.) rD,rA,rB
Multiply low immediate mulli rD,rA,SIMM
Multiply low word mullw (mullw. mullwo mullwo.) rD,rA,rB
Negate neg (neg. hego nego.) rD,rA
Subtract from subf (subf. subfo subfo.) rD,rA,rB
Subtract from carrying subfc (subfc. subfco subfco.) rD,rA,rB
Subtract from extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Subtract from immediate carrying subfic rD,rA,SIMM
Subtract from minus one extended subfme (subfme. subfmeo subfmeo.) rD,rA
Subtract from zero extended subfze (subfze. subfzeo subfzeo.) rD,rA

147/1176

Although there is no subtract immediate instruction, its effect can be achieved by using an
addi instruction with the immediate operand negated. Simplified mnemonics are provided
that include this negation. Subtract instructions subtract the second operand (rA) from the
third operand (rB). Simplified mnemonics are provided in which the third operand is
subtracted from the second. See Appendix B: Simplified mnemonics for PowerPC
instructions on page 1110, for examples.

According to Book E, an implementation that executes instructions with the overflow
exception enable bit (OE) set or that sets the carry bit (CA) can either execute these
instructions slowly or prevent execution of the subsequent instruction until the operation
completes. The summary overflow (SO) and overflow (OV) bits in the XER are set to reflect
an overflow condition of a 32-bit result only if the instruction’s OE bit is set.

Integer compare instructions

The integer compare instructions algebraically or logically compare the contents of register
rA with either the zero-extended value of the UIMM operand, the sign-extended value of the
SIMM operand, or the contents of rB. The comparison is signed for empi and emp and

574

Instruction model

unsigned for cmpli and empl. Table 66 lists integer compare instructions. Note that the L bit
must be 0 for 32-bit implementations.

Table 66. Integer 32-Bit compare instructions (L = 0)

Name Mnemonic Syntax
Compare cmp crD,L,rA,rB
Compare immediate cmpi crD,L,rA,SIMM
Compare logical cmpl crD,L,rA,rB
Compare logical immediate cmpli crD,L,rA,UIMM

The crD operand can be omitted if the result of the comparison is to be placed in CRO.
Otherwise the target CR field must be specified in crD by using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see Appendix
B: Simplified mnemonics for PowerPC instructions on page 1110

Integer logical instructions

The logical instructions shown in Table 67 perform bit-parallel operations on the specified
operands. Logical instructions with the CR updating enabled (uses dot suffix) and
instructions andi. and andis. set CR field CRO to characterize the result of the logical
operation. Logical instructions do not affect XER[SO], XER[OV], or XER[CA].

See Appendix B,” for simplified mnemonic examples for integer logical operations.

Table 67. Integer logical instructions
Name Mnemonic Syntax Implementation notes

AND and (and.) rA,rS,rB —

AND Immediate andi. rA,rS,UlM |—
M

AND Immediate Shifted |andis. rAyrS,UIM | —
M

AND with Complement andc (andc.) rA,rS,rB —

Count Leading Zeros cntlzw (cntlzw. |rA,rS —

Word)

Equivalent eqv (eqv.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) |rA,rS —

Extend Sign Half Word extsh (extsh.) |rA,rS —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

OR or (or.) rA,rS,rB —

OR Immediate ori rA,rS,UIM | Book E defines ori r0,r0,0 as the
M preferred form for a no-op. The dispatcher

may discard this instruction and dispatch
it only to the completion queue but not to
any execution unit.

148/1176

Instruction model RMO0004

Table 67. Integer logical instructions (continued)
Name Mnemonic Syntax Implementation notes
OR Immediate Shifted oris rA,rS,UlM |—
M
OR with Complement orc (orc.) rA,rS,rB —
XOR xor (xor.) rA,rS,rB —
XOR Immediate XOri rArS,UIM | —
M
XOR Immediate Shifted | xoris rA,rS,UlM |—
M

Integer rotate and shift instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the
result, is returned to a GPR. Integer rotate instructions, summarized in Table 68, rotate the
contents of a register. The result is either inserted into the target register under control of a
mask (if a mask bit is set the associated bit of the rotated data is placed into the target
register, and if the mask bit is cleared the associated bit in the target register is unchanged)
or ANDed with a mask before being placed into the target register. Appendix B: Simplified
mnemonics for PowerPC instructions on page 1110, lists simplified mnemonics that allow
simpler coding of often used functions such as clearing the left- or right-most bits of a
register, left or right justifying an arbitrary field, and simple rotates and shifts.

Table 68. Integer rotate instructions

Name Mnemonic Syntax

Rotate left word Immediate then AND with mask

riwinm (rlwinm.)

rA,rS,SH,MB,ME

Rotate left word then AND with mask

rlwnm (rlwnm.)

rA,rS,rB,MB,ME

Rotate left word Immediate then mask insert

riwimi (rlwimi.)

rA,rS,SH,MB,ME

The integer shift instructions (Table 69) perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain
rotate instructions. Simplified mnemonics (shown in Appendix B: Simplified mnemonics for
PowerPC instructions”) are provided to simplify coding of such shifts.

Multiple-precision shifts can be programmed as shown in C.2: Multiple-precision shifts on
page 1148 The integer shift instructions are summarized in Table 69.

Table 69. Integer shift instructions

Name Mnemonic Syntax
Shift Left Word slw (slw.) rA,rS,rB
Shift Right Word Srw (Srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

Floating-point instructions

This section describes the floating-point instructions as they are defined by Book E.

149/1176

RMO0004 Instruction model

The rules followed in assigning new primary and extended opcodes.

® Primary opcode 63 is used for the double-precision arithmetic instructions as well as
miscellaneous instructions (for example, FPSCR manipulation instructions). Primary
opcode 59 is used for the single-precision arithmetic instructions.

® The single-precision instructions for which there is a corresponding double-precision
instruction have the same format and extended opcode as that double-precision
instruction.

® In assigning new extended opcodes for primary opcode 63, the following regularities
are maintained. In addition, all new X-form instructions in primary opcode 63 have bits
21-22 = 11.
— Bit26 =1 if and only if the instruction is A-form.

— Bits 26—29 = 0b0000 if and only if the instruction is a comparison or mcrfs (if and
only if the instruction sets an explicitly designated CR field).

— Bits 26—28 = 0b001 if and only if the instruction explicitly refers to or sets the
FPSCR (that is, is an FPSCR instruction) and is not mcrfs.

— Bits 26-30 = 0b01000 if and only if the instruction is a move register instruction, or
any other instruction that does not refer to or set the FPSCR.

® In assigning extended opcodes for primary opcode 59, the following regularities have
been maintained. They are based on those rules for primary opcode 63 that apply to
the instructions having primary opcode 59. In particular, primary opcode 59 has no
FPSCR instructions, so the corresponding rule does not apply.

— If there is a corresponding instruction with primary opcode 63, its extended
opcode is used.

— Bit26 =1 if and only if the instruction is A form.

— Bits 26-30 = 0b01000 if and only if the instruction is a move register instruction, or
any other instruction that does not refer to or set the FPSCR.

Floating-point load instructions

There are two basic forms of load instruction: single-precision and double-precision.
Because the FPRs support only floating-point double format, single-precision load floating-
point instructions convert single-precision data to double format prior to loading the operand
into the target FPR. The conversion and loading steps are as follows.

Let WORD.31 be the floating-point single-precision operand accessed from memory.

Normalized Operand
if WORD;.g > 0 and WORD,.g < 255 then
FPR (frD),,; « WORD,,;
FPR (frD), < —WORD;
FPR (frD); <« —WORD;
FPR (frD), <« —WORD;
5

(
(
(
FPR (£rD)s.c3 < WORD,.5; Il %0

)
)
)
)
Denormalized Operand
if WORD;.g = 0 and WORDg.3; # O then
sign < WORD,
exp <« -126
fracy.c, < 0bO Il WORDg.5; Il 2°0
normalize the operand

do while fracy, = 0
frac « fracy.s, |l 0bO

Ky_l 150/1176

Instruction model

RMO0004

151/1176

exp <« exp - 1
FPR(frD), < sign
FPR(£frD),.,; < exp + 1023
FPR(£rD) 15.63 ¢ fracp.c,

Zero/Infinity/NaN

if WORD;,g = 255 or WORD;.;; = 0 then
FPR (£xD),,; < WORD,,;
FPR (£xD), < WORD;

FPR (£xrD); < WORD;

FPR (£xD), < WORD;

FPR(£frD) .43 < WORD,.5; Il 0

For double-precision load floating-point instructions, conversion is not required because the

data from memory is copied directly into the FPR.

Many floating-point load instructions have an update form, in which GPR(rA) is updated with
the EA. For these forms, if rA=0 and rA=rD, the EA is placed into GPR(rA) and the memory
element (byte, half word, word, or double word) addressed by EA is loaded into FPR(rD). If

rA=0 or rA=rD, the instruction form is invalid.

Floating-point load accesses cause a data storage interrupt if the program is not allowed to
read the location. Floating-point load memory accesses cause a data TLB error interrupt if
the program attempts to access memory that is unavailable. The floating-point load

instruction set is shown in Table 70.

Table 70. Floating-point load instruction set

Instruction Mnemonic Syntax
Load Floating-Point Double Ifd frD,D(rA)
Load Floating-Point Double with Update Ifdu frD,D(rA)
Load Floating-Point Double Extended Ifde frD,DES(rA)
Load Floating-Point Double with Update Extended Ifdue frD,DES(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB
Load Floating-Point Double Indexed Extended Ifdxe frD,rA,rB
Load Floating-Point Double with Update Indexed Extended Ifduxe frD,rA,rB
Load Floating-Point Single Ifs frD,D(rA)
Load Floating-Point Single with Update Ifsu frD,D(rA)
Load Floating-Point Single Extended Ifse frD,DES(rA)
Load Floating-Point Single with Update Extended Ifsue frD,DES(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB
Load Floating-Point Single Indexed Extended Ifsxe frD,rA,rB
Load Floating-Point Single with Update Indexed Extended Ifsuxe frD,rA,rB

Floating-point store instructions

RMO0004

Instruction model

There are three basic forms of store instruction: single-precision, double-precision, and
integer. The integer form is provided by the optional store floating-point as integer word
instruction (stfiwx), described in Chapter 6: Instruction set on page 330 Because the
FPRs support only floating-point double format for floating-point data, single-precision store
floating-point instructions convert double-precision data to single-precision format before
storing the operand. The conversion steps are as follows.

Let WORDy.3¢ be the word in memory written to.

No Denormalization Required (includes Zero / Infinity / NaN)
if FPR(FRS);.;; > 896 or FPR(FRS);,,3 = O then

WORD,.; < FPR(FRS),.;

WORD,.5; < FPR(FRS)s.3,

Denormalization Required
if 874 < FRS;,;; < 896 then
sign <« FPR(FRS),
exp « FPR(FRS),;; - 1023
frac <« Obl Il FPR(FRS) ;.43
denormalize operand
do while exp < -126
frac <« 0bo0 Il fracg.e,
exp <« exp + 1
WORD, <« sign
WORD;,g « 0x00
WORDg.53; <« fraci.,;
else WORD « undefined

Note that if the value to be stored by a single-precision store floating-point instruction
exceeds the maximum number representable in single-precision format, the first case above
(no denormalization required) applies. The result stored in WORD is then a well-defined
value, but is not numerically equal to the value in the source register (that is, the result of a
single-precision load floating-point from WORD does not compare equal to the contents of
the original source register).

For double-precision store floating-point instructions and for the Store Floating-Point as
Integer Word instruction, no conversion is required, as the data from the FPR is copied
directly into memory.

Many floating-point store instructions have an update form, in which GPR(rA) is updated
with the EA. For these forms, if rA+=0, the EA is placed into GPR(rA).

Floating-point store accesses cause a data storage interrupt if the program is not allowed to
write to the location. Integer store accesses cause a data TLB error interrupt if the program
attempts to access memory that is unavailable. Store instructions are shown in Table 71.

Book E supports both big-endian and little-endian byte ordering.

Table 71. Floating-point store instructions

Instruction Mnemonic Syntax
Store floating-point double stfd frS,D(rA)
Store floating-point double with update stfdu frS,D(rA)
Store floating-point double extended stfde frS,DES(rA)
Store floating-point double with update extended stfdue frS,DES(rA)
152/1176

Instruction model

RMO0004

153/1176

Table 71. Floating-point store instructions (continued)

Instruction Mnemonic Syntax
Store floating-point double indexed stfdx frS,rA,rB
Store floating-point double with update indexed stfdux frS,rA,rB
Store floating-point double indexed extended stfdxe frS,rA,rB
Store floating-point double with update indexed extended stfduxe frS,rA,rB
Store floating-point as integer word indexed stfiwx frS,rA,rB
Store floating-point as integer word indexed extended stfiwxe frS,rA,rB
Store floating-point single stfs frS,D(rA)
Store floating-point single with update stfsu frS,D(rA)
Store floating-point single extended stfse frS,DES(rA)
Store floating-point single with update extended stfsue frS,DES(rA)
Store floating-point single indexed stfsx frS,rA,rB
Store floating-point single with update indexed stfsux frS,rA,rB
Store floating-point single indexed extended stfsxe frS,rA,rB
Store floating-point single with update indexed extended stfsuxe frS,rA,rB

Floating-point move instructions

Described in Table 72, these instructions copy data from one FPR to another, altering the
sign bit (bit 0) as described below for fneg, fabs, and fnabs. These instructions treat NaNs
just like any other kind of value (for example, the sign bit of a NaN may be altered by fneg,

fabs, and fnabs). These instructions do not alter the FPSCR.

Table 72. Floating-point move instructions

Instruction Mnemonic Syntax
Floating Absolute Value fabs|.] frD,frB
Floating Move Register fmr[.] frD,frB
Floating Negative Absolute Value fnabs].] frD,frB
Floating Negate fnegl.] frD,frB

RMO0004 Instruction model

Floating-point arithmetic instructions

The following sections describe elementary arithmetic, multiply-add, rounding/conversion,
compare, and status/control instructions.

Floating-point elementary arithmetic instructions

Table 73 lists mnemonics and syntax of floating-point elementary arithmetic instructions.

Table 73. Floating-point elementary arithmetic instructions

Instruction Mnemonic Syntax
Floating add fadd[.] frD,frA,frB
Floating add single fadds].] frD,frA,frB
Floating divide fdiv[.] frD,frA,frB
Floating divide single fdivsl[.] frD,frA,frB
Floating multiply fmul[.] frD,frA,frC
Floating multiply single fmulsl.] frD,frA,frC
Floating reciprocal estimate single fres[.] frD,frB
Floating reciprocal square root estimate frsqrtel.] frD,frB
Floating square root fsqrt[.] frD,frB
Floating square root single fsqrts|.] frD,frB
Floating subtract fsubl.] frD,frA,frB
Floating subtract single fsubs|.] frD,frA,frB

Floating-point multiply-add instructions
These instructions combine a multiply and an add operation without an intermediate
rounding operation. FPSCR status bits, described in Table 74 are set as follows:

® Overflow, underflow, and inexact exception bits, the FR, Fl, and FPRF fields are set
based on the final result of the operation, not on the result of the multiplication.

® Invalid operation exception bits are set as if the multiplication and the addition were
performed using two separate instructions (fmul[s], followed by fadd[s] or fsub[s]).
That is, any of the following actions will cause appropriate exception bits to be set:

— Multiplication of infinity by O
— Multiplication of anything by an SNaN
— Addition of anything with an SNaN

Table 74. Floating-point multiply-add instructions

Instruction Mnemonic Instruction
Floating Multiply-Add fmadd[.] frD,frA,frB,frC
Floating Multiply-Add Single fmadds|.] frD,frA,frB,frC
Floating Multiply-Subtract fmsub.] frD,frA,frB,frC
Floating Multiply-Subtract Single fmsubs|.] frD,frA,frB,frC
Floating Negative Multiply-Add fnmadd][.] frD,frA,frB,frC

Ky_l 154/1176

Instruction model

RMO0004

155/1176

Table 74. Floating-point multiply-add instructions (continued)

Instruction Mnemonic Instruction
Floating Negative Multiply-Add Single fnmadds|.] frD,frA,frB,frC
Floating Negative Multiply-Subtract fnmsubl.] frD,frA,frB,frC
Floating Negative Multiply-Subtract Single fnmsubs|.] frD,frA,frB,frC

Floating-point rounding and conversion instructions

Table 75. Floating-point rounding and conversion instructions

Instruction Mnemonic Syntax
Floating Convert from Integer Double Word fcfid frD,frB
Floating Convert to Integer Double Word fetid frD,frB
Floating Convert to Integer Double word and round to Zero fctidz frD,frB
Floating Convert to Integer Word fetiwl.] frD,frB
Floating Convert to Integer Word and Round to Zero fetiwz[.] frD,frB
Floating Round to Single-Precision frsp[.] frD,frB

Floating-point compare instructions

The floating-point compare instructions compare the contents of two FPRs. Comparison
ignores the sign of zero (that is, regards +0 as equal to —0). The comparison result can be
ordered or unordered. The comparison sets one bit in the designated CR field and clears
the other three. The floating-point condition code, FPSCR[FPCC], is set in the same way.

The CR field and the FPCC are set as described in Table 76.

Table 76. CR field settings

Bit Name Description
0 FL (frA) < (frB)

1 FG (frA) > (frB)

2 FE (frA) = (frB)

3 FU (frA) ? (frB) (unordered)

The floating-point compare and select instruction set is shown in Table 77.

Table 77. Floating-point compare and select instructions

Instruction Mnemonic Syntax
Floating Compare Ordered fcmpo crD,frA,frB
Floating Compare Unordered fempu crD,frA,frB
Floating Select fsel frD,frA,frB,frC
fsel. frD,frA,frB,frC

RMO0004

Instruction model

Floating-point status and control register instructions

Every FPSCR instruction synchronizes the effects of all floating-point instructions executed

by a given processor. Executing a FPSCR instruction ensures that all floating-point

instructions previously initiated by the given processor have completed before the FPSCR

instruction is initiated, and that no subsequent floating-point instructions are initiated by the

given processor until the FPSCR instruction completes. In particular:

® All exceptions caused by the previously initiated instructions are recorded in the
FPSCR before the FPSCR instruction is initiated.

® Allinvocations of floating-point enabled exception-type program interrupt that will be
caused by the previously initiated instructions have occurred before the FPSCR
instruction is initiated.

® No subsequent floating-point instruction that depends on or alters the settings of any
FPSCR bits is initiated until the FPSCR instruction has completed.

Floating-point load and floating-point store instructions (Table 78) are not affected.

Table 78. Floating-point status and control register instructions

Instruction Mnemonic Syntax
Move from FPSCR mffs frD
mffs. frD
Move to FPSCR Bit 0 mtfsb0 crbD
mtfsbO0. crbD
Move to FPSCR Bit 1 mtfsb1 crbD
mtfsb1. crbD
Move to FPSCR Fields mtfsf FM,frB
mtfsf. FM,frB
Move to FPSCR Field Immediate mtfsfi crD,IMM
mtfsfi. crD,IMM

Load and store instructions

Load and store instructions are issued and translated in program order; however, the
accesses can occur out of order. Synchronizing instructions are provided to enforce strict
ordering. The following load and store instructions are defined:

Integer load instructions

Integer store instructions

Integer load and store with byte-reverse instructions

Integer load and store multiple instructions

Memory synchronization instructions

SPE APU load and store instructions for reading and writing 64-bit GPRs. Some of
these instructions are also implemented by processors that support the embedded
vector single-precision and embedded scalar double-precision floating-point APUs,
which use the extended 64-bit GPRs. See Chapter 3.6.1 on page 186"

Self-modifying code

When a processor modifies any memory location that can contain an instruction, software
must ensure that the instruction cache is made consistent with data memory and that the

156/1176

Instruction model RMO0004

157/1176

modifications are made visible to the instruction fetching mechanism. This must be done
even if the cache is disabled or if the page is marked caching-inhibited.

The following instruction sequence can be used to accomplish this when the instructions
being modified are in memory that is memory-coherence required and one processor both
modifies the instructions and executes them. (Additional synchronization is needed when
one processor modifies instructions that another processor will execute.)

The following sequence synchronizes the instruction stream (using either dcbst or dcbf):

dcbst (or dcbf) |update memory

msync |wait for update

icbi |remove (invalidate) copy in instruction cache
msync |ensure the ICBI invalidate is complete

isync |remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Because
instruction fetching bypasses the data cache, changes to items in the data cache cannot be
reflected in memory until the fetch operations complete. The msync after the icbi is
required to ensure that the icbi invalidation has completed in the instruction cache.

Special care must be taken to avoid coherency paradoxes in systems that implement unified
secondary caches, and designers should carefully follow the guidelines for maintaining
cache coherency discussed in the user’s manual.

Integer load and store address generation

Integer load and store operations generate EAs using register indirect with immediate index
mode, register indirect with index mode, or register indirect mode, which are described as
follows:

® Register indirect with immediate index addressing for integer loads and stores.
Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand), which is sign extended and added to the contents of a general-purpose
register specified in the instruction (rA operand), to generate the EA. If r0 is specified, a
value of zero is added to the immediate index (d operand) in place of the contents of r0.
The option to specify rA or 0 is shown in the instruction descriptions as (rAl0). Figure 6
shows how an EA is generated using this mode.

RMO0004

Instruction model

Register indirect with immediate index addressing for integer

Figure 6.
loads/stores
0 56 1011 15 16 31
Instruction Encoding: Opcode | rD/rS rA d
0 1516 Y 31
Sign Extension d
Yes
rA=07? =E l
Y -
No +
32 63 0 31
GPR (rA) Effective Address
32 63 Store l
Memor
GPR (rD/rS) ~ Load Intortacy

Register indirect with index addressing for integer loads and stores. Instructions using

°
this mode cause the contents of two GPRs (specified as operands rA and rB) to be
added in the EA generation. A zero in place of the rA operand causes a zero to be
added to the GPR contents specified in operand rB. The option to specify rA or O is
shown in the instruction descriptions as (rAl0). Figure 7 shows how an EA is generated
using this mode.

Figure 7. Register indirect with index addressing for integer loads/stores

0 56 1011 1516 20 21 30 31
[] Reserved Instruction Encoding: Opcode |rD/FS | rA rB |Subopcode [0
l 0 v 31
GPR (rB)
Yes n l
No *
32 63 0 31
GPR (rA) Effective Address
Y
32 63
Store Memory
GPR (rD/rS) B Load Interface
® Register indirect addressing for integer loads and stores. Instructions using this

addressing mode use the contents of the GPR specified by the rA operand as the EA.

158/1176

Instruction model RMO0004

159/1176

A zero in the rA operand generates an EA of zero. The option to specify rA or 0 is
shown in the instruction descriptions as (rAl0). Figure 8 shows how an EA is generated
using this mode.

Figure 8. Register indirect addressing for integer loads/stores

[] Reserved 0 56 1011 1516 2021 30 31
Instruction Encoding: Opcode | rD/fS | rA NB Subopcode | 0

Yes 0 31
— | 00000000000000000000000000000000

32 No 63
GPR (rA)
0 Y 31
> Effective Address
3 63 Store - Me%nory
GPR (rD/rS) - Load Interface

See Effective address calculation on page 139, for information about calculating EAs. Note
that in some implementations, operations that are not naturally aligned can suffer
performance degradation. Chapter 4.7.6: Alignment interrupt on page 263, for additional
information about load and store address alignment interrupts.

Register indirect integer load instructions

For integer load instructions, the byte, half word, or word addressed by the EA is loaded into
rD. Many integer load instructions have an update form, in which rA is updated with the
generated EA. For these forms, if rA = 0 and rA = rD (otherwise invalid), the EA is placed
into rA and the memory element (byte, half word, or word) addressed by the EA is loaded
into rD. Note that the Book E architecture defines load with update instructions with operand
rA =0 orrA =D as invalid forms.

Integer load instructions

Table 79. Integer load instructions

Name Mnemonic Syntax
Load Byte and Zero Ibz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,rB
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Half Word and Zero Ihz rD,d(rA)
Load Half Word and Zero Indexed lhzx rD,rA,rB

RMO0004

Instruction model

Table 79. Integer load instructions (continued)

Name Mnemonic Syntax
Load Half Word and Zero with Update lhzu rD,d(rA)
Load Half Word and Zero with Update Indexed Ihzux rD,rA,rB
Load Half Word Algebraic Iha rD,d(rA)
Load Half Word Algebraic Indexed Ihax rD,rA,rB
Load Half Word Algebraic with Update Ihau rD,d(rA)
Load Half Word Algebraic with Update Indexed Ihaux rD,rA,rB
Load Word and Zero Iwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update Iwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rA,rB

Integer store instructions

For integer store instructions, the rS contents are stored into the byte, half word, word or
double word in memory addressed by the EA. Many store instructions have an update form

in which rA is updated with the EA. For these forms, the following rules apply:

e |IfrA=0,the EAis placed into rA.

® IfrS =rA, the contents of register rS are copied to the target memory element and the

generated EA is placed into rA (rS).

The Book E architecture defines store with update instructions with rA = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option enabled (Rc
field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 80 summarizes

integer store instructions.

Table 80. Integer store instructions

Name Mnemonic Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,rB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Half Word sth rS,d(rA)
Store Half Word Indexed sthx rS,rA,rB
Store Half Word with Update sthu rS,d(rA)
Store Half Word with Update Indexed sthux rS,rA,rB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rA,rB
Integer load and store with byte-reverse instructions

160/1176

Instruction model

RMO0004

Note:

161/1176

Table 81 describes integer load and store with byte-reverse instructions. These books were
defined in part to support the original PowerPC definition of little-endian byte ordering. Note
that Book E supports true little endian on a per-page basis. For more information, see Byte
ordering on page 141”

Table 81. Integer load and store with byte-reverse instructions
Name Mnemonic Syntax
Load Half Word Byte-Reverse Indexed Ihbrx rD,rA,rB
Load Word Byte-Reverse Indexed Iwbrx rD,rA,rB
Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Integer load and store multiple instructions

The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions can have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions can be
interrupted by a data storage interrupt associated with the address translation of the second
page.

If one of these instructions is interrupted, it may be restarted, requiring multiple memory
accesses.

The Book E architecture defines the Load Multiple Word (Imw) instruction (Table 82) with rA
in the range of registers to be loaded as an invalid form. Load and store multiple accesses
must be word aligned; otherwise, they cause an alignment exception.

Table 82. Integer load and store multiple instructions
Name Mnemonic Syntax
Load Multiple Word Imw rD,d(rA)
Store Multiple Word stmw rS,d(rA)

Integer load and store string instructions

The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results.

Table 83 summarizes the integer load and store string instructions.

Table 83. Integer load and store string instructions
Name Mnemonic Syntax
Load String Word Immediate Iswi rD,rA,NB
Load String Word Indexed Iswx rD,rA,rB
Store String Word Immediate stswi rS,rA,NB
Store String Word Indexed stswx rS,rA,rB
1574

RMO0004 Instruction model

Load string and store string instructions can involve operands that are not word-aligned.
Floating-point load and store address generation

Floating-point load and store operations, listed in Table 84, generate EAs using the register
indirect with immediate index addressing mode and register indirect with index addressing

mode. Floating-point loads and stores are not supported for direct-store accesses. The use
of floating-point loads and stores for direct-store accesses results in an alignment interrupt.

There are two forms of the floating-point load instruction—single-precision and double-
precision operand formats. Because the FPRs support only the floating-point double-
precision format, single-precision floating-point load instructions convert single-precision
data to double-precision format before loading an operand into an FPR.

The floating-point load and store indexed instructions (Ifsx, Ifsux, Ifdx, Ifdux, stfsx, stfsux,
stfdx, and stfdux) are invalid when the Rc bit is one.

The PowerPC architecture defines load with update with rA = 0 as an invalid form.

Table 84. Floating-point load instructions

Name Mnemonic Syntax
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed [fdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB

Floating-point store instructions

This section describes floating-point store instructions. There are three basic forms of the
store instruction—single-precision, double-precision, and integer. The integer form is
supported by the optional stfiwx instruction. Because the FPRs support only double-
precision format for floating-point data, single-precision floating-point store instructions
convert double-precision data to single-precision format before storing the operands.
Table 85 summarizes the floating-point store instructions.

Table 85. Floating-point store instructions

Name Mnemonic Syntax
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frS,rB
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frS,r B
Store Floating-Point Double stfd frS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rB

Ky_l 162/1176

Instruction model RMO0004
Table 85. Floating-point store instructions (continued)
Name Mnemonic Syntax
Store Floating-Point Double with Update stfdu frS,d(rA)
Store Floating-Point Double with Update Indexed stfdux frS,rB
Store Floating-Point as Integer Word Indexed(") stfiwx frS,rB

1. The stfiwx instruction is optional to the Book E architecture.

Some floating-point store instructions require conversions in the LSU. Table 86 shows
conversions the LSU makes when executing a Store Floating-Point Single instruction.

Table 86. Store floating-point single behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Store
Single Zero, infinity, QNaN Store
Single SNaN Store

If (exp < 896) then
Double Normalized denormalize and store,
else store
Double Denormalized Store zero
Double Zero, infinity, QNaN Store
Double SNaN Store

Table 87 shows the conversions made when performing a Store Floating-Point Double
instruction. Most entries in the table indicate that the floating-point value is simply stored.
Only in a few cases are any other actions taken.

Table 87. Store floating-point double behavior

FPR Precision Data Type Action
Single Normalized Store
Single Denormalized Normalize and store
Single Zero, infinity, QNaN Store
Single SNaN Store
Double Normalized Store
Double Denormalized Store
Double Zero, infinity, QNaN Store
Double SNaN Store

Branch and flow control instructions

Some branch instructions can redirect instruction execution conditionally based on the value

of bits in the CR.

163/1176

574

RMO0004

Instruction model

Branch instruction address calculation

Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the Book E processors ignore the two low-order
bits of the generated branch target address. Branch instructions compute the EA of the next
instruction address using the following addressing modes:

® Branch relative

® Branch conditional to relative address

® Branch to absolute address

® Branch conditional to absolute address

® Branch conditional to link register (LR)

® Branch conditional to count register (CTR)

Branch relative addressing mode

Instructions that use branch relative addressing generate the next instruction address by
sign extending and appending 0b00 to the immediate displacement operand LI, and adding
the resultant value to the current instruction address. Branches using this mode have the
absolute addressing option disabled (AA field, bit 30, in the instruction encoding = 0). The
LR update option can be enabled (LK field, bit 31, in the instruction encoding = 1). This
causes the EA of the instruction following the branch instruction to be placed in the LR.
Figure 9 shows how the branch target address is generated using this mode.

Figure 9. Branch relative addressing

0 56 29 30 31
Instruction
Encoding: 18 LI AAILK
0 5 6 Y 29 30 31
Sign Extension LI 0|0
0 31

Current Instruction Address

0 31
Branch Target Address

[] Reserved

Branch conditional to relative addressing mode

If branch conditions are met, instructions that use the branch conditional to relative
addressing mode generate the next instruction address by sign extending and appending
results to the immediate displacement operand (BD) and adding the resultant value to the
current instruction address. Branches using this mode have the absolute addressing option
disabled (AA field, bit 30, in the instruction encoding = 0). The LR update option can be
enabled (LK field, bit 31, in the instruction encoding = 1). This option causes the EA of the
instruction following the branch instruction to be placed in the LR. Figure 10 shows how the
branch target address is generated using this mode.

164/1176

Instruction model RMO0004
Figure 10. Branch conditional relative addressing
0 56 1011 1516 30 31
Instruction Reserved
Encoding: 16 BO BI BD AA|LK]
)
A No © 31
Col\r/l‘g'tgon —>| Next Sequential Instruction Address
Yes
0 1516 29 30 31
Sign Extension BD 0|0
0 31 Y
Current Instruction Address +
0 31
Branch Target Address

Branch to absolute addressing mode

Instructions that use branch to absolute addressing mode generate the next instruction
address by sign extending and appending 0b0O to the LI operand. Branches using this
addressing mode have the absolute addressing option enabled (AA field, bit 30, in the
instruction encoding = 1). The LR update option can be enabled (LK field, bit 31, in the
instruction encoding = 1). This option causes the EA of the instruction following the branch
instruction to be placed in the LR. Figure 11 shows how the branch target address is
generated using this mode.

Figure 11. Branch to absolute addressing

0 56 29 30 31

Instruction
Encoding: 18 LI AALK]
0 56 Y 29 30 31
Sign Extension LI o|o
0] 29 30 3t
Branch Target Address 0|0

165/1176

RMO0004

Instruction model

Branch conditional to absolute addressing mode

If the branch conditions are met, instructions that use the branch conditional to absolute
addressing mode generate the next instruction address by sign extending and appending
0b00 to the BD operand. Branches using this addressing mode have the absolute
addressing option enabled (AA field, bit 30, in the instruction encoding = 1). The LR update
option can be enabled (bit 31 (LK) in the instruction encoding = 1). This option causes the
EA of the instruction following the branch instruction to be placed in the LR. Figure 12
shows how the branch target address is generated using this mode.

Figure 12. Branch conditional to absolute addressing

0 56 1011 1516 29 30 31
Instruction

Encoding: 16 BO BI BD AA|LK

Y
0 31
. No
Condition Next Sequential Instruction Address
Met?
Yes

0 15y 16 29 30 31

Sign Extension BD 0|0

0 Y 29 30 31

Branch Target Address 0|0

Branch conditional to link register addressing mode

If the branch conditions are met, the branch conditional to LR instruction generates the next
instruction address by fetching the contents of the LR and clearing the two low-order bits to
zero. The LR update option can be enabled (LK field, bit 31, in the instruction encoding = 1).
This option causes the EA of the instruction following the branch instruction to be placed in
the LR. Figure 13 shows how the branch target address is generated using this mode.

Figure 13. Branch conditional to link register addressing

0 56 1011 1516 2021 30 31
Enasemor [19 BO | BI |000000 16 [k []Reserved
' 0 31
Condition e Next Sequential Instruction Address
Met?
0 29 30 31
LR ofo0
0 31
Branch Target Address

166/1176

Instruction model RMO0004

Note:

167/1176

Branch conditional to count register addressing mode

If the branch conditions are met, the branch conditional to count register instruction
generates the next instruction address by fetching the contents of the count register (CTR)
and clearing the two low-order bits to zero. The LR update option can be enabled (LK field,
bit 31, in the instruction encoding = 1). This option causes the EA of the instruction following
the branch instruction to be placed in the LR. Figure 14 shows how the branch target
address is generated when using this mode.

Figure 14. Branch conditional to count register addressing

0 56 1011 1516 20 21 30 31
Instruction Reserved
Encoding: 19 BO Bl | 00000 528 LK D
31
Next Sequential Instruction Address
0 30 31
CTR 0|0
0 31
Branch Target Address

Conditional branch control

Some processors do not implement the static branch prediction defined in Book E and
described here. For those processors, the BO operand is ignored for branch prediction.

For branch conditional instructions, the BO operand specifies the conditions under which the
branch is taken. The first four bits of the BO operand specify how the branch is affected by
or affects the condition and count registers. The fifth bit, shown