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Introduction
This reference manual gives an overview of Book E, a version of the PowerPC architecture 
intended for embedded processors. To ensure application level compatibility with the 
PowerPC architecture developed by Apple, IBM, and Freescale, Book E incorporates the 
user level resources defined in the user instruction set architecture (UISA), Book I, of the 
AIM architectural definition.
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About this book

The primary objective of this reference is to provide a view of the programming model 
defined by Book E and the Book E implementation standards (EIS). 

Book E is a PowerPC™ architecture definition for embedded processors that ensures binary 
compatibility with the user instruction set architecture (UISA) portion of the PowerPC 
architecture as it was jointly developed by Apple, IBM, and Motorola (now Freescale 
Semiconductor, Inc.). 

This book should be used with the user documentation for individual implementations; such 
documents provide a high-level summary of the information that appears here, as well as 
implementation-specific features and implementation differences that are not described 
here.

This document distinguishes between the three levels of the architectural and 
implementation definition, as follows: 

● The Book E architecture —Book E defines a set of user-level instructions and registers 
that are drawn from the UISA portion of the AIM definition of the PowerPC architecture. 
Book E also include numerous other supervisor-level registers and instructions as they 
were defined in the AIM version of the PowerPC architecture for the virtual environment 
architecture (VEA) and the operating environment architecture (OEA). 
Because Book E defines a much different model for operating system resources such 
as the MMU and interrupts, it defines many new registers and instructions.

● Book E implementation standards (EIS). In many cases, the Book E architecture 
definition provides a very general framework, leaving many higher-level details up to 
the implementation. 
To ensure consistency among its Book E implementations, working standards were 
defined, providing an additional layer of architecture between Book E and actual 
devices. This layer includes more specific definitions of Book E features as well as 
extensions to the architecture, typically in the form of auxiliary processing units (APUs), 
which define additional registers, instructions, and interrupts that provide specially 
targeted capabilities. Note that some APUs are implementation-specific and are 
available only on individual devices. The APUs described here are those that are 
implemented on multiple processors or families of processors. 
The EIS guarantees that if an APU is implemented, it conforms to the EIS architecture 
described here.

Information in this book is subject to change without notice, as described in the disclaimers 
on the title page of this book. As with any technical documentation, it is the readers’ 
responsibility to be sure they are using the most recent version of the documentation. 

Audience
It is assumed that the reader has the appropriate general knowledge regarding operating 
systems, microprocessor system design, and the basic principles of RISC processing to use 
the information in this manual.
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Organization
Following is a summary and a brief description of the major sections of this manual:

● Part I: Book E and Book E implementation standards,” describes the programming 
model defined by the PowerPC Book E architecture and the EIS. It consists of the 
following chapters:

– Chapter 1: Overview,” provides a general discussion of the programming, 
interrupt, cache, and memory management models as they are defined by Book E 
and the EIS.

– Chapter 2: Register model,” is useful for software engineers who need to 
understand the programming model in general and the functionality of each 
register. 

– Chapter 3: Instruction model,” provides an overview of the addressing modes and 
a description of the instructions. Instructions are organized by function.

– Chapter 4: Interrupts and exceptions,” provides an overview of the Book E– and 
EIS-defined interrupts and exception conditions that can cause them. 

– Chapter 5: Storage architecture,” describes the cache and MMU portions of the 
EIS. 

– Chapter 6: Instruction set,” functions as a handbook for the instruction set. 
Instructions are sorted by mnemonic. Each instruction description includes the 
instruction formats and an individualized legend that provides such information as 
the level or levels of the architecture in which the instruction may be found and the 
privilege level of the instruction. 

● Part II: EIS-defined extensions to the Book E architecture,” describes the auxiliary 
procession units (APUs) defined by the EIS. It consists of the following chapters:

– Chapter 7: Auxiliary processing units (APUs),” describes extensions to the Book E 
architecture defined by the EIS. These include the following:

- Chapter 7.1: Integer select APU”

- Chapter 7.2: Performance monitor APU”

- Chapter 7.3: Signal processing engine APU (SPE APU)”

- Chapter 7.4: Embedded vector and scalar single-precision floating-point APUs 
(SPFP APUs)”

- Chapter 7.5: Machine check APU”

- Chapter 7.6: Debug APU”

– Chapter 8: Storage-related APUs.” describes the following APUs defined by the 
storage architecture:

- Chapter 8.1: Cache line locking APU”

- Chapter 8.2: Direct cache flush APU”

- Chapter 8.3: Cache way partitioning APU”
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Subsequent chapters describe the VLE extension

- Chapter 9: VLE introduction”

- Chapter 10: VLE storage addressing”

- Chapter 11: VLE compatibility with the EIS”

- Chapter 12: VLE instruction classes”

- Chapter 13: VLE instruction set”

- Chapter 14: VLE instruction index”

● The following appendixes are included:

– Appendix A: Instruction set listings,” lists all instructions except those defined by 
the VLE extension instructions by both mnemonic and opcode, and includes a 
quick reference table with general information, such as the architecture level, 
privilege level, form, and whether the instruction is optional. VLE instruction 
opcodes are listed in Section 13: VLE instruction set.”

– Appendix B: Simplified mnemonics for PowerPC instructions,” describes simplified 
mnemonics, which are provided for easier coding of assembly language programs. 
Simplified mnemonics are defined for the most frequently used forms of branch 
conditional, compare, trap, rotate and shift, and certain other instructions defined 
by the PowerPC™ architecture and by implementations of and extensions to the 
PowerPC architecture. 

– Appendix C: Programming examples,” gives examples of how memory 
synchronization instructions can be used to emulate various synchronization 
primitives and to provide more complex forms of synchronization. It also describes 
multiple precision shifts.

– Appendix D: Guidelines for 32-bit book E,” provides guidelines used by 32-bit 
Book E implementations; a set of guidelines is also outlined for software 
developers. Application software written to these guidelines can be labeled 32-bit 
Book E applications and can be expected to execute properly on all 
implementations of Book E, both 32-bit and 64-bit implementations.

– Appendix E: Embedded floating-point results,” provides guidelines used by 32-bit 
Book E implementations; a set of guidelines is also outlined for software 
developers. Application software written to these guidelines can be labeled 32-bit 
Book E applications and can be expected to execute properly on all 
implementations of Book E, both 32-bit and 64-bit implementations.

This book includes a glossary and an index. 
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Suggested reading

This section lists additional reading that provides background for the information in this 
manual as well as general information about the architecture. 

General information
The following documentation, published by Morgan-Kaufmann Publishers, 340 Pine Street, 
Sixth Floor, San Francisco, CA, provides useful information about the PowerPC architecture 
and computer architecture in general:

● The PowerPC Architecture: A Specification for a New Family of RISC Processors, 
Second Edition, by International Business Machines, Inc. 

Related documentation
ST documentation is available from the sources listed on the back cover of this manual; the 
document order numbers are included in parentheses for ease in ordering:

● Reference manuals—These books (formerly called user’s manuals) provide details 
about individual implementations and are intended for use with the EREF. 

● Addenda/errata to reference manuals—Because some processors have follow-on parts 
an addendum is provided that describes the additional features and functionality 
changes. These addenda are intended for use with the corresponding reference 
manuals. 

● Hardware specifications—Hardware specifications provide specific data regarding bus 
timing, signal behavior, and AC, DC, and thermal characteristics, as well as other 
design considerations. 

● Technical summaries—Each device has a technical summary that provides an 
overview of its features. This document is roughly the equivalent to the overview 
(Chapter 1) of an implementation’s reference manual. 

● Application notes—These short documents address specific design issues useful to 
programmers and engineers working with ST processors. 

Additional literature is published as new processors become available.
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Conventions
This document uses the following notational conventions:

         

Table 1. Conventions

Additional conventions used with instruction encodings are described in Table 195. 

Convention Description

cleared/set
When a bit takes the value zero, it is said to be cleared; when it 
takes a value of one, it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold. 

italics
Italics indicate variable command parameters, for example, bcctrx.
Book titles in text are set in italics.

Internal signals are set in italics, for example, qual BG

0x Prefix to denote hexadecimal number

0b Prefix to denote binary number

rA, rB Instruction syntax used to identify what is typically a source GPR

rD Instruction syntax used to identify a destination GPR

frA, frB, frC Instruction syntax used to identify a source FPR

frD Instruction syntax used to identify a destination FPR

REG[FIELD]

Abbreviations for registers are shown in uppercase text. Specific 
bits, fields, or ranges appear in brackets. For example, MSR[LE] 
refers to the little-endian mode enable bit in the machine state 
register.

x
In some contexts, such as signal encodings, an unitalicized x 
indicates a don’t care. 

x An italicized x indicates an alphanumeric variable.

n An italicized n indicates an numeric variable.

¬ NOT logical operator

& AND logical operator

| OR logical operator

||
Concatenation operator; for example, 010 || 111 is the same as 
010111

Indicates a reserved field in a register. Although these bits can be 
written to as ones—
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Acronyms and abbreviations

Table 2 contains acronyms and abbreviations that are used in this document. 

         

Table 2. Acronyms and abbreviated terms 

Term Meaning

CR Condition register 

CTR Count register 

DTLB Data translation lookaside buffer

EA Effective address

ECC Error checking and correction

FPR Floating-point register

FPU Floating-point unit

GPR General-purpose register

IEEE Institute of Electrical and Electronics Engineers

ITLB Instruction translation lookaside buffer

L2 Secondary cache 

LIFO Last-in-first-out

LR Link register 

LRU Least recently used

LSB Least-significant byte

lsb Least-significant bit

MMU Memory management unit

MSB Most-significant byte

msb Most-significant bit

MSR Machine state register 

NaN Not a number

NIA Next instruction address

No-op No operation

OEA Operating environment architecture

PTE Page table entry

RISC Reduced instruction set computing

RTL Register transfer language

SIMM Signed immediate value

SPR Special-purpose register

TB Time base register

TLB Translation lookaside buffer
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UIMM Unsigned immediate value

UISA User instruction set architecture

VA Virtual address

VEA Virtual environment architecture

VLE Variable length encoding

XER
Register used primarily for indicating conditions such as carries and overflows for 
integer operations 

Table 2. Acronyms and abbreviated terms  (continued)

Term Meaning
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Terminology conventions

Table 3 lists certain terms used in this manual that differ from the architecture terminology 
conventions.

         

Table 4 describes instruction field notation conventions used in this manual.

         

Table 3. Terminology conventions 

The architecture specification This manual

Extended mnemonics Simplified mnemonics

Privileged mode (or privileged state) Supervisor level 

Problem mode (or problem state) User level 

Real address Physical address

Relocation Translation

Out-of-order memory accesses Speculative memory accesses

Storage (locations) Memory

Storage (the act of) Access 

Table 4. Instruction field conventions 

The architecture specification Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

BF, BFA crfD, crfS (respectively)

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS (respectively)

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)
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Part I: Book E and Book E implementation standards

Part I describes the registers and instructions defined by the Book E architecture and by the 
Book E implementation standards (EIS). It contains the following chapters:

● Chapter 1: Overview,” provides a general discussion of the programming, interrupt, 
cache, and memory management models as they are defined by Book E and the EIS.

● Chapter 2: Register model,” is useful for software engineers who need to understand 
the programming model in general and the functionality of each register. 

● Chapter 3: Instruction model,” provides an overview of the addressing modes and a 
description of the instructions. Instructions are organized by function.

● Chapter 4: Interrupts and exceptions,” provides an overview of the Book E– and EIS–
defined interrupts and exception conditions that can cause them. 

● Chapter 5: Storage architecture,” describes the cache and MMU portions of the EIS. 
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1 Overview

This document describes the Book E version of the PowerPC™ architecture as it is further 
defined by the Book E implementation standards (EIS) and implemented on Book E cores.

This chapter includes overviews of the following:

● Features of the Book E version of the PowerPC architecture and implementation-
details defined by the EIS

● The Book E and EIS programming model

● The Book E and EIS interrupt model

● The Book E and EIS memory management model

● Architectural compatibility and migration from the original version of the PowerPC 
architecture as defined by Apple, IBM, and Motorola (referred to as the AIM version of 
the PowerPC architecture)

1.1 Overview Book E and the Book E implementation standards 
(EIS)
Book E is a version of the PowerPC architecture intended for embedded processors. To 
ensure application-level compatibility with the PowerPC architecture developed by Apple, 
IBM and Freescale, Book E incorporates the user-level resources defined in the user 
instruction set architecture (UISA), Book I, of the AIM architectural definition.

Because operating systems for embedded processors have different needs than those for 
desktop systems, Book E defines more flexible interrupt and memory management models. 
Instead of the segmented memory model defined by the AIM architecture, Book E provides 
a page-based memory system that supports multiple variable-sized pages managed 
through translation lookaside buffers (TLBs). Interrupt offsets can be programmed through 
interrupt-specific interrupt vector offset registers (IVORs). Book E defines the interrupt 
vector prefix register (IVPR), which is programmed with a prefix value that is concatenated 
with the IVOR values to place the interrupt vector table anywhere in memory. 

As a consequence, some resources defined by the AIM version of the architecture are no 
longer supported and new ones are provided. For example, segment and block address 
translation (BAT) registers are gone, and new instructions, registers, and interrupts have 
been defined for managing page translation and protection through TLBs. 

Moreover, the Book E architecture allows greater flexibility. For example, Book E defines the 
TLB Write Entry (tlbwe) and TLB Read Entry (tlbre) instructions only very generally, leaving 
details of their execution and behavior up to the implementation. However, to ensure 
compatibility among Book E implementations, the Book E implementation standard (EIS) 
defines more specifically how these instructions work. 
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1.1.1 Auxiliary processing units (APUs)

Book E supports the use of auxiliary processing units (APUs), which allocate opcode and 
register space for extending the instruction set without affecting the instruction set defined 
by Book E. This facilitates the development of special-purpose resources that are useful to 
some embedded environments but impractical for others. Note that instructions from 
multiple APUs may be assigned the same opcode numbers of the allocated opcode space.

The EIS defines many APUs. These APUs are not required on all devices, but devices that 
implement them do so strictly following the EIS architectural definition. In addition, an 
implementation may also provide an APU that is not a part of the EIS. 

APUs may consist of any combination of instructions, optional behavior of Book E–defined 
instructions, registers, register files, fields within Book E–defined registers, interrupts, or 
exception conditions within Book E–defined interrupts. 

Chapter 7: Auxiliary processing units (APUs),” provides an overview of specific APUs. 

1.2 Instruction set
The instruction set of a ST 32-bit Book E–compliant device includes the following:

● The Book E instruction set for 32-bit implementations. This is composed primarily of the 
user-level instructions defined by the UISA. Some implementations do not include the 
Book E floating-point instructions or the Load String Word Indexed instruction (lswx).

● Instructions defined by EIS APUs. These include the following:

– Integer select APU. This APU consists of the Integer Select instruction (isel), 
which incorporates an if-then-else statement that selects between two source 
registers by comparison to a CR bit. This instruction eliminates conditional 
branches, decreases band latency, and reduces the code footprint. 

– SPE (signal processing engine) APU instructions. SPE instructions treat 64-bit 
GPRs as a vector of two 32-bit elements (some instructions also read or write 16-
bit elements). Chapter 3.6.1: SPE and embedded floating-point APUs on 
page 186,” lists SPE APU vector instructions.

– The embedded vector floating-point APU provides instructions that use the upper 
and lower words of the 64-bit GPRs for single-precision, vector floating-point 
calculations.

– The embedded scalar single-precision APU provides instructions that use the 
lower 32 bits of the GPRs for single-precision, scalar floating-point calculations.

– The embedded scalar double-precision APU instructions use the 64-bit GPRs for 
floating-point calculations.

– Performance monitor APU—This APU defines two instructions, mfpmr and 
mtpmr, used for reading and writing the performance monitor registers (PMRs).

– Cache block lock and unlock APU, consisting of the following instructions: 

- Data Cache Block Lock Clear (dcblc)

- Data Cache Block Touch and Lock Set (dcbtls)

- Data Cache Block Touch for Store and Lock Set (dcbtstls)

- Instruction Cache Block Lock Clear (icblc)

- Instruction Cache Block Touch and Lock Set (icbtls)
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1.3 Register set
Note: Devices that implement a particular core may not implement all registers defined by that core.

Figure 1. EIS programming model register set

(1.) The 64-bit GPR registers are accessed by the SPE as separate 32-bit operands by SPE instructions. Only SPE vector 
instructions can access the upper word.   (2.) USPRG0 is a separate physical register from SPRG0.   (3.) EIS-defined 
registers; not part of the Book E architecture.

User-Level Registers
Register Files Instruction-Accessible Registers User General SPR (Read/Write)

0  31 32  63 0  31 32  63 32  63
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general 0(upper) GPR01 (lower) 

General-purpose 
registers (GPRs)
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Floating-point 
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spr 573 MCAR3 Machine check 
address register
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spr 61 DEAR Data exception 

address register  spr 336 TSR Timer status register
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 spr 308–310 DBCR0–2 Debug control 0–2
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Hardware 
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spr 1009 HID1 3
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MMU Control and Status (Read Only) Performance Monitor Registers
spr 312–315 IACs Instruction address 

compare1–4 spr 1015 MMUCFG3 MMU configuration
pmr 400 PMGC03 Global control 
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TLB configuration 0/1 pmr 16–19 PMC0–33 Counter registers 0–3
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spr 689 TLB1CFG3
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1.4 Interrupts and exception handling
Book E and the EIS support an extended exception handling model, with nested interrupt 
capability and extensive interrupt vector programmability. The following sections define the 
exception model, including an overview of exception handling as implemented in a ST Book 
E device, a brief description of the exception classes, and an overview of the registers 
involved.

1.4.1 Exception handling

In general, interrupt processing begins with an exception that occurs due to external 
conditions, errors, or program execution problems. When the exception occurs, the 
processor checks to verify that interrupt processing is enabled for that particular exception. 
If enabled, the interrupt causes the state of the processor to be saved in the appropriate 
registers, and prepares to begin execution of the handler located at the associated vector 
address for that particular exception. 

Once the handler is executing, the implementation may need to check one or more bits in 
the exception syndrome register (ESR) or the SPEFSCR, depending on the exception type, 
to verify the specific cause of the exception and take appropriate action.

The interrupts are described in Chapter 1.4.4: Interrupt registers,” and in Table 6. 

1.4.2 Interrupt classes

All interrupts may be categorized as asynchronous/synchronous and critical/noncritical.

● Asynchronous interrupts are caused by events that are independent of instruction 
execution. The address reported in the save/restore register is that of the instruction 
that would have executed next had the asynchronous interrupt not occurred.

● Synchronous interrupts are caused directly by the execution or attempted execution of 
instructions. Synchronous inputs can be precise or imprecise:

– Synchronous precise interrupts are those that precisely indicate the address of the 
instruction causing the exception that generated the interrupt or, in some cases, 
the address of the next instruction in program order. The interrupt type and status 
bits allow determination of which of the two instructions has been addressed in the 
appropriate save/restore register.

– Synchronous imprecise interrupts may indicate the address of the instruction 
causing the exception that generated the interrupt or some instruction after the 
instruction causing the interrupt. If the interrupt was caused by either the context 
synchronizing mechanism or the execution synchronizing mechanism, the 
address in the appropriate save/restore register is the address of the interrupt 
forcing instruction. If the interrupt was not caused by either of those mechanisms, 
the address in the save/restore register is the last instruction to start execution and 
may not have completed. No instruction following the instruction in the 
save/restore register has executed.

1.4.3 Interrupt categories

Book E defines critical and noncritical interrupt categories, and the EIS defines the machine 
check and debug interrupt categories. Each category has a separate set of save and restore 
registers to which machine state and a return address are automatically written when an 
interrupt is taken. Each category has a return from interrupt instruction that uses the save 
and restore registers to reestablish the machine state of the interrupted process and 
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provides the address within that process at which to resume execution after the interrupt 
handler completes. Additional resources are provided for masking some of these interrupt 
categories, as described in the following:

● Debug APU interrupt (if present)—Although Book E defines debug as a critical 
interrupt, the EIS defines a separate debug APU. Debug save and restore registers 
(DSRR0/DSRR1) save state when a debug interrupt is taken; rdci restores state at the 
end of the interrupt handler. These interrupts are masked by setting the machine check 
enable bit, MSR[DE]. 

● Machine check APU interrupt (if present)—Although Book E defines machine check as 
a critical interrupt, the EIS defines a separate machine check APU. Machine check 
save and restore registers (MCSRR0/MCSRR1) save state when a machine check 
interrupt is taken; rfmci restores state at the end of the interrupt handler. These 
interrupts are masked by setting the machine check enable bit, MSR[ME].

● Noncritical interrupts—First-level interrupts that allow the processor to change program 
flow to handle conditions generated by external signals, errors, or unusual conditions 
arising from program execution or from programmable timer-related events. These 
interrupts are largely identical to those defined by the OEA portion of the Power PC 
architecture. They use save and restore registers (SRR0/SRR1) to save processor 
state and the rfi instruction to restore state. Asynchronous noncritical interrupts can be 
masked by the external interrupt enable bit, MSR[EE].

● Critical interrupts—Can be taken during a noncritical interrupt or during regular 
program flow. They use the critical save and restore registers (CSRR0/CSRR1) to save 
state when they are taken; they use the rfci instruction to restore state. These 
interrupts can be masked by the critical enable bit, MSR[CE]. Book E defines the 
critical input and watchdog timer interrupts as critical interrupts.

One interrupt of each category can be reported at a time; when it is taken, no program state 
is lost. Save/restore register pairs are serially reusable, so program state may be lost when 
an unordered interrupt is taken. See Section 4.10: Interrupt ordering and masking.”

1.4.4 Interrupt registers

The registers associated with interrupt and exception handling are described in Table 5.

         

Table 5. Interrupt registers

Register Description

Non critical interrupt registers

SRR0
Save/restore register 0—Stores the address of the instruction causing the exception or the address of 
the instruction that will execute after the rfi instruction.

SRR1
Save/restore register 1—Saves machine state on noncritical interrupts and restores machine state 
after an rfi instruction is executed.

Critical interrupt registers

CSRR0
Critical save/restore register 0—On critical interrupts, CSRR0 stores either the address of the 
instruction causing the exception or the address of the instruction that will execute after the rfci 
instruction.

CSRR1
Critical save/restore register 1—CSRR1 saves machine state on critical interrupts and restores 
machine state after an rfci instruction is executed.
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Table 6 lists IVOR registers and associated interrupts.

Machine check interrupt registers

MCSRR0
Machine check save/restore register 0—Stores the address of the instruction that executes after rfmci 
executes.

MCSRR1
Machine check save/restore register 1—MCSRR1 stores machine state on machine check interrupts 
and restores machine state (if recoverable) after an rfmci instruction is executed.

MCAR
Machine check address register—MCAR holds the address of the data or instruction that caused the 
machine check interrupt. MCAR contents are not meaningful if a signal triggered the machine check 
interrupt.

Debug interrupt registers

DSRR0 Debug save/restore register 0—Stores the address of the instruction that executes after rfdi executes.

DSRR1
Debug save/restore register 1—Stores machine state on machine check interrupts and restores 
machine state (if recoverable) after rfmci executes.

Syndrome registers

MCSR
Machine check syndrome register—MCSR saves machine state information on machine check 
interrupts and restores machine state after an rfmci instruction is executed.

ESR
Exception syndrome register—ESR provides a syndrome to differentiate between the different kinds of 
exceptions that generate the same interrupt type. Upon generation of a specific exception type, the 
associated bit is set and all other bits are cleared.

SPE and embedded floating-point APU interrupt registers

SPEFSCR
Signal processing and embedded floating-point status and control register—Provides interrupt control 
and status as well as various condition bits associated with the operations performed by the SPE APU 
and the embedded floating-point APUs.

Other interrupt registers

DEAR
Data exception address register—DEAR contains the address that was referenced by a load, store, or 
cache management instruction that caused an alignment, data TLB miss, or data storage interrupt.

IVPR
Interrupt vector prefix register—IVPR[32–47] contains the high-order 16 bits of the address of the 
exception processing routines defined in the IVOR registers. 

IVORs
Interrupt vector offset registers—The IVORs contain the low-order offset of the address of the 
exception processing routines defined in the IVOR registers. See Table 6.

Table 5. Interrupt registers (continued)

Register Description
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Each interrupt has an associated interrupt vector address, obtained by concatenating the 
IVPR and IVOR values (IVPR[32–47]||IVORn[48–59]||0b0000). The resulting address is that 
of the instruction to be executed when that interrupt occurs. IVPR and IVOR values are 
indeterminate on reset, and must be initialized by the system software using mtspr. For 
more information, see Chapter 4: Interrupts and exceptions.”

Table 6. Interrupt vector registers and exception conditions

Register Interrupt 

Book E–defined IVORs

IVOR0 Critical input

IVOR1 Machine check interrupt offset

IVOR2 Data storage interrupt offset

IVOR3 Instruction storage interrupt offset

IVOR4 External input interrupt offset

IVOR5 Alignment interrupt offset

IVOR6 Program interrupt offset

IVOR7 Floating-point unavailable interrupt offset 

IVOR8 System call interrupt offset

IVOR9 Auxiliary processor unavailable interrupt offset 

IVOR10 Decrementer interrupt offset

IVOR11 Fixed-interval timer interrupt offset

IVOR12 Watchdog timer interrupt offset

IVOR13 Data TLB error interrupt offset

IVOR14 Instruction TLB error interrupt offset

IVOR15 Debug interrupt offset

EIS-Defined IVORs

IVOR32 SPE APU unavailable interrupt offset

IVOR33 Embedded floating-point data exception interrupt offset

IVOR34 Embedded floating-point round exception interrupt offset

IVOR35 Performance monitor interrupt offset
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1.5 Memory management
The EIS supports demand-paged virtual memory as well other memory management 
schemes that depend on precise control of effective-to-physical address translation and 
flexible memory protection as defined by Book E. The mapping mechanism consists of 
software-managed TLBs that support variable-sized pages with per-page properties and 
permissions. The following properties can be configured for each TLB:

● User mode page execute access

● User mode page read access

● User mode page write access

● Supervisor mode page execute access

● Supervisor mode page read access

● Supervisor mode page write access

● Write-through required (W)

● Caching inhibited (I)

● Memory coherence required (M)

● Guarded (G)

● Endianness (E)

● User-definable (U0–U3), a 4-bit implementation-specific field

1.5.1 Address translation

Figure 2 shows a typical translation flow, although each implementation may differ in the 
specific details. The MMU translates 32-bit effective addresses generated by loads, stores, 
and instruction fetches into 32-bit real addresses (used for memory bus accesses) using an 
interim 41-bit virtual address. 
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Figure 2. Effective-to-Real Address Translation Flow

As Figure 2 shows, address translation starts with an effective address that is prepended 
with an address space (AS) value and a process ID to construct a virtual address (VA). The 
virtual address is then translated into a real address based on the translation information 
found in the on-chip TLB of the appropriate L1 MMU. The AS bit for the access is selected 
from the value of MSR[IS] or MSR[DS], for instruction or data accesses, respectively.

The appropriate L1 MMU (instruction or data) is checked for a matching address translation. 
The instruction L1 MMU and data L1 MMU operate independently and can be accessed in 
parallel, so that hits for instruction accesses and data accesses can occur in the same clock. 
If an L1 MMU misses, the request for translation is forwarded to the unified (instruction and 
data) L2 MMU. If found, the contents of the TLB entry are concatenated with the byte 
address to obtain the physical address of the requested access. On misses, the L1 TLB 
entries are replaced from their L2 TLB counterparts using a true LRU algorithm.

1.5.2 MMU assist registers (MAS1–MAS7)

Book E defines SPR numbers for the MMU assist registers, used to hold values either read 
from or to be written to the TLBs and information required to identify the TLB to be 
accessed. Book E leaves MAS register bit definitions up to the implementations. To ensure 
consistency among ST Book E processors, certain aspects of the implementation are 
defined by the Book E standard; more specific details are left to individual implementations. 
MAS3 implements the real page number (RPN), the user attribute bits (U0–U3), and 

Effective Page Number Byte Address

Real Page Number Byte Address

32-bit Effective Address (EA)

32-bit Real Address

15–20 bits* 12–17 bits*

15–20 bits* 12–17 bits*

L2 MMU (unified)

Three 41-bit Virtual Addresses (VAs)

8 bits

MSR••• IS DS •••

Instruction Access
Data 

AS PID0

PID1

PID2

L1 MMUs

Instruction L1 MMU Data L1 MMU
2 TLBs 2 TLBs

* Number of bits depends on page size (4 Kbytes–256 Mbytes)

16-Entry Fully-Assoc. VSP Array 

256-Entry 2-Way Set Assoc. Array (TLB0)
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permission bits (UX, SX, UW, SW, UR, SR) that specify user and supervisor read, write, and 
execute permissions. 

Some cores may not does not implement all of the MAS registers. 

MAS registers are affected by the following instructions:

● MAS registers are accessed with the mtspr and mfspr instructions.

● The TLB Read Entry instruction (tlbre) causes the contents of a single TLB entry from 
the L2 MMU to be placed in defined locations in MAS0–MAS3. The TLB entry to be 
extracted is determined by information written to MAS0 and MAS2 before the tlbre 
instruction is executed. 

● The TLB Write Entry instruction (tlbwe) causes the information stored in certain 
locations of MAS0–MAS3 to be written to the TLB specified in MAS0.

● The TLB Search Indexed instruction (tlbsx) updates MAS registers conditionally, based 
on success or failure of a lookup in the L2 MMU. The lookup is specified by the 
instruction encoding and specific search fields in MAS6. The values placed in the MAS 
registers may differ, depending on a successful or unsuccessful search.

For TLB miss and certain MMU-related DSI/ISI exceptions, MAS4 provides default values 
for updating MAS0–MAS2.

1.5.3 Process ID registers (PID0–PID2)

The Book E architecture identifies a single process ID register (PID). The EIS defines 
additional PIDs to hold values used to construct the virtual addresses for each access. 
Among these PIDs, PID0 is the Book E–defined PID. These process IDs provide an 
extended page sharing capability. Which of these three virtual addresses is used for 
translation is controlled by the TID field of a matching TLB entry, and when TID = 0x00 
(identifying a page as globally shared), the PID values are ignored. 

A hit to multiple TLB entries in the L1 MMU (even if they are in separate arrays) or a hit to 
multiple entries in the L2 MMU is considered to be a programming error.

1.5.4 TLB coherency

TLB entries can be invalidated as defined in the Book E architecture. The tlbivax instruction 
invalidates a matching local TLB entry. 

1.5.5 Atomic update memory references

Book E supports atomic update memory references for both aligned word forms of data 
using the load and reserve and store conditional instruction pair, lwarx and stwcx.. 
Typically, a load and reserve instruction establishes a reservation and is paired with a store 
conditional instruction to achieve the atomic operation. However, the programmer is 
responsible for preserving reservations across context switches and for protecting 
reservations in multiprocessor implementations.

1.5.6 Memory access ordering

To optimize performance, Book E supports weakly ordered references to memory. Thus, a 
processor manages the order and synchronization of instructions to ensure proper 
execution when memory is shared between multiple processes or programs. The cache and 
data memory control attributes, along with msync and mbar, provide the required access 
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control; msync and mbar are also broadcast to provide the appropriate control in the case 
of multiprocessor or shared memory systems.

1.5.7 Cache control instructions

Book E cache control instructions perform a full range of cache control functions, including 
cache locking by line. The EIS defines the following cache locking instructions:

● Data Cache Block Lock Clear (dcblc)

● Data Cache Block Touch and Lock Set (dcbtls)

● Data Cache Block Touch for Store and Lock Set (dcbtstls)

● Instruction Cache Block Lock Clear (icblc)

● Instruction Cache Block Touch and Lock Set (icbtls)

1.5.8 Programmable page characteristics

Cache and memory attributes are programmable on a per-page basis. In addition to the 
write-through, caching-inhibited, memory coherency enforce, and guarded characteristics 
defined by the WIMG bits, Book E defines an endianness bit, E, that selects big- or little-
endian byte ordering on a per-page basis. 

1.6 Performance monitoring
The EIS provides a performance monitoring capability that supports counting of events such 
as processor clocks, instruction cache misses, data cache misses, mispredicted branches, 
and others. The count of these events may be configured to trigger a performance monitor 
exception. This interrupt is assigned to vector offset register IVOR35.

The register set associated with performance monitoring consists of counter registers, a 
global control register, and local control registers. These registers are read/write from 
supervisor mode, and each register is reflected to a corresponding read-only register for 
user mode. The mtpmr and mfpmr instructions move data to and from these registers. An 
overview of the performance monitoring registers is provided in the following sections. For 
more information, see Chapter 7.2: Performance monitor APU.”

1.6.1 Global control register

The performance monitor global control register 0 (PMGC0) provides global control of the 
performance monitor from supervisor mode. From this register all counters may be frozen, 
unfrozen, or configured to freeze on an enabled condition or event. Additionally, the 
performance monitoring facility may be disabled or enabled from this register. The PMGC0 
contents are reflected to UPMGC0, which may be read from user mode using mfpmr.

1.6.2 Performance monitor counter registers

There are four counter registers (PCM0–PCM3) provided in the performance monitor facility. 
These 32-bit registers hold the current count for software-selectable events and can be 
programmed to generate an exception on overflow. They can be accessed from supervisor 
mode using mtpmr and mfpmr. Their contents are reflected to UPCM0–UPCM3, which can 
be read from user mode with mfpmr.

The exception generated on overflow can be masked by clearing MSR[EE].
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1.6.3 Local control registers

For each counter register, there are two corresponding local control registers. These two 
registers specify which of the 128 available events is to be counted, the action to be taken 
on overflow, and options for freezing a counter value under given modes or conditions.

● PMLCa0–PMLCa3 provide fields that allow freezing of the corresponding counter in 
user mode, supervisor mode, or under software control. The overflow condition may be 
enabled or disabled from these registers. Register contents are reflected to UPMCLa0–
UPMLCa3, which can be read from user mode with mfpmr.

● PMLCb0–PMLCb3 provide count scaling for each counter register using configurable 
threshold and multiplier values. The threshold is a 6-bit value and the multiplier is a 3-
bit encoded value, allowing 8 multiplier values in the range of 1 to 128. Any counter 
may be configured to increment only when an event occurs more than [threshold × 
multiplier] times. The contents of these registers are reflected to UPMCLb0–UPMLCb3, 
which can be read from user mode with mfpmr.

1.7 Legacy support of PowerPC architecture
In general, ST Book E processors support the user-level portion of the AIM architecture. The 
following subsections highlight the main differences. For specific details, refer to the relevant 
chapter.

1.7.1 Instruction set compatibility

The following sections generally describe compatibility between Book E and AIM PowerPC 
instruction sets.

User instruction set

The user mode instruction set defined by the AIM version of the PowerPC architecture is 
compatible with ST Book E processors with the following exceptions:

● Floating-point functionality provided by the embedded floating-point APUs differs from 
the AIM defined floating-point ISA. Also, the vector and double-precision floating-point 
APUs use 64-bit GPRs rather than the FPRs defined by the UISA. Most porting of 
floating-point operations can be handled by recompiling; however, there are new 
instructions specific to the APUs.

● String instructions are typically not implemented; therefore, trap emulation must be 
provided to ensure backward compatibility.

Supervisor instruction set

The supervisor mode instruction set defined by the AIM version of the PowerPC architecture 
is compatible with the EIS with the following exceptions:

● The MMU architecture is different, so some TLB manipulation instructions have 
different semantics.

● Instructions that support the BATs and segment registers are not implemented.

● Interrupt vectors are defined by the Book E IVORn and IVPR SPRs.

● Additional instructions are defined for returning from Book E–defined critical interrupts 
(rfci) and APU-specific interrupts. 
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1.7.2 Memory subsystem

Both Book E and the AIM version of the PowerPC architecture provide separate instruction 
and data memory resources. The EIS provides additional cache control features, including 
cache locking.

1.7.3 Interrupt handling

Interrupt handling is generally the same as that defined in the AIM version of the PowerPC 
architecture, with the following differences: (see Chapter 1.4)

● Book E defines a new critical interrupt, providing an extra level of interrupt nesting. The 
critical interrupt includes external critical and watchdog timer time-out inputs.

● The machine check APU implements the machine check exception differently from the 
Book E and from the AIM definition. It defines the Return from Machine Check Interrupt 
instruction, rfmci, and two machine check save/restore registers, MCSRR0 and 
MCSRR1.

● Book E processors can use IVPR and IVORs to set exception vectors individually. To 
provide compatibility, they can be set to the address offsets defined in the OEA.

● Unlike the AIM version of the PowerPC architecture, Book E does not define a reset 
vector; execution begins at a fixed virtual address, 0xFFFF_FFFC.

● Some SPRs are different from those defined in the AIM version of the PowerPC 
architecture, particularly those related to the MMU functions. Much of this information 
has been moved to a new exception syndrome register (ESR).

● Timer services are generally compatible, although Book E defines a new decrementer 
auto reload feature and the fixed-interval timer critical interrupt. 

1.7.4 Memory management

ST Book E processors implement a straightforward virtual address space that complies with 
the Book E MMU definition, which eliminates segment registers and block address 
translation resources. Book E defines resources for fixed 4-Kbyte pages and multiple, 
variable page sizes that can be configured in a single implementation. TLB management is 
provided with new instructions and SPRs.

1.7.5 Requirements for system reset generation

Book E does not specify a system reset interrupt as was defined in the AIM version of the 
PowerPC architecture, but typically, system reset is initiated either by asserting a signal or 
by software (for example, writing a 1 to DBCR0[34], if MSR[DE] = 1

At reset, instead of invoking a reset interrupt, fetching at address 0xFFFF_FFFC, as defined 
by Book E. In addition to the Book E reset definition, the EIS and the implementation define 
specific aspects of MMU page translation and protection mechanisms. Unlike the AIM 
version of the PowerPC core, as soon as instruction fetching begins, the core is in virtual 
mode with a hardware-initialized TLB entry.

1.7.6 Little-endian mode

Unlike the AIM version of the PowerPC, where the little-endian mode is controlled on a 
system basis, Book E supports control of byte ordering on a memory page basis. 
Additionally, true little-endian mode is supported by byte swapping.
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2 Register model

This chapter describes the register model and indicates the architecture level at which each 
register is defined.

2.1 Overview
Although this chapter organizes registers according to their functionality, they can be 
differentiated according to how they are accessed, as follows: 

● Register files. These user-level registers are accessed explicitly through source and 
destination operands of computational, load/store, logical, and other instructions. Book 
E defines two types of register files:

– General-purpose registers (GPRs), used as source and destination operands for 
most operations (except Book E–defined floating-point instructions, which use 
FPRs). See Chapter 2.3.1: General purpose registers (GPRs).”

– Floating-point registers (FPRs), used for Book E–defined floating-point 
instructions. See Chapter 2.4.1: Floating-point registers (FPRs).”

● Special-purpose registers (SPRs)—SPRs are accessed by using the Book E–defined 
Move to Special-Purpose Register (mtspr) and Move from Special-Purpose Register 
(mfspr) instructions. Chapter 2.2.1: Special-purpose registers (SPRs),” lists SPRs. 

● System-level registers that are not SPRs. These are as follows:

– Machine state register (MSR). MSR is accessed with the Move to Machine State 
Register (mtmsr) and Move from Machine State Register (mfmsr) instructions. 
See Chapter 2.6.1: Machine state register (MSR).”

– Condition register (CR) bits are grouped into eight 4-bit fields, CR0–CR7, which 
are set as follows (see Chapter 2.5.1: Condition register (CR)”):

- Specified CR fields can be set by a move to the CR from a GPR (mtcrf).

- A specified CR field can be set by a move to the CR from another CR field 
(mcrf), from the FPSCR (mcrfs), or from the XER (mcrxr).

- CR0 can be set as the implicit result of an integer instruction.

- CR1 can be set as the implicit result of a floating-point instruction.

- A specified CR field can be set as the result of an integer or floating-point 
compare instruction (including SPE and SPFP compare instructions).

– The floating-point status and control register (FPSCR). See Chapter 2.4.2: 
Floating-point status and control register (FPSCR).”

– The EIS-defined accumulator, which is accessed by signal processing engine 
(SPE) APU instructions that update the accumulator. See Chapter 2.14.2: 
Accumulator (ACC).” 

● Device control registers (DCRs). Book E defines the existence of a DCR address space 
and the instructions to access them, but does not define particular DCRs. The on-chip 
DCRs exist architecturally outside the processor core and thus are not part of Book E. 
The contents of DCR DCRN can be read into a GPR using mfdcr rD,DCRN. GPR 
contents can be written into DCR DCRN using mtdcr DCRN,rS. See Chapter 2.17: 
Device control registers (DCRs).”

● Performance monitor registers (PMRs). (Performance monitor APU) Similar to SPRs, 
PMRs are accessed by using the EIS-defined Move to Performance Monitor Register 
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(mtpmr) and Move from Performance Monitor Register (mfspr) instructions. See 
Chapter 2.16: Performance monitor registers (PMRs).”

2.2 Register model for 32-bit Book E implementations
Book E implementations include the following types of software-accessible registers:

● Registers that are accessed as part of instruction execution. These include the 
following:

– The following registers are used for integer operations and are described in 
Chapter 2.3: Registers for integer operations”:

- General-purpose registers (GPRs)—Book E defines a set of 32 GPRs used to 
hold source and destination operands for load, store, arithmetic, and 
computational instructions, and to read and write to other registers.

- Integer exception register (XER)—XER bits are set based on the operation of an 
instruction considered as a whole, not on intermediate results. (For example, the 
Subtract from Carrying instruction (subfc), the result of which is specified as the 
sum of three values, sets bits in the XER based on the entire operation, not on an 
intermediate sum.)

– Registers for floating-point operations. These include the following:

- Floating-point registers (FPRs)—32 registers used to hold source and 
destination operands for Book E defined floating-point operations. Note that the 
embedded floating-point APUs do not implement FPRs; they use GPRs for 
floating-point operands.

- Floating-point status and control register (FPSCR)—Used with floating-point 
operations. These registers are described in Chapter 2.4: Registers for floating-
point operations.”

– Condition register (CR)—Used to record conditions such as overflows and carries 
that occur as a result of executing arithmetic instructions (including those 
implemented by the SPE and SPFP APUs). The CR is described in Chapter 2.5: 
Registers for branch operations.”

– Machine state register (MSR)—Used by the operating system to configure 
parameters such as user/supervisor mode, address space, and enabling of 



RM0004 Register model

 48/1176

asynchronous interrupts. MSR is described in Chapter 2.6.1: Machine state 
register (MSR).” 

● Special-purpose registers (SPRs). 

– Book E–defined special-purpose registers (SPRs) that are accessed explicitly 
using mtspr and mfspr instructions. These registers are listed in Table 7 in 
Chapter 2.2.1: Special-purpose registers (SPRs).”

– EIS–defined SPRs that are accessed explicitly using the mtspr and mfspr 
instructions. These registers are listed in Table 8 in Chapter 2.2.1: Special-
purpose registers (SPRs).”

– SPRs are described by function in the following sections:

- Chapter 2.5: Registers for branch operations”

- Chapter 2.6: Processor control registers”

- Chapter 2.7: Hardware implementation-dependent registers”

- Chapter 2.8: Timer registers”

- Chapter 2.9: Interrupt registers”

- Chapter 2.10: Software use sprs (SPRG0–SPRG7 and USPRG0)”

- Chapter 2.11: L1 cache registers” 

- Chapter 2.12: MMU registers”

- Chapter 2.13: Debug registers”

- Chapter 2.14: SPE and SPFP APU registers”

- Chapter 2.15: Alternate time base registers (ATBL and ATBU)”

● EIS-defined performance monitor registers, described in Chapter 2.16: Performance 
monitor registers (PMRs).” PMRs are like SPRs, but are accessed with EIS-defined 
move to and move from PMR instructions (mtpmr and mfpmr).

● EIS-defined device control registers (DCRs). Book E defines a format for implementing 
device-specific device-control registers. See Chapter 2.17: Device control registers 
(DCRs).”

Book E defines 32- and 64-bit registers. However, except for the 64-bit FPRs, only bits 32–
63 of Book E’s 64-bit registers (such as LR, CTR, the GPRs, SRR0, and CSRR0) are 
required to be implemented in hardware in a 32-bit Book E implementation.

Likewise, all Book E integer instructions defined to return a 64-bit result return only bits 32–
63 of the result on a 32-bit Book E implementation. SPE APU vector instructions return 64-
bit values; SPFP APU instructions return single-precision 32-bit values. 

As with the instruction set and other aspects of the architecture, Book E defines some 
features very specifically, for example, resources that ensure compatibility with 
implementations of the PowerPC ISA. Other resources are either defined as optional or are 
defined in a very general way, leaving specific details up to the implementation. 
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Figure 3. Register model

(1.) The 64-bit GPR registers are accessed by the SPE as separate 32-bit operands by SPE instructions. Only SPE 
vector instructions can access the upper word. 

(2.) USPRG0 is a separate physical register from SPRG0. 

(3.) EIS-defined registers; not part of the Book E architecture.

User-Level Registers
Register Files Instruction-Accessible Registers User General SPR (Read/Write)

0  31 32  63 0  31 32  63 32  63
User SPR 
general 0(upper) GPR01 (lower) 

General-purpose 
registers (GPRs)

CR Condition register spr 256 USPRG02 

GPR1
spr 9 CTR Count register General SPRs (Read-Only)

GPR31
spr 8 LR Link register spr 259 SPRG3

SPR general 
registers 3–7

FPR0
Floating-point 
registers (FPRs)

spr 260 SPRG4 
spr 1  XER Integer exception 

registerFPR1   

FPSCR Floating-point 
status/control register spr 263 SPRG7

FPR31

spr 512 SPEFSCR3 SP/embedded FP 
status/control register Time-Base Registers (Read-Only)

Performance Monitor Registers (PMRs)
ACC3 Accumulator spr 268 TBL Time base 

lower/upperpmr 128–131 UPMLCas3 Local control 
registers A0–A3
B0–B3

spr 269 TBU 
pmr 256–259 UPMLCbs3 L1 Cache (Read-Only)

spr 526 ATBL 3 Alternate Time base 
lower/upperpmr 384 UPMGC03 Global control register spr 515 L1CFG03

L1 cache configuration 
registers 0–1 spr 527 ATBU 3

spr 516 L1CFG13

pmr 0–3 UPMCs 3 Counters 0–3

Supervisor-Level Registers
Interrupt Registers Configuration Registers

32 63 32 63 32 63

 spr 63 IVPR Interrupt vector
prefix register spr 400 IVOR0 

Interrupt vector offset 
registers 0–15

MSR Machine state register

spr 401 IVOR1
 spr 26 SRR0 Save/restore 

registers 0/1
spr 1023 SVR 3 System version 

register  
spr 27 SRR1

spr 415 IVOR15 spr 286 PIR Processor ID register
spr 58 CSRR0

Critical SRR 0/1 Processor version 
registerspr 59 CSRR1 spr 528 IVOR323

Interrupt vector offset 
registers 32–35 

spr 287 PVR

spr 570 MCSRR03
Machine check 
SRR 0/1

spr 529 IVOR333

Timer/Decrementer Registers
spr 571 MCSRR13 spr 530 IVOR343

spr 574 DSRR03
Debug SRR 0/1

spr 531 IVOR353  spr 22 DEC Decrementer

spr 575 DSRR13
Decrementer 
auto-reload registerMMU Control and Status (Read/Write)  spr 54 DECAR

Exception syndrome 
register spr 62 ESR MMU control and status 

register 0spr 1012 MMUCSR03  spr 284 TBL Time base 
lower/upper spr 572 MCSR3 Machine check 

syndrome register  spr 285 TBU spr 624 MAS03

MMU assist
registers 0–7

spr 573 MCAR3 Machine check 
address register

spr 625 MAS13  spr 340 TCR Timer control register

  
spr 61 DEAR Data exception 

address register  spr 336 TSR Timer status register
spr 630 MAS63

spr 944 MAS73 Miscellaneous Registers
Debug Registers

spr 48 PID0 
Process ID
registers 0–2

spr 272–279 SPRG0–7 General SPRs 0–7
 spr 308–310 DBCR0–2 Debug control 0–2

spr 633 PID13
Hardware 
implementation 
dependent 0–1

spr 561 DBCR3 Debug control 3 spr 1008 HID0 3
spr 634 PID23

spr 1009 HID1 3
 spr 304 DBSR Debug status register

MMU Control and Status (Read Only) Performance Monitor Registers
spr 312–315 IACs Instruction address 

compare1–4 spr 1015 MMUCFG3 MMU configuration
pmr 400 PMGC03 Global control 

spr 316–317 DACs Data address 
compare 1–2 spr 688 TLB0CFG3

TLB configuration 0/1 pmr 16–19 PMC0–33 Counter registers 0–3
spr 318–319 DVCs Data value 

compare 1–2
spr 689 TLB1CFG3

pmr 144–147 PMCa0–33 Local control a0–a3
L1 Cache (Read/Write)

pmr 272–275 PMCb0–33 Local control b0–b3

spr 1010 L1CSR03
L1 cache control/status 
registers 0/1spr 1011 L1CSR13

L1 flush and invalidate 
control register 0spr 1015 L1FINV0 3
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2.2.1 Special-purpose registers (SPRs)

SPRs are on-chip registers that are architecturally part of the processor core. They control 
the use of the debug facilities, timers, interrupts, memory management unit, and other 
architected processor resources and are accessed with the mtspr and mfspr instructions. 
Unlisted encodings are reserved for future use.

Table 7 summarizes SPRs defined in Book E. The SPR numbers are used in the instruction 
mnemonics. Bit 5 in an SPR number indicates whether an SPR is accessible from user or 
supervisor software. An mtspr or mfspr instruction that specifies an unsupported SPR 
number is considered an invalid instruction. Invalid instructions are treated as follows:

● If the invalid SPR falls within the range specified as user mode (SPR[5] = 0), an illegal 
exception is taken. 

● If supervisor software attempts to access an invalid supervisor-level SPR (SPR[5] = 1), 
results are undefined. 

● If user software attempts to access an invalid supervisor-level SPR, a privilege 
exception is taken.

         

Table 7. Book E special purpose registers (by SPR abbreviation)

SPR 
Abbreviation

Name
Defined SPR number

Access
Supervisor 

onlyDecimal Binary

CSRR0
Critical save/restore register 0 
(CSRR0)

58 00001 11010 Read/Write Yes

CSRR1
Critical save/restore register 1 
(CSRR1)

59 00001 11011 Read/Write Yes

CTR Count register (CTR) 9 00000 01001 Read/Write No

DAC1
Data address compare 
registers (DAC1–DAC2)

316 01001 11100 Read/Write Yes

DAC2 
Data address compare 
registers (DAC1–DAC2)

317 01001 11101 Read/Write Yes

DBCR0
Debug control registers 
(DBCR0–DBCR3) 1

308 01001 10100 Read/Write Yes

DBCR1
Debug control registers 
(DBCR0–DBCR3) 2

309 01001 10101 Read/Write Yes

DBCR2
Debug control registers 
(DBCR0–DBCR3) 3

310 01001 10110 Read/Write Yes

DBSR Debug status register (DBSR) 304 01001 10000
Read/Clear

(1) Yes

DEAR
Data exception address 
register (DEAR)

61 00001 11101 Read/Write Yes

DEC Decrementer register 22 00000 10110 Read/Write Yes

DECAR
Decrementer auto-reload 
register (DECAR)

54 00001 10110 Write-only Yes

DVC1
Data value compare registers 
(DVC1 and DVC2) 1

318 01001 11110 Read/Write Yes
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DVC2
Data value compare registers 
(DVC1 and DVC2) 2

319 01001 11111 Read/Write Yes

ESR
Exception syndrome register 
(ESR)

62 00001 11110 Read/Write Yes

IAC1
IAC2

IAC3

IAC4

Instruction address compare 
registers (IAC1–IAC4)

312
313

314

315

01001 11000
01001 11001

01001 11010

01001 11011

Read/Write Yes

IVOR0 Interrupt vector offset 
registers (IVORs)
Critical input

400 01100 10000 Read/Write Yes

IVOR1 Interrupt vector offset 
registers (IVORs)
Machine check interrupt offset

401 01100 10001 Read/Write Yes

IVOR10 Interrupt vector offset 
registers (IVORs)
Decrementer interrupt offset

410 01100 11010 Read/Write Yes

IVOR11 Interrupt vector offset 
registers (IVORs)
Fixed-interval timer interrupt 
offset

411 01100 11011 Read/Write Yes

IVOR12 Interrupt vector offset 
registers (IVORs)
Watchdog timer interrupt 
offset

412 01100 11100 Read/Write Yes

IVOR13 Interrupt vector offset 
registers (IVORs)
Data TLB error interrupt offset

413 01100 11101 Read/Write Yes

IVOR14 Interrupt vector offset 
registers (IVORs)
Instruction TLB error interrupt 
offset

414 01100 11110 Read/Write Yes

IVOR15 Interrupt vector offset 
registers (IVORs)
Debug interrupt offset

415 01100 11111 Read/Write Yes

IVOR2 Interrupt vector offset 
registers (IVORs)
Data storage interrupt offset

402 01100 10010 Read/Write Yes

IVOR3 Interrupt vector offset 
registers (IVORs)
Instruction storage interrupt 
offset

403 01100 10011 Read/Write Yes

Table 7. Book E special purpose registers (by SPR abbreviation) (continued)

SPR 
Abbreviation

Name
Defined SPR number

Access
Supervisor 

onlyDecimal Binary
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IVOR4 Interrupt vector offset 
registers (IVORs)
External input interrupt offset

404 01100 10100 Read/Write Yes

IVOR5 Interrupt vector offset 
registers (IVORs)
Alignment interrupt offset

405 01100 10101 Read/Write Yes

IVOR6 Interrupt vector offset 
registers (IVORs)
Program interrupt offset

406 01100 10110 Read/Write Yes

IVOR7 Interrupt vector offset 
registers (IVORs)
Floating-point unavailable 
interrupt offset 

407 01100 10111 Read/Write Yes

IVOR8 Interrupt vector offset 
registers (IVORs)
System call interrupt offset

408 01100 11000 Read/Write Yes

IVOR9 Interrupt vector offset 
registers (IVORs)
APU unavailable interrupt 
offset 

409 01100 11001 Read/Write Yes

IVPR Interrupt vector offset 
registers (IVORs)
Interrupt vector 

63 00001 11111 Read/Write Yes

LR Link register (LR) 8 00000 01000 Read/Write No

PID Process ID registers (PID0–
PIDn)

48 00001 10000 Read/Write Yes

PIR Processor ID register (PIR) 286 01000 11110 Read-only Yes

PVR Processor version register 
(PVR)

287 01000 11111 Read-only Yes

SPRG0
SPRG1
SPRG2
SPRG3
SPRG4
SPRG5
SPRG6
SPRG7

Software use sprs (SPRG0–
SPRG7 and USPRG0)

272
273
274
275
276
277
278
279

01000 10000
01000 10001
01000 10010
01000 10011
01000 10100
01000 10101
01000 10110
01000 10111

Read/Write Yes

SRR0 Save/restore register 0 
(SRR0)

26 00000 11010 Read/Write Yes

SRR1 Save/restore register 1 
(SRR1)

27 00000 11011 Read/Write Yes

TBL
TBU

Time base (TBU and TBL) 284
285

01000 11100
01000 11101

Write-only Yes

Table 7. Book E special purpose registers (by SPR abbreviation) (continued)

SPR 
Abbreviation

Name
Defined SPR number

Access
Supervisor 

onlyDecimal Binary
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Table 8 lists EIS-defined SPRs. Compilers should recognize the mnemonic name given in 
this table when parsing instructions.

         

TCR Timer control register (TCR) 340 01010 10100 Read/Write Yes

TSR Timer status register (TSR) 336 01010 10000 Read/Clear
(2)

Yes

USPRG0
USPRG3
USPRG4
USPRG5
USPRG6
USPRG7

Software use sprs (SPRG0–
SPRG7 and USPRG0)(3)

256
259
260
261
262
263

01000 00000
01000 00011
01000 00100
01000 00101
01000 00110
01000 00111

Read/Write
Read-only
Read-only
Read-only
Read-only
Read-only

No

UTBL Time base (TBU and TBL) 268 01000 01100 Read-only No

UTBU Time base (TBU and TBL) 269 01000 01101 Read-only No

XER Integer exception register 
(XER)

1 00000 00001 Read/Write No

1. The DBSR is read using mfspr. It cannot be directly written to. Instead, DBSR bits corresponding to 1 bits 
in the GPR can be cleared using mtspr.

2. The TSR is read using mfspr. It cannot be directly written to. Instead, TSR bits corresponding to 1 bits in 
the GPR can be cleared using mtspr.

3. User-mode read access to SPRG3 is implementation-dependent

Table 7. Book E special purpose registers (by SPR abbreviation) (continued)

SPR 
Abbreviation

Name
Defined SPR number

Access
Supervisor 

onlyDecimal Binary

Table 8. EIS–defined SPRs (by SPR abbreviation) 

SPR 
abbreviation

Name
SPR 

number
Access

Supervisor
only

Section/page

ATBL
Alternate time base lower

526 Read-only No
Section 2.15 
on page 123

ATBU
Alternate time base upper

527 Read-only No
Section 2.15 
on page 123

DBCR3 Debug control register 3 561 Read/Write Yes  on page 115

DSRR0 Debug save/restore register 0 574 R/W Yes  on page 86

DSRR1 Debug save/restore register 1 575 R/W Yes  on page 87

HID0
Hardware implementation dependent register 
0 

1008 Read/Write Yes
Section 2.7.1 
on page 71

HID1
Hardware implementation dependent register 
1

1009 Read/Write Yes
Section 2.7.2 
on page 74

IVOR32
SPE/embedded floating-point APU 
unavailable interrupt offset

528 Read/Write Yes  on page 83

IVOR33
Embedded floating-point data exception 
interrupt offset

529 Read/Write Yes  on page 83

IVOR34
Embedded floating-point round exception 
interrupt offset

530 Read/Write Yes  on page 83
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IVOR35 Performance monitor 531 Read/Write Yes  on page 83

IVOR36
Processor doorbell interrupt. Defined by 
processor signalling APU.

532 Read/Write Yes  on page 83

IVOR37
Processor doorbell critical interrupt. Defined 
by processor signalling APU.

533 Read/Write Yes  on page 83

L1CFG0
L1 cache configuration register 0

515 Read-only No
Section 2.11.1 

on page 90

L1CFG1
L1 cache configuration register 1

516 Read-only No
Section 2.11.2 

on page 92

L1CSR0
L1 cache control and status register 0

1010 Read/Write Yes
Section 2.11.1 

on page 90

L1CSR1
L1 cache control and status register 1

1011 Read/Write Yes
Section 2.11.2 

on page 92

L1FINV0
L1 flush and invalidate control register 0

1016 Read/Write Yes
Section 2.11.5 

on page 96

MAS0
MMU assist register 0

624 Read/Write Yes
Section 2.12.5 
on page 101

MAS1
MMU assist register 1

625 Read/Write Yes
Section 2.12.5 
on page 101

MAS2
MMU assist register 2

626 Read/Write Yes
Section 2.12.5 
on page 101

MAS3
MMU assist register 3

627 Read/Write Yes
Section 2.12.5 
on page 101

MAS4
MMU assist register 4

628 Read/Write Yes
Section 2.12.5 
on page 101

MAS5
MMU assist register 5.

629 Read/Write Yes
Section 2.12.5 
on page 101

MAS6
MMU assist register 6

630 Read/Write Yes
Section 2.12.5 
on page 101

MAS7
MMU assist register 7

944 Read/Write Yes
Section 2.12.5 
on page 101

MCAR Machine check address register 573 Read-only Yes  on page 88

MCARU Machine check address register upper 569 Read-only Yes  on page 88

MCSR Machine check syndrome register 572 Read/Write Yes  on page 88

MCSRR0 Machine-check save/restore register 0 570 Read/Write Yes  on page 87

MCSRR1 Machine-check save/restore register 1 571 Read/Write Yes  on page 87

MMUCFG
MMU configuration register

1015 Read-only Yes
Section 2.12.3 

on page 99

MMUCSR0
MMU control and status register 0

1012 Read/Write Yes
Section 2.12.2 

on page 98

Table 8. EIS–defined SPRs (by SPR abbreviation)  (continued)

SPR 
abbreviation

Name
SPR 

number
Access

Supervisor
only

Section/page
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2.3 Registers for integer operations
The following sections describe registers defined for integer computational instructions. 

2.3.1 General purpose registers (GPRs)

Book E implementations provide 32 GPRs (GPR0–GPR31) for integer operations. The 
instruction formats provide 5-bit fields for specifying the GPRs to be used in the execution of 
the instruction. 

The Book E architecture defines 32-bit GPRs for 32-bit implementations; however, several 
APUs make use of GPRs that are extended to 64 bits to accommodate either vector 
operands or embedded double-precision floating point operands. The following APUs use 
the extended 64-bit GPRs:

● The signal processing engine (SPE) APU and the embedded vector single-precision 
floating-point APU treat the 64-bit operands as consisting of two, 32-bit elements, as 
shown in Figure 4.

● The embedded scalar double-precision floating-point APU treats the GPRs as single 
64-bit operands that accommodate IEEE double-precision values. 

PID0
Process ID register 0. Book E defines only 
this PID register and refers to as PID, not 
PID0. 

48 Read/Write Yes
Section 2.12.1 

on page 97

PID1
Process ID register 1

633 Read/Write Yes
Section 2.12.1 

on page 97

PID2
Process ID register 2

634 Read/Write Yes
Section 2.12.1 

on page 97

SPEFSCR
Signal processing and embedded floating-
point status and control register

512 Read/Write No
Section 2.14.1 
on page 119

SVR
System version register

1023 Read-only Yes
Section 2.7.5 
on page 75

TLB0CFG
TLB configuration register 0

688 Read-only Yes
Section 2.12.4 
on page 100

TLB1CFG
TLB configuration register 1

689 Read-only Yes
Section 2.12.4 
on page 100

Table 8. EIS–defined SPRs (by SPR abbreviation)  (continued)

SPR 
abbreviation

Name
SPR 

number
Access

Supervisor
only

Section/page
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Figure 4. SPE and floating point APU GPR usage

Gray text indicates that the APU does not use this register or register field.

Formatting of floating-point operands is as defined by IEEE 754, as described in the APU chapter of the EREF. 

As shown in Figure 4, the embedded scalar single-precision floating-point APU uses 32-bit 
operands that, like 32-bit Book E instructions, do not affect the upper word of the 64-bit 
GPRs. For 32-bit implementations that implement 64-bit GPRs, all instructions except SPE 
APU, embedded vector single-precision APU, and embedded scalar double-precision APU 
instructions use and return 32-bit values in GPR bits 32–63.

2.3.2 Integer exception register (XER)

Bits in the integer exception register (XER) are set based on the operation of an instruction 
considered as a whole, not on intermediate results. (For example, the subtract from carrying 
instruction (subfc), the result of which is specified as the sum of three values, sets bits in 
the XER based on the entire operation, not on an intermediate sum.)

Register Model Instruction Model

User-Level Registers Supervisor-Level Registers Computation Load/Store

0 31 32 63 32 63 brinc 
evmra
evm…
evabs 
evadd…
evand…
evfsctuiz
evcntl…
evdiv…
evmerge…
evsub… 
logical, rotate, 
shift, extend, 
round, select, 
compare

evldh…
evldw…
evldd…
evl…splat…
evlwhos…
evlwh…
evstdd…
evstdh…
evstdw…
evstwh…

Int/Frac Int/Frac

General-purpose 
registers (GPRs)

MSR[SPE] Machine state 

Int/Frac Int/Frac
Interrupt Registers

Int/Frac Int/Frac
 spr 62 ESR[SPE] Exception syndrome

SPE APU
… …

Int/Frac Int/Frac Interrupt Vector Offset Registers
spr 405 IVOR5 Alignment 

ACC Accumulator
spr 528 IVOR32 SPE/Embedded 

Floating-point Original SPE 
APU 

SPE/floating-point
status/control 

spr 512 SPEFSCR 

Vector
Single-Precision

Floating-Point
APU

0 31 32 63 32 63 efvcf… 
efvct…
efvabs 
efvadd 
efvcmp… 
efvdiv 
efvmul
efvneg 
efvnabs
efvsub
efvtst…
From SPE: 
evmergehi 
evmergelo 

From SPE: 
evldd
evlddx
evstdd
evstddx

Single-prec. Single-prec.

General-purpose 
registers (GPRs)1

MSR[SPE] Machine state 

Single-prec. Single-prec.
Interrupt Registers

Single-prec. Single-prec.
 spr 62 ESR[SPE] Exception syndrome

… …

Single-prec. Single-prec. Interrupt Vector Offset Registers
spr 405 IVOR5 Alignment 

ACC Accumulator
spr 528 IVOR32 SPE/Embedded 

Floating-point SPE/floating-point
status/control spr 512 SPEFSCR 

Scalar
Single-Precision

Floating-Point
APU

0 3 1 32 63 32 63 efscf… 
efsct…
efsabs 
efsadd 
efscmp… 
efsdiv 
efsmul
efsneg 
efsnabs
efssub
efstst…

Uses 
PowerPC 
UISA 32-bit 
loads and 
stores

Single-prec.

General-purpose 
registers (GPRs) 1

MSR[SPE] Machine state 
Single-prec.

Interrupt Registers
Single-prec.

 spr 62 ESR[SPE] Exception syndrome
…

Single-prec. Interrupt Vector Offset Registers
spr 405 IVOR5 Alignment 

ACC Accumulator
spr 528 IVOR32 SPE/Embedded 

Floating-point SPE/floating-point
status/control spr 512 SPEFSCR 

Scalar
Double-Precision

Floating-Point
APU

0 31 32 63 32 63 efdcf… 
efdct…
efdabs 
efdadd 
efdcmp… 
efddiv 
efdmul
efdneg 
efdnabs
efdsub
efdtst…
From SPE: 
evmergehi 
evmergelo 

From SPE:
evldd
evlddx
evstdd
evstddx

Double-precision

General-purpose 
registers (GPRs) 1

MSR[SPE] Machine state 

Double-precision
Interrupt Registers

Double-precision
 spr 62 ESR[SPE] Exception syndrome

…

Double-precision Interrupt Vector Offset Registers
spr 405 IVOR5 Alignment 

ACC Accumulator
spr 528 IVOR32 SPE/Embedded 

Floating-point SPE/floating-point
status/control spr 512 SPEFSCR 
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Integer exception register (XER)

Table 9 describes XER bit definitions.

         

 SPR1 Access: User read-write

32 56 57 63

R
SO OV CA — Number of bytes

W

Reset All zeros

Table 9. XER field descriptions

Bits Name Description

32 SO

Summary overflow. Set when an instruction (except mtspr) sets the overflow bit (OV). Once set, 
SO remains set until it is cleared by mtspr[XER] or mcrxr. SO is not altered by compare 
instructions or by other instructions (except mtspr[XER] and mcrxr) that cannot overflow. 
Executing mtspr[XER], supplying the values 0 for SO and 1 for OV, causes SO to be cleared and 
OV to be set.

33 OV

Overflow. X-form add, subtract from, and negate instructions having OE=1 set OV if the carry out 
of bit 32 is not equal to the carry out of bit 33, and clear OV otherwise to indicate a signed 
overflow. X-form multiply low word and divide word instructions having OE=1 set OV if the result 
cannot be represented in 32 bits (mullwo, divwo, and divwuo) and clear OV otherwise. OV is not 
altered by compare instructions or by other instructions (except mtspr[XER] and mcrxr) that 
cannot overflow.

34 CA

Carry. Add carrying, subtract from carrying, add extended, and subtract from extended 
instructions set CA if there is a carry out of bit 32 and clear it otherwise. CA can be used to 
indicate unsigned overflow for add and subtract operations that set CA. Shift right algebraic word 
instructions set CA if any 1 bits are shifted out of a negative operand and clear CA otherwise. 
Compare instructions and instructions that cannot carry (except Shift Right Algebraic Word, 
mtspr[XER], and mcrxr) do not affect CA.

35–56 — Reserved, should be cleared.

57–63
No. of 
Bytes

Supports emulation of load and store string instructions. Specifies the number of bytes to be 
transferred by a load string indexed or store string indexed instruction. 
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2.4 Registers for floating-point operations
This section details floating-point registers and their field descriptions.

2.4.1 Floating-point registers (FPRs)

Book E defines 32 floating-point registers (FPR0–FPR31). Floating-point instruction formats 
provide 5-bit fields for specifying FPRs used in instruction execution.

Each FPR contains 64 bits that support the floating-point format. Instructions that interpret 
FPR contents as floating-point values use double-precision format for this interpretation.

The computational instructions and the move and select instructions operate on data in 
FPRs and, except for compare instructions, place the result into an FPR, and optionally 
place status information into the CR.

Load and store double instructions are provided that transfer 64 bits of data between 
memory and the FPRs with no conversion. Load single instructions are provided to transfer 
and convert floating-point values in floating-point single format from memory to the same 
value in floating-point double format in the FPRs. Store single instructions are provided to 
transfer and convert floating-point values in floating-point double format from the FPRs to 
the same value in floating-point single format in memory.

Instructions are provided that manipulate the FPSCR and the CR explicitly. Some of these 
instructions copy data between an FPR and the FPSCR.

The computational instructions and the select instruction accept values from the FPRs in 
double format. For single-precision arithmetic instructions, all input values must be 
representable in single format; if they are not, the result placed into the target FPR, and the 
setting of status bits in the FPSCR and in the CR (if Rc = 1), are undefined.

2.4.2 Floating-point status and control register (FPSCR)

The FPSCR, shown below, controls how floating-point exceptions are handled and records 
status resulting from floating-point operations. FPSCR[32–55] are status bits; FPSCR[56–
63] are control bits.

Floating-point status and control register (FPSCR)

Access: User read/write

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

R
FX FEX VX OX UX ZX XX VXSNAN VXISI VXIDI VXZDZ VXIMZ VXVC FR FI C

W

Reset All zeros

48 51 52 53 54 55 56 57 58 59 60 61 62 63

R
FPCC — VXSOFT VXSQRT VXCVI VE OE UE ZE XE NI RN

W

Reset All zeros
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The exception bits, FPSCR[35–45,53–55], are sticky; once set they remain set until they are 
cleared by an mcrfs, mtfsfi, mtfsf, or mtfsb0. Exception summary bits 
FPSCR[FX,FEX,VX] are not considered to be exception bits, and only FX is sticky.

FEX and VX are simply the ORs of other FPSCR bits, and so are not listed among the 
FPSCR bits affected by the various instructions. FPSCR fields are described in Table 10.

         

Table 10. FPSCR field descriptions

Bits Name Description

32 FX
Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf, 
implicitly sets FX if that instruction causes any of the floating-point exception bits in the FPSCR to 
change from 0 to 1. mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 can alter FPSCR[FX] explicitly.

33 FEX
Floating-point enabled exception summary. FEX is the OR of all the floating-point exception bits 
masked by their respective enable bits. mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 cannot alter 
FPSCR[FEX] explicitly.

34 VX
Floating-point invalid operation exception summary. VX is the OR of all the invalid operation 
exception bits. mcrfs, mtfsfi, mtfsf, mtfsb0, and mtfsb1 cannot alter FPSCR[VX] explicitly.

35 OX Floating-point overflow exception

36 UX Floating-point underflow exception

37 ZX Floating-point zero divide exception

38 XX

Floating-point inexact exception. 

FPSCR[XX] is a sticky version of FPSCR[FI] (see below). Thus the following rules completely 
describe how FPSCR[XX] is set by a given instruction:

If the instruction affects FPSCR[FI], the new FPSCR[XX] value is obtained by ORing the old 
value of FPSCR[XX] with the new value of FPSCR[FI].

If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged.

39 VXSNAN Floating-point invalid operation exception (SNaN)

40 VXISI Floating-point invalid operation exception (∞ − ∞)

41 VXIDI Floating-point invalid operation exception (∞ ÷ ∞)

42 VXZDZ Floating-point invalid operation exception (0 ÷ 0)

43 VXIMZ Floating-point invalid operation exception (∞ × 0)

44 VXVC Floating-point invalid operation exception (invalid compare). 

45 FR
Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction 
incremented the fraction during rounding. This bit is not sticky.

46 FI

Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction either 
produced an inexact result during rounding or caused a disabled overflow exception. This bit is 
not sticky. The definition of FPSCR[XX] describes the relationship between FPSCR[FI] and 
FPSCR[XX].

47–
51

FPRF
Floating-point result flags. Set as described below in Table 10. For arithmetic, rounding, and 
conversion instructions, FPRF is set based on the result placed into the target register, except 
that if any portion of the result is undefined, the value placed into FPRF is undefined. 

47 C
Floating-point result class descriptor. Arithmetic, rounding, and conversion instructions may set 
this bit with the FPCC bits, to indicate the class of the result.
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48–
51

FPCC

Floating-point condition code. Floating-point Compare instructions set one of the FPCC bits and 
clear the other three FPCC bits. Arithmetic, rounding, and conversion instructions may set the 
FPCC bits with the C bit to indicate the class of the result. In this case, the three high-order FPCC 
bits retain their relational significance indicating that the value is less than, greater than, or equal 
to zero.
48Floating-point less than or negative (FL or <)

49Floating-point greater than or positive (FG or >)

50Floating-point equal or zero (FE or =)
51Floating-point unordered or NaN (FU or ?)

52 — Reserved, should be cleared.

53 VXSOFT
Floating-point invalid operation exception (software request). Can be altered only by mcrfs, 
mtfsfi, mtfsf, mtfsb0, or mtfsb1. 

54 VXSQRT

Floating-point invalid operation exception (invalid square root). 
Note that VXSQRT is defined even for implementations that do not support either of the two 
optional instructions that set it, fsqrt[.] and frsqrte[.]. Defining it for all implementations gives 
software a standard interface for handling square root exceptions. If an implementation does not 
support fsqrt[.] or frsqrte[.], software can simulate the instruction and set VXSQRT to reflect the 
exception.

55 VXCVI Floating-point invalid operation exception (invalid integer convert)

56 VE Floating-point invalid operation exception enable

57 OE Floating-point overflow exception enable

58 UE Floating-point underflow exception enable

59 ZE Floating-point zero divide exception enable

60 XE Floating-point inexact exception enable

61 NI

Floating-point non-IEEE mode. If NI = 1, the remaining FPSCR bits may have meanings other 
than those given in this document and results of floating-point operations need not conform to the 
IEEE standard. If the IEEE-conforming result of a floating-point operation would be a 
denormalized number, the result of that operation is 0 (with the same sign as the denormalized 
number) if FPSCR[NI] = 1 and other requirements specified in the user’s manual for the 
implementation are met. The other effects of setting NI may differ among implementations.

Setting NI is intended to permit results to be approximate and to cause performance to be more 
predictable and less data-dependent than when NI = 0. For example, in non-IEEE mode, an 
implementation returns 0 instead of a denormalized number and may return a large number 
instead of an infinity. In non-IEEE mode an implementation should provide a means for ensuring 
that all results are produced without software assistance (that is, without causing an enabled 
exception type program interrupt or a floating-point unimplemented instruction exception type 
program interrupt and without invoking an emulation assist). The means may be controlled by 
one or more other FPSCR bits (recall that the other FPSCR bits have implementation-dependent 
meanings if NI = 1).

62–
63

RN

Floating-point rounding control (RN). 
00Round to nearest

01Round toward zero

10Round toward +infinity
11Round toward –infinity

Table 10. FPSCR field descriptions (continued)

Bits Name Description
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Table 11 describes floating-point result flags.

         

2.5 Registers for branch operations
This section describes registers used by Book E branch and CR operations.

2.5.1 Condition register (CR)

The 32-bit CR reflects the result of certain operations and provides a mechanism for testing 
and branching.

Condition register (CR)

CR bits are grouped into eight 4-bit fields, CR0–CR7, which are set as follows:

● Specified CR fields can be set by a move to the CR from a GPR (mtcrf).

● A specified CR field can be set by a move to the CR from another CR field (mcrf), from 
the FPSCR (mcrfs), or from the XER (mcrxr).

● CR0 can be set as the implicit result of an integer instruction.

● CR1 can be set as the implicit result of a floating-point instruction.

● A specified CR field can be set as the result of either an integer or a floating-point 
compare instruction (including SPE and SPFP compare instructions).

Instructions are provided to perform logical operations on individual CR bits and to test 
individual CR bits (see Condition register instructions on page 204”).

Note that instructions that access CR bits (for example, Branch Conditional (bc), CR 
logicals, and Move to Condition Register Field (mtcrf)) determine the bit position by adding 

Table 11. Floating-point result flags

Result flags
Result value class

C < > = ?

1 0 0 0 1 Quiet NaN

0 1 0 0 1 –Infinity

0 1 0 0 0 –Normalized number

1 1 0 0 0 –Denormalized number

1 0 0 1 0 –Zero

0 0 0 1 0 +Zero

1 0 1 0 0 +Denormalized number

0 0 1 0 0 +Normalized number

0 0 1 0 1 +Infinity

Access: User read/write

32 35 36 39 40 43 44 47 48 51 52 55 56 59 60 63

R
CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

W

Reset All zeros
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32 to the operand value. For example, in conditional branch instructions, the BI operand 
accesses bit BI + 32, as shown in Table 12.

         

Table 12. BI operand settings for CR fields

CRn 
Bits

CR 
Bits

BI Description

CR0[0] 32 00000

Negative (LT)—Set when the result is negative. 
For SPE compare and test instructions:

Set if the high-order element of rA is equal to the high-order element of rB; cleared 
otherwise.

CR0[1] 33 00001

Positive (GT)—Set when the result is positive (and not zero). 
For SPE compare and test instructions:

Set if the low-order element of rA is equal to the low-order element of rB; cleared 
otherwise.

CR0[2] 34 00010
Zero (EQ)—Set when the result is zero.
For SPE compare and test instructions:

Set to the OR of the result of the compare of the high and low elements. 

CR0[3] 35 00011
Summary overflow (SO). Copy of XER[SO] at the instruction’s completion. For SPE 
compare and test instructions:

Set to the AND of the result of the compare of the high and low elements. 

CR1[0] 36 00100

Copy of FPSCR[FX] at the instruction’s completion. Negative (LT)

For SPE and SPFP compare and test instructions:
Set if the high-order element of rA is equal to the high-order element of rB; cleared 
otherwise.

CR1[1] 37 00101

Copy of FPSCR[FEX] at the instruction’s completion. Positive (GT)

For SPE and SPFP compare and test instructions:
Set if the low-order element of rA is equal to the low-order element of rB; cleared 
otherwise.

CR1[2]

38 00110

Copy of FPSCR[VX] at the instruction’s completion. Zero (EQ)

For SPE and SPFP compare and test instructions:
Set to the OR of the result of the compare of the high and low elements. 

CR1[3]
39 00111

Copy of FPSCR[OX] at the instruction’s completion. Summary overflow (SO)
For SPE and SPFP compare and test instructions:

Set to the AND of the result of the compare of the high and low elements.

CRn[0] 40

44

48
52

56

60

01000

01100

10000
10100

11000

11100

Less than or floating-point less than (LT, FL).

For integer compare instructions:
rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned comparison). 

For floating-point compare instructions: frA < frB.

For SPE and SPFP compare and test instructions:
Set if the high-order element of rA is equal to the high-order element of rB; cleared 
otherwise.



Register model RM0004

63/1176  

CR setting for integer instructions

For all integer word instructions in which the Rc bit is defined and set, and for addic., andi., 
and andis., CR0[32–34] are set by signed comparison of bits 32–63 of the result to zero; 
CR[35] is copied from the final state of XER[SO]. The Rc bit is not defined for double-word 
integer operations.

if      (target_register)32–63 < 0 then c ← 0b100
else if (target_register)32–63 > 0 then c ← 0b010
else                                    c ← 0b001
CR0 ← c || XERSO

The value of any undefined portion of the result is undefined, and the value placed into the 
first three bits of CR0 is undefined. CR0 bits are interpreted as described in Table 13.

         

Note that CR0 may not reflect the true (infinitely precise) result if overflow occurs.

CRn[1]

41
45

49

53
57

61

01001
01101

10001

10101
11001

11101

Greater than or floating-point greater than (GT, FG).
For integer compare instructions:
rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned comparison). 
For floating-point compare instructions: frA > frB.

For SPE and SPFP compare and test instructions:

Set if the low-order element of rA is equal to the low-order element of rB; cleared 
otherwise.

CRn[2]

42

46

50
54

58

62

01010

01110

10010
10110

11010

11110

Equal or floating-point equal (EQ, FE).

For integer compare instructions: rA = SIMM, UIMM, or rB. 

For floating-point compare instructions: frA = frB.
For SPE and SPFP compare and test instructions:

Set to the OR of the result of the compare of the high and low elements. 

CRn[3]

43

47

51
55

59

63

01011

01111

10011
10111

11011

11111

Summary overflow or floating-point unordered (SO, FU).

For integer compare instructions, this is a copy of XER[SO] at the completion of the 
instruction. 

For floating-point compare instructions, one or both of frA and frB is a NaN.

For SPE and SPFP vector compare and test instructions:
Set to the AND of the result of the compare of the high and low elements. 

Table 12. BI operand settings for CR fields (continued)

CRn 
Bits

CR 
Bits

BI Description

Table 13. CR0 bit descriptions

CR 
bit

Name Description

32 Negative (LT) Bit 32 of the result is equal to one.

33 Positive (GT)
Bit 32 of the result is equal to zero, and at least one of bits 33–63 of the result is non-
zero.

34 Zero (EQ) Bits 32–63 of the result are equal to zero.

35
Summary overflow 

(SO)
This is a copy of the final state of XER[SO] at the completion of the instruction.
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CR setting for store conditional instructions

CR0 is also set by the integer store conditional instruction, stwcx.. See instruction 
descriptions in Chapter 3,” for detailed descriptions of how CR0 is set.

CR setting for floating-point instructions

For all floating-point instructions in which the Rc bit is defined and set, CR1 (CR[36–39]) is 
copied from FPSCR[32–35]. These bits are interpreted as shown in Table 14.

         

CR setting for compare instructions

For compare instructions, a CR field specified by the BI field in the instruction is set to reflect 
the result of the comparison, as shown in Table 15. 

         

Table 14. CR setting for floating-point instructions

Bit Name Description

36 FX
Floating-point exception summary. Copy of final state of FPSCR[FX] at instruction 
completion.

37 FEX
Floating-point enabled exception summary. Copy of final state of FPSCR[FEX] at 
instruction completion.

38 VX
Floating-point invalid operation exception summary. Copy of final state of FPSCR[VX] at 
completion.

39 OX
Floating-point overflow exception. Copy of final state of FPSCR[OX] at instruction 
completion.

Table 15. CR setting for compare instructions

 CRn 
bit

Bit expression 

CR Bits BI

DescriptionAIM (BI
Operand)

Book 
E

0–2 3–4

CRn[0]

4 * cr0 + lt (or lt)
4 * cr1 + lt
4 * cr2 + lt
4 * cr3+ lt
4 * cr4 + lt
4 * cr5 + lt
4 * cr6 + lt
4 * cr7 + lt

0
4

8

12
16

20

24
28

32
36

40

44
48

52

56
60

000

001
010

011

100
101

110

111

00

Less than or floating-point less than (LT, FL).
For integer compare instructions: 
rA < SIMM or rB (signed comparison) or rA < 
UIMM or rB (unsigned comparison). 

For floating-point compare instructions: frA < 
frB.

CRn[1]

4 * cr0 + gt (or gt)
4 * cr1 + gt
4 * cr2 + gt
4 * cr3+ gt
4 * cr4 + gt
4 * cr5 + gt
4 * cr6 + gt
4 * cr7 + gt

1
5

9

13
17

21

25
29

33
37

41

45
49

53

57
61

000
001

010

011
100

101

110
111

01

Greater than or floating-point greater than (GT, 
FG).

For integer compare instructions: 
rA > SIMM or rB (signed comparison) or rA > 
UIMM or rB (unsigned comparison). 

For floating-point compare instructions: frA > 
frB. 



Register model RM0004

65/1176  

CR bit settings in VLE mode

The VLE extension implements the entire CR, but some comparison operations and all 
branch instructions are limited to using CR0–CR3. However, all Book E CR field and logical 
operations are provided.

CR bits are grouped into eight 4-bit fields, CR0–CR7, which are set in one of the following 
ways.

● Specified CR fields can be set by a move to the CR from a GPR (mtcrf).

● A specified CR field can be set by a move to the CR from another CR field (e_mcrf).

● CR field 0 can be set as the implicit result of an integer instruction.

● A specified CR field can be set as the result of an integer compare instruction.

● CR field 0 can be set as the result of an integer bit test instruction.

Instructions are provided to perform logical operations on individual CR bits and to test 
individual CR bits.

CR settings for integer instructions

For all integer word instructions in which the Rc bit is defined and set, and for addic., the 
first three bits of CR field 0 (CR[32–34]) are set by signed comparison of bits 32–63 of the 
result to zero, and the fourth bit of CR field 0 (CR[35]) is copied from the final state of 
XER[SO].

if      (target_register)32:63 < 0 then c ← 0b100
else if (target_register)32:63 > 0 then c ← 0b010
else                                    c ← 0b001
CR0 ← c || XERSO

CRn[2]

4 * cr0 + eq (or eq)
4 * cr1 + eq
4 * cr2 + eq 
4 * cr3+ eq
4 * cr4 + eq
4 * cr5 + eq
4 * cr6 + eq
4 * cr7 + eq

2
6

10

14
18

22

26
30

34
38

42

46
50

54

58
62

000
001

010

011
100

101

110
111

10

Equal or floating-point equal (EQ, FE).
For integer compare instructions: rA = SIMM, 
UIMM, or rB. 
For floating-point compare instructions: frA = 
frB.

CRn[3]

4 * cr0 + so/un (or 
so/un)

4 * cr1 + so/un

4 * cr2 + so/un
4 * cr3 + so/un

4 * cr4 + so/un
4 * cr5 + so/un
4 * cr6 + so/un
4 * cr7 + so/un

3

7

11

15
19

23

27
31

35

39

43

47
51

55

59
63

000

001

010

011
100

101

110
111

11

Summary overflow or floating-point unordered 
(SO, FU).

For integer compare instructions, this is a copy 
of XER[SO] at instruction completion. 

For floating-point compare instructions, one or 
both of frA and frB is a NaN.

Table 15. CR setting for compare instructions (continued)

 CRn 
bit

Bit expression 

CR Bits BI

DescriptionAIM (BI
Operand)

Book 
E

0–2 3–4
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If any portion of the result is undefined, the value placed into the first three bits of CR field 0 
is undefined. The bits of CR field 0 are interpreted as shown in Table 16.

         

         

CR setting for compare instructions supported by the VLE extension

For compare instructions, a CR field specified by the crD operand in the instruction for the 
e_cmph, e_cmphl, e_cmpi, and e_cmpli instructions, or CR0 for the e_cmp16i, 
e_cmph16i, e_cmphl16i, e_cmpl16i, se_cmp, se_cmph, se_cmphl, se_cmpi, and 
se_cmpli instructions is set to reflect the result of the comparison. The CR field bits are 
interpreted as shown in Table 17. A complete description of how the bits are set is given in 
Chapter 6,” and in Integer instructions on page 205.”

         

         

CR setting for the VLE bit test instruction

The Bit Test Immediate instruction, se_btsti, also sets CR field 0. See the instruction 
description and also Integer instructions on page 205 

2.5.2 Link register (LR)

The link register can be used to provide the branch target address for a Branch Conditional 
to LR (bclrx) instruction, and it holds the return address after branch and link instructions.

Table 16. CR0 encodings 

CR bit Description

32 Negative (LT). Bit 32 of the result is equal to 1.

33
Positive (GT). Bit 32 of the result is equal to 0 and at least one of bits 33–63 of the result is 
non-zero.

34 Zero (EQ). Bits 32–63 of the result are equal to 0.

35
Summary overflow (SO). This is a copy of the final state XER[SO] at the completion of the 
instruction.

Table 17. Condition register setting for compare instructions 

CR bit Description

4×CRD + 32 Less than (LT). For signed-integer compare, GPR(rA or rX) < SCI8 or SI or GPR(rB or 
rY).
For unsigned-integer compare, GPR(rA or rX) <u SCI8 or UI or UI5 or GPR(rB or rY).

4×CRD + 33 Greater than (GT). For signed-integer compare, GPR(rA or rX) > SCI8 or SI or UI5 or 
GPR(rB or rY).
For unsigned-integer compare, GPR(rA or rX) >u SCI8 or UI or UI5 or GPR(rB or rY).

4×CRD + 34 Equal (EQ). For integer compare, GPR(rA or rX) = SCI8 or UI5 or SI or UI or GPR(rB 
or rY).

4×CRD + 35 Summary overflow (SO). For integer compare, this is a copy of the final state of 
XER[SO] at the completion of the instruction.
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Link register (LR)

The LR contents are read into a GPR using mfspr. The contents of a GPR can be written to 
the LR using mtspr. LR[62–63] are ignored by bclr instructions. 

Link register usage in VLE mode

VLE instructions use the LR as defined in Book E, although the VLE extension defines a 
subset of all variants of Book E conditional branches involving the LR, as shown in Table 18. 
Note that because VLE instructions can reside on half-word boundaries, in VLE mode, 
LR[30] is examined when the LR holds an instruction address.

         

2.5.3 Count register (CTR)

CTR can be used to hold a loop count that can be decremented and tested during execution 
of branch instructions that contain an appropriately encoded BO field. If the CTR value is 0 
before being decremented, it is –1 afterward. The entire CTR can be used to hold the 
branch target address for a Branch Conditional to CTR (bcctrx) instruction.

Note that because VLE instructions can reside on half-word boundaries, in VLE mode, 
CTR[30] is examined when the CTR holds an instruction address. 

Count register (CTR)

 SPR 8 Access: user read/write

32 63

R
Link address

W

Reset All zeros

Table 18. Branch to link register instruction comparison

Book E VLE Subset

Instruction Syntax Instruction Syntax

Branch Conditional to Link Register

Branch Conditional to Link Register 
& Link

bclr BO,BI

bclrl BO,BI

Branch (Absolute) to Link 
Register

Branch (Absolute) to Link 
Register & Link

se_blr 
se_blrl 

Branch Conditional & Link e_bcl 
BO,BI,BD

Branch Conditional & Link e_bcl 
BO32,BI32,BD
15

Branch (Absolute) & Link e_bl BD24
se_bl BD8

 SPR 9 Access: user read/write

32 63

R
Count value

W

Reset All zeros
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Count register usage in VLE mode

VLE instructions use the CTR as defined by in Book E, although the VLE extension defines 
a subset of the variants of Book E conditional branches involving the CTR, as shown in 
Table 19.

         

2.6 Processor control registers
This section addresses machine state, processor ID, and processor version registers.

2.6.1 Machine state register (MSR)

The MSR defines the state of the processor (that is, enabling and disabling of interrupts and 
debugging exceptions, enabling and disabling of address translation for instruction and data 
memory accesses, enabling and disabling some APUs, and specifying whether the 
processor is in supervisor or user mode).

MSR contents are automatically saved, altered, and restored by the interrupt-handling 
mechanism. If a non-critical interrupt is taken, MSR contents are automatically copied into 
SRR1. If a critical interrupt is taken, MSR contents are automatically copied into CSRR1. 
When an rfi or rfci is executed, MSR contents are restored from SRR1 or CSRR1. 

The EIS-defined machine check APU defines additional save/restore resources. When a 
machine check interrupt is taken, MCSRR0 and MCSRR1 hold the return address and MSR 
information. The return from machine check interrupt instruction, rfmci, restores MCSRR1 
contents to the MSR. 

MSR contents are read into a GPR using mfmsr. The contents of a GPR can be written to 
MSR using mtmsr. The write MSR external enable instructions (wrtee and wrteei) can be 
used to set or clear MSR[EE] without affecting other MSR bits.

Machine state register (MSR)

Table 19. Branch to count register instruction comparison

Book E VLE

Instruction Syntax Instruction Syntax

Branch conditional to count register
Branch conditional to count register & link

bcctr BO,BI
bcctrl BO,BI

Branch (absolute) to count register
Branch (absolute) to count register & 
link

se_bctr 
se_bctrl 

Access: supervisor-only

32 36 37 38 39 43 44 45 46 47 48 49 50 51 52 53 54 55 5657 58 59 60 61 6263

Book E/
EIS

R
— AP WE CE — EE PR FP ME FE0 — DE FE1 — IS DS —

W

EIS 
APUs

R
— UCLE SPE — PMM —

W

Reset All zeros
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Table 20. MSR field descriptions

Bits Name Description

32–
36

—
Reserved, should be cleared.(1)

37 UCLE

(Cache-locking APU) User-mode cache lock enable. Used to restrict user-mode 
cache-line locking by the operating system. 
0Any cache lock instruction executed in user-mode takes a cache-locking DSI 
exception and sets either ESR[DLK] or ESR[ILK]. This allows the operating system 
to manage and track the locking/unlocking of cache lines by user-mode tasks.

1Cache-locking instructions can be executed in user-mode and they do not take a 
DSI for cache-locking. (They may still take a DSI for access violations though.)

38 SPE

(SPE, SPFP, DPFP APUs) SPE enable. Enables use of 64-bit extended GPRs used 
by SPE, single-precision vector, and double-precision floating-point APUs/
0If software attempts to execute an SPE APU instruction, the SPE APU unavailable 
exception is taken. 
1Software can execute any of the SPE APU instructions.

Embedded floating-point instructions require MSR[SPE] to be set. An attempt to 
execute an embedded floating-point instruction when MSR[SPE] is 0 results in an 
SPE APU unavailable interrupt. 

39–
43

—
Reserved, should be cleared. 1

44 AP

APU available. Book E defines the operation of AP as follows:

0The processor cannot execute APU instructions.
1The processor can execute APU instructions.

45 WE

Wait state enable. Allows the core complex to signal a request for power 
management, according to the states of HID0[DOZE], HID0[NAP], and 
HID0[SLEEP].

0The processor is not in wait state and continues processing. No power 
management request is signaled to external logic.

1The processor enters wait state by ceasing to execute instructions and entering 
low-power mode. Details of how wait state is entered and exited and how the 
processor behaves in the wait state are implementation-dependent. 

46 CE

Critical enable

0Critical input and watchdog timer interrupts are disabled.
1Critical input and watchdog timer interrupts are enabled.

47 — Preserved for Book III ILE

48 EE

External enable

0External input, decrementer, fixed-interval timer, and performance monitor 
interrupts are disabled.

1External input, decrementer, fixed-interval timer, and performance monitor 
interrupts are enabled.

49 PR

User mode (problem state)

0The processor is in supervisor mode, can execute any instruction, and can access 
any resource (for example, GPRs, SPRs, and the MSR).

1The processor is in user mode, cannot execute any privileged instruction, and 
cannot access any privileged resource.

PR also affects memory access control.
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The floating-point exception mode bits FE0 and FE1 are described in Table 21. 

50 FP

Floating-point available. 

0The processor cannot execute floating-point instructions, including floating-point 
loads, stores, and moves.

1The processor can execute floating-point instructions.

51 ME

Machine check enable. 

0Machine check interrupts are disabled.

1Machine check interrupts are enabled.

52 FE0
Floating-point exception mode 0. The Book E definition of this bit is shown in 
<Cross Refs>Table 21. 

53 — Allocated for implementation-dependent use.

54 DE

Debug interrupt enable

0Debug interrupts are disabled.
1Debug interrupts are enabled if DBCR0[IDM] = 1.

See the description of the DBSR[UDE] in Chapter 2.13.2.

55 FE1
Floating-point exception mode 1. The Book E definition of this bit is shown in 
Table 21. 

56 — Reserved, should be cleared. 1

57 — Preserved for Book III IP

58 IS

Instruction address space

0The processor directs all instruction fetches to address space 0 (TS = 0 in the 
relevant TLB entry).

1The processor directs all instruction fetches to address space 1 (TS = 1 in the 
relevant TLB entry).

59 DS

Data address space

0The processor directs data memory accesses to address space 0 (TS = 0 in the 
relevant TLB entry).

1The processor directs data memory accesses to address space 1 (TS = 1 in the 
relevant TLB entry).

60 — Reserved, should be cleared. 1

61 PMM

(Performance monitor APU) Performance monitor mark bit. System software can set 
PMM when a marked process is running to enable statistics gathering only during 
the execution of the marked process. PMM and MSR[PR] together define a state 
that the processor (supervisor or user) and the process (marked or unmarked) may 
be in at any time. If this state matches an individual state specified in the PMLCax, 
the state for which monitoring is enabled, counting is enabled. 

62–
63

—
Preserved for Book III RI and LE, respectively. 

1. An MSR bit that is reserved may be altered by return from interrupt instructions.

Table 20. MSR field descriptions (continued)

Bits Name Description
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2.7 Hardware implementation-dependent registers 
Each ST Book E processor implements hardware implementation-dependent registers, 
HID0 and HID1,which contain fields defined either by the EIS or by the implementation. This 
section provides architectural information about HID registers and describes only those bits 
that are defined by the EIS. 

Note: 1 Not all processors implement HID fields defined by the EIS. Consult the user 
documentation. 

2 An integrated device may not use all HID fields implemented on an embedded core or may 
define those fields more specifically. Always begin by looking at the core register 
descriptions in the reference manual for the integrated device. 

2.7.1 Hardware implementation dependent register 0 (HID0) 

HID0 is used for configuration and control. Figure below shows the HID0 bits that are 
defined either generally by the EIS or as part of an EIS-defined APU. Note that not all EIS-
compliant device implement all HID0 fields; see the user documentation. 

Writing to HID0 typically requires synchronization, as described in Chapter 2.18.2.”

Hardware implementation dependent register 0 (HID0)

HID0 fields are described in Table 22.

         

Table 21. Floating-point exception bits—MSR[FE0,FE1]

FE0 FE1 Mode

0 0 Ignore exceptions

0 1 Imprecise nonrecoverable

1 0 Imprecise recoverable

1 1 Precise

SPR 1008 Access: Supervisor-only

32 33 34 35 3940 42 43 47

R
EMCP — PWRMGMT DPM EDPM — IPR EN_MAS7_

UPDATEW

Reset All zeros

48 49 50 51 55 56 57 58 62 63

R
EIEC TBEN SEL_TBCLK — DAPUEN SGE — EIEIO_EN LWSYNC_EN — NOPTST NOPDST NOPTI

W

Reset All zeros
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Table 22. HID0 field descriptions

Bits Name Description

32 EMCP

Enable machine check pin. Used to mask machine check exceptions 
delivered to the core from the machine check input.

0Machine check exceptions from the machine check signal are disabled.
1Machine check exceptions from the machine check signal are enabled. If 
MSR[ME] = 0, asserting the machine signal check causes a checkstop. If 
MSR[ME] = 1, asserting the machine check signal causes a machine check 
exception.

33 — Implementation dependent.

34 SFR

Sixty-four bit results. Determines how the upper 32 bits of 64-bit registers in 
a 64-bit implementation are computed when the processor is executing in 
32-bit mode (MSR[CM] = 0). 
0In 32-bit mode, bits 0–31 of all 64-bit registers are not modified. Explicit 64-
bit instructions generate an unimplemented instruction exception when 
executed.

1In 32-bit mode, bits 0–31 are written with the same value that is written as 
when the processor is executing in 64-bit mode (except for the LR and any 
EAs generated that clear bits 0–31. Explicit 64-bit instructions are allowed to 
execute and do not generate an unimplemented instruction exception unless 
they would have when the processor is in 64-bit mode.

35–
39

—
Implementation dependent.

40–
42

PWRMGMT
Power management control. The semantics of PWRMGMT are 
implementation dependent.

43 DPM

Dynamic power management. Used to enable power-saving by shutting off 
functional resources not in use. Setting or clearing DPM should not affect 
performance.
0Dynamic power management is disabled.

1Dynamic power management is enabled.

44 EDPM

Enhanced dynamic power management. Used to enable additional power-
saving by shutting off functional resources not in use. Setting EDPM may 
have adverse effects on performance.

0Enhanced dynamic power management is disabled.
1Enhanced dynamic power management is enabled.

45 — Implementation dependent.

46 ICR

Interrupt inputs clear reservation. Controls whether external input and 
critical input interrupts cause an established reservation to be cleared.

0External and critical input interrupts do not affect reservation status.

1External and critical input interrupts, when taken, clear an established 
reservation.

47
EN_MAS7_UP

DATE

Enable hot-wire update of MAS7 register. Implementations that support this 
bit do not update MAS7 (upper RPN field) when hardware writes MAS 
registers via a tlbre, tlbsx, or an interrupt unless this bit is set. This provides 
a compatibility path for processors that originally offered only 32 bits of 
physical addressing but have since extended past 32 bits.
0Hardware updates of MAS7 are disabled.

1Hardware updates of MAS7 are enabled.
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48 EIEC

Enable internal error checking. Used to control whether internal processor 
errors cause a machine check exception.
0 Internal error reporting is disabled. Internally detected processor errors 

do not generate a machine check interrupt.
1 Internal error reporting is enabled. Internally detected processor errors 

generate a machine check interrupt.

49 TBEN

Time base enable. Used to control whether the time base increments.

0 The time base is not enabled and will not increment.
1 The time base is enabled and will increment. The rate at which the time 

base increments is determined by the value of HID0[SEL_TBCLK].

50 SEL_TBCLK

Select time base clock. Used to select the source of the time base clock.

0 The time base is updated based on a core implementation specific rate.
1 The time base is updated based on an external signal to the core

51–
54

—
Implementation dependent.

55 DAPUEN

Debug APU enable. Controls whether the debug APU or enhanced debug 
APU is enabled. 

0 The debug APU is disabled. Debug interrupts use CSRR0 and CSRR1 to 
save state and the rfci instruction to return from the debug interrupt.

1 The debug APU is enabled; debug interrupts use DSRR0 and DSRR1 to 
save state and the rfdi instruction to return from the debug interrupt.

56 SGE

Store gathering enable. Turns on store gathering for non-guarded cache 
inhibited or write-through stores. Details and characteristics of how stores 
are gathered is implementation dependent.

0 Store gathering is disabled.
1 Store gathering is enabled.

57 — Implementation dependent.

58 EIEIO_EN

eieio synchronization enable. Allows mbar instructions to provide the same 
synchronization semantics as the eieio instruction.

0 Synchronization provided by mbar is performed in the Book E manner. 
Additional forms of synchronization, if implemented, are determined by 
the MO value.

1 Synchronization provided by mbar is equivalent to eieio synchronization. 
The MO field is ignored.

59 LWSYNC_EN

Lightweight synchronization enable. Allows msync instructions to provide 
the same synchronization semantics as the sync instructions from the 
PowerPC 2.xx architecture.
0 The synchronization provided by the msync instruction is performed in 

the Book E manner. 
1 The synchronization provided by the msync instruction is based on the L 

field defined in PowerPC 2.xx architecture sync instruction.

60 — Implementation dependent.

Table 22. HID0 field descriptions

Bits Name Description
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2.7.2 Hardware implementation dependent register 1 (HID1)

The EIS defines a HID1 register. HID1 contents are implementation dependent. HID1 is 
used for bus configuration and control. Writing to HID1 requires synchronization, as 
described in Chapter 2.18.2: Synchronization requirements for SPRs.”

Hardware implementation dependent register 1 (HID1)

2.7.3 Processor ID register (PIR)

The processor ID register (PIR), shown below, contains a value that can be used to 
distinguish the processor from other processors in the system. 

Processor ID register (PIR)

61 NOPTST

No-op cache touch for store instructions. Controls whether data cache touch 
for store instructions perform no operation.
0 dcbtst, dstst, and dststt and other forms of cache touch for store 

instructions operate as defined by the EIS and Book E unless disabled by 
NOPDST or NOPTI.

1 dcbtst, dstst, and dststt and other forms of cache touch for store 
instructions are treated as no-ops. Cache line touch for store and lock 
instructions defined in the cache line locking APU operate as defined.

62 NOPDST

No-op dst, dstt, dstst, and dststt instructions. Instructions that start data 
stream prefetching through the dst instructions produce no-operation.

0 dst, dstt, dstst, and dststt operate as defined by the EIS unless disabled 
by NOPTST or NOPTI.

1 dst, dstt, dstst, and dststt are treated as no-ops and all current dst 
prefetch streams are terminated.

63 NOPTI

No-op cache touch instructions. Data and instruction cache touch 
instructions perform no operations.

0 dcbt, dcbtst, icbt and other forms of cache touch instructions operate as 
defined by the EIS and Book E unless disabled by NOPDST or NOPTST.

1 dcbt, dcbtst, icbt and other cache touch instruction forms are treated as 
no-ops. Cache line touch and lock instructions defined in the cache line 
locking APU operate as defined.

Table 22. HID0 field descriptions

Bits Name Description

 SPR 1009 Access: supervisor-only

32 63

R
Implementation dependent

W

Reset Implementation dependent

 SPR 286 Access: Supervisor read-only

32 63

R Processor ID

W

Reset Processor specific value



Register model RM0004

75/1176  

2.7.4 Processor version register (PVR)

The read-only processor version register (PVR), contains a value identifying the version and 
revision level of the processor. The PVR distinguishes between processors that differ in 
attributes that may affect software. 

Processor version register (PVR)

Table 23 describes PVR fields.

         

2.7.5 System version register (SVR)

The system version register (SVR), contains a read-only SoC-dependent value; consult the 
documentation for the implementation. 

         

System version register (SVR)

2.8 Timer registers
The time base (TB), decrementer (DEC), fixed-interval timer (FIT), and watchdog timer 
provide timing functions for the system. The relationship of these timer facilities to each 
other is shown in Figure 5 and is described as follows:

 SPR 287 Access: supervisor read-only

32 47 48 63

R Version Revision

W

Reset Processor specific value

Table 23. PVR field descriptions

Bits Name Description

32–
47

Version A 16-bit number that identifies the version of the processor. Different version 
numbers indicate major differences between processors, such as which optional 
facilities and instructions are supported.

48–
63

Revisio
n

A 16-bit number that distinguishes between implementations of the version. 
Different revision numbers indicate minor differences between processors having 
the same version number, such as clock rate and engineering change level. 

 SPR 1023 Access: supervisor read-only

32 63

R System version

W

Reset SoC-specific value
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Figure 5. Relationship of timer facilities to the time base

● The TB is a long-period counter driven at an implementation-dependent frequency.

● The decrementer, updated at the same rate as the TB, provides a way to signal an 
exception after a specified period unless one of the following occurs:

– DEC is altered by software in the interim.

– The TB update frequency changes.

● The DEC is typically used as a general-purpose software timer.

● The time base for the TB and DEC is selected by the time base enable (TBEN) and 
select time base clock (SEL_TBCLK) bits in HID0, as follows:

– If HID0[TBEN] = 1 and HID0[SEL_TBCLK] = 0, the time base is updated every 8 
bus clocks.

– If HID0[TBEN] = 1 and HID0[SEL_TBCLK] = 1, the time base is updated by an 
implementation-specific clock input). 

● Software can select one from of four TB bits to signal a fixed-interval interrupt 
whenever the bit transitions from 0 to 1. It is typically used to trigger periodic system 
maintenance functions. Bits that may be selected are implementation-dependent.

● The watchdog timer, also a selected TB bit, provides a way to signal a critical exception 
when the selected bit transitions from 0 to 1. It is typically used for system error 
recovery. If software does not respond in time to the initial interrupt by clearing the 
associated status bits in the TSR before the next expiration of the watchdog timer 
interval, a watchdog timer-generated processor reset may result, if so enabled. 

All timer facilities must be initialized during start-up.

2.8.1 Timer control register (TCR)

The TCR, provides control information for the on-chip timer of the core complex. The core 
complex implements two fields not specified in Book E: TCR[WPEXT] and TCR[FPEXT]. 

The 32-bit timer control register (TCR), controls the decrementer. (See Chapter 2.8.4.) 

Timer Clock

Time Base (incrementer)

Decrementer event = 0/1 detect
63

DECAR

32

Auto-reload

6332

TBL

6332

TBU

Watchdog timer events based on one of the TB bits 
selected by the EIS–defined TCR[WPEXT] 
concatenated with the Book E–defined TCR[WP] 

Fixed-interval timer events based on one of TB bits 
selected by the EIS–defined TCR[FPEXT] 
concatenated with the Book E–defined TCR[FP] 

DEC

•
•
•

•
•
•

(Time Base Clock)
core_tbclk
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Timer control register (TCR)

Table 24 describes the TCR fields.

          

 SPR 340 Access: Supervisor read/write

32 33 34 35 36 37 38 39 40 41 42 43 46 47 50 51 63

R
WP WRCWIEDIE FP FIEARE — WPEXT FPEXT —

W

Reset Processor specific value

Table 24. TCR field descriptions

Bits Name Description

32–
33

WP Watchdog timer period. When concatenated with WPEXT, specifies one of 64-bit 
locations of the time base used to signal a watchdog timer exception on a transition 
from 0 to 1.

WPEXT,WP = 0000_00 selects TBU[32] (the msb of the TB) 

WPEXT,WP = 1111_11 selects TBL[63] (the lsb of the TB) 

34–
35

WRC Watchdog timer reset control. When a watchdog reset event occurs, the value 
programmed into WRC is reflected on core_wrs and into TSR[WRS], but the WRC bits 
are reset to 00. At this point, software can reprogram WRC. Although WRC can be set 
by software, it cannot be cleared by software (except by a software-induced reset). 
Once written to a non-zero value, WRC may no longer be altered by software.
00No watchdog timer reset will occur. TCR[WRC] resets to 00; it can be set by 

software, but cannot be cleared by software (except by a software-induced reset). 
xx Other values: Force processor to be reset on second time-out of watchdog timer. 

The exact function of any of these settings is implementation-dependent. 

36 WIE Watchdog timer interrupt enable

0Watchdog timer interrupts disabled
1Watchdog timer interrupts enabled

37 DIE Decrementer interrupt enable
0 Decrementer interrupts disabled

1 Decrementer interrupts enabled

38–
39

FP Fixed interval timer period. When concatenated with FPEXT, FP specifies one of 64 bit 
locations of the time base used to signal a fixed-interval timer exception on a transition 
from 0 to 1.

FPEXT||FP = 0000_00 selects TBU[32] (the msb of the TB)
FPEXT||FP = 1111_11 selects TBL[63] (the lsb of the TB)

40 FIE Fixed interval interrupt enable
0 Fixed interval interrupts disabled

1 Fixed interval interrupts enabled

41 ARE Auto-reload enable. Controls whether the value in DECAR is reloaded into the DEC 
when the DEC value reaches 0000_0001.
0 Auto-reload disabled

1 Auto-reload enabled

42 — Reserved, should be cleared.

43–
46

WPE
XT

(EIS) Watchdog timer period extension (see the description for WP) 
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2.8.2 Timer status register (TSR)

As shown below, the 32-bit TSR contains status on timer events and the most recent 
watchdog timer-initiated processor reset. All TSR bits function as write-1-to-clear.

Note: Register fields designated as write-1-to-clear are cleared only by writing ones to them. 
Writing zeros to them has no effect.

Timer status register (TSR)

Table 25 describes TSR fields.

         

47–
50

FPEX
T

(EIS) Fixed-interval timer period extension (see the description for FP)

51–
63

— Reserved, should be cleared.

Table 24. TCR field descriptions (continued)

Bits Name Description

 SPR 336

336
Access: supervisor w1c

32 33 34 35 36 37 38 63

R ENWWIS WRS DIS FIS
—

W w1c w1c w1c w1cw1c

Reset All zeros

Table 25. TSR field descriptions

Bits Name Description

32 ENW

Enable next watchdog time. When a watchdog timer time-out occurs while WIS = 0 and the next 
watchdog time-out is enabled (ENW = 1), a watchdog timer exception is generated and logged by 
setting WIS. This is referred to as a watchdog timer first time out. A watchdog timer interrupt 
occurs if enabled by TCR[WIE] and MSR[CE]. To avoid another watchdog timer interrupt once 
MSR[CE] is reenabled (assuming TCR[WIE] is not cleared instead), the interrupt handler must 
reset TSR[WIS] by executing an mtspr, setting WIS and any other bits to be cleared and a 0 in all 
other bits. The data written to the TSR is not direct data, but a mask. A 1 causes the bit to be 
cleared; a 0 has no effect.

0 Action on next watchdog timer time-out is to set TSR[ENW].

1 Action on next watchdog timer time-out is governed by TSR[WIS].

33 WIS

Watchdog timer interrupt status. See the ENW description for more information about how WIS is 
used.

0 A watchdog timer event has not occurred.

1 A watchdog timer event occurred. When MSR[CE] = 1 and TCR[WIE] = 1, a watchdog timer 
interrupt is taken.

34–35 WRS

Watchdog timer reset status. Defined at reset (value = 00). Set to TCR[WRC] when a reset is 
caused by the watchdog timer.
00 No watchdog timer reset has occurred. 

xx All other values are implementation-dependent. 
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2.8.3 Time base (TBU and TBL)

The time base (TB), seen below, is composed of two 32-bit registers, the time base upper 
(TBU) concatenated on the right with the time base lower (TBL). TB provides timing 
functions for the system. TB is a volatile resource and must be initialized during start-up. 

Time base upper/lower registers (TBU/TBL)

The TB is interpreted as a 64-bit unsigned integer that is incremented periodically. Each 
increment adds 1 to the least-significant bit. The frequency at which the integer is updated is 
implementation-dependent.

TBL increments until its value becomes 0xFFFF_FFFF (232 – 1). At the next increment, its 
value becomes 0x0000_0000 and TBU is incremented. This process continues until the 
TBU value becomes 0xFFFF_FFFF and value TBL value becomes 0xFFFF_FFFF (TB is 
interpreted as 0xFFFF_FFFF_FFFF_FFFF (264 – 1)). At the next increment, the TBU value 
becomes 0x0000_0000 and the TBL value becomes 0x0000_0000. There is no interrupt (or 
any other indication) when this occurs.

The period depends on the driving frequency. For example, if TB is driven by 100 MHz 
divided by 32, the TB period is as follows: 

 (approximately 187,000 years)

The TB is implemented such that the following requirements are satisfied:

● Loading a GPR from the TB has no effect on the accuracy of the TB.

● Storing a GPR to the TB replaces the value in the TB with the value in the GPR.

Book E does not specify a relationship between the frequency at which the TB is updated 
and other frequencies, such as the CPU clock or bus clock in a Book E system. The TB 

36 DIS

Decrementer interrupt status. 

0 A decrementer event has not occurred.

1 A decrementer event occurred. When MSR[EE] = TCR[DIE] = 1, a decrementer interrupt is 
taken.

37 FIS

Fixed-interval timer interrupt status. 

0 A fixed-interval timer event has not occurred.

1 A fixed-interval timer event occurred. When MSR[EE] = 1 and TCR[FIE ]= 1, a fixed-interval 
timer interrupt is taken.

38–63 — Reserved, should be cleared.

Table 25. TSR field descriptions (continued)

Bits Name Description

 SPR269 Read/285 write 268 read/284 write Access: user read supervisor write

32 6332 63

R
TBU TBU

W

Reset All zeros

TTB 2
64 32

10MHz
--------------------× 5.90 10

12×  seconds= =
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update frequency is not required to be constant. One of the following is required to ensure 
that system software can keep time of day and operate interval timers:

● The system provides an (implementation-dependent) interrupt to software whenever 
the update frequency of the TB changes and a way to determine the current update 
frequency.

● The update frequency of the TB is under the control of system software.

Note: 1 Disabling the TB or making reading the time base privileged prevents the TB from being 
used to implement a covert channel in a secure system. 

2 If the operating system initializes the TB on power-on to some reasonable value and the 
update frequency of the TB is constant, the TB can be used as a source of values that 
increase at a constant rate, such as for time stamps in trace entries.
Even if the update frequency is not constant, values read from the TB are monotonically 
increasing (except when the TB wraps from 264 – 1 to 0). If a trace entry is recorded each 
time the update frequency changes, the sequence of TB values can be post-processed to 
become actual time values.
Successive readings of the TB may return identical values.

It is intended that the TB be useful for timing reasonably short sequences of code (a few 
hundred instructions) and for low-overhead time stamps for tracing. 

2.8.4 Decrementer register

The 32-bit decrementer (DEC), shown below, is a decrementing counter that is updated at 
the same rate as the TB. It provides a way to signal a decrementer interrupt after a specified 
period unless one of the following occurs:

● DEC is altered by software in the interim.

● The TB update frequency changes.

DEC is typically used as a general-purpose software timer. The decrementer auto-reload 
register is used to automatically reload a programmed value into DEC, as described in 
Section 2.8.5: Decrementer auto-reload register (DECAR).”

Decrementer register (DEC)

2.8.5 Decrementer auto-reload register (DECAR) 

The decrementer auto-reload register is shown in figure below. If the auto-reload function is 
enabled (TCR[ARE] = 1), the auto-reload value in DECAR is written to DEC when DEC 
decrements from 0x0000_0001 to 0x0000_0000. Note that writing DEC with zeros by using 
an mtspr[DEC] does not automatically generate a decrementer exception. 

 SPR 222 Access: Supervisor read/write

32 63

R
Decrementer value

W

Reset All zeros
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Decrementer auto-reload register (DECAR)

2.9 Interrupt registers
Chapter 2.9.1: Interrupt registers defined by book E on page 81,” describes registers used 
for interrupt handling.

2.9.1 Interrupt registers defined by book E

This section describes the following register bits and their fields:

● Save/restore register 0 (SRR0) on page 81”

● Save/restore register 1 (SRR1) on page 81”

● Critical save/restore register 0 (CSRR0) on page 82”

● Critical save/restore register 1 (CSRR1) on page 82”

● Data exception address register (DEAR) on page 82”

● Interrupt vector prefix register (IVPR) on page 83”

● Interrupt vector offset registers (IVORs) on page 83”

● Exception syndrome register (ESR) on page 84”

Save/restore register 0 (SRR0)

On a noncritical interrupt, SRR0, shown in figure below, holds the address of the instruction 
where the interrupted process should resume. The instruction is interrupt-specific, although 
for instruction-caused exceptions, it is typically the address of the instruction that caused the 
interrupt. When rfi executes, instruction execution continues at the address in SRR0.

Save/restore register 0 (SRR0)

Save/restore register 1 (SRR1)

SRR1 is provided to save and restore machine state on noncritical interrupts. When a 
noncritical interrupt is taken, MSR contents are placed in SRR1. When rfi executes, SRR1 
contents are placed into MSR. SRR1 bits that correspond to reserved MSR bits are also 
reserved. These registers are not affected by rfci or rfmci. Reserved MSR bits may be 
altered by rfi, rfci, or rfmci.

 SPR 544 Access: supervisor write-only

32 63

R

W Decrementer auto-reload value

Reset All zeros

 SPR 2626 Access: sup[ervisor read/write

32 63

R
Next instruction address 

W

Reset All zeros
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Save/restore register 1 (SRR1)

Critical save/restore register 0 (CSRR0)

CSRR0, is provided to save and restore machine state on critical interrupts. It is used by 
critical interrupts like SRR0 is used for standard interrupts: to hold the address of the 
instruction to which control is passed at the end of the interrupt handler. When rfci executes, 
instruction execution continues at the address in CSRR0. 

Critical save/restore register 0 (CSRR0)

Critical save/restore register 1 (CSRR1)

CSRR1, is used to save and restore machine state on critical interrupts. When a critical 
interrupt is taken, MSR contents are placed into CSRR1. When rfci executes, CSRR1 
contents are restored into the MSR. CSRR1 bits that correspond to reserved MSR bits are 
also reserved; reserved MSR bits may be altered.

Critical save/restore register 1 (CSRR1)

Data exception address register (DEAR)

DEAR, is loaded with the effective address of a data access (caused by a load, store, or 
cache management instruction) that results in an alignment, data TLB miss, or DSI 
exception. 

Data exception address register (DEAR)

 SPR 277 Access: supervisor read/write

32 63

R
MSR state information

W

Reset All zeros

 SPR 587 Access: supervisor read/write

32 63

R
Next instruction address

W

Reset All zeros

 SPR 597 Access: supervisor read/write

32 63

R
MSR state information

W

Reset All zeros

 SPR 617 Access: supervisor read/write

32 63

R
Exception address

W

Reset All zeros
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Interrupt vector prefix register (IVPR)

IVPR is used with IVORs to determine the vector address. IVPR[32–47] provides the high-
order 16 bits of the address of the exception processing routines. The 16-bit vector offsets 
are concatenated to the right of IVPR[32–47] to form the address of the exception 
processing routine. IVPR[48–63] are reserved. 

Interrupt vector prefix register (IVPR)

Interrupt vector offset registers (IVORs)

IVORs, hold the quad-word index from the base address provided by the IVPR for each 
interrupt type. 

Interrupt vector offset registers (IVOR)

SPR numbers corresponding to IVOR16–IVOR31 are reserved. IVOR32–IVOR47 and 
IVOR60–IVOR63 are reserved. SPR numbers for IVOR32–IVOR63 are allocated for 
implementation-dependent use. IVOR assignments are shown in Table 26.

         

 SPR 637 Access: supervisor read/write

32 47 48 63

R
Interrupt vector prefix —

W

Reset All zeros

SPR (see Table 26) Access: Supervisor read/write

32 47 48 59 60 63

R
— Interrupt vector prefix —

W

Reset All zeros

Table 26. IVOR assignments

IVOR Number SPR Interrupt type

IVOR0 400 Critical input

IVOR1 401 Machine check

IVOR2 402 Data storage

IVOR3 403 Instruction storage

IVOR4 404 External input

IVOR5 405 Alignment

IVOR6 406 Program

IVOR7 407 Floating-point unavailable

IVOR8 408 System call

IVOR9 409 Auxiliary processor unavailable (optional) 

IVOR10 410 Decrementer



RM0004 Register model

 84/1176

Exception syndrome register (ESR)

The ESR, provides a syndrome to differentiate between different kinds of exceptions that 
can generate the same interrupt type. When such an interrupt is generated, bits 
corresponding to the specific exception that generated the interrupt are set and all other 
ESR bits are cleared. Other interrupt types do not affect ESR contents. The ESR does not 
need to be cleared by software. Table 27 shows ESR bit definitions.

EIS storage defines ESR[DLK] and ESR[ILK] to indicate user cache line locking exceptions, 
ESR[XTE] for precise external transaction errors, and ESR[EPID] external PID load and 
store exceptions.

The ESR is defined in Book E. Bits architected by EIS storage are defined here.

Exception syndrome register (ESR)

         

Table 27 describes ESR bit definitions.

IVOR11 411 Fixed-interval timer interrupt

IVOR12 412 Watchdog timer interrupt

IVOR13 413 Data TLB error

IVOR14 414 Instruction TLB error

IVOR15 415 Debug

IVOR16–
IVOR31

—
Reserved for future architectural use

IVOR36–IVOR63 allocated for implementation dependent use

IVOR32 528 SPE APU unavailable

IVOR33 529 (Embedded FP APUs) embedded floating-point data exception

IVOR34 530 (Embedded FP APUs) embedded floating-point round exception

IVOR35 531 (Performance monitor APUs) performance monitor

Table 26. IVOR assignments (continued)

IVOR Number SPR Interrupt type

SPR62 Access: Supervisor read/write

32 35 36 37 38 39 40 41 42 43 44 45 46 47 55 56 57 58 59 61 62 63

Book E
R

— PIL PPR PTR FP ST — DLK0 DLK1 AP PUO BO —
W

EIS
R

— DLK ILK — SPE — VLEMI — MIF XTE
W

Reset All zeros

Table 27. Exception syndrome register (ESR) definition 

Bits Name Syndrome Interrupt types

32–35 — Reserved, should be cleared. (Defined by Book E as allocated.) —

36 PIL Illegal instruction exception Program

37 PPR Privileged instruction exception Program
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38 PTR Trap exception Program

39 FP
Floating-point operations Alignment, data 

storage, data TLB, 
program

40 ST
Store operation Alignment, data 

storage, data TLB 
error

41 — Reserved, should be cleared. —

42 DLK

Defined by cache line locking APU. Instruction cache locking attempt. 
Set when a DSI occurs because a dcbtls, dcbtstls, or dcblc was 
executed in user mode (MSR[PR] = 1) while MSR[UCLE] = 0. 
0 Default

1 DSI occurred on an attempt to lock line in data cache when 
MSR[UCLE] = 0.

Data storage

43 ILK

Defined by cache line locking APU. Instruction cache locking attempt. 
Set when a DSI occurs because an icbtls or icblc was executed in 
user mode (MSR[PR] = 1) while MSR[UCLE] = 0. 
0 Default

1 DSI occurred on an attempt to lock line in instruction cache when 
MSR[UCLE] = 0.

Data storage

44 APU
Auxiliary processor operation. Defined by Book E. Alignment, data 

storage, data TLB, 
program

45 PUO Unimplemented operation exception. Defined by Book E. Program

46 BO
Byte-ordering exception. Defined by Book E and the VLE extension. Data storage,

instruction storage

47 PIE Imprecise exception. Defined by Book E. Program

48–55 — Reserved. —

56 SPE

Defined by SPE, embedded floating-point APU. SPE/embedded 
floating-point exception bit
0 Default

1 Any exception caused by an SPE/embedded floating-point 
instruction occurred.

Data storage,

Data TLB error,

Alignment,
SPE unavailable,

Embedded FP 
unavailable,

Embedded FP data,

Embedded FP round

57 — Reserved, should be cleared 

Table 27. Exception syndrome register (ESR) definition  (continued)

Bits Name Syndrome Interrupt types
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Note: ESR information is incomplete, so system software may need to identify the type of 
instruction that caused the interrupt and examine the TLB entry and the ESR to fully identify 
the exception or exceptions. For example, a data storage interrupt may be caused by both a 
protection violation exception and a byte-ordering exception. System software would have to 
look beyond ESR[BO], such as the state of MSR[PR] in SRR1 and the TLB entry page 
protection bits to determine if a protection violation also occurred.

EIS-defined interrupt registers

This section describes machine check save/store and syndrome registers.

Debug save/restore register 0 (DSRR0)

On a debug interrupt, DSRR0, holds the address of the instruction where the interrupted 
process should resume. The instruction is interrupt specific. See Chapter 4.7.16: Debug 
interrupt on page 271.” When rfdi executes, instruction execution continues at the address 
in DSRR0. DSRR0 and DSRR1 are not affected by rfi, rfci, or other return from interrupt 
instructions

58 VLEMI

Defined by VLE extension. VLEMI indicates that an interrupt was 
caused by a VLE instruction. VLEMI is set on an exception associated 
with execution or attempted execution of a VLE instruction. 

0 The instruction page associated with the instruction causing the 
exception does not have the VLE attribute set or the VLE extension 
is not implemented.

1 The instruction page associated with the instruction causing the 
exception has the VLE attribute set and the VLE extension is 
implemented.

Data storage,

Data TLB error,

Instruction storage,
Program,

System Call,

Alignment,
SPE unavailable,

Embedded FP 
unavailable,

Embedded FP data,

Embedded FP round

59–61 — Reserved. Defined by Book E as allocated. —

62 MIF

Defined by the VLE extension. MIF indicates that an interrupt was 
caused by a misaligned instruction fetch (NIA62 != 0) and the VLE 
attribute is cleared for the page or the second half of a 32-bit VLE 
instruction caused an instruction TLB error. 
0 Default.

1 NIA62 != 0 and the instruction page associated with NIA does not 
have the VLE attribute set or the second half of a 32-bit VLE 
instruction caused an instruction TLB error.

Instruction TLB error,

Instruction Storage

63 XTE

External transaction error. An external transaction reported an error but 
the error was handled precisely by the core. The contents of SRR0 
contain the address of the instruction that initiated the transaction.
0 Default. No external transaction error was precisely detected.

1 An external transaction reported an error that was precisely 
detected.

Instruction storage,

Data storage

Table 27. Exception syndrome register (ESR) definition  (continued)

Bits Name Syndrome Interrupt types
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Debug save/restore register 0 (DSRR0)

Debug Save/restore register 1 (DSRR1)

DSRR1, is provided to save and restore machine state on debug interrupts. When a debug 
interrupt is taken, MSR contents are placed into DSRR1. When rfdi executes, the contents 
of DSRR1 are restored into MSR. DSRR1 bits that correspond to reserved MSR bits are 
also reserved. (See Section 2.6.1: Machine state register (MSR),” for more information.) 
DSRR0 and DSRR1 are not affected by rfi or rfci. Reserved MSR bits may be altered by rfi, 
rfci, or rfdi.

         

Debug save/restore register 1 (DSRR1)

Machine check save/restore register 0 (MCSRR0)

When a machine check interrupt is taken, MCSRR0, is set to the address of the instruction 
where the interrupted process should resume. The instruction is interrupt-specific, although 
typically MCSRR0 holds address of the instruction that caused the interrupt. When rfmci is 
executed, instruction execution continues at this address. 

         

Machine check save/restore register 0 (MCSRR0)

Machine check save/restore register 1 (MCSRR1)

MCSRR1 is used to save and restore machine state on machine check interrupts. When a 
machine check interrupt is taken, MSR contents are placed into MCSRR1. When rfmci 
executes, MCSRR1 contents are restored to MSR. MCSRR1 bits that correspond to 
reserved MSR bits are also reserved; reserved MSR bits may be altered.

 SPR 574574 Access: Supervisor read/write

32 63

R
Next instruction address

W

Reset Undefined

 SPR 575574 Access: Supervisor read/write

32 63

R
MSR state information

W

Reset Implementation-specific 

 SPR 570574 Access: Supervisor read/write

32 63

R
Next instruction address

W

Reset All zeros
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Machine check save/restore register 1 (MCSRR1)

Machine check address register (MCAR/MCARU)

When the core complex takes a machine check interrupt, it updates MCAR, to indicate the 
address of the data associated with the machine check. Note that if a machine check 
interrupt is caused by a signal, MCAR contents are not meaningful. Errors that cause MCAR 
contents to be updated are implementation-dependent. If MCSR[MAV] = 1, the address is 
an effective address; if MAV = 0, the address is a real address. 

         

Machine check address register (MCAR/MCARU)

For 32-bit implementations that support physical addresses greater than 32 bits, MCARU 
provides an alias to the upper address bits that reside in MCAR[0–31]. 

Machine check syndrome register (MCSR)

The MCSR, is used to record the cause of the machine check interrupt. In general, machine 
check syndrome bits correlating to specific hardware error conditions are implementation 
dependent. Consult the users manual for a complete definition of machine check error 
syndromes for a specific processor.

         

Machine check syndrome register 1 (MCSR)

Table 28 describes the MCSR fields.

         

 SPR 571574 Access: Supervisor read/write

32 63

R
MSR state information

W

Reset All zeros

SPR MCAR: 573
MCARU: 569

Access: Supervisor read-only

MCARU

32 6332 63

R Machine check address 0–31 Machine check address 32–63

W

Reset All zeros

 SPR 572574 Access: Read/w1c

32 43 44 45 46 47 63

R
MCP — NMI MAV MEA —

W

Reset All zeros
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Note: The machine check interrupt handler should always write what is read back to the MCSR 
after the error information has been logged. Writing contents that were read from the MCSR 
back to the MCSR clears only those status bits that were previously read. Failure to clear all 
MCSR bits causes an asynchronous machine check interrupt when MSR[ME] is set.

2.10 Software use sprs (SPRG0–SPRG7 and USPRG0)
Software-use SPRs (SPRG0–SPRG7 and USPRG0), have no defined functionality. These 
are shown below:

● SPRG0–SPRG2—can be accessed only in supervisor mode.

● SPRG3—can be written only in supervisor mode. It is readable in supervisor mode, but 
whether it can be read in user mode is implementation-dependent.

● SPRG4–SPRG7—can be written only in supervisor mode; readable in supervisor or 
user mode.

● USPRG0—can be accessed in supervisor or user mode.

Table 28. MCSR field descriptions

Bits Name Description

32 MCP

Machine check input to core. Processor cores with a machine check input pin (signal) 
respond to a signal input by producing an asynchronous machine check. The 
existence of such a signal and how such a signal is generated is implementation 
dependent and may be tied to a an external pin on the IC package.

33–
42

—
Implementation-dependent.

43 NMI
Nonmaskable Interrupt. Set if a non-maskable interrupt (NMI) has been sent to the 
virtual processor.

44 MAV

MCAR address valid. The address contained in MCAR was updated by the processor 
and corresponds to the first detected error condition that contained an associated 
address. Any subsequent machine check errors that have associated addresses are 
not placed in MCAR unless MAV is 0 when the error is logged.

0 The address in MCAR is not valid.

1 The address in MCAR is valid.

Note: Software should read MCAR before clearing MAV. MAV should be cleared 
before setting MSR[ME].

45 MEA

MCAR effective address. Denotes the type of address in MCAR. MEA has meaning 
only if MCSR[MAV] is set.
0 The address in MCAR is a physical address.

1 The address in MCAR is an effective address (untranslated).

46–
63

—
Implementation-dependent.
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Software-use sprs (SPRG0–SPRG7 and USPRG0)

Software-use SPRs are read into a GPR by using mfspr and are written by using mtspr.

2.11 L1 cache registers
The EIS defines registers that provide control and configuration and status information for 
the L1 cache implementation.

2.11.1 L1 cache control and status register 0 (L1CSR0)

The L1CSR0, is defined by the EIS. It is used for general control and status of the L1 data 
cache. 

L1 cache control and status register 0 (L1CSR0)

Table 29 describes the L1CSR0 fields. 

 SPR SPRG0
SPRG1
SPRG2
SPRG3

SPRG4

SPRG5

SPRG6

SPRG7

USPRG0

272
273
274
259
275
260
276
261
277
262
278
263
279
256

Read/write
Read/write
Read/write
Read-only
Read/write
Read-only
Read/write
Read-only
Read/write
Read-only
Read/write
Read-only
Read/write
Read/write

Supervisor
Supervisor
Supervisor
User (Implementation-dependent)/supervisor

Supervisor
User/supervisor

Supervisor
User/supervisor

Supervisor
User/supervisor

Supervisor
User/supervisor

Supervisor
User/supervisor

32 63

R
MSR state information

W

Reset All zeros

SPR 1010 Supervisor read/write

Cache way partitioning APU Bits

32 35 36 39 40 41 42 43 46 47

R
WID WDD AWID AWDD WAM — CPE

W

Reset All zeros

Cache Line Locking APU Bits

48 49 51 52 53 54 55 56 57 60 61 62 63

R
CPI — CSLC CUL CLO CLFR CLOA — CABT CFI CE

W

Reset All zeros



Register model RM0004

91/1176  

         

Table 29. L1CSR0 field descriptions

Bits Name Description

32–35 WID

Cache way partitioning APU. Way instruction disable. (bit 32 = way 0, bit 33 = way 1, … bit 
35 = way 3).

0 The corresponding way is available for replacement by instruction miss line refills.
1 The corresponding way is not available for replacement by instruction miss line refills.

36–39 WDD

Cache way partitioning APU. Way data disable (bit 36 = way 0, bit 37 = way 1, … bit 39 = way 
3).

0 The corresponding way is available for replacement by data miss line refills.
1 The corresponding way is not available for replacement by data miss line refills

40 AWID
Cache way partitioning APU. Additional ways instruction disable.
0 Additional ways beyond 0–3 are available for replacement by instruction miss line fills.

1 Additional ways beyond 0–3 are not available for replacement by instruction miss line fills.

41 AWDD

Cache way partitioning APU. Additional ways data disable.

0 Additional ways beyond 0–3 are available for replacement by data miss line fills.

1 Additional ways beyond 0–3 are not available for replacement by data miss line fills.

42 WAM

Cache way partitioning APU. Way access mode.

0 All ways are available for access.

1 Only ways partitioned for the specific type of access are used for a fetch or read operation.

43-46 — Reserved for implementation dependent use.

47
CPE

DCPE

[Data] Cache parity enable.

0 Parity checking of the cache disabled

1 Parity checking of the cache enabled

48
CPI

DCPI

[Data] Cache parity error injection enable.

0 Parity error injection disabled
1 Parity error injection enabled. Note that cache parity must also be enabled 

(L1CSR0[CPE] = 1) when this bit is set. If DCPE is not set, results are undefined and erratic 
behavior may occur. It is recommended that an attempt to set this bit when L1CSR0[CPE] = 
0 cause the bit not to be set (that is, L1CSR0[CPI] = L1CSR0[CPE] & L1CSR0[CPI]).

49–51 — Reserved, should be cleared.

52
CSLC

DCSLC

[Data]Cache snoop lock clear. Sticky bit set by hardware if a cache line lock was cleared by a 
snoop operation which caused an invalidation. Note that the lock for that line is cleared 
whenever the line is invalidated. This bit can be cleared only by software.
0  The cache has not encountered a snoop that invalidated a locked line.

1 The cache has encountered a snoop that invalidated a locked line.

53
CUL

DCUL

[Data]Cache unable to lock. Sticky bit set by hardware. This bit can be cleared only by software.

0 Indicates a lock set instruction was effective in the cache

1 Indicates a lock set instruction was not effective in the cache

54
CLO

DCLO

[Data]Cache lock overflow. Sticky bit set by hardware. This bit can be cleared only by software.

0 Indicates a lock overflow condition was not encountered in the cache
1 Indicates a lock overflow condition was encountered in the cache
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2.11.2 L1 cache control and status register 1 (L1CSR1)

L1CSR1, defined as part of the EIS, is used for general control and status of the L1 
instruction cache. 

L1 cache control and status register 1 (L1CSR1)

Table 30 describes the L1CSR1 fields.

55
CLFC

DCLFC

[Data]Cache lock bits flash clear. Clearing occurs regardless of the enable (L1CSR0[CE]) value.

0 Default. 

1 Hardware initiates a cache lock bits flash clear operation. Cleared when the operation is 
complete.

During a flash clear operation, writing a 1 causes undefined results; writing a 0 has no effect

56
CLOA

DCLOA

[Data]Cache lock overflow allocate. Set by software to allow a lock request to replace a locked 
line when a lock overflow situation exists. Implementation of this bit is optional.

0 Indicates a lock overflow condition does not replace an existing locked line with the 
requested line

1 Indicates a lock overflow condition replaces an existing locked line with the requested line

57–60 — Reserved, should be cleared.

61
CABT

DCABT

[Data]Cache operation aborted.
0 No cache operation completed improperly

1 Cache operation did not complete properly

62
CFI

DCFI

[Data]Cache flash invalidate. Invalidation occurs regardless of the enable (L1CSR0[CE]) value.
0 No cache invalidate.

1 Cache flash invalidate operation. A cache invalidation operation is initiated by hardware. 
Once complete, this bit is cleared.

During an invalidation operation, writing a 1 causes undefined results; writing a 0 has no effect.

63
CE

DCE

[Data]Cache enable.

0 The cache is not enabled. (not accessed or updated)

1 Enables cache operation.

Table 29. L1CSR0 field descriptions (continued)

Bits Name Description

SPR 1011011 Access: supervisor read/write

Cache line locking APU fields

32 46 47 48 49 51 52 53 54 55 56 57 60 61 62 63

R
— ICPE ICPI — ICSLC ICUL ICLO ICLFR ICLOA — ICABT ICFI ICE

W

Reset All zeros
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Table 30. L1CSR1 field descriptions 

Bits Name Description

32–42 — Reserved, should be cleared.

43-46 — Reserved for implementation dependent use.

47 ICPE

Instruction cache parity enable. See Chapter 4.7.2: Machine check interrupt.”

0 Parity checking of the cache disabled

1 Parity checking of the cache enabled

48 ICPI

Instruction cache parity error injection enable. 

0 Parity error injection disabled
1 Parity error injection enabled. Note that cache parity must also be enabled (L1CSR1[ICPE] = 1) 

when ICPI is set. If L1CSR0[ICPE] is not set the results are undefined and erratic behavior may 
occur. It is recommended that an attempt to set this bit when L1CSR0[ICPE] = 0 causes the bit 
not to be set (that is, L1CSR0[ICPI] = L1CSR0[ICPE] & L1CSR0[ICPI]).

49–51 — Reserved, should be cleared.

52 ICSLC

Cache line locking APU. Instruction cache snoop lock clear. Sticky bit set by hardware if a cache 
line lock was cleared by a snoop operation that caused an invalidation. Note that the lock for that 
line is cleared whenever the line is invalidated. This bit can be cleared only by software.

0  The cache has not encountered a snoop that invalidated a locked line.
1 The cache has encountered a snoop that invalidated a locked line.

53
ICUL

Cache line locking APU. Instruction cache unable to lock. Sticky bit set by hardware. This bit can 
be cleared only by software.

0 Indicates a lock set instruction was effective in the cache
1 Indicates a lock set instruction was not effective in the cache

54
ICLO
DCLO

Cache line locking APU. Instruction cache lock overflow. Sticky bit set by hardware. This bit can be 
cleared only by software.

0 Indicates a lock overflow condition was not encountered in the cache
1 Indicates a lock overflow condition was encountered in the cache

55 ICLFC

Cache line locking APU. Instruction cache lock bits flash clear. Clearing occurs regardless of the 
enable (L1CSR1[ICE]) value.

0 Default. 
1 Hardware initiates a cache lock bits flash clear operation. This bit is cleared when the operation 

is complete.
During a flash clear operation, writing a 1 causes undefined results; writing a 0 has no effect. 

56 ICLOA

Cache line locking APU. Instruction cache lock overflow no allocate. Set by software to prevent a 
lock request from replacing a locked line when a lock overflow situation exists. Implementation of 
this bit is optional.

0 Indicates a lock overflow condition replaces an existing locked line with the requested line

1 Indicates a lock overflow condition does not replace an existing locked line with the requested 
line

57–60 — Reserved, should be cleared.

61 ICABT
Instruction cache operation aborted.
0 No cache operation completed improperly

1 Cache operation did not complete properly
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2.11.3 L1 cache configuration register 0 (L1CFG0)

The L1CFG0 register, shown below, is defined by the EIS to provide configuration 
information for the primary (L1) data cache of the processor. If a processor implements a 
unified cache, L1CFG0 applies to the unified cache and L1CFG1 is not implemented.

         

L1 cache configuration register 0 (L1CFG0)

          

62 ICFI

Instruction cache flash invalidate. Invalidation occurs regardless of the enable (L1CSR1[ICE]) 
value.
0 No cache invalidate.

1 Cache flash invalidate operation. A cache invalidation operation is initiated by hardware. Once 
complete, this bit is cleared.

During an invalidation operation, writing a 1 causes undefined results; writing a 0 has no effect. 

63 ICE

Instruction cache enable.

0 The cache is not enabled. (not accessed or updated)

1 Enables cache operation.

Table 30. L1CSR1 field descriptions  (continued)

Bits Name Description

SPR 515 Access: user read-only

32 33 34 35 36 37 38 39 40 41 42 43 44 45 52 63

R CARCH CWPA CFAHACFISWA — CBSIZE CREPL CLA CPA CNWAY CSIZE

W

Reset Implementation-dependent value

Table 31. L1CFG0 field descriptions

Bits Name Description

32–33 CARCH
Cache architecture
00 Harvard

01 Unified

34 CWPA

Cache way partitioning APU available. 

0 Unavailable

1 Available

35 CFAHA

Cache flush all by hardware available 

0 Unavailable
1 Available

36 CFISWA
Direct cache flush APU available. (Cache flush by set and way available.)
0 Unavailable

1 Available

37–38 — Reserved, should be cleared.
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2.11.4 L1 cache configuration register 1 (L1CFG1)

The L1CFG1 register, provides configuration information for the L1 instruction cache. If a 
processor implements a unified cache, L1CFG0 applies to the unified cache and L1CFG1 is 
not implemented. 

         

L1 cache configuration register 1 (L1CFG1)

         

          

39–40 CBSIZE

Cache line size

0032 bytes

0164 bytes
10128 bytes

11Reserved

41–42 CREPL 

Cache replacement policy 

00 True LRU

01 Pseudo LRU
1x Reserved

43 CLA 
Cache line locking APU available 
0 Unavailable

1 Available

44 CPA 

Cache parity available 

0 Unavailable

1 Available

45–52 CNWAY Cache number of ways minus 1.

53–63 CSIZE Cache size in Kbytes.

Table 31. L1CFG0 field descriptions (continued)

Bits Name Description

SPR 516 Access: user read-only

32 38 39 40 41 42 43 44 45 52 53 63

R — ICBSIZE ICREPL ICLA ICPA ICNWAY ICSIZE

W

Reset Implementation-dependent value

Table 32. L1CFG1 field descriptions

Bits Name Description

32–38 — Reserved, should be cleared.

39–40 ICBSIZ

Instruction cache block size
0032 bytes

0164 bytes

10128 bytes
11Reserved
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2.11.5 L1 flush and invalidate control register 0 (L1FINV0)

The direct cache flush APU defines the L1 flush and invalidate control register 0 (L1FINV0), 
shown in figure below. The direct cache flush APU allows the programmer to flush and/or 
invalidate the cache by specifying the cache set and cache way. The direct cache flush APU 
available bit, L1CFG0[CFISWA], is set for implementations that contain the direct cache 
flush APU.

To address a specific physical block of the cache, the L1FINV0 is written with the cache set 
(L1FINV0[CSET]) and cache way (L1FINV0[CWAY]) of the line that is to be flushed. No tag 
match in the cache is required. 

Only the L1 data cache (or unified cache) is manipulated by the direct cache flush APU. The 
L1 instruction cache or any other caches in the cache hierarchy are not explicitly targeted by 
this APU. See Chapter 8.2: Direct cache flush APU on page 850.” 

L1 flush and invalidate control register 0 (L1FINV0)

         

41–42 ICREPL

Cache replacement policy 

00True LRU

01Pseudo LRU
1xReserved

43 ICLA
Cache line locking APU available 
0Unavailable

1Available

44 ICPA

Cache parity available 

0Unavailable

1Available

45–52 ICNWAY Cache number of ways minus 1.

53–63 ICSIZE Cache size in Kbytes.

Table 32. L1CFG1 field descriptions (continued)

Bits Name Description

SPR 1016 Access: supervisor read/write

32 39 40 41 42 58 59 61 62 63

R
CWAY — CSET — CCMD

W

Reset All zeros

Table 33. L1FINV0 fields—L1 direct cache flush

Bits Name Descriptions

0–31 — Reserved, should be cleared.

32–39 CWAY Cache way. Specifies the cache way to be selected.

40–41 — Reserved, should be cleared.

42–58 CSET Cache set. Specifies the cache set to be selected.
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2.12 MMU registers
This section describes the following MMU registers and their fields:

● Process ID registers (PID0–PID2)

● MMU control and status register 0 (MMUCSR0)

● MMU configuration register (MMUCFG)

● TLB configuration registers (TLBnCFG)

● MMU assist registers (MAS0–MAS7)

2.12.1 Process ID registers (PID0–PIDn) 

The Book E architecture specifies that a process ID (PID) value be associated with each 
effective address (instruction or data) generated by the processor. 

System software uses PIDs to identify TLB entries that the processor uses to translate 
addresses for loads, stores, and instruction fetches. PID contents are compared to the TID 
field in TLB entries as part of selecting appropriate TLB entries for address translation. PID 
values are used to construct virtual addresses for accessing memory. Note that individual 
processors may not implement all 14 bits of the process ID field. 

Book E defines one PID register that holds the PID value for the current process. ST devices 
may implement from 1 to 15 PID registers. The number of PIDs implemented is indicated by 
the value of MMUCFG[NPIDS]. Consult the user documentation for the implementation to 
determine if other PID registers are implemented. 

The suggested PID usage is for PID0 to denote private mappings for a process and for other 
PIDs to handle mappings that may be common to multiple processes. This method allows 
for processes sharing address space to also share TLB entries if the shared space is 
mapped at the same virtual address in each process.

59–61 — Reserved, should be cleared.

62–63 CCMD

Cache flush command.
00Implementation dependent. If implemented, the action performed on the line 

should be synonymous with a dcbi instruction that references the same line.
01The line specified by CWAY and CSET is flushed if it is modified and valid. It is 

implementation dependent whether it remains in the cache, or is invalidated. For 
an implementation, the action performed on the line should be synonymous with 
a dcbst instruction that references the same line.

01The line specified by CWAY and CSET is flushed if it is modified and valid. It is 
then invalidated. For an implementation, the action performed on the line should 
be synonymous with a dcbf instruction that references that line.

11Reserved for future use.

Table 33. L1FINV0 fields—L1 direct cache flush

Bits Name Descriptions
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Process ID registers (PID0–PID2)

2.12.2 MMU control and status register 0 (MMUCSR0) 

The MMUCSR0 register is used for general control of the L1 and L2 MMUs.

MMU control and status register 0 (MMUCSR0)

         

SPR 48 (PID0: PID in Book E);

SPR 633 PID1

SPR 634 PID2 (PID3–PID14 are currently not assigned to SPR numbers)

Access: Supervisor-only

32 49 50 63

R
— Process ID

W

Reset All zeros

SPR 1012 Access: supervisor read/write

32 60 61 62 63

R
— TLB0_FI TLB1_FI —

W

Reset All zeros

Table 34. MMUCSR0 field descriptions

Bits Name Description

32–60 — Reserved, should be cleared.

61
L2TLB0_FI

TLB0_FI

TLB0 flash invalidate (write 1 to invalidate)
0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored. 
1 TLB0 invalidation operation. Hardware initiates a TLB0 invalidation operation. When this 

operation is complete, this bit is cleared. Writing a 1 during an invalidation operation causes 
an undefined operation. If the TLB array supports IPROT, entries that have IPROT set are 
not invalidated.

62
L2TLB1_FI

TLB1_FI

TLB1 flash invalidate (write 1 to invalidate)
0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored. 
1 TLB1 invalidation operation. Hardware initiates a TLB1 invalidation operation. When this 

operation is complete, this bit is cleared. Writing a 1 during an invalidation operation causes 
an undefined operation. This invalidation typically takes 1 cycle.

63 — Reserved, should be cleared.
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2.12.3 MMU configuration register (MMUCFG)

MMUCFG, shown below, gives configuration information about the implementation’s MMU. 

MMU configuration register 1 (MMUCFG)

          

SPR 1015 Access: supervisor read-only

32 48 49 52 53 57 58 59 60 61 62 63

R — NPIDS PIDSIZE — NTLBS MAVN

W

Reset Implementation specific

Table 35. MMUCFG field descriptions

Bits Name Description

32–48 — Reserved, should be cleared.

49–52 NPIDS
Number of PID registers, a 4-bit field that indicates the number of PID registers 
provided by the processor. 

53–57
PIDSIZ

E

PID register size. The PIDSIZE value is one fewer than the number of bits in each 
PID register implemented. The processor implements only the least significant 
PIDSIZE+1 bits in the PID registers.

58–59 — Reserved, should be cleared.

60–61 NTLBS

Number of TLBs. The value of NTLBS is one less than the number of software-
accessible TLB structures that are implemented by the processor. NTLBS is set to 
one less than the number of TLB structures so that its value matches the maximum 
value of MAS0[TLBSEL].)

00 1 TLB

01 2 TLBs
10 3 TLBs

11 4 TLBs

62–63 MAVN

MMU architecture version number. Indicates the version number of the architecture 
of the MMU implemented by the processor.
00 Version 1.0

01 Reserved

10 Reserved
11 Reserved
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2.12.4 TLB configuration registers (TLBnCFG)

TLBnCFG registers, shown below, provide information about each specific TLB that is 
visible to the programming model. TLB0CFG corresponds to TLB0, TLB1CFG corresponds 
to TLB1, etc.

         

TLB configuration register n (TLB0CFG)

          

SPR 688 (TLB0CFG)

689 (TLB1CFG)

Access: Supervisor read-only

32 39 40 43 44 47 48 49 50 51 52 63

R ASSOC MINSIZE MAXSIZE IPROT AVAIL — NENTRY

W

Reset Implementation-specific value

Table 36. TLBnCFG field descriptions

Bits Name Description

32–39 ASSOC

Associativity of TLBn. Number of ways of associativity of TLB array. 
0000_0000 Fully associative (A value equal to NENTRY also indicates fully 
associative.)
0000_0001 1-way set associative
0000_0002 2-way set associative
…

40–43 MINSIZE

Minimum page size of TLBn
0001 Indicates smallest page size is 4 Kbytes
0002 Indicates smallest page size is 8 Kbytes
…

44–47 MAXSIZE

Maximum page size of TLBn
0001 Indicates maximum page size is 4 Kbytes
0002 Indicates maximum page size is 8 Kbytes
…

48 IPROT
Invalidate protect capability of TLBn array.
0 Indicates invalidate protection capability not supported.
1 Indicates invalidate protection capability supported.

49 AVAIL

Page size availability of TLBn array.
0 Fixed selectable page size from MINSIZE to MAXSIZE (all TLB entries are 

the same size).
1 Variable page size from MINSIZE to MAXSIZE (each TLB entry can be sized 

separately).

50–51 — Reserved, should be cleared.

52–63 NENTRY Number of entries in TLBn 
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2.12.5 MMU assist registers (MAS0–MAS7)

MMU assist registers are defined by the EIS and used by the MMU to manage pages and 
TLBs. Note that some fields in these registers are redefined by implementations.

MAS register 0 (MAS0)

MAS0, is used for MMU read/write and replacement control.

MAS register 0 (MAS0)

          

SPR 624 Access: Supervisor read/write

32 33 34 35 36 47 48 51 52 61 62 63

R
—

TLBSE
L

ESEL — NV
W

Reset All zeros

Table 37. MAS0 field descriptions

Bits Name Comments or function when set

32–33 — Reserved, should be cleared.

34–35 TLBSEL

Selects TLB for access.

00 TLB0

01 TLB1
10 TLB2

11 TLB3

36–47 ESEL

Entry select. Identifies an entry in the selected array to be used for tlbwe and 
tlbre. Valid values for ESEL are from 0 to TLBnCFG[ASSOC] - 1. That is, ESEL 
selects the way from a set of entries determined by MAS3[EPN]. For fully 
associative TLB arrays, ESEL ranges from 0 to TLBnCFG[NENTRY] - 1. ESEL is 
also updated on TLB error exceptions (misses) and tlbsx hit and miss cases.

48–51 — Reserved, should be cleared.

52–63 NV

Next victim. For those TLBs that support the NV field, provides a hint to software 
to identify the next victim to be targeted for a TLB miss replacement operation. If 
the TLB selected by MAS0[TLBSEL] does not support NV, this field is undefined. 
The computation of NV is implementation-dependent. NV is updated on TLB error 
exceptions (misses), tlbsx hit and miss cases, as shown in Table 194, and on 
execution of tlbre if the accessed TLB array supports NV. If NV is updated by a 
supported TLB array, NV always presents a value that can be used in 
MAS0[ESEL].
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MAS register 1 (MAS1)

Below is the format of MAS1.

MAS register 1 (MAS1) format

         

SPR 625 Access: Supervisor read/write

32 33 34 47 48 50 51 52 55 56 63

R
V IPROT TID — TS TSIZE —

W

Reset All zeros

Table 38. MAS1 field descriptions—descriptor context and configuration control

Bits Name Descriptions

32 V

TLB valid bit. 

0 This TLB entry is invalid.
1 This TLB entry is valid.

33 IPROT

Invalidate protect. Set to protect this TLB entry from invalidate operations due the 
execution of tlbivax, broadcast invalidations from another processor, or flash 
invalidations. Note that not all TLB arrays are necessarily protected from 
invalidation with IPROT. Arrays that support invalidate protection are denoted as 
such in the TLB configuration registers.

0 Entry is not protected from invalidation.

1 Entry is protected from invalidation. 

34–35 — Reserved, should be cleared.

36–47 TID
Translation identity. During translation, TID is compared with the current process 
IDs (PIDs) to select a TLB entry. A TID value of 0 defines an entry as global and 
matches with all process IDs.

48–50 — Reserved, should be cleared.

51 TS
Translation space. During translation, TS is compared with AS (MSR[IS] or 
MSR[DS], depending on the type of access) to select a TLB entry.

52–55 TSIZE

Translation size. Defines the page size of the TLB entry. For TLB arrays that 
contain fixed-size TLB entries, TSIZE is ignored. For variable page-size TLB 
arrays, the page size is 4TSIZE Kbytes. TSIZE must be between 
TLBnCFG[MINSIZE] and TLBnCFG[MINSIZE]. Note that the EIS standard 
supports all 16 page sizes defined in Book E.

0001 4 Kbyte 

0010 16 Kbyte 
0011 64 Kbyte 

0100 256 Kbyte 

0101 1 Mbyte 
0110 4 Mbyte 

0111 16 Mbyte 

1000 64 Mbyte 
1001 256 Mbyte 

1010 1 Gbyte

1011 4 Gbyte

56–63 — Reserved, should be cleared.
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MAS register 2 (MAS2)

MAS2, contains fields for specifying the effective page address and the storage attributes for 
a TLB entry. 

MAS register 2 (MAS2) 

         

SPR 626 Access: supervisor read/write

32 51 52 55 56 57 58 59 60 61 62 63

R
EPN —

ACM
X0

VLE
X1

W I M G E
W

Reset Undefined

Table 39. MAS2 field descriptions—EPN and page attributes

Bits Name Description

32–51 EPN
Effective page number. Depending on page size, only the bits associated with a page boundary are 
valid. Bits that represent offsets within a page are ignored and should be zero. EPN[0–31] are 
accessible only in 64-bit implementations as the upper 32 bits of the logical address of the page. 

52–55 — Reserved, should be cleared.

56–57
ACM

X0

Alternate coherency mode. Allows an implementation to employ multiple coherency methods. If the 
M attribute (memory coherence required) is not set for a page (M=0), the page has no coherency 
associated with it and ACM is ignored. If the M attribute is set for a page (M=1), ACM determines the 
coherency domain (or protocol) used. ACM values are implementation dependent.
Note: Some previous implementations may have a storage bit in the bit 57 position labeled as X0.

58
VLE

X1

VLE mode. Identifies pages which contain instructions from the VLE instruction set. The VLE 
attribute is only implemented if the processor supports the VLE extension. Setting the VLE attribute 
to 1 and setting the E attribute to 1 is considered a programming error and an attempt to fetch 
instructions from a page so marked produces an instruction storage interrupt byte ordering exception 
and sets ESR[BO].
0 Instructions fetched from the page are decoded and executed as PowerPC (and associated EIS 

APUs) instructions.
1 Instructions fetched from the page are decoded and executed as VLE (and associated EIS APUs) 

instructions.Implementation-dependent page attribute.
Note: Some implementations have a bit in this position labeled as X1. Software should not use the 

presence of this bit (the ability to set to 1 and read a 1) to determine if the implementation 
supports the VLE extension.

59 W
Write-through
0 This page is considered write-back with respect to the caches in the system.
1 All stores performed to this page are written through the caches to main memory.

60 I

Caching-inhibited
0 Accesses to this page are considered cacheable.
1 The page is considered caching-inhibited. All loads and stores to the page bypass the caches and 

are performed directly to main memory. A read or write to a caching-inhibited page affects only 
the memory element specified by the operation. 

61 M

Memory coherence required
0 Memory coherence is not required.
1 Memory coherence is required. This allows loads and stores to this page to be coherent with loads 

and stores from other processors (and devices) in the system, assuming all such devices are 
participating in the coherence protocol.
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MAS register 3 (MAS3)

MAS3 contains fields for specifying the real page address and the permission attributes for 
a TLB entry.

MAS register 3 (MAS3)

         

62 G

Guarded
0 Accesses to this page are not guarded and can be performed before it is known if they are 

required by the sequential execution model.
1 Loads and stores to this page are performed without speculation (that is, they are known to be 

required). 

63 E

Endianness. Determines endianness for the corresponding page. Little-endian operation is true little 
endian, which differs from the modified little-endian byte-ordering model optionally available in 
previous devices that implement the PowerPC architecture. 
0 The page is accessed in big-endian byte order.
1 The page is accessed in true little-endian byte order. 

Table 39. MAS2 field descriptions—EPN and page attributes (continued)

Bits Name Description

SPR 627 Access: Supervisor read/write

32 51 52 53 54 57 58 59 60 61 62 63

R
RPN(32–51) — U0–U3 UX SXUWSWURSR

W

Reset All zeros

Table 40. MAS3 field descriptions–RPN and access control

Bits Name Description

32–51 RPN[32–51]

Real page number bits 32–51. Depending on page size, only the bits 
associated with a page boundary are valid. Bits that represent offsets within a 
page are ignored and should be zero. If the physical address space exceeds 
32 bits, RPN[0–31] are accessed through MAS7.

52–53 — Reserved, should be cleared.

54–57 U0–U3
User bits. Associated with a TLB entry and used by system software. For 
example, these bits may be used to hold information useful to a page 
scanning algorithm or be used to mark more abstract page attributes.

58–63

UX,SX

UW,SW
UR,SR

Permission bits (UX, SX, UW, SW, UR, SR). User and supervisor read, write, 
and execute permission bits. Effects of the permission bits are defined by 
Book E.
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MAS register 4 (MAS4)

MAS4,contains fields for specifying default information to be pre-loaded on certain MMU 
related exceptions. 

MAS register 4 (MAS4)

The MAS4 fields are described in Table 41.

SPR 628 Access: Supervisor read/write

3233 34 35 36 4344 47 48 5152 55 56 57 58 59 60 61 62 63

R
— TLBSELD — TIDSELD — TSIZED

ACMD
X0D

VLED
X1D

WD ID MD GD ED
W

Reset All zeros

Table 41. MAS4 field descriptions—hardware replacement assist configuration 

Bits Name Description

32–33 — Reserved, should be cleared.

34–35 TLBSELD
TLBSEL default value. Specifies the default value loaded in MAS0[TLBSEL] 
on a TLB miss exception.

36–43 — Reserved, should be cleared.

44–47 TIDSELD

TID default selection value. Specifies which of the current PID registers 
should be used to load MAS1[TID] on a TLB miss exception. 

PID registers are addressed as follows:
0000 = PID0 (PID)

0001 = PID1

...
1110 = PID14

A value that references a non-implemented PID register causes a value of 0 
to be placed in MAS1[TID]. See the implementations documentation for a list 
of supported PIDs. 

48–51 — Reserved, should be cleared.

52–55 TSIZED
Default TSIZE value. Specifies the default value loaded into MAS1[TSIZE] on 
a TLB miss exception.

56–57 ACMD
Default ACM value Specifies the default value loaded into MAS2[ACM] on a 
TLB miss exception.

58 VLED
Default VLE value. Specifies the default value loaded into MAS2[VLE] on a 
TLB miss exception.

59 WD
Default W value. Specifies the default value loaded into MAS2[W] on a TLB 
miss exception.

60 ID
Default I value. Specifies the default value loaded into MAS2[I] on a TLB miss 
exception.

61 MD
Default M value. Specifies the default value loaded into MAS2[M] on a TLB 
miss exception.

62 GD
Default G value. Specifies the default value loaded into MAS2[G] on a TLB 
miss exception.

63 ED
Default E value. Specifies the default value loaded into MAS2[E] on a TLB 
miss exception.
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MAS register 5 (MAS5) 

The optional MAS5 register, contains fields for specifying PID values to be used when 
searching TLB entries with the tlbsx instruction. 

MAS register 5 (MAS5)

         

MAS register 6 (MAS6)

MAS6, contains fields for specifying PID and AS values to be used when searching TLB 
entries with the tlbsx instruction. 

MAS register 6 (MAS6)

         

SPR 629 Access: supervisor read/write

32 33 34 47 48 49 50 63

R
— SPID2 — SPID3

W

Reset All zeros

Table 42. MAS5 field descriptions—extended search pIDs

Bits Name Description

32–33 — Reserved, should be cleared.

34–47 SPID2
Search PID2. Specifies the PID2 value used when searching the TLB during 
execution of tlbsx. This field is optional and if implemented is valid for only the 
number of bits implemented for PID registers.

48–49 — Reserved, should be cleared.

50–63 SPID3
Search PID3. Specifies the PID3 value used when searching the TLB during 
execution of tlbsx. This field is optional and if implemented is valid for only the 
number of bits implemented for PID registers.

SPR 630 Access: supervisor read/write

32 33 34 47 48 49 62 63

R
— SPID0 — SPID1 SAS

W

Reset All zeros

Table 43. MAS 6 field descriptions—search pids and search AS

Bits Name Description

32–33 — Reserved, should be cleared.

34–47 SPID0
Search PID0. Specifies the value of PID0 used when searching the TLB 
during execution of tlbsx. SPID0 is valid for only the number of bits 
implemented for PID registers.

48 — Reserved, should be cleared. 
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MAS register 7 (MAS7)

MAS7, contains the high-order address bits of the RPN only for implementations that 
support more than 32 bits of physical address. 

MAS register 7 (MAS7)

         

2.13 Debug registers 
This section describes debug-related registers that are accessible to software running on 
the processor. These registers are intended for use by special debug tools and debug 
software, and not by general application or operating system code.

49–62 SPID1
Search PID1. Specifies the value of PID1 used when searching the TLB 
during execution of tlbsx.SPID1 is optional, and if implemented is valid for 
only the number of bits implemented for PID registers.

63 SAS 
Address space value for searches. Specifies the AS value used when 
executing tlbsx to search the TLB. 

SPR 944 Access: supervisor read/write

32 59 60 63

R
RPN (0–31)

W

Reset All zeros

Table 44. MAS 7 field descriptions—high order RPN

Bits Name Description

32–63 RPN[0–31] Real page number (bits 0–31). RPN[32–63] are accessed through MAS3.

Table 43. MAS 6 field descriptions—search pids and search AS (continued)

Bits Name Description
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2.13.1 Debug control registers (DBCR0–DBCR3)

The debug control registers are used to enable debug events, reset the processor, control 
timer operation during debug events, and set the debug mode of the processor.

Debug control register 0 (DBCR0)

Below is the DBCR0. 

Debug control register 0 (DBCR0)

         

SPR 308 Access: Supervisor-only

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

R EDM
IDM RST ICMP BRT IRPT TRAP IAC1 IAC2 IAC3 IAC4 DAC1 DAC2

W

Reset All zeros

Debug APU

48 49 56 57 58 59 60 62 63

RET — CIRPT CRET VLES — FT

Reset All zeros

Table 45. DBCR0 field descriptions

Bits Name Description

32 EDM

External debug mode. Indicates whether the processor is in external debug 
mode. 

0 The processor is not in external debug mode.

1 The processor is in external debug mode. In some implementations, if EDM = 
1, some debug registers are locked and cannot be accessed. Refer to the 
implementation documentation for any additional implementation-specific 
behavior. 

33 IDM

Internal debug mode. 

0 Debug interrupts are disabled. No debug interrupts are taken and debug 
events are not logged. 

1 If MSR[DE] = 1, the occurrence of a debug event or the recording of an earlier 
debug event in the DBSR when MSR[DE] = 0 or DBCR0[IDM] = 0 causes a 
debug interrupt.

Programming note: Software must clear debug event status in the DBSR in the 
debug interrupt handler when a debug interrupt is taken before re-enabling 
interrupts through MSR[DE]. Otherwise, redundant debug interrupts are taken for 
the same debug event.

34–35 RST

Reset. Book E defines RST such that 00 is always no action and all other settings 
are implementation 
0x Default (No action)

1x A hard reset is performed on the processor.
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36 ICMP

Instruction completion debug event enable

0 ICMP debug events are disabled.

1 ICMP debug events are enabled.
Note: Instruction completion does not cause an ICMP debug event if MSR[DE]=0.

37 BRT

Branch taken debug event enable
0 BRT debug events are disabled.

1 BRT debug events are enabled.

Note: Taken branches do not cause a BRT debug event if MSR[DE]=0.

38 IRPT

Interrupt taken debug event enable. 

0 IRPT debug events are disabled.
1 IRPT debug events are enabled

39 TRAP
Trap debug event enable
0 TRAP debug events cannot occur.

1 TRAP debug events can occur.

40 IAC1
Instruction address compare 1 debug event enable
0 IAC1 debug events cannot occur.

1 IAC1 debug events can occur.

41 IAC2

Instruction address compare 2 debug event enable.

0 IAC2 debug events cannot occur.

1 IAC2 debug events can occur.

42 IAC3

Defined by Book E as instruction address compare 3 debug event enable 

0 IAC3 debug events cannot occur.
1 IAC3 debug events can occur.

43 IAC4
Defined by Book E as instruction address compare 4 debug event enable 
0 IAC4 debug events cannot occur.

1 IAC4 debug events can occur.

44–45 DAC1

Data address compare 1 debug event enable

00 DAC1 debug events cannot occur.

01 DAC1 debug events can occur only if a store-type data storage access.
10 DAC1 debug events can occur only if a load-type data storage access.

11 DAC1 debug events can occur on any data storage access.

46–47 DAC2

Data address compare 2 debug event enable

00 DAC2 debug events cannot occur.

01 DAC2 debug events can occur only if a store-type data storage access.
10 DAC2 debug events can occur only if a load-type data storage access.

11 DAC2 debug events can occur on any data storage access.

48 RET

Return debug event enable

0 RET debug events cannot occur.

1 RET debug events can occur.
Note: An rfci does not cause an RET debug event if MSR[DE] = 0 at the time that 
rfci executes. 

49–56 — Reserved, should be cleared.

Table 45. DBCR0 field descriptions (continued)

Bits Name Description
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Debug control register 1 (DBCR1)

DBCR1 is shown below. 

Debug control register 1 (DBCR1)

Table 46 provides bit definitions for the DBCR1. 

         

57 CIRPT

Debug APU, Critical interrupt taken debug event. A critical interrupt taken debug 
event occurs when DBCR0[CIRPT] = 1 and a critical interrupt (any interrupt that 
uses the critical class, that is, uses CSRR0 and CSRR1) occurs.

0 Critical interrupt taken debug events are disabled.
1 Critical interrupt taken debug events are enabled.

58 CRET

Debug APU. Critical interrupt return debug event. A critical interrupt return debug 
event occurs when DBCR0[CRET] = 1 and a return from critical interrupt (an rfci 
instruction is executed) occurs.

0 Critical interrupt return debug events are disabled.

1 Critical interrupt return debug events are enabled.

59 VLES

VLE status. (VLE APU). Undefined for IRPT, CIRPT, DEVT[1,2], DCNT[1,2], and 
UDE events. 

0 CRET debug events are disabled.

1 An ICMP, BRT, TRAP, RET, CRET, IAC, or DAC debug event occurred on a 
VLE instruction. 

60–62 — Reserved

63 FT

Freeze timers on debug event

0 Enable clocking of timers.
1 Disable clocking of timers if any DBSR bit is set (except MRR).

Table 45. DBCR0 field descriptions (continued)

Bits Name Description

 SPR 309 Access: supervisor read/write

32 33 34 35 36 37 38 39 40 41 42 47 48 49 50 51 52 53 54 55 56 57 58 63

R
IAC1US IAC1ER IAC2US IAC2ER IAC12M — IAC3US IAC3ER IAC4US IAC4ER IAC34M —

W

Reset All zeros

Table 46. DBCR1 field descriptions

Bits Name Description

32–33 IAC1US

Instruction address compare 1 user/supervisor mode

00 IAC1 debug events can occur.
01 Reserved

10 IAC1 debug events can occur only if MSR[PR]=0.

11 IAC1 debug events can occur only if MSR[PR]=1.
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34–35 IAC1ER

Instruction address compare 1 effective/real mode

00 IAC1 debug events are based on effective addresses.

01 IAC1 debug events are based on real addresses. 
10 IAC1 debug events are based on effective addresses and can occur only if 

MSR[IS]=0.
11 IAC1 debug events are based on effective addresses and can occur only if 

MSR[IS]=1.

36–37 IAC2US

Instruction address compare 2 user/supervisor mode

00 IAC2 debug events can occur.
01 Reserved

10 IAC2 debug events can occur only if MSR[PR]=0.

11 IAC2 debug events can occur only if MSR[PR]=1.

38–39 IAC2ER

Instruction address compare 2 effective/real mode

00 IAC2 debug events are based on effective addresses.

01 IAC2 debug events are based on real addresses. 
10 IAC2 debug events are based on effective addresses and can occur only if 

MSR[IS]=0.
11 IAC2 debug events are based on effective addresses and can occur only if 

MSR[IS]=1.

40–41 IAC12M

Instruction address compare 1/2 mode

00 Exact address compare. IAC1 debug events can occur only if the instruction 
fetch address equals the value in IAC1. IAC2 debug events can occur only if 
the instruction fetch address equals the value in IAC2.

01 Address bit match. IAC1 and IAC2 debug events can occur only if the 
instruction fetch address, ANDed with the contents of IAC2, equals the value 
in IAC1, also ANDed with the contents of IAC2.
If IAC1US≠IAC2US or IAC1ER≠IAC2ER, results are boundedly undefined.

10 Inclusive address range compare. IAC1 and IAC2 debug events can occur 
only if the instruction fetch address lies between the values specified in IAC1 
and IAC2.
If IAC1US≠IAC2US or IAC1ER≠IAC2ER, results are boundedly undefined.

11 Exclusive address range compare. IAC1 and IAC2 debug events can occur 
only if the instruction fetch address lies between the values specified in IAC1 
and IAC2.
If IAC1US≠IAC2US or IAC1ER≠IAC2ER, results are boundedly undefined.

42–47 — Reserved, should be cleared.

48–49 IAC3US

Instruction address compare 3 user/supervisor mode

00 IAC3 debug events can occur.
01 Reserved

10 IAC3 debug events can occur only if MSR[PR]=0.

11 IAC3 debug events can occur only if MSR[PR]=1.

Table 46. DBCR1 field descriptions (continued)

Bits Name Description
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50–51 IAC3ER

Instruction address compare 3 effective/real mode

00 IAC3 debug events are based on effective addresses.

01 IAC3 debug events are based on real addresses.
10 IAC3 debug events are based on effective addresses and can occur only if 

MSR[IS]=0.
11 IAC3 debug events are based on effective addresses and can occur only if 

MSR[IS]=1.

52–53 IAC4US

Instruction address compare 4 user/supervisor mode

00 IAC4 debug events can occur.
01 Reserved

10 IAC4 debug events can occur only if MSR[PR]=0.

11 IAC4 debug events can occur only if MSR[PR]=1.

54–55 IAC4ER

Instruction address compare 4 effective/real mode

00 IAC4 debug events are based on effective addresses.

01 IAC4 debug events are based on real addresses.
10 IAC4 debug events are based on effective addresses and can occur only if 

MSR[IS]=0.
11 IAC4 debug events are based on effective addresses and can occur only if 

MSR[IS]=1.

56–57 IAC34M

Instruction address compare 3/4 mode 

00 Exact address compare. IAC3 debug events can occur only if the instruction 
fetch address equals the value in IAC3. IAC4 debug events can occur only if 
the instruction fetch address equals the value in IAC4.

01 Address bit match. IAC3 and IAC4 debug events can occur only if the data 
storage access address, ANDed with the contents of IAC4, equals the value 
in IAC3, also ANDed with the contents of IAC4.
If IAC3US≠IAC4US or IAC3ER≠IAC4ER, results are boundedly undefined.

10 Inclusive address range compare. IAC3 and IAC4 debug events can occur 
only if the instruction fetch address lies between the values specified in IAC3 
and IAC4.
If IAC3US≠IAC4US or IAC3ER≠IAC4ER, results are boundedly undefined.

11 Exclusive address range compare. IAC3 and IAC4 debug events can occur 
only if the instruction fetch address lies between the values specified in IAC3 
and IAC4.
If IAC3US≠IAC4US or IAC3ER≠IAC4ER, results are boundedly undefined.

58–63 — Reserved, should be cleared.

Table 46. DBCR1 field descriptions (continued)

Bits Name Description
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Debug control register 2 (DBCR2)

DBCR2 is shown below. 

Debug control register 2 (DBCR2)

         

 SPR 310 Access: Supervisor read/write

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 55 56 63

R
DAC1USD‘AC1ERDAC2USDAC2ERDAC12M DAC1LNK DAC2LNK DVC1MDVC2M DVC1BE DVC2BE

W

Reset All zeros

Table 47. DBCR2 field descriptions 

Bits Name Description

32–33 DAC1US

Data address compare 1 user/supervisor mode
00 DAC1 debug events can occur.
01 Reserved
10 DAC1 debug events can occur only if MSR[PR]=0.
11 DAC1 debug events can occur only if MSR[PR]=1.

34–35 DAC1ER

Data address compare 1 effective/real mode
00 DAC1 debug events are based on effective addresses.
01 DAC1 debug events are based on real addresses. 
10 DAC1 debug events are based on effective addresses and can occur only if 

MSR[DS]=0.
11 DAC1 debug events are based on effective addresses and can occur only if 

MSR[DS]=1.

36–37 DAC2US

Data address compare 2 user/supervisor mode
00 DAC2 debug events can occur.
01 Reserved
10 DAC2 debug events can occur only if MSR[PR]=0.
11 DAC2 debug events can occur only if MSR[PR]=1.

38–39 DAC2ER

Data address compare 2 effective/real mode
00 DAC2 debug events are based on effective addresses.
01 DAC2 debug events are based on real addresses. 
10 DAC2 debug events are based on effective addresses and can occur only if 

MSR[DS]=0.
11 DAC2 debug events are based on effective addresses and can occur only if 

MSR[DS]=1.
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40–41 DAC12M

Data address compare 1/2 mode
00 Exact address compare. DAC1 debug events can occur only if the data 

access address equals the value in DAC1. DAC2 debug events can occur 
only if the data access address equals the value in DAC2.

01 Address bit match. DAC1 and DAC2 debug events can occur only if the data 
access address, ANDed with the contents of DAC2, equals the value in 
DAC1, also ANDed with the DAC2 contents.
If DAC1US≠DAC2US or DAC1ER≠DAC2ER, results are boundedly 
undefined.

10 Inclusive address range compare. DAC1 and DAC2 debug events can occur 
only if the data access address lies between the values specified in DAC1 
and DAC2. 
If DAC1US≠DAC2US or DAC1ER≠DAC2ER, results are boundedly 
undefined.

11 Exclusive address range compare. DAC1 and DAC2 debug events can 
occur only if the data access address lies between the values specified in 
DAC1 and DAC2. 
If DAC1US≠DAC2US or DAC1ER≠DAC2ER, results are boundedly 
undefined.

42 DAC1LNK

Data address compare 1 linked
0 No effect
1 DAC1 debug events are linked to IAC1 debug events. IAC1 debug events do 

not affect DBSR.
When linked to IAC1, DAC1 debug events are conditioned based on 
whether the instruction also generated an IAC1 debug event.

43 DAC2LNK

Data address compare 2 linked
0 No effect
1 DAC 2 debug events are linked to IAC3 debug events. IAC3 debug events do 

not affect DBSR.
When linked to IAC3, DAC2 debug events are conditioned based on 
whether the instruction also generated an IAC3 debug event. DAC2 can only 
be linked if DAC12M specifies exact address compare because DAC2 
debug events are not generated in the other compare modes.

44–45 DVC1M

Data value compare 1 mode
00 DAC1 debug events can occur.
01 DAC1 debug events can occur only when all bytes in DBCR2[DVC1BE] in 

the data value of the data storage access match their corresponding bytes 
in DVC1.

10 DAC1 debug events can occur only when at least one of the bytes in 
DBCR2[DVC1BE] in the data value of the data storage access matches its 
corresponding byte in DVC1.

11 DAC1 debug events can occur only when all bytes in DBCR2[DVC1BE] 
within at least one of the half words of the data value of the data storage 
access match their corresponding bytes in DVC1.

Table 47. DBCR2 field descriptions  (continued)

Bits Name Description
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Debug control register 3 (DBCR3)

The debug APU defines the DBCR3, however its contents are implementation specific. 

Debug control register 2 (DBCR2)

46–47 DVC2M

Data value compare 2 mode
00 DAC2 debug events can occur.
01 DAC2 debug events can occur only when all bytes in DBCR2[DVC2BE] in 

the data value of the data storage access match their corresponding bytes 
in DVC2.

10 DAC2 debug events can occur only when at least one of the bytes in 
DBCR2[DVC2BE] in the data value of the data storage access matches its 
corresponding byte in DVC2.

11 DAC2 debug events can occur only when all bytes in DBCR2[DVC2BE] 
within at least one of the half words of the data value of the data storage 
access match their corresponding bytes in DVC2.

48–55 DVC1BE
Data value compare 1 byte enables. Specifies which bytes in the aligned data 
value being read or written by the storage access are compared to the 
corresponding bytes in DVC1.

56–63 DVC2BE
Data value compare 2 byte enables. Specifies which bytes in the aligned data 
value being read or written by the storage access are compared to the 
corresponding bytes in DVC2.

 SPR 561 Access: Supervisor-only

32 63

R
Implementation-specific fields

W

Reset Implementation-specific

Table 47. DBCR2 field descriptions  (continued)

Bits Name Description
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2.13.2 Debug status register (DBSR)

The DBSR, provides status debug events information for the most recent processor reset.

Debug status register (DBSR)

The DBSR is set through hardware, but is read through software using mfspr and cleared 
by writing ones to them; writing zeros has no effect.

         

SPR: 304 Access: Supervisor: w1c

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

R IDE UDE MRR ICMP BRT IRPT TRAP IAC1 IAC2 IAC3 IAC3 DAC1RDAC1WDAC2RDAC2W

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 undefined 0 0 0 0 0 0 0 0 0 0 0 0

Debug APU

48 49 56 57 58 59 63

R RET
—

CIRPTCRET
—

W w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 48. DBSR field descriptions

Bits Name Description

32 IDE
Imprecise debug event. Set if MSR[DE] = 0 and a debug event causes its 
respective DBSR bit to be set.

33 UDE

Unconditional debug event. Set if an unconditional debug event occurred. If the 
UDE signal (level sensitive, active low) is asserted, DBSR[UDE] is affected as 
follows:
MSR[DE] DBCR0[IDM] Action
X 0  No action.
0 1 DBSR[UDE] is set.
1 1 DBSR[UDE] is set and a debug interrupt is taken.

34–35 MRR
Most recent reset. Set when a reset occurs. Undefined at power-up. See the 
implementation documentation.

36 ICMP
Instruction complete debug event. Set if an instruction completion debug event 
occurred and DBCR0[ICMP] = 1. 

37 BRT
Branch taken debug event. Set if a branch taken debug event occurred 
(DBCR0[BRT]=1). 

38 IRPT
Interrupt taken debug event. Set if an interrupt taken debug event occurred 
(DBCR0[IRPT]=1). 

39 TRAP
Trap instruction debug event. Set if a trap Instruction debug event occurred 
(DBCR0[TRAP]=1). 

40 IAC1
Instruction address compare 1 debug event. Set if an IAC1 debug event occurred 
(DBCR0[IAC1]=1). 

41 IAC2
Instruction address compare 2 debug event. Set if an IAC2 debug event occurred 
(DBCR0[IAC2]=1). 
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2.13.3 Instruction address compare registers (IAC1–IAC4)

The instruction address compare registers (IAC1–IAC4) are each 64 bits, with bits 62–63 
being reserved.

Instruction address compare registers (IAC1–IAC4)

A debug event may be enabled to occur upon an attempt to execute an instruction from an 
address specified in an IAC, inside or outside a range specified by IAC1 and IAC2 or, inside 
or outside a range specified by IAC3 and IAC4, or to blocks of addresses specified by the 

42 IAC3
Instruction address compare 3 debug event. Set if an IAC3 debug event occurred 
(DBCR0[IAC3]=1). 

43 IAC4
Instruction address compare 4 debug event. Set if an IAC4 debug event occurred 
(DBCR0[IAC4]=1). 

44 DAC1R
Data address compare 1 read debug event. Set if a read-type DAC1 debug event 
occurred (DBCR0[DAC1]=10 or 11). 

45 DAC1W
Data address compare 1 write debug event. Set if a write-type DAC1 debug 
event occurred (DBCR0[DAC1]=01 or 11). 

46 DAC2R
Data address compare 2 read debug event.Set if a read-type DAC2 debug event 
occurred (DBCR0[DAC2]=10 or 11). 

47 DAC2W
Data address compare 2 write debug event. Set if a write-type DAC2 debug 
event occurred (DBCR0[DAC2] =01 or 11). 

48 RET Return debug event. Set if a return debug event occurred (DBCR0[RET]=1). 

49–56 — Reserved, should be cleared. 

57 CIRPT

Debug APU. Critical interrupt taken debug event. A critical interrupt taken debug 
event occurs when DBCR0[CIRPT] = 1 and a critical interrupt (any interrupt that 
uses the critical class, that is, uses CSRR0 and CSRR1) occurs.

0 No critical interrupt taken debug event has occurred.
1 A critical interrupt taken debug event occurred.

58 CRET

Debug APU. Critical interrupt return debug event. A critical interrupt return debug 
event occurs when DBCR0[CRET] = 1 and a return from critical interrupt (an rfci 
instruction is executed) occurs.

0 No critical interrupt return debug event has occurred.

1 A critical interrupt return debug event occurred.

59–63 — Reserved, should be cleared. 

Table 48. DBSR field descriptions (continued)

Bits Name Description

 SPR 312 (IAC1)
313 (IAC2)
314 (IAC3)
315 (IAC4)

Access: supervisor read/write

32 61 62 63

R
instruction address —

W

Reset All zeros
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combination of the IAC1 and IAC2, or to blocks of addresses specified by the combination of 
the IAC3 and IAC4. Because all instruction addresses are required to be word-aligned, the 
two low-order bits of the IACs are reserved and do not participate in the comparison to the 
instruction address. 

2.13.4 Data address compare registers (DAC1–DAC2)

The data address compare registers (DAC1 and DAC2), are each 32 bits. A debug event 
may be enabled to occur upon loads, stores, or cache operations to an address specified in 
either DAC1 or DAC2, inside or outside a range specified by the DAC1 and DAC2, or to 
blocks of addresses specified by the combination of the DAC1 and DAC2. 

Data address compare registers (DAC1–DAC2)

The contents of DAC1 or DAC2 are compared to the address generated by a data storage 
access instruction.

2.13.5 Data value compare registers (DVC1 and DVC2)

The data value compare registers (DVC1 and DVC2) are shown below. A DAC1R, DAC1W, 
DAC2R, or DAC2W debug event may be enabled to occur upon loads or stores of a specific 
data value specified in either or both of DVC1 and DVC2. DBCR2[DVC1M] and 
DBCR2[DVC1BE] control how the contents of DVC1 is compared with the value and 
DBCR2[DVC2M] and DBCR2[DVC2BE] control how the contents of DVC2 is compared with 
the value. Table 47 describes the modes provided.

Data value compare registers (DVC1–DVC2)

2.14 SPE and SPFP APU registers
The SPE and SPFP include the signal processing and embedded floating-point status and 
control register (SPEFSCR), which is described in Chapter 2.14.1 on page 119.”, and the 
SPE implements a 64-bit accumulator, described in Chapter 2.14.2 on page 122.” 

SPR 316 (DAC1)
317 (DAC2)

Access: Supervisor read/write

32 63

R
Data address

W

Reset All zeros

SPR 318 (DVC1)

319 (DVC2)
Access: Supervisor read/write

32 63

R
Data value

W

Reset All zeros
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2.14.1 Signal processing, embedded floating-point status, control register 
(SPEFSCR)

SPEFSCR, is used by the SPE and by the embedded floating-point APUs. Vector floating-
point instructions affect both the high element (bits 34-39) and low element floating-point 
status flags (bits 50–55). Double- and single-precision floating-point instructions affect only 
the low-element floating-point status flags and leave the high-element floating-point status 
flags undefined.

         

Signal processing, embedded floating-point status and control register (SPEFSCR)

         

SPR: 512 Access: supervisor-only

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

R
SOVH OVH FGH FXH FINVH FDBZH FUNFH FOVFH — FINXS FINVS FDBZS FUNFS FOVFS

MODE

W

Reset 0 0 undefined 0 0 0 0 0 0 0 0 0 0 0 0

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

R
SOV OV FG FX FINV FDBZ FUNF FOVF — FINXE FINVE FDBZE FUNFE FOVFE FRMC

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

High-Word Error Bits Status Bits

Enable Bits

Table 49. SPEFSCR field descriptions

Bits Name Description

32 SOVH
(SPE APU) Summary integer overflow high. Set when an SPE instruction sets 
OVH. This is a sticky bit that remains set until it is cleared by an mtspr instruction. 

33 OVH
(SPE APU) Integer overflow high. Set when an overflow or underflow occurs in 
the upper word of the result of an SPE instruction. 

34 FGH

(FP APUs) Embedded floating-point guard bit high. Used by the floating-point 
round interrupt handler. FGH is an extension of the low-order bits of the fractional 
result produced from a floating-point operation on the high word. FGH is zeroed if 
an overflow, underflow, or invalid input error is detected on the high element of a 
vector floating-point instruction. 
Execution of a scalar floating-point instruction leaves FGH undefined.

35 FXH

(SPFP APU) Embedded floating-point inexact bit high. Used by the floating-point 
round interrupt handler. FXH is an extension of the low-order bits of the fractional 
result produced from a floating-point operation on the high word. FXH represents 
the logical OR of all of the bits shifted right from the guard bit when the fractional 
result is normalized. FXH is zeroed if an overflow, underflow, or invalid input error 
is detected on the high element of a vector floating-point instruction. 

Execution of a scalar floating-point instruction leaves FXH undefined.
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36 FINVH

(FP APUs) Embedded floating-point invalid operation/input error high. Set under 
any of the following conditions:
Any operand of a high word vector floating-point instruction is Infinity, NaN, or 
Denorm
The operation is a divide and the dividend and divisor are both 0

A conversion to integer or fractional value overflows.

Execution of a scalar floating-point instruction leaves FINVH undefined.

37 FDBZH

(FP APUs) Embedded floating-point divide by zero high. Set when a vector 
floating-point divide instruction is executed with a divisor of 0 in the high word 
operand and the dividend is a finite non-zero number.
Execution of a scalar floating-point instruction leaves FDBZH undefined.

38 FUNFH

(FP APUs) Embedded floating-point underflow high. Set when the execution of a 
vector floating-point instruction results in an underflow on the high word 
operation.

Execution of a scalar floating-point instruction leaves FUNFH undefined.

39 FOVFH
(FP APUs) Embedded floating-point overflow high. Set when the execution of a 
vector floating-point instruction results in an overflow on the high word operation.

Execution of a scalar floating-point instruction leaves FOVFH undefined.

40–41 — Reserved, should be cleared. 

42 FINXS

(FP APUs) Embedded floating-point inexact sticky flag. Set under the following 
conditions:
– Execution of any scalar or vector floating-point instruction delivers an inexact 

result for either the low or high element and no floating-point data interrupt is 
taken for either element

– A floating-point instruction results in overflow (FOVF=1 or FOVFH=1), but 
floating-point overflow exceptions are disabled (FOVFE=0). 

– A floating-point instruction results in underflow (FUNF=1 or FUNFH=1), but 
floating-point underflow exceptions are disabled (FUNFE=0), and no floating-
point data interrupt occurs. 

FINXS remains set until it is cleared by software.

43 FINVS

(FP APUs) Embedded floating-point invalid operation sticky flag. The sticky result 
of any floating-point instruction that causes FINVH or FINV to be set. That is, 
FINVS <- FINVS | FINV | FINVH. This action may optionally be performed by 
hardware. To ensure proper operation, software should set this bit on the 
detection of FINV or FINVH set to one. FINVS remains set until it is cleared by 
software. (1)

44 FDBZS
(FP APUs) Embedded floating-point divide by zero sticky flag. Set when a 
floating-point divide instruction sets FDBZH or FDBZ. That is, FDBZS <- FDBZS | 
FDBZH | FDBZ. FDBZS remains set until it is cleared by software.

45 FUNFS

(FP APUs) Embedded floating-point underflow sticky flag. Defined to be the sticky 
result of any floating-point instruction that causes FUNFH or FUNF to be set. That 
is, FUNFS <- FUNFS | FUNF | FUNFH. This action may optionally be performed 
by hardware. To ensure proper operation, software should set this bit on the 
detection of FUNF or FUNFH being set. FUNFS remains set until it is cleared by 
software. 1

Table 49. SPEFSCR field descriptions (continued)

Bits Name Description
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46 FOVFS

(FP APUs) Embedded floating-point overflow sticky flag. defined to be the sticky 
result of any floating-point instruction that causes FOVH or FOVF to be set. That 
is, FOVFS <- FOVFS | FOVF | FOVFH. This action may optionally be performed 
by hardware. To ensure proper operation, software should set this bit on the 
detection of FOVF or FOVFH being set. FOVFS remains set until it is cleared by 
software. 1

47 MODE

(FP APUs) Embedded floating-point operating mode. Controls the operating 
mode of the embedded floating-point operations defined in the SPE, and the 
embedded floating-point APUs.

0 Default hardware results operating mode
1 Reserved.

48 SOV
(SPE APU) Summary integer overflow low. Set when an SPE instruction sets OV. 
This sticky bit remains set until an mtspr writes a 0 to this bit.

49 OV
(SPE APU) Integer overflow low. OV is set when an overflow or underflow occurs 
in the lower word of the result of an SPE instruction.

50 FG

(FP APUs) Embedded floating-point guard bit (low/scalar) Used by the floating-
point round interrupt handler. FG is an extension of the low-order bits of the 
fractional result produced from a floating-point operation on the low word or any 
scalar floating-point operation. FG is cleared if an overflow, underflow, or invalid 
input error is detected on either the low element of a vector floating-point 
instruction or any scalar floating-point instruction.

51 FX

(FP APUs) Embedded floating-point inexact bit (low/scalar). Used by the floating-
point round interrupt handler. FX is an extension of the low-order bits of the 
fractional result produced from a floating-point operation on the low word or any 
scalar floating-point instruction. FX represents the logical OR of all of the bits 
shifted right from the guard bit when the fractional result is normalized. FX is 
zeroed if an overflow, underflow, or invalid input error is detected on either the low 
element of a vector floating-point instruction or any scalar floating-point 
instruction.

52 FINV

(FP APUs) Embedded floating-point invalid operation/input error (low/scalar). Set 
by the following conditions:

– Any operand of a low-word vector or scalar floating-point operation is Infinity, 
NaN, or Denorm

– The operation is a divide and the dividend and divisor are both 0

– A conversion to integer or fractional value overflows

53 FDBZ
(FP APUs) Embedded floating-point divide by zero (low/scalar). Set when a 
scalar or vector floating-point divide instruction is executed with a divisor of 0 in 
the low word operand and the dividend is a finite non-zero number.

54 FUNF
(FP APUs) Embedded floating-point underflow (low/scalar). Set when execution 
of a scalar or vector floating-point instruction results in an underflow on the low 
word operation.

55 FOVF
(FP APUs) Embedded floating-point overflow (low/scalar). Set when the 
execution of a scalar or vector floating-point instruction results in an overflow on 
the low word operation.

56 — Reserved, should be cleared. 

Table 49. SPEFSCR field descriptions (continued)

Bits Name Description
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2.14.2 Accumulator (ACC)

The 64-bit architectural accumulator register holds the results of the multiply accumulate 
(MAC) forms of SPE integer instructions. The accumulator allows back-to-back execution of 
dependent MAC instructions, something that is found in the inner loops of DSP code such 
as finite impulse response (FIR) filters. The accumulator is partially visible to the 
programmer in that its results do not have to be explicitly read to use them. Instead, they are 
always copied into a 64-bit destination GPR specified as part of the instruction. The 

57 FINXE

(FP APUs) Embedded floating-point round (inexact) exception enable

0 Exception disabled

1 Exception enabled. A floating-point round interrupt is taken if no other interrupt 
is taken, and if FG | FGH | FX | FXH (signifying an inexact result) is set as a 
result of a floating-point operation.

If a floating-point instruction operation results in overflow or underflow and the 
corresponding underflow or overflow exception is disabled, a floating-point round 
interrupt is taken.

58 FINVE

(FP APUs) Embedded floating-point invalid operation/input error exception 
enable

0 Exception disabled

1 Exception enabled. A floating-point data interrupt is taken if a floating-point 
instruction sets FINV or FINVH.

59 FDBZE

(FP APUs) Embedded floating-point divide by zero exception enable

0 Exception disabled

1 Exception enabled. A floating-point data interrupt is taken if a floating-point 
instruction sets FDBZ or FDBZH. 

60 FUNFE

(FP APUs) Embedded floating-point underflow exception enable
0 Exception disabled

1 Exception enabled. A floating-point data interrupt is taken if a floating-point 
instruction sets FUNF or FUNFH.

61 FOVFE

(FP APUs) Embedded floating-point overflow exception enable
0 Exception disabled

1 Exception enabled. A floating-point data interrupt is taken if a floating-point 
instruction sets FOVF or FOVFH.

62–63 FRMC

(FP APUs) Embedded floating-point rounding mode control
00 Round to Nearest

01 Round toward Zero

10 Round toward +Infinity. If this mode is not implemented, embedded floating-
point round Interrupts are generated for every floating-point instruction for 
which rounding is indicated.

11 Round toward -Infinity. If this mode is not implemented, embedded floating-
point round Interrupts are generated for every floating-point instruction for 
which rounding is indicated.

1. Software note: Software can detect hardware that manages this sticky bit by performing an operation on a 
NaN and observing whether hardware sets this sticky bit. In the absence of doing this, if it desired that 
software written will work on all processors that support embedded floating-point, software should check 
the appropriate status bits and set the sticky bit itself (if hardware also performs this operation, the action is 
redundant).

Table 49. SPEFSCR field descriptions (continued)

Bits Name Description
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accumulator, however, has to be explicitly cleared when starting a new MAC loop. Based 
upon the type of instruction, an accumulator can hold either a single 64-bit value or a vector 
of two 32-bit elements. 

The Initialize Accumulator instruction (evmra) is provided to initialize the accumulator. This 
instruction is described in Chapter 6 on page 330.”

2.15 Alternate time base registers (ATBL and ATBU)
The alternate time base counter (ATB), is formed by concatenating the upper and lower 
alternate time base registers (ATBU and ATBL). ATBL (SPR 526) provides read-only access 
to the 64-bit alternate time base counter, which is incremented at an implementation-defined 
frequency. ATB registers are accessible in both user and supervisor mode. 

Like the TB implementation, ATBL is an aliased name for ATB. 

Alternate time base register lower (ATBL)

         

The ATBU register, provides read-only access to the upper 32 bits of the alternate time base 
counter. It is accessible in both user and supervisor mode.

Alternate time base register upper (ATBU)

         

 SPR 526 Access: User read-only

32 63

R ATBCL

W

Reset All zeros

Table 50. ATBL field descriptions

Bits Name Description

32–63 ATBCL
Alternate time base counter lower. 
Lower 32 bits of the alternate time base counter

 SPR 527 Access: User read-only

32 63

R ATBCU

W

Reset All zeros

Table 51. ATBU field descriptions

Bits Name Description

32–63 ATBCU
Alternate time base counter upper. 
Upper 32 bits of the alternate time base counter



RM0004 Register model

 124/1176

2.16 Performance monitor registers (PMRs)
The EIS defines a set of register resources used exclusively by the performance monitor. 
PMRs are similar to the SPRs defined in the Book E architecture and are accessed by 
mtpmr and mfpmr, which are also defined by the EIS. Table 52 lists supervisor-level PMRs. 
User-level software that attempts to read or write supervisor-level PMRs causes a privilege 
exception. 

         

User-level PMRs in Table 53 are read-only and are accessed with mfpmr. Attempting to write user-level 
registers in supervisor or user mode causes an illegal instruction exception.

         

Table 52. Performance monitor registers—supervisor level

Abbreviation Register name
PMR 

number
pmr[0–4] pmr[5–9] Section/page

PMGC0 Performance monitor global control register 0 400 01100 10000 Chapter 2.16.1

PMLCa0 Performance monitor local control a0 144 00100 10000

Chapter 2.16.3
PMLCa1 Performance monitor local control a1 145 00100 10001

PMLCa2 Performance monitor local control a2 146 00100 10010

PMLCa3 Performance monitor local control a3 147 00100 10011

PMLCb0 Performance monitor local control b0 272 01000 10000

Chapter 2.16.5
PMLCb1 Performance monitor local control b1 273 01000 10001

PMLCb2 Performance monitor local control b2 274 01000 10010

PMLCb3 Performance monitor local control b3 275 01000 10011

PMC0 Performance monitor counter 0 16 00000 10000

Chapter 2.16.7
PMC1 Performance monitor counter 1 17 00000 10001

PMC2 Performance monitor counter 2 18 00000 10010

PMC3 Performance monitor counter 3 19 00000 10011

Table 53. Performance monitor registers—user level (read-only)

Abbreviation Register name
PMR 

number
pmr[0–4] pmr[5–9] Section/page

UPMGC0
User performance monitor global control 
register 0

384 01100 00000 Chapter 2.16.3

UPMLCa0 User performance monitor local control a0 128 00100 00000

Chapter 2.16.4
UPMLCa1 User performance monitor local control a1 129 00100 00001

UPMLCa2 User performance monitor local control a2 130 00100 00010

UPMLCa3 User performance monitor local control a3 131 00100 00011

UPMLCb0 User performance monitor local control b0 256 01000 00000

Chapter 2.16.6
UPMLCb1 User performance monitor local control b1 257 01000 00001

UPMLCb2 User performance monitor local control b2 258 01000 00010

UPMLCb3 User performance monitor local control b3 259 01000 00011
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2.16.1 Global control register 0 (PMGC0)

The performance monitor global control register (PMGC0), controls all performance monitor 
counters.

Performance monitor global control register 0 (PMGC0)/
User performance monitor global control register 0 (UPMGC0)

PMGC0 is cleared by a hard reset. Reading this register does not change its contents.

         

UPMC0 User performance monitor counter 0 0 00000 00000

Chapter 2.16.7
UPMC1 User performance monitor counter 1 1 00000 00001

UPMC2 User performance monitor counter 2 2 00000 00010

UPMC3 User performance monitor counter 3 3 00000 00011

Table 53. Performance monitor registers—user level (read-only) (continued)

Abbreviation Register name
PMR 

number
pmr[0–4] pmr[5–9] Section/page

PMR PMGC0 (PMR400)

UPMGC0 (PMR384)

Access: PMGC0: supervisor-only

UPMGC0: supervisor/user read-only

32 33 34 35 50 51 52 53 54 55 56 63

R
FAC PMIE FCECE — TBSEL — TBEE —

W

Reset All zeros

Table 54. PMGC0 field descriptions 

Bits Name Description

32 FAC

Freeze all counters. When FAC is set by hardware or software, PMLCx[FC] 
maintains its current value until it is changed by software.

0 The PMCs are incremented (if permitted by other PM control bits).

1 The PMCs are not incremented. 

33 PMIE

Performance monitor interrupt enable

0  Performance monitor interrupts are disabled.
1  Performance monitor interrupts are enabled and occur when an enabled 

condition or event occurs.

34 FCECE

Freeze counters on enabled condition or event 

0 The PMCs can be incremented (if permitted by other PM control bits).
1 The PMCs can be incremented (if permitted by other PM control bits) only until 

an enabled condition or event occurs. When an enabled condition or event 
occurs, PMGC0[FAC] is set. It is up to software to clear FAC.

35–50 — Reserved, should be cleared.
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2.16.2 User global control register 0 (UPMGC0)

The contents of PMGC0 are reflected to UPMGC0, which is read by user-level software. 
UPMGC0 is read with the mfpmr instruction using PMR384.

51–52 TBSEL

Time base selector. Selects the time base bit that can cause a time base 
transition event (the event occurs when the selected bit changes from 0 to 1).
00 TB[63] (TBL[31])

01 TB[55] (TBL[23])

10 TB[51] (TBL[19])
11 TB[47] (TBL[15])

Time base transition events can be used to periodically collect information about 
processor activity. In multiprocessor systems in which TB registers are 
synchronized among processors, time base transition events can be used to 
correlate the performance monitor data obtained by the several processors. For 
this use, software must specify the same TBSEL value for all processors in the 
system. Because the time-base frequency is implementation-dependent, 
software should invoke a system service program to obtain the frequency before 
choosing a value for TBSEL. 

53–54 — Reserved, should be cleared.

55 TBEE

Time base transition event exception enable 

0 Exceptions from time base transition events are disabled.

1 Exceptions from time base transition events are enabled. A time base 
transition is signalled to the performance monitor if the TB bit specified in 
PMGC0[TBSEL] changes from 0 to 1. Time base transition events can be 
used to freeze the counters (PMGC0[FCECE]) or signal an exception 
(PMGC0[PMIE]).

Changing PMGC0[TBSEL] while PMGC0[TBEE] is enabled may cause a false 
0 to 1 transition that signals the specified action (freeze, exception) to occur 
immediately. Although the interrupt signal condition may occur with MSR[EE] = 
0, the interrupt cannot be taken until MSR[EE] = 1. 

55–63 — Reserved, should be cleared.

Table 54. PMGC0 field descriptions  (continued)

Bits Name Description
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2.16.3 Local control A registers (PMLCa0–PMLCa3)

The local control A registers 0–3 (PMLCa0–PMLCa3), function as event selectors and give 
local control for the corresponding performance monitor counters. PMLCa works with the 
corresponding PMLCb register.

Local control A registers (PMLCa0–PMLCa3)/
User local control A registers (UPMLCa0–UPMLCa3)

         

PMLCa0 (PMR144)

PMLCa1 (PMR145)

PMLCa2 (PMR146)
PMLCa3 (PMR147)

UPMLCa0 (PMR128)

UPMLCa1 (PMR129)

UPMLCa2 (PMR130)
UPMLCa3 (PMR131)

Access: PMLCa0–PMLCa3: supervisor-only

UPMLCa0–UPMLCa3: supervisor/user read-only

32 33 34 35 36 37 38 40 41 47 48 63

R
FC FCS FCU FCM1 FCM0 CE — EVENT —

W

Reset All zeros

Table 55. PMLCa0–PMLCa3 field descriptions

Bits Name Description

32 FC
Freeze counter
0 The PMC is incremented (if permitted by other PM control bits).

1 The PMC is not incremented.

33 FCS

Freeze counter in supervisor state

0 The PMC is incremented (if permitted by other PM control bits).

1 The PMC is not incremented if MSR[PR] = 0.

34 FCU

Freeze counter in user state 

0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PR] = 1.

35 FCM1
Freeze counter while mark = 1
0 The PMC is incremented (if permitted by other PM control bits).

1 The PMC is not incremented if MSR[PMM] = 1.

36 FCM0

Freeze counter while mark = 0

0 The PMC is incremented (if permitted by other PM control bits).

1 The PMC is not incremented if MSR[PMM] = 0.

37 CE

Condition enable

0 PMCx overflow conditions cannot occur. (PMCx cannot cause interrupts, 
cannot freeze counters.)

1 Overflow conditions occur when the most-significant-bit of PMCx is equal to 
one.

It is recommended that CE be cleared when counter PMCx is selected for 
chaining.

38–40 — Reserved, should be cleared.

41–47 EVENT Event selector. Up to 128 events selectable. 

48–63 — Reserved, should be cleared.
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2.16.4 User local control A registers (UPMLCa0–UPMLCa3)

The contents of PMLCa0–PMLCa3 are reflected to UPMLCa0–UPMLCa3, which are read 
by user-level software with mfpmr using PMR numbers in Table 53.

2.16.5 Local control B registers (PMLCb0–PMLCb3)

Local control B registers (PMLCb0–PMLCb3), specify a threshold value and a multiple to 
apply to a threshold event selected for the corresponding performance monitor counter. 
PMLCb works with the corresponding PMLCa.

Local control B registers (PMLCb0–PMLCb3)/User local control B registers (UPMLCb0–UPMLCb3) 

         

PMR PMR272 (PMLCb0)
PMR273 (PMLCb1)

PMR274 (PMLCb2)

PMR275 (PMLCb3)

PMR256 (UPMLCb0)
PMR257 (UPMLCb1)

PMR258 (UPMLCb2)

PMR259 (UPMLCb3)

Access: PMLCb0–PMLCb3 Supervisor read/write
UPMLCb0–UPMLCb3 User read-only

32 52 53 55 56 57 58 63

R
—

THRESHMU
L

— THRESHOLD
W

Reset All zeros

Table 56. PMLCb0 –PMLCb3 field descriptions

Bits Name Description

32–52 — Reserved, should be cleared.

53–55 THRESHMUL

Threshold multiple

000 Threshold field is multiplied by 1 (PMLCbn[THRESHOLD] * 1)

001 Threshold field is multiplied by 2 (PMLCbn[THRESHOLD] * 2)
010 Threshold field is multiplied by 4 (PMLCbn[THRESHOLD] * 4)

011 Threshold field is multiplied by 8 (PMLCbn[THRESHOLD] * 8)

100 Threshold field is multiplied by 16 (PMLCbn[THRESHOLD] * 16)
101 Threshold field is multiplied by 32 (PMLCbn[THRESHOLD] * 32)

110 Threshold field is multiplied by 64 (PMLCbn[THRESHOLD] * 64)

111 Threshold field is multiplied by 128 (PMLCbn[THRESHOLD] * 128)

56–57 — Reserved, should be cleared.

58–63 THRESHOLD

Threshold. Only events that exceed this value are counted. Events to which 
a threshold value applies are implementation-dependent as are the 
dimension (for example duration in cycles) and the granularity with which 
the threshold value is interpreted. 

By varying the threshold value, software can profile event characteristics. 
For example, if PMC1 is configured to count cache misses that last longer 
than the threshold value, software can obtain the distribution of cache miss 
durations for a given program by monitoring the program repeatedly using 
a different threshold value each time. 
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2.16.6 User local control B registers (UPMLCb0–UPMLCb3)

The contents of PMLCb0–PMLCb3 are reflected to UPMLCb0–UPMLCb3, which are read 
by user-level software with mfpmr using the PMR numbers in Table 53.

2.16.7 Performance monitor counter registers (PMC0–PMC3)

The performance monitor counter registers PMC0–PMC3, are 32-bit counters that can be 
programmed to generate interrupt signals when they overflow. Each counter is enabled to 
count 128 events.

Performance monitor counter registers (PMC0–PMC3)/User performance monitor counter registers (UPMC0–UPMC3)

         

Counters overflow when the high-order bit (the sign bit) becomes set; that is, they reach the 
value 2,147,483,648 (0x8000_0000). However, an exception is not signaled unless 
PMGC0[PMIE] and PMLCax[CE] are also set as appropriate.

The interrupts are masked by clearing MSR[EE]. An interrupt that is signaled while 
MSR[EE] is zero is not taken until MSR[EE] is set. Setting PMGC0[FCECE] forces counters 
to stop counting when an enabled condition or event occurs.

Software is expected to use mtpmr to explicitly set PMCs to non-overflowed values. Setting 
an overflowed value may cause an erroneous exception. For example, if both PMGC0[PMIE] 
and PMLCax[CE] are set and the mtpmr loads an overflowed value into PMCx, an interrupt 
may be generated without an event counting having taken place.

PMC registers are accessed with mtpmr and mfpmr using the PMR numbers in Table 52.

2.16.8 User performance monitor counter registers (UPMC0–UPMC3)

The contents of PMC0–PMC3 are reflected to UPMC0–UPMC3, which are read by user-
level software with the mfpmr instruction using the PMR numbers in Table 53.

PMC0 (PMR16)
PMC1 (PMR17)

PMC2 (PMR18)

PMC3 (PMR19)

UPMC0 (PMR0)
UPMC1 (PMR1)

UPMC2 (PMR2)

UPMC3 (PMR3)

Access: PMC0–PMC3: Supervisor-only
UPMC0–UPMC3: Supervisor/user read-only

32 33 63

R
OV Counter value

W

Reset All zeros

Table 57. PMC0–PMC3 field descriptions

Bits Name Description

32 OV
Overflow. When this bit is set, it indicates this counter reaches its 
maximum value.

33–63 Counter Value Indicates the number of occurrences of the specified event. 
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2.17 Device control registers (DCRs)
Book E defines the existence of a DCR address space and the instructions to access them, 
but does not define particular DCRs. The on-chip DCRs exist architecturally outside the 
processor core and thus are not part of Book E.

DCRs may control the use of on-chip peripherals, such as memory controllers (specific DCR 
definitions would be provided in the implementation’s user’s manual).

The contents of DCR DCRN can be read into a GPR using mfdcr rD,DCRN. GPR contents 
can be written into DCR DCRN using mtdcr DCRN,rS. 

If DCRs are implemented, they are described as part of the implementation documentation. 

2.18 Book E SPR model 
This section describes SPR invalid references, synchronization requirements, and 
preserved, reserved, and allocated registers. 

2.18.1 Invalid SPR references

System behavior when an invalid SPR is referenced depends on the privilege level. 

● If the invalid SPR is accessible in user mode (SPR[5] = 0), an illegal instruction 
exception is taken. 

● If the invalid SPR is accessible only in supervisor mode (SPR[5] = 1) and the core 
complex is in supervisor mode (MSR[PR] = 0), the results of the attempted access are 
boundedly undefined.

● If the invalid SPR address is accessible only in supervisor mode (bit 5 of an SPR 
number = 1) and the core complex is not in supervisor mode (MSR[PR] = 1), a privilege 
exception is taken. These results are summarized in Table 58.

         

2.18.2 Synchronization requirements for SPRs

Synchronization requirements for accessing certain SPRs are shown in Table 59. Except for 
these SPRs, there are no synchronization requirements for accessing SPRs beyond those 
stated in Book E. (Note that requirements may be different for different implementations.)

         

Table 58. System response to an invalid spr reference

SPR address bit 5 MSR[PR] Response

0 (User) x Illegal exception

1 (Supervisor)
0 (Supervisor) Boundedly undefined 

1 (User) Privilege exception

Table 59. Synchronization requirements for sprs  

Registers Instruction
Instruction required 

before
Instruction required 

after

DBCR0 mtspr dbcr0 None isync

DBCR1 mtspr dbcr1 None isync
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2.18.3 Reserved SPRs

An undefined SPR number in the range 0x000–0x1FF (0–511) that is not preserved is 
reserved.

2.18.4 Allocated SPRs

SPR numbers allocated for implementation-dependent use are 0x200–0x3FF (512–1023).

         

HID0 mtspr hid0 None isync

HID1 mtspr hid1 None isync

L1CSR0 mtspr l1csr0 msync, isync isync

L1CSR1 mtspr l1csr1 None isync

MASn mtspr masn None isync

MMUCSR0 mtspr mmucsr0 None isync

PIDn mtspr pidn None isync

SPEFSCR mtspr spefscr None isync

Table 59. Synchronization requirements for sprs (continued) 

Registers Instruction
Instruction required 

before
Instruction required 

after

Table 60. Allocated SPRs defined by the EIS 

SPR Mnemonic Register

48 PID0(1) Process ID register 0. This is not truly an allocated SPR; however, Book E 
defines only this PID register and refers to it as PID rather than PID0. 

512 SPEFSCR Signal processing and embedded floating-point status and control register

515 L1CFG0 L1 cache configuration register 0

516 L1CFG1 L1 cache configuration register 1

528 IVOR32 SPE APU unavailable exception

529 IVOR33 Embedded floating-point data exception

530 IVOR34 Embedded floating-point round exception

531 IVOR35 Performance monitor Interrupt vector offset register

570 MCSRR0 Machine-check save/restore register 0

571 MCSRR1 Machine-check save/restore register 1

572 MCSR Machine check syndrome register

573 MCAR Machine check address register 

624 MAS0 MMU assist register 0

625 MAS1 MMU assist register 1

626 MAS2 MMU assist register 2

627 MAS3 MMU assist register 3
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628 MAS4 MMU assist register 4

629 MAS5 MMU assist register 5 

630 MAS6 MMU assist register 6

633 PID1 Process ID register 1

634 PID2 Process ID register 2

… PIDn Additional PID registers may be defined in this space

688 TLB0CFG TLB configuration register 0

689 TLB1CFG TLB configuration register 1

944 MAS7 MMU assist register 7

1008 HID0 Hardware implementation dependent register 0

1009 HID1 Hardware implementation dependent register 1

1010 L1CSR0 L1 cache control and status register 0

1011 L1CSR1 L1 cache control and status register 

1012 MMUCSR0 MMU control and status register 0

1015 MMUCFG MMU configuration register

1023 SVR System version register 

1. An update to a PID register must always be followed by an isync.

Table 60. Allocated SPRs defined by the EIS  (continued)

SPR Mnemonic Register
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3 Instruction model

The architecture specifications allow for different processor implementations, which may 
provide extensions to or deviations from the architectural descriptions. This chapter provides 
information about the Book E architecture and the Book E implementation standards (EIS), 
which defines auxiliary processing units (APUs) and other architectural extensions that 
define additional instructions, registers, and interrupts. 
For more information, see Chapter 7: Auxiliary processing units (APUs) on page 823.”

3.1 Operand conventions
This section describes operand conventions as they are represented in the Book E 
architecture. These conventions follow the basic descriptions in the classic PowerPC 
architecture with some changes in terminology. For example, distinctions between user and 
supervisor-level instructions are maintained, but the designations—UISA, VEA, and OEA—
do not apply. Detailed descriptions are provided of conventions used for storing values in 
registers and memory, accessing processor registers, and representing data in these 
registers. 

3.1.1 Data organization in memory and data transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address 
of the corresponding byte.

Memory operands can be bytes, half words, words, or double words or, for the load/store 
multiple instruction type and load/store string instructions, a sequence of bytes or words. 
The address of a memory operand is the address of its first byte (that is, of its lowest-
numbered byte). Operand length is implicit for each instruction.

3.1.2 Alignment and misaligned accesses

The operand of a single-register memory access instruction has an alignment boundary 
equal to its length. An operand’s address is misaligned if it is not a multiple of its width. 

The concept of alignment is also applied more generally to data in memory. For example, a 
12-byte data item is said to be word-aligned if its address is a multiple of four.

Some instructions require their memory operands to have certain alignment. In addition, 
alignment can affect performance. For single-register memory access instructions, the best 
performance is obtained when memory operands are aligned. 

Instructions are 32 bits (one word) long and must be word-aligned. Note, however, that the 
VLE extension provides both 16- and 32-bit instructions. 
See VLE instruction alignment and byte ordering on page 217.”

Table 61 lists characteristics for memory operands for single-register memory access 
instructions.



RM0004 Instruction model

134/1176

         

Note that lmw, stmw, lwarx, and stwcx. instructions that are not word aligned cause an 
alignment exception. 

3.2 Instruction set summary
Instructions are divided into the following functional categories: 

● Integer instructions—These include arithmetic and logical instructions. See Integer 
instructions on page 146.”

● Floating-point instructions—These include floating-point vector and scalar arithmetic 
instructions. See Embedded vector and scalar floating-point APU instructions.” Note 
that some implementations do not support Book E–defined floating-point instructions or 
registers.

● Load and store instructions—See Load and store instructions on page 156.”

● Flow control instructions—These include branching instructions, CR logical 
instructions, trap instructions, and other instructions that affect the instruction flow. 
See Branch and flow control instructions on page 163.”

● Processor control instructions—These instructions are used for synchronizing memory 
accesses. See Processor control instructions on page 201.”

● Memory synchronization instructions—These instructions are used for memory 
synchronizing. See Memory synchronization instructions on page 175.” 

● Memory control instructions—These instructions provide control of caches and TLBs. 
See Memory control instructions,” and Supervisor-level memory control instructions.”

● Signal processing instructions—These include a set of vector arithmetic and logic 
instructions optimized for signal processing. See Chapter 3.6.1 on page 186.

Note: Instruction groupings used here do not indicate the execution unit that processes a 
particular instruction or group of instructions. This information, which is useful for scheduling 
instructions most effectively, is provided in the execution chapter for the implementation.”

Integer instructions operate on word operands. Book E floating-point instructions operate on 
single-precision and double-precision floating-point operands. The PowerPC architecture 
uses instructions that are 4 bytes long and word-aligned. It provides for byte, half-word, and 
word operand loads and stores between memory and a set of 32 general-purpose registers 
(GPRs). It provides for word and double-word operand loads and stores between memory 
and a set of 32 floating-point registers (FPRs). 

Arithmetic and logical instructions do not read or modify memory. To use the contents of a 
memory location in a computation and then modify the same or another location, the 
memory contents must be loaded into a register, modified, and then written to the target 
location using load and store instructions.

Table 61. Address characteristics of aligned operands

Operand Operand Length Addr[60–63] if Aligned

Byte (or string)  8 bits  xxxx(1)

1. An x in an address bit position indicates that the bit can be 0 or 1 independent of the state of other bits in 
the address.

Half word  2 bytes  xxx0 

Word  4 bytes  xx00 

Double word  8 bytes  x000 
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The description of each instruction includes the mnemonic and a formatted list of operands. 
To simplify assembly language programming, a set of simplified mnemonics and symbols is 
provided for some of the frequently used instructions; see Appendix B: Simplified 
mnemonics for PowerPC instructions on page 1110,” for a complete list of simplified 
mnemonics. Programs written to be portable across the various assemblers for the 
PowerPC architecture should not assume the existence of mnemonics not described in that 
document.

3.2.1 Classes of instructions

Instructions belong to one of the following four classes:

● Defined instructions (See Defined instruction class on page 135.)

● Allocated instructions (See Allocated instruction class on page 136.)

● Preserved instructions (See Preserved instruction class on page 137.)

● Reserved (illegal or no-op) instructions (See Reserved instruction class on page 138.)

The class is determined by examining the primary opcode and any extended opcode. If the 
opcode, or combination of opcode and extended opcode, is not that of a defined, allocated, 
preserved, or reserved instruction, the instruction is illegal.

Definition of boundedly undefined

If instructions are encoded with incorrectly set bits in reserved fields, the results on 
execution can be said to be boundedly undefined. If a user-level program executes the 
incorrectly coded instruction, the resulting undefined results are bounded in that a spurious 
change from user to supervisor state is not allowed, and the level of privilege exercised by 
the program in relation to memory access and other system resources cannot be exceeded. 
Boundedly undefined results for a given instruction can vary between implementations and 
between execution attempts in the same implementation.

Defined instruction class

This class of instructions consists of all the instructions defined in Book E. In general, 
defined instructions are guaranteed to be supported within a Book E system as specified by 
the architecture, either within the processor implementation itself or within emulation 
software supported by the system operating software.

For implementations that only provide the 32-bit subset of Book E, emulation of the 64-bit 
behavior of the defined instructions is not supported. See Appendix D: Guidelines for 32-bit 
book E on page 1154.
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Any attempt to execute a defined instruction results in one of the following events:

● An illegal instruction exception-type program interrupt, if an implementation does not 
recognize the instruction

● An unimplemented instruction exception-type program interrupt, if the instruction is 
recognized but not supported by the implementation and is not a floating-point 
instruction

● An unimplemented instruction exception-type program interrupt, if the instruction is 
recognized but not supported by the implementation, and is a floating-point instruction 
and floating-point processing is enabled

● The floating-point unavailable interrupt if the instruction is recognized but is not 
supported by the implementation or is a floating-point instruction and floating-point 
processing is disabled

● The floating-point unavailable interrupt when floating-point processing is disabled and a 
floating-point instruction is recognized and is not supported by the implementation

● If an instruction is recognized and supported by the implementation, the processor 
performs the actions described in the rest of this document. The architected behavior 
may cause other exceptions.

A defined instruction may be retained by future versions of Book E as a defined instruction, 
or may be reclassified as a preserved instruction (process of removal from the architecture) 
and eventually classified as reserved-illegal.

Allocated instruction class

This class of instructions contains the set of instructions (a set of primary opcodes, as well 
as a set of extended opcodes for certain primary opcodes) used for implementation-specific 
instructions. Table 62 lists blocks of opcodes allocated for implementation-dependent use. 

         .

Allocated instructions are allocated to purposes that are outside the scope of Book E for 
implementation-dependent and application-specific use.

Any attempt to execute an allocated instruction results in one of the following:

● An illegal instruction exception-type program interrupt, if the instruction is not 
recognized by the implementation

● An unimplemented instruction exception-type program interrupt, if the instruction is 
recognized and enabled for execution but the implementation does not support direct 

Table 62. Allocated instructions

Primary opcode Extended opcodes

0 All instruction encodings (bits 6–31) except 0x0000_0000(1).

1. Instruction encoding 0x0000_0000 is and always will be reserved-illegal.

4
All instruction encodings (bits 6–31)

SPE and embedded floating-point instructions 

19 Extended opcodes (bits 21–30) 0buuuuu_0u11u

31 Extended opcodes (bits 21–30) uuuuu_0u11u

59 Extended opcodes (bits 21–30) uuuuu_0u10u

63 Extended opcodes (bits 21–30) uuuuu_0u10u (except 00000_01100 frsp)
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execution of the instruction. This option may be used to allow emulation for 
unsupported allocated instructions. 

● A floating-point unavailable interrupt, if an allocated instruction that extends the 
floating-point capabilities is recognized and floating-point processing is disabled

● If an allocated instruction is implemented, the processor performs the actions 
described in the user’s manual. Implementation-dependent behavior may cause other 
exceptions.

An allocated instruction is guaranteed by Book E to remain allocated.

Note: Some allocated instructions may have associated new process state, and, therefore, may 
provide an associated enable bit, similar in function to MSR[FP] for floating-point 
instructions. For such instructions, being enabled for execution implies that any associated 
enable bit is set to allow, or enable, instruction execution. For such instructions, the 
architecture provides an auxiliary processor unavailable interrupt vector in case execution of 
such an instruction is attempted when execution is disabled.
For example, MSR[SPE] enables the SPE unavailable interrupt. Other allocated instructions 
may not have any associated new state and therefore may not require an associated enable 
bit. If supported by an implementation, such instructions are assumed to be always enabled 
for execution.

Preserved instruction class

The preserved instruction class supports backward compatibility with the PowerPC 
architecture. An attempt to execute a preserved instruction results in one of the following:

● If the implementation does not recognize the instruction, an illegal instruction 
exception-type program interrupt occurs.

● If the instruction is recognized and supported by the implementation, the processor 
performs the actions defined in the previous version of the architecture.

Future versions of Book E may retain a preserved instruction as a preserved instruction, 
may reclassify it as an allocated instruction, or may adopt it as part of Book E.

Preserved opcodes are listed in Table 63.

         

Table 63. Preserved instructions

Primary opcode Extended opcodes

0 No preserved extended opcodes

4 No preserved extended opcodes

19 No preserved extended opcodes

31

Extended opcodes (bits 21–30)
210 0b00110_10010 (mtsr)
242 0b00111_10010 (mtsrin)
370 0b01011_10010 (tlbia)
306 0b01001_10010 (tlbie)
371 0b01011_10011 (mftb)
595 0b10010_10011 (mfsr)
659 0b10100_10011 (mfsrin)
310 0b01001_10110 (eciwx)
438 0b01101_10110 (ecowx)

59 No preserved extended opcodes

63 No preserved extended opcodes
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Reserved instruction class

This class of instructions consists of all instruction primary opcodes (and associated 
extended opcodes, if applicable) that do not belong to either the defined, allocated, or 
preserved instruction classes.

Reserved instructions are available for future extensions of Book E. That is, some future 
version of Book E may define any of these instructions to perform new functions or make 
them available for implementation-dependent use as allocated instructions. There are two 
types of reserved instructions, reserved-illegal and reserved-nop. 

Attempts to execute a reserved-illegal instruction cause an illegal instruction exception-type 
program interrupt (see Chapter 4.7.6: Alignment interrupt on page 263) on implementations 
conforming to the current version of Book E. Reserved-illegal instructions are, therefore, 
available for future extensions to Book E that would affect architected state. Such 
extensions might include new forms of integer or floating-point arithmetic or new forms of 
load or store instructions that write their result in an architected register.

Attempts to execute a reserved-nop instruction either do not affect implementations 
conforming to the current version of Book E (that is, treated as a no-operation instruction), 
or cause an illegal instruction exception-type program interrupt (see Chapter 4.7.7: Program 
interrupt on page 265”). Reserved-nop instructions are available for future architecture 
extensions that do not affect architected state. Such extensions might include performance-
enhancing hints such as new forms of cache touch instructions and could be added while 
remaining functionally compatible with implementations of previous versions of Book E

A reserved-illegal instruction may be retained by future versions of Book E as a reserved-
illegal instruction, may be subsequently reclassified as an allocated instruction, or may even 
be employed in the role of a subsequently defined instruction.

A reserved-nop instruction may be retained by future versions of Book E as a reserved-nop 
instruction, may be subsequently reclassified as an allocated instruction, or may even be 
employed in the role of a subsequently defined instruction that has no effect on architected 
state.

3.2.2 Instruction forms

This section describes preferred instruction forms, addressing modes, and synchronization.

Preferred instruction forms (no-op)

The Or Immediate (ori) instruction has the following preferred form for expressing a no-op:

ori 0,0,0

Invalid instruction forms

Some of the defined instructions have invalid forms. An instruction form is invalid if one or 
more fields of the instruction, excluding the opcode field(s), are coded incorrectly in a 
manner that can be deduced by examining only the instruction encoding.

Attempts to execute an invalid form of an instruction either causes an illegal instruction type 
program interrupt or yields boundedly undefined results. Any exceptions to this rule are 
stated in the instruction descriptions.
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Some kinds of invalid form instructions can be deduced just from examining the instruction 
layout. These are listed below.

● Field shown as reserved but coded as nonzero

● Field shown as containing a particular value but coded as some other value

These invalid forms are not discussed further.

Other invalid instruction forms can be deduced by detecting an invalid encoding of one or 
more of the instruction operand fields. These kinds of invalid form are identified in the 
instruction descriptions.

● Branch conditional and branch conditional extended instructions (undefined encoding 
of BO field)

● Load with update instructions (rD = rA or rA = 0)

● Store with update instructions (rA = 0)

● Load multiple instruction (rA or rB in range of registers to be loaded)

● Load string immediate instructions (rA in range of registers to be loaded)

● Load string indexed instructions (rD = rA or rD = rB)

● Load/store floating-point with update instructions (rA = 0)

3.2.3 Addressing modes

This section describes conventions for addressing memory and for calculating effective 
addresses (EAs) as defined by the Book E architecture for 32-bit implementations. 

Memory addressing

A program references memory using the effective address computed by the processor when 
it executes a memory access or branch instruction (or other instructions as described in 
Chapter : User-level cache instructions on page 180,” and Chapter : Supervisor-level cache 
instruction on page 183,” or when it fetches the next sequential instruction. 

Memory operands

Bytes in memory are numbered consecutively starting with 0. Each number is the address 
of the corresponding byte.

Memory operands may be bytes, half words, words or, for the load/store multiple and 
load/store string instructions, a sequence of words or bytes. The address of a memory 
operand is the address of its first byte (that is, of its lowest-numbered byte). Byte ordering 
can be either big endian or little endian (see Chapter : Byte ordering on page 141”). The 
default byte and bit ordering is big endian.

Operand length is implicit for each instruction with respect to memory alignment. The 
operand of a scalar memory access instruction has a natural alignment boundary equal to 
the operand length. In other words, the natural address of an operand is an integral multiple 
of the operand length. A memory operand is said to be aligned if it is aligned at its natural 
boundary; otherwise it is said to be misaligned. For more information about alignment, see 
Chapter 3.1.2: Alignment and misaligned accesses on page 133.”

Effective address calculation

The 32-bit address computed by the processor when executing a memory access or branch 
instruction (or certain other instructions described in User-level cache instructions on 
page 180,” Supervisor-level cache instruction,” and Supervisor-level tlb management 
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instructions on page 183”), or when fetching the next sequential instruction, is called the 
effective address (EA) and specifies a byte in memory. For a memory access instruction, if 
the sum of the EA and the operand length exceeds the maximum EA, the memory access is 
considered to be undefined.

Effective address arithmetic, except for next sequential instruction address computations, 
wraps around from the maximum address, 232– 1, to address 0.

Data memory addressing modes

Book E supports the following data memory addressing modes:

● Base+displacement addressing mode—The 16-bit D field is sign-extended and added 
to the contents of the GPR designated by rA or to zero if rA = 0. Instructions that use 
this addressing mode are of the D instruction format.

● Base+index addressing mode—The contents of the GPR designated by rB (or the 
value 0 for lswi and stswi) are added to the contents of the GPR designated by rA or to 
zero if rA = 0. Instructions that use this addressing mode are of the X instruction 
format.

● Base+displacement extended addressing mode—The 12-bit DE field is sign-extended 
and added to the contents of the GPR designated by rA or to zero if rA = 0 to produce 
the 32-bit EA. Instructions that use this addressing mode are of the DE instruction 
format. 

● Base+displacement extended scaled addressing mode—The 12-bit DES field is 
concatenated on the right with zeros, sign-extended, and added to the contents of the 
GPR designated by rA or to zero if rA = 0 to produce the 32-bit EA. Instructions that 
use this addressing mode are of the DES instruction format.

In addition, APUs may provide additional addressing modes.

Instruction memory addressing modes

Instruction memory addressing modes correspond with instructions forms, as follows:

● I-form branch instructions—The 24-bit LI field is concatenated on the right with 0b00, 
sign-extended, and then added to either the address of the branch instruction if AA = 0, 
or to 0 if AA = 1.

● Taken B-form branch instructions—The 14-bit BD field is concatenated on the right with 
0b00, sign-extended, and then added to either the address of the branch instruction if 
AA = 0, or to 0 if AA = 1. 

● Taken XL-form branch instructions—The contents of bits LR[32–61] or CR[32–61] are 
concatenated on the right with 0b00.

● Sequential instruction fetching (or non-taken branch instructions)—The value 4 is 
added to the address of the current instruction to form the 32-bit EA of the next 
instruction. If the address of the current instruction is 0xFFFF_FFFC, the address of the 
next sequential instruction is undefined. 

● Any branch instruction with LK = 1—The value 4 is added to the address of the current 
instruction and the 32-bit result is placed into the LR. If the address of the current 
instruction is 0xFFFF_FFFC, the result placed into the LR is undefined.

Although some implementations may support next sequential instruction address 
computations wrapping from the highest address 0xFFFF_FFFC to 0x0000_0000 as part of 
the instruction flow, users are strongly encouraged not to depend on this behavior. Doing so 
can reduce the portability of their software. If code must span this boundary, software should 
place a non-linking branch at address 0xFFFF_FFFC, which always branches to address 
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0x0000_0000 (either absolute or relative branches work). 
See also Appendix D: Guidelines for 32-bit book E on page 1154.”

Byte ordering

If scalars (individual data items and instructions) were indivisible, there would be no such 
concept as byte ordering. It is meaningless to consider the order of bits or groups of bits 
within the smallest addressable unit of memory, because nothing can be observed about 
such order. Only when scalars, which the programmer and processor regard as indivisible 
quantities, can comprise more than one addressable unit of memory does the question of 
order arise.

For a machine in which the smallest addressable unit of memory is the 64-bit double word, 
there is no question of the ordering of bytes within double words. All transfers of individual 
scalars between registers and memory are of double words, and the address of the byte 
containing the high-order 8 bits of a scalar is no different from the address of a byte 
containing any other part of the scalar.

For Book E, as for most computer architectures currently implemented, the smallest 
addressable unit of memory is the 8-bit byte. Many scalars are half words and words (double 
words in 64-bit implementations) which consist of groups of bytes. When a word-length 
scalar is moved from a register to memory, the scalar occupies four consecutive byte 
addresses. It thus becomes meaningful to discuss the order of the byte addresses with 
respect to the value of the scalar: which byte contains the highest-order eight bits of the 
scalar, which byte contains the next-highest-order 8 bits, and so on.

Given a scalar that contains multiple bytes, the choice of byte ordering is essentially 
arbitrary. There are 4! = 24 ways to specify the ordering of 4 bytes within a word but only two 
of these orderings are sensible:

● The ordering that assigns the lowest address to the highest-order (left-most) 8 bits of 
the scalar, the next sequential address to the next-highest-order eight bits, and so on. 
This ordering is called big endian because the big (most-significant) end of the scalar, 
considered as a binary number, comes first in memory. The 68000 is an example of a 
processor using this byte ordering.

● The ordering that assigns the lowest address to the lowest-order (right-most) 8 bits of 
the scalar, the next sequential address to the next-lowest-order eight bits, and so on. 
This ordering is called little endian because the little (least-significant) end of the scalar, 
considered as a binary number, comes first in memory. The Intel 8086 is an example of 
a processor using this byte ordering.

Book E provides support for both big- and little-endian byte ordering in the form of a memory 
attribute. See Chapter 5.4.8: Permission attributes on page 315,” and Chapter 5.2.1: 
Memory/Cache access attributes on page 283.”

Synchronization requirements

This section describes synchronization requirements for special registers and TLBs. 
Changing the value in certain system registers and invalidating TLB entries can have the 
side effect of altering the context in which data addresses and instruction addresses are 
interpreted, and in which instructions are executed. For example, changing MSR[IS] = 0 to 
and MSR[IS] = 1 has the side effect of changing address space. Such effects need not 
occur in program order (program order refers to the execution of instructions in the strict 
order in which they occur in the program), and therefore may require explicit synchronization 
by software. 
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An instruction that alters the context in which data addresses or instruction addresses are 
interpreted, or in which instructions are executed, is called context altering. This section 
covers all such context-altering instructions. The required software synchronization for each 
is shown in Table 64. 

The notation ‘CSI’ in the tables means any context-synchronizing instruction (such as, sc, 
isync, rfci, or rfi). A context-synchronizing interrupt (that is, any interrupt except non-
recoverable machine check) can be used instead of a context-synchronizing instruction. If it 
is, phrases like ‘the synchronizing instruction,’ below, should be interpreted as meaning the 
instruction at which the interrupt occurs. If no software synchronization is required before 
(after) a context-altering instruction, “the synchronizing instruction before (after) the context-
altering instruction” should be interpreted as meaning the context-altering instruction itself.

The synchronizing instruction before the context-altering instruction ensures that all 
instructions up to and including that synchronizing instruction are fetched and executed in 
the context that existed before the alteration. The synchronizing instruction after the context-
altering instruction ensures that all instructions after that synchronizing instruction are 
fetched and executed in the context established by the alteration. Instructions after the first 
synchronizing instruction, up to and including the second synchronizing instruction, may be 
fetched or executed in either context.

If a sequence of instructions contains context-altering instructions and contains no 
instructions that are affected by any of the context alterations, no software synchronization 
is required within the sequence.

Note: Sometimes advantage can be taken of the fact that certain instructions that occur naturally 
in the program, such as the rfi/rfci at the end of an interrupt handler, provide the required 
synchronization.

No software synchronization is required before altering the MSR (except perhaps when 
altering the WE bit: see the tables), because mtmsr is execution synchronizing. No software 
synchronization is required before most of the other alterations shown in the “Instruction 
fetch and/or execution” section in Table 64, because all instructions before the context-
altering instruction are fetched and decoded before the context-altering instruction executes 
(the processor must determine whether any of the preceding instructions are context 
synchronizing)

Table 64 identifies the software synchronization requirements for data access for all context-
altering instructions.

         

Table 64. Synchronization requirements 

Context altering instruction or event Required before Required after Notes

Data Accesses

interrupt None None

mtmsr (DS) None CSI

mtmsr (ME) None CSI (1)

mtmsr (PR) None CSI

mtspr (DAC1, DAC2, DVC1, DVC2) — — (2)

mtspr (DBCR0, DBCR2) — — 2

mtspr (DBSR) — — 2
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mtspr (PIDn) CSI CSI

rfci None None

rfi None None

sc None None

tlbivax CSI CSI or msync (3),(4)

tlbwe CSI CSI or msync 3,4

Instruction fetch and/or execution

Interrupt None None

mtmsr (CE) None None (5)

mtmsr (DE) None CSI

mtmsr (EE) None None 3

mtmsr (FE0) None CSI

mtmsr (FE1) None CSI

mtmsr (FP) None CSI

mtmsr (IS) None CSI (6)

mtmsr (ME) None CSI 1

mtmsr (PR) None CSI

mtmsr (WE) — — (7)

mtspr (DBCR0, DBCR1) — — 2

mtspr (DBSR) — — 2

mtspr (DEC) None None (8)

mtspr (IAC1, IAC2, IAC3, IAC4) — — 2

mtspr (IVORi) None None

mtspr (IVPR) None None

mtspr (PID) None CSI 6

mtspr (TCR) None None 8

mtspr (TSR) None None 8

rfci None None

rfi None None

sc None None

tlbivax None CSI or msync 3,4

tlbwe None CSI or msync 3,4

wrtee None None 5

wrteei None None 5

Table 64. Synchronization requirements  (continued)

Context altering instruction or event Required before Required after Notes
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Context synchronization

An instruction or event is context synchronizing if it satisfies the requirements listed below. 
Context-synchronizing operations include instructions isync, sc, rfi, rfci, rfdi, and rfmci, 
and most interrupts.

1. The operation is not initiated or, in the case of isync, does not complete until all 
instructions already in execution have completed to a point at which they have reported 
all exceptions they cause.

2. The instructions that precede the operation complete execution in the context 
(including such parameters as privilege level, address space, and memory protection) 
in which they were initiated.

3. If the operation directly causes an interrupt (for example, sc directly causes a system 
call interrupt) or is an interrupt, the operation is not initiated until no interrupt-causing 

1. A context synchronizing instruction is required after altering MSR[ME] to ensure that the alteration takes 
effect for subsequent machine check interrupts, which may not be recoverable and therefore may not be 
context synchronizing.

2. Synchronization requirements for changing any of the debug registers are implementation-dependent and 
are specified in the user’s manual for the implementation.

3. For data accesses, the context synchronizing instruction before the tlbwe or tlbivax instruction ensures 
that all storage accesses due to preceding instructions have completed to a point at which they have 
reported all exceptions they cause.
The context synchronizing instruction after the tlbwe or tlbivax ensures that subsequent storage accesses 
(data and instruction) use the updated value in any affected TLB entries. It does not ensure that all storage 
accesses previously translated by the TLB entries being updated have completed with respect to storage; if 
these completions must be ensured, the tlbwe or tlbivax must be followed by an msync instruction as well 
as by a context synchronizing instruction. 
The following sequence shows why it is necessary for data accesses to ensure that all storage accesses 
due to instructions before a tlbwe or tlbivax have completed to a point at which they have reported all 
exceptions they will cause. Assume that valid TLB entries exist for the target storage location when the 
sequence starts. 
1. A program issues a load or store to a page. 
2. The same program executes a tlbwe or tlbivax that invalidates the corresponding TLB entry. 
3. The load or store instruction finally executes, and gets a TLB miss exception. The TLB miss exception is 
semantically incorrect. In order to prevent it, a context synchronizing instruction must be executed between 
steps 1 and 2. 

4. Multiprocessor systems have other requirements to synchronize what is called TLB shoot down’ (that is, to 
invalidate one or more TLB entries on all processors in the multiprocessor system and to be able to 
determine that the invalidations have completed and that all side effects of the invalidations have taken 
effect).

5. The effect of changing MSR[EE] or MSR[CE] is immediate.
If an mtmsr, wrtee, or wrteei clears MSR[EE], an external input, decrementer, or fixed-interval timer 
interrupt does not occur after the instruction executes.
If an mtmsr, wrtee, or wrteei changes MSR[EE] from 0 to 1 when an external input, decrementer, fixed-
interval timer, or higher priority enabled exception exists, the corresponding interrupt occurs immediately 
after the mtmsr, wrtee, or wrteei executes and before the next instruction is executed in the program that 
sets MSR[EE].
If an mtmsr clears MSR[CE], a critical input, or watchdog timer interrupt does not occur after the instruction 
is executed. 
If an mtmsr changes MSR[CE] from 0 to 1 when a critical input, watchdog timer, or higher priority enabled 
exception exists, the corresponding interrupt occurs immediately after mtmsr executes, and before the next 
instruction is executed in the program that set MSR[CE].

6. The alteration must not cause an implicit branch in real address space. Thus the real address of the 
context-altering instruction and of each subsequent instruction, up to and including the next context 
synchronizing instruction, must be independent of whether the alteration has taken effect.

7. Synchronization requirements for changing the wait state enable are implementation-dependent, and are 
specified in the user’s manual for the implementation.

8. The elapsed time between the decrementer reaching zero, or the transition of the selected time base bit for 
the fixed-interval timer or the watchdog timer, and the signalling of the decrementer, fixed-interval timer or 
the watchdog timer exception is not defined.
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exception exists having higher priority than the exception associated with the interrupt. 
See Chapter 4.11: Exception priorities on page 278.”

4. The instructions that follow the operation are fetched and executed in the context 
established by the operation as required by the sequential execution model. (This 
requirement dictates that any prefetched instructions be discarded and that any effects 
and side effects of executing them speculatively may also be discarded, except as 
described in Memory access ordering on page 290.”

A context-synchronizing operation is necessarily execution synchronizing. Unlike msync 
and mbar, such operations do not affect the order of memory accesses with respect to other 
mechanisms.

Execution synchronization

An instruction is execution synchronizing if it satisfies items 1 and 2 of the definition of 
context synchronization .msync is treated like isync with respect to item 1 (that is, the 
conditions described in item 1 apply to completion of msync). Execution synchronizing 
instructions include msync, mtmsr, wrtee, and wrteei. All context-synchronizing 
instructions are execution synchronizing.

Unlike a context-synchronizing operation, an execution synchronizing instruction need not 
ensure that the instructions following it execute in the context established by that execution 
synchronizing instruction. This new context becomes effective sometime after the execution 
synchronizing instruction completes and before or at a subsequent context-synchronizing 
operation.

Instruction-related interrupts 

Interrupts are caused either directly by the execution of an instruction or by an 
asynchronous event. In either case, an exception may cause one of several types of 
interrupts to be invoked.

Examples of interrupts that can be caused directly by the execution of an instruction include 
but are not limited to the following:

● An attempt to execute a reserved-illegal instruction (illegal instruction exception-type 
program interrupt)

● An attempt by an application program to execute a privileged instruction (privileged 
instruction exception-type program interrupt)

● An attempt by an application program to access a privileged SPR (privileged instruction 
exception-type program interrupt)

● An attempt by an application program to access an SPR that does not exist 
(unimplemented operation instruction exception-type program interrupt)

● An attempt by a system program to access an SPR that does not exist (boundedly 
undefined)

● Execution of a defined instruction using an invalid form (illegal instruction exception-
type program interrupt, unimplemented operation exception-type program interrupt, or 
privileged instruction exception-type program interrupt)

● An attempt to access a memory location that is either unavailable (instruction TLB error 
interrupt or data TLB error interrupt) or not permitted (instruction storage interrupt or 
data storage interrupt)

● An attempt to access memory with an EA alignment not supported by the 
implementation (alignment interrupt)

● Execution of a system call instruction (system call interrupt)
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● Execution of a trap instruction whose trap condition is met (trap type program interrupt)

● Execution of a floating-point instruction when floating-point instructions are unavailable 
(floating-point unavailable interrupt) 

● Execution of a floating-point instruction that causes a floating-point enabled exception 
to exist (floating-point enabled exception-type program interrupt)

● Execution of a defined instruction that is not implemented by the implementation (illegal 
instruction exception or unimplemented operation exception-type program interrupt)

● Execution of an allocated instruction that is not implemented by the implementation 
(illegal instruction exception or unimplemented operation exception-type program 
interrupt)

● Execution of an allocated instruction when the auxiliary instruction is unavailable 
(auxiliary processor unavailable interrupt).

● Execution of an allocated instruction that causes an auxiliary enabled exception 
(enabled exception-type program interrupt).

APUs, such as the SPE, may define additional instruction-caused exceptions and interrupts. 
The invocation of an interrupt is precise, except that if one of the imprecise modes for 
invoking the floating-point enabled exception-type program interrupt is in effect the 
invocation of the floating-point enabled exception-type program interrupt may be imprecise. 
When the interrupt is invoked imprecisely, the excepting instruction does not appear to 
complete before the next instruction starts (because one of the effects of the excepting 
instruction, namely the invocation of the interrupt, has not yet occurred).

Chapter 4: Interrupts and exceptions on page 244 describes interrupt conditions in detail.

3.3 Instruction set overview
This section provides a brief overview of the Book E and Book E instructions. 

Note: some instructions have the following optional features:

● CR update—The dot (.) suffix on the mnemonic enables the update of the CR.

● Overflow option—The o suffix indicates that the overflow bit in the XER is enabled.

3.3.1 Book E user-level instructions

This section discusses the user-level instructions defined in the Book E architecture.

Integer instructions

This section describes the integer instructions. These consist of the following:

● Integer arithmetic instructions

● Integer compare instructions

● Integer logical instructions

● Integer rotate and shift instructions

Integer instructions use the content of the GPRs as source operands and place results into 
GPRs and the XER and CR fields. 

Integer arithmetic instructions 

Table 65 lists the integer arithmetic instructions for the PowerPC processors.
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Although there is no subtract immediate instruction, its effect can be achieved by using an 
addi instruction with the immediate operand negated. Simplified mnemonics are provided 
that include this negation. Subtract instructions subtract the second operand (rA) from the 
third operand (rB). Simplified mnemonics are provided in which the third operand is 
subtracted from the second. See Appendix B: Simplified mnemonics for PowerPC 
instructions on page 1110,” for examples.

According to Book E, an implementation that executes instructions with the overflow 
exception enable bit (OE) set or that sets the carry bit (CA) can either execute these 
instructions slowly or prevent execution of the subsequent instruction until the operation 
completes. The summary overflow (SO) and overflow (OV) bits in the XER are set to reflect 
an overflow condition of a 32-bit result only if the instruction’s OE bit is set.

Integer compare instructions 

The integer compare instructions algebraically or logically compare the contents of register 
rA with either the zero-extended value of the UIMM operand, the sign-extended value of the 
SIMM operand, or the contents of rB. The comparison is signed for cmpi and cmp and 

Table 65. Integer arithmetic instructions

Name Mnemonic Syntax 

Add add (add. addo addo.) rD,rA,rB

Add carrying addc (addc. addco addco.) rD,rA,rB

Add extended adde (adde. addeo addeo.) rD,rA,rB

Add immediate addi rD,rA,SIMM

Add immediate carrying addic rD,rA,SIMM

Add immediate carrying and record addic. rD,rA,SIMM

Add immediate shifted addis rD,rA,SIMM

Add to minus one extended addme (addme. addmeo addmeo.) rD,rA

Add to zero extended addze (addze. addzeo addzeo.) rD,rA

Divide word divw (divw. divwo divwo.) rD,rA,rB

Divide word unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Multiply high word mulhw (mulhw.) rD,rA,rB

Multiply high word unsigned mulhwu (mulhwu.) rD,rA,rB

Multiply low immediate mulli rD,rA,SIMM

Multiply low word mullw (mullw. mullwo mullwo.) rD,rA,rB

Negate neg (neg. nego nego.) rD,rA

Subtract from subf (subf. subfo subfo.) rD,rA,rB

Subtract from carrying subfc (subfc. subfco subfco.) rD,rA,rB

Subtract from extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Subtract from immediate carrying subfic rD,rA,SIMM

Subtract from minus one extended subfme (subfme. subfmeo subfmeo.) rD,rA

Subtract from zero extended subfze (subfze. subfzeo subfzeo.) rD,rA



RM0004 Instruction model

148/1176

unsigned for cmpli and cmpl. Table 66 lists integer compare instructions. Note that the L bit 
must be 0 for 32-bit implementations.

         

The crD operand can be omitted if the result of the comparison is to be placed in CR0. 
Otherwise the target CR field must be specified in crD by using an explicit field number.

For information on simplified mnemonics for the integer compare instructions see Appendix 
B: Simplified mnemonics for PowerPC instructions on page 1110.”

Integer logical instructions 

The logical instructions shown in Table 67 perform bit-parallel operations on the specified 
operands. Logical instructions with the CR updating enabled (uses dot suffix) and 
instructions andi. and andis. set CR field CR0 to characterize the result of the logical 
operation. Logical instructions do not affect XER[SO], XER[OV], or XER[CA].

See Appendix B,” for simplified mnemonic examples for integer logical operations.

         

Table 66. Integer 32-Bit compare instructions (L = 0)

Name Mnemonic Syntax 

Compare cmp crD,L,rA,rB

Compare immediate cmpi crD,L,rA,SIMM

Compare logical cmpl crD,L,rA,rB

Compare logical immediate cmpli crD,L,rA,UIMM

Table 67. Integer logical instructions

Name Mnemonic Syntax Implementation notes

AND and (and.) rA,rS,rB —

AND Immediate andi. rA,rS,UIM
M

—

AND Immediate Shifted andis. rA,rS,UIM
M

—

AND with Complement andc (andc.) rA,rS,rB —

Count Leading Zeros 
Word

cntlzw (cntlzw.
)

rA,rS —

Equivalent eqv (eqv.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) rA,rS —

Extend Sign Half Word extsh (extsh.) rA,rS —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

OR or (or.) rA,rS,rB —

OR Immediate ori rA,rS,UIM
M

Book E defines ori r0,r0,0 as the 
preferred form for a no-op. The dispatcher 
may discard this instruction and dispatch 
it only to the completion queue but not to 
any execution unit.
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Integer rotate and shift instructions 

Rotation operations are performed on data from a GPR, and the result, or a portion of the 
result, is returned to a GPR. Integer rotate instructions, summarized in Table 68, rotate the 
contents of a register. The result is either inserted into the target register under control of a 
mask (if a mask bit is set the associated bit of the rotated data is placed into the target 
register, and if the mask bit is cleared the associated bit in the target register is unchanged) 
or ANDed with a mask before being placed into the target register. Appendix B: Simplified 
mnemonics for PowerPC instructions on page 1110,” lists simplified mnemonics that allow 
simpler coding of often used functions such as clearing the left- or right-most bits of a 
register, left or right justifying an arbitrary field, and simple rotates and shifts. 

         

The integer shift instructions (Table 69) perform left and right shifts. Immediate-form logical 
(unsigned) shift operations are obtained by specifying masks and shift values for certain 
rotate instructions. Simplified mnemonics (shown in Appendix B: Simplified mnemonics for 
PowerPC instructions”) are provided to simplify coding of such shifts.

Multiple-precision shifts can be programmed as shown in C.2: Multiple-precision shifts on 
page 1148.” The integer shift instructions are summarized in Table 69.

         

Floating-point instructions 

This section describes the floating-point instructions as they are defined by Book E. 

OR Immediate Shifted oris rA,rS,UIM
M

—

OR with Complement orc (orc.) rA,rS,rB —

XOR xor (xor.) rA,rS,rB —

XOR Immediate xori rA,rS,UIM
M

—

XOR Immediate Shifted xoris rA,rS,UIM
M

—

Table 68. Integer rotate instructions

Name Mnemonic Syntax 

Rotate left word Immediate then AND with mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Rotate left word then AND with mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate left word Immediate then mask insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Table 69. Integer shift instructions

Name Mnemonic Syntax 

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

Table 67. Integer logical instructions (continued)

Name Mnemonic Syntax Implementation notes
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The rules followed in assigning new primary and extended opcodes. 

● Primary opcode 63 is used for the double-precision arithmetic instructions as well as 
miscellaneous instructions (for example, FPSCR manipulation instructions). Primary 
opcode 59 is used for the single-precision arithmetic instructions.

● The single-precision instructions for which there is a corresponding double-precision 
instruction have the same format and extended opcode as that double-precision 
instruction.

● In assigning new extended opcodes for primary opcode 63, the following regularities 
are maintained. In addition, all new X-form instructions in primary opcode 63 have bits 
21–22 = 11.

– Bit 26 = 1 if and only if the instruction is A-form.

– Bits 26–29 = 0b0000 if and only if the instruction is a comparison or mcrfs (if and 
only if the instruction sets an explicitly designated CR field).

– Bits 26–28 = 0b001 if and only if the instruction explicitly refers to or sets the 
FPSCR (that is, is an FPSCR instruction) and is not mcrfs.

– Bits 26–30 = 0b01000 if and only if the instruction is a move register instruction, or 
any other instruction that does not refer to or set the FPSCR.

● In assigning extended opcodes for primary opcode 59, the following regularities have 
been maintained. They are based on those rules for primary opcode 63 that apply to 
the instructions having primary opcode 59. In particular, primary opcode 59 has no 
FPSCR instructions, so the corresponding rule does not apply.

– If there is a corresponding instruction with primary opcode 63, its extended 
opcode is used.

– Bit 26 = 1 if and only if the instruction is A form.

– Bits 26–30 = 0b01000 if and only if the instruction is a move register instruction, or 
any other instruction that does not refer to or set the FPSCR.

Floating-point load instructions

There are two basic forms of load instruction: single-precision and double-precision. 
Because the FPRs support only floating-point double format, single-precision load floating-
point instructions convert single-precision data to double format prior to loading the operand 
into the target FPR. The conversion and loading steps are as follows. 

Let WORD0:31 be the floating-point single-precision operand accessed from memory.

Normalized Operand
 if WORD1:8 > 0 and WORD1:8 < 255 then

FPR(frD)0:1 ← WORD0:1
FPR(frD)2 ← ¬WORD1
FPR(frD)3 ← ¬WORD1
FPR(frD)4 ← ¬WORD1
FPR(frD)5:63 ← WORD2:31 || 290

Denormalized Operand
if WORD1:8 = 0 and WORD9:31 ≠ 0 then

sign ← WORD0
exp ← -126
frac0:52 ← 0b0 || WORD9:31 || 290
normalize the operand

do while frac0 = 0
frac ← frac1:52 || 0b0
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exp ← exp - 1
FPR(frD)0 ← sign
FPR(frD)1:11 ← exp + 1023
FPR(frD)12:63 ← frac1:52

Zero/Infinity/NaN
if WORD1:8 = 255 or WORD1:31 = 0 then

FPR(frD)0:1 ← WORD0:1
FPR(frD)2 ← WORD1
FPR(frD)3 ← WORD1
FPR(frD)4 ← WORD1
FPR(frD)5:63 ← WORD2:31 || 290

For double-precision load floating-point instructions, conversion is not required because the 
data from memory is copied directly into the FPR.

Many floating-point load instructions have an update form, in which GPR(rA) is updated with 
the EA. For these forms, if rA≠0 and rA≠rD, the EA is placed into GPR(rA) and the memory 
element (byte, half word, word, or double word) addressed by EA is loaded into FPR(rD). If 
rA=0 or rA=rD, the instruction form is invalid.

Floating-point load accesses cause a data storage interrupt if the program is not allowed to 
read the location. Floating-point load memory accesses cause a data TLB error interrupt if 
the program attempts to access memory that is unavailable. The floating-point load 
instruction set is shown in Table 70.

         

Floating-point store instructions

Table 70. Floating-point load instruction set

Instruction Mnemonic Syntax

Load Floating-Point Double lfd frD,D(rA)

Load Floating-Point Double with Update lfdu frD,D(rA)

Load Floating-Point Double Extended lfde frD,DES(rA)

Load Floating-Point Double with Update Extended lfdue frD,DES(rA)

Load Floating-Point Double Indexed lfdx frD,rA,rB

Load Floating-Point Double with Update Indexed lfdux frD,rA,rB

Load Floating-Point Double Indexed Extended lfdxe frD,rA,rB

Load Floating-Point Double with Update Indexed Extended lfduxe frD,rA,rB

Load Floating-Point Single lfs frD,D(rA)

Load Floating-Point Single with Update lfsu frD,D(rA)

Load Floating-Point Single Extended lfse frD,DES(rA)

Load Floating-Point Single with Update Extended lfsue frD,DES(rA)

Load Floating-Point Single Indexed lfsx frD,rA,rB

Load Floating-Point Single with Update Indexed lfsux frD,rA,rB

Load Floating-Point Single Indexed Extended lfsxe frD,rA,rB

Load Floating-Point Single with Update Indexed Extended lfsuxe frD,rA,rB
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There are three basic forms of store instruction: single-precision, double-precision, and 
integer. The integer form is provided by the optional store floating-point as integer word 
instruction (stfiwx), described in Chapter 6: Instruction set on page 330.” Because the 
FPRs support only floating-point double format for floating-point data, single-precision store 
floating-point instructions convert double-precision data to single-precision format before 
storing the operand. The conversion steps are as follows. 

Let WORD0:31 be the word in memory written to.

No Denormalization Required (includes Zero / Infinity / NaN)
if FPR(FRS)1:11 > 896 or FPR(FRS)1:63 = 0 then

WORD0:1 ← FPR(FRS)0:1
WORD2:31 ← FPR(FRS)5:34

Denormalization Required
if 874 ≤ FRS1:11 ≤ 896 then

sign ← FPR(FRS)0
exp ← FPR(FRS)1:11 – 1023
frac ← 0b1 || FPR(FRS)12:63
denormalize operand

do while exp < –126
frac ← 0b0 || frac0:62
exp ← exp + 1

WORD0 ← sign
WORD1:8 ← 0x00
WORD9:31 ← frac1:23

else WORD ← undefined

Note that if the value to be stored by a single-precision store floating-point instruction 
exceeds the maximum number representable in single-precision format, the first case above 
(no denormalization required) applies. The result stored in WORD is then a well-defined 
value, but is not numerically equal to the value in the source register (that is, the result of a 
single-precision load floating-point from WORD does not compare equal to the contents of 
the original source register).

For double-precision store floating-point instructions and for the Store Floating-Point as 
Integer Word instruction, no conversion is required, as the data from the FPR is copied 
directly into memory.

Many floating-point store instructions have an update form, in which GPR(rA) is updated 
with the EA. For these forms, if rA≠0, the EA is placed into GPR(rA).

Floating-point store accesses cause a data storage interrupt if the program is not allowed to 
write to the location. Integer store accesses cause a data TLB error interrupt if the program 
attempts to access memory that is unavailable. Store instructions are shown in Table 71.

Book E supports both big-endian and little-endian byte ordering.

         

Table 71. Floating-point store instructions

Instruction Mnemonic Syntax

Store floating-point double stfd frS,D(rA)

Store floating-point double with update stfdu frS,D(rA)

Store floating-point double extended stfde frS,DES(rA)

Store floating-point double with update extended stfdue frS,DES(rA)
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Floating-point move instructions

Described in Table 72, these instructions copy data from one FPR to another, altering the 
sign bit (bit 0) as described below for fneg, fabs, and fnabs. These instructions treat NaNs 
just like any other kind of value (for example, the sign bit of a NaN may be altered by fneg, 
fabs, and fnabs). These instructions do not alter the FPSCR.

         

Store floating-point double indexed stfdx frS,rA,rB

Store floating-point double with update indexed stfdux frS,rA,rB

Store floating-point double indexed extended stfdxe frS,rA,rB

Store floating-point double with update indexed extended stfduxe frS,rA,rB

Store floating-point as integer word indexed stfiwx frS,rA,rB

Store floating-point as integer word indexed extended stfiwxe frS,rA,rB

Store floating-point single stfs frS,D(rA)

Store floating-point single with update stfsu frS,D(rA)

Store floating-point single extended stfse frS,DES(rA)

Store floating-point single with update extended stfsue frS,DES(rA)

Store floating-point single indexed stfsx frS,rA,rB

Store floating-point single with update indexed stfsux frS,rA,rB

Store floating-point single indexed extended stfsxe frS,rA,rB

Store floating-point single with update indexed extended stfsuxe frS,rA,rB

Table 72. Floating-point move instructions

Instruction Mnemonic Syntax

Floating Absolute Value fabs[.] frD,frB

Floating Move Register fmr[.] frD,frB

Floating Negative Absolute Value fnabs[.] frD,frB

Floating Negate fneg[.] frD,frB

Table 71. Floating-point store instructions (continued)

Instruction Mnemonic Syntax
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Floating-point arithmetic instructions

The following sections describe elementary arithmetic, multiply-add, rounding/conversion, 
compare, and status/control instructions.

Floating-point elementary arithmetic instructions

Table 73 lists mnemonics and syntax of floating-point elementary arithmetic instructions.

         

Floating-point multiply-add instructions

These instructions combine a multiply and an add operation without an intermediate 
rounding operation. FPSCR status bits, described in Table 74 are set as follows:

● Overflow, underflow, and inexact exception bits, the FR, FI, and FPRF fields are set 
based on the final result of the operation, not on the result of the multiplication.

● Invalid operation exception bits are set as if the multiplication and the addition were 
performed using two separate instructions (fmul[s], followed by fadd[s] or fsub[s]). 
That is, any of the following actions will cause appropriate exception bits to be set:

– Multiplication of infinity by 0

– Multiplication of anything by an SNaN

– Addition of anything with an SNaN

         

Table 73. Floating-point elementary arithmetic instructions

Instruction Mnemonic Syntax

Floating add fadd[.] frD,frA,frB

Floating add single fadds[.] frD,frA,frB

Floating divide fdiv[.] frD,frA,frB

Floating divide single fdivs[.] frD,frA,frB

Floating multiply fmul[.] frD,frA,frC

Floating multiply single fmuls[.] frD,frA,frC

Floating reciprocal estimate single fres[.] frD,frB

Floating reciprocal square root estimate frsqrte[.] frD,frB

Floating square root fsqrt[.] frD,frB

Floating square root single fsqrts[.] frD,frB

Floating subtract fsub[.] frD,frA,frB

Floating subtract single fsubs[.] frD,frA,frB

Table 74. Floating-point multiply-add instructions

Instruction Mnemonic Instruction

Floating Multiply-Add fmadd[.] frD,frA,frB,frC

Floating Multiply-Add Single fmadds[.] frD,frA,frB,frC

Floating Multiply-Subtract fmsub[.] frD,frA,frB,frC

Floating Multiply-Subtract Single fmsubs[.] frD,frA,frB,frC

Floating Negative Multiply-Add fnmadd[.] frD,frA,frB,frC
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Floating-point rounding and conversion instructions

         

Floating-point compare instructions

The floating-point compare instructions compare the contents of two FPRs. Comparison 
ignores the sign of zero (that is, regards +0 as equal to –0). The comparison result can be 
ordered or unordered. The comparison sets one bit in the designated CR field and clears 
the other three. The floating-point condition code, FPSCR[FPCC], is set in the same way.

The CR field and the FPCC are set as described in Table 76. 

         

The floating-point compare and select instruction set is shown in Table 77.

         

Floating Negative Multiply-Add Single fnmadds[.] frD,frA,frB,frC

Floating Negative Multiply-Subtract fnmsub[.] frD,frA,frB,frC

Floating Negative Multiply-Subtract Single fnmsubs[.] frD,frA,frB,frC

Table 75. Floating-point rounding and conversion instructions

Instruction Mnemonic Syntax

Floating Convert from Integer Double Word fcfid frD,frB

Floating Convert to Integer Double Word fctid frD,frB

Floating Convert to Integer Double word and round to Zero fctidz frD,frB

Floating Convert to Integer Word fctiw[.] frD,frB

Floating Convert to Integer Word and Round to Zero fctiwz[.] frD,frB

Floating Round to Single-Precision frsp[.] frD,frB

Table 76. CR field settings

Bit Name Description

0 FL (frA) < (frB)

1 FG (frA) > (frB)

2 FE (frA) = (frB)

3 FU (frA) ? (frB) (unordered)

Table 77. Floating-point compare and select instructions 

Instruction Mnemonic Syntax

Floating Compare Ordered fcmpo crD,frA,frB

Floating Compare Unordered fcmpu crD,frA,frB

Floating Select fsel
fsel.

frD,frA,frB,frC
frD,frA,frB,frC

Table 74. Floating-point multiply-add instructions (continued)

Instruction Mnemonic Instruction
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Floating-point status and control register instructions

Every FPSCR instruction synchronizes the effects of all floating-point instructions executed 
by a given processor. Executing a FPSCR instruction ensures that all floating-point 
instructions previously initiated by the given processor have completed before the FPSCR 
instruction is initiated, and that no subsequent floating-point instructions are initiated by the 
given processor until the FPSCR instruction completes. In particular:

● All exceptions caused by the previously initiated instructions are recorded in the 
FPSCR before the FPSCR instruction is initiated.

● All invocations of floating-point enabled exception-type program interrupt that will be 
caused by the previously initiated instructions have occurred before the FPSCR 
instruction is initiated.

● No subsequent floating-point instruction that depends on or alters the settings of any 
FPSCR bits is initiated until the FPSCR instruction has completed.

Floating-point load and floating-point store instructions (Table 78) are not affected.

         

Load and store instructions

Load and store instructions are issued and translated in program order; however, the 
accesses can occur out of order. Synchronizing instructions are provided to enforce strict 
ordering. The following load and store instructions are defined:

● Integer load instructions

● Integer store instructions

● Integer load and store with byte-reverse instructions

● Integer load and store multiple instructions

● Memory synchronization instructions

● SPE APU load and store instructions for reading and writing 64-bit GPRs. Some of 
these instructions are also implemented by processors that support the embedded 
vector single-precision and embedded scalar double-precision floating-point APUs, 
which use the extended 64-bit GPRs. See Chapter 3.6.1 on page 186.” 

Self-modifying code 

When a processor modifies any memory location that can contain an instruction, software 
must ensure that the instruction cache is made consistent with data memory and that the 

Table 78. Floating-point status and control register instructions

Instruction Mnemonic Syntax

Move from FPSCR mffs
mffs.

frD
frD

Move to FPSCR Bit 0 mtfsb0
mtfsb0.

crbD

crbD

Move to FPSCR Bit 1 mtfsb1
mtfsb1.

crbD

crbD

Move to FPSCR Fields mtfsf
mtfsf.

FM,frB
FM,frB

Move to FPSCR Field Immediate mtfsfi
mtfsfi.

crD,IMM

crD,IMM



Instruction model RM0004

157/1176  

modifications are made visible to the instruction fetching mechanism. This must be done 
even if the cache is disabled or if the page is marked caching-inhibited. 

The following instruction sequence can be used to accomplish this when the instructions 
being modified are in memory that is memory-coherence required and one processor both 
modifies the instructions and executes them. (Additional synchronization is needed when 
one processor modifies instructions that another processor will execute.)

The following sequence synchronizes the instruction stream (using either dcbst or dcbf):

dcbst (or dcbf)|update memory
msync |wait for update 
icbi  |remove (invalidate) copy in instruction cache
msync |ensure the ICBI invalidate is complete
isync |remove copy in own instruction buffer

These operations are required because the data cache is a write-back cache. Because 
instruction fetching bypasses the data cache, changes to items in the data cache cannot be 
reflected in memory until the fetch operations complete. The msync after the icbi is 
required to ensure that the icbi invalidation has completed in the instruction cache.

Special care must be taken to avoid coherency paradoxes in systems that implement unified 
secondary caches, and designers should carefully follow the guidelines for maintaining 
cache coherency discussed in the user’s manual. 

Integer load and store address generation 

Integer load and store operations generate EAs using register indirect with immediate index 
mode, register indirect with index mode, or register indirect mode, which are described as 
follows:

● Register indirect with immediate index addressing for integer loads and stores. 
Instructions using this addressing mode contain a signed 16-bit immediate index 
(d operand), which is sign extended and added to the contents of a general-purpose 
register specified in the instruction (rA operand), to generate the EA. If r0 is specified, a 
value of zero is added to the immediate index (d operand) in place of the contents of r0. 
The option to specify rA or 0 is shown in the instruction descriptions as (rA|0). Figure 6 
shows how an EA is generated using this mode. 
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Figure 6. Register indirect with immediate index addressing for integer 
loads/stores

● Register indirect with index addressing for integer loads and stores. Instructions using 
this mode cause the contents of two GPRs (specified as operands rA and rB) to be 
added in the EA generation. A zero in place of the rA operand causes a zero to be 
added to the GPR contents specified in operand rB. The option to specify rA or 0 is 
shown in the instruction descriptions as (rA|0). Figure 7 shows how an EA is generated 
using this mode.

Figure 7. Register indirect with index addressing for integer loads/stores

● Register indirect addressing for integer loads and stores. Instructions using this 
addressing mode use the contents of the GPR specified by the rA operand as the EA. 
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A zero in the rA operand generates an EA of zero. The option to specify rA or 0 is 
shown in the instruction descriptions as (rA|0). Figure 8 shows how an EA is generated 
using this mode.

Figure 8. Register indirect addressing for integer loads/stores

See Effective address calculation on page 139,” for information about calculating EAs. Note 
that in some implementations, operations that are not naturally aligned can suffer 
performance degradation. Chapter 4.7.6: Alignment interrupt on page 263, for additional 
information about load and store address alignment interrupts.

Register indirect integer load instructions 

For integer load instructions, the byte, half word, or word addressed by the EA is loaded into 
rD. Many integer load instructions have an update form, in which rA is updated with the 
generated EA. For these forms, if rA ≠ 0 and rA ≠ rD (otherwise invalid), the EA is placed 
into rA and the memory element (byte, half word, or word) addressed by the EA is loaded 
into rD. Note that the Book E architecture defines load with update instructions with operand 
rA = 0 or rA = rD as invalid forms.

Integer load instructions

         

Table 79. Integer load instructions

Name Mnemonic Syntax 

Load Byte and Zero lbz rD,d(rA)

Load Byte and Zero Indexed lbzx rD,rA,rB

Load Byte and Zero with Update lbzu rD,d(rA)

Load Byte and Zero with Update Indexed lbzux rD,rA,rB

Load Half Word and Zero lhz rD,d(rA)

Load Half Word and Zero Indexed lhzx rD,rA,rB

No

Store
Load

Yes
0  31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Integer store instructions 

For integer store instructions, the rS contents are stored into the byte, half word, word or 
double word in memory addressed by the EA. Many store instructions have an update form 
in which rA is updated with the EA. For these forms, the following rules apply:

● If rA ≠ 0, the EA is placed into rA.

● If rS = rA, the contents of register rS are copied to the target memory element and the 
generated EA is placed into rA (rS). 

The Book E architecture defines store with update instructions with rA = 0 as an invalid 
form. In addition, it defines integer store instructions with the CR update option enabled (Rc 
field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 80 summarizes 
integer store instructions.

         

Integer load and store with byte-reverse instructions 

Load Half Word and Zero with Update lhzu rD,d(rA)

Load Half Word and Zero with Update Indexed lhzux rD,rA,rB

Load Half Word Algebraic lha rD,d(rA)

Load Half Word Algebraic Indexed lhax rD,rA,rB

Load Half Word Algebraic with Update lhau rD,d(rA)

Load Half Word Algebraic with Update Indexed lhaux rD,rA,rB

Load Word and Zero lwz rD,d(rA)

Load Word and Zero Indexed lwzx rD,rA,rB

Load Word and Zero with Update lwzu rD,d(rA)

Load Word and Zero with Update Indexed lwzux rD,rA,rB

Table 80. Integer store instructions

Name Mnemonic Syntax 

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store Half Word sth rS,d(rA)

Store Half Word Indexed sthx rS,rA,rB

Store Half Word with Update sthu rS,d(rA)

Store Half Word with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

Table 79. Integer load instructions (continued)

Name Mnemonic Syntax 
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Table 81 describes integer load and store with byte-reverse instructions. These books were 
defined in part to support the original PowerPC definition of little-endian byte ordering. Note 
that Book E supports true little endian on a per-page basis. For more information, see Byte 
ordering on page 141.”

         

Integer load and store multiple instructions 

The load/store multiple instructions are used to move blocks of data to and from the GPRs. 
The load multiple and store multiple instructions can have operands that require memory 
accesses crossing a 4-Kbyte page boundary. As a result, these instructions can be 
interrupted by a data storage interrupt associated with the address translation of the second 
page. 

Note: If one of these instructions is interrupted, it may be restarted, requiring multiple memory 
accesses. 

The Book E architecture defines the Load Multiple Word (lmw) instruction (Table 82) with rA 
in the range of registers to be loaded as an invalid form. Load and store multiple accesses 
must be word aligned; otherwise, they cause an alignment exception.

         

Integer load and store string instructions

The integer load and store string instructions allow movement of data from memory to 
registers or from registers to memory without concern for alignment. These instructions can 
be used for a short move between arbitrary memory locations or to initiate a long move 
between misaligned memory fields. However, in some implementations, these instructions 
are likely to have greater latency and take longer to execute, perhaps much longer, than a 
sequence of individual load or store instructions that produce the same results.

Table 83 summarizes the integer load and store string instructions.

         

Table 81. Integer load and store with byte-reverse instructions

Name Mnemonic Syntax 

Load Half Word Byte-Reverse Indexed lhbrx rD,rA,rB

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB

Store Half Word Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Table 82. Integer load and store multiple instructions

Name Mnemonic Syntax 

Load Multiple Word lmw rD,d(rA)

Store Multiple Word stmw rS,d(rA)

Table 83. Integer load and store string instructions

Name Mnemonic Syntax 

Load String Word Immediate lswi rD,rA,NB

Load String Word Indexed lswx rD,rA,rB

Store String Word Immediate stswi rS,rA,NB

Store String Word Indexed stswx rS,rA,rB
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Load string and store string instructions can involve operands that are not word-aligned. 

Floating-point load and store address generation

Floating-point load and store operations, listed in Table 84, generate EAs using the register 
indirect with immediate index addressing mode and register indirect with index addressing 
mode. Floating-point loads and stores are not supported for direct-store accesses. The use 
of floating-point loads and stores for direct-store accesses results in an alignment interrupt.

There are two forms of the floating-point load instruction—single-precision and double-
precision operand formats. Because the FPRs support only the floating-point double-
precision format, single-precision floating-point load instructions convert single-precision 
data to double-precision format before loading an operand into an FPR. 

The floating-point load and store indexed instructions (lfsx, lfsux, lfdx, lfdux, stfsx, stfsux, 
stfdx, and stfdux) are invalid when the Rc bit is one. 

The PowerPC architecture defines load with update with rA = 0 as an invalid form. 

         

         

Floating-point store instructions

This section describes floating-point store instructions. There are three basic forms of the 
store instruction—single-precision, double-precision, and integer. The integer form is 
supported by the optional stfiwx instruction. Because the FPRs support only double-
precision format for floating-point data, single-precision floating-point store instructions 
convert double-precision data to single-precision format before storing the operands. 
Table 85 summarizes the floating-point store instructions.

         

Table 84. Floating-point load instructions

Name Mnemonic Syntax 

Load Floating-Point Single lfs frD,d(rA)

Load Floating-Point Single Indexed lfsx frD,rA,rB

Load Floating-Point Single with Update lfsu frD,d(rA)

Load Floating-Point Single with Update Indexed lfsux frD,rA,rB

Load Floating-Point Double lfd frD,d(rA)

Load Floating-Point Double Indexed lfdx frD,rA,rB

Load Floating-Point Double with Update lfdu frD,d(rA)

Load Floating-Point Double with Update Indexed lfdux frD,rA,rB

Table 85. Floating-point store instructions  

Name Mnemonic Syntax 

Store Floating-Point Single stfs frS,d(rA) 

Store Floating-Point Single Indexed stfsx frS,r B 

Store Floating-Point Single with Update stfsu frS,d(rA) 

Store Floating-Point Single with Update Indexed stfsux frS,r B 

Store Floating-Point Double stfd frS,d(rA) 

Store Floating-Point Double Indexed stfdx frS,rB 
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Some floating-point store instructions require conversions in the LSU. Table 86 shows 
conversions the LSU makes when executing a Store Floating-Point Single instruction. 

         

Table 87 shows the conversions made when performing a Store Floating-Point Double 
instruction. Most entries in the table indicate that the floating-point value is simply stored. 
Only in a few cases are any other actions taken.

         

Branch and flow control instructions 

Some branch instructions can redirect instruction execution conditionally based on the value 
of bits in the CR. 

Store Floating-Point Double with Update stfdu frS,d(rA) 

Store Floating-Point Double with Update Indexed stfdux frS,rB 

Store Floating-Point as Integer Word Indexed(1) stfiwx frS,rB 

1. The stfiwx instruction is optional to the Book E architecture.

Table 86. Store floating-point single behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Store

Single Zero, infinity, QNaN Store

Single SNaN Store

Double Normalized
If (exp ≤ 896)  then 

denormalize and store,
else store

Double Denormalized Store zero

Double Zero, infinity, QNaN Store

Double SNaN Store

Table 87. Store floating-point double behavior

FPR Precision Data Type Action

Single Normalized Store

Single Denormalized Normalize and store

Single Zero, infinity, QNaN Store

Single SNaN Store

Double Normalized Store

Double Denormalized Store

Double Zero, infinity, QNaN Store

Double SNaN Store

Table 85. Floating-point store instructions (continued) 

Name Mnemonic Syntax 
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Branch instruction address calculation 

Branch instructions can alter the sequence of instruction execution. Instruction addresses 
are always assumed to be word aligned; the Book E processors ignore the two low-order 
bits of the generated branch target address. Branch instructions compute the EA of the next 
instruction address using the following addressing modes: 

● Branch relative 

● Branch conditional to relative address 

● Branch to absolute address 

● Branch conditional to absolute address 

● Branch conditional to link register (LR)

● Branch conditional to count register (CTR)

Branch relative addressing mode

Instructions that use branch relative addressing generate the next instruction address by 
sign extending and appending 0b00 to the immediate displacement operand LI, and adding 
the resultant value to the current instruction address. Branches using this mode have the 
absolute addressing option disabled (AA field, bit 30, in the instruction encoding = 0). The 
LR update option can be enabled (LK field, bit 31, in the instruction encoding = 1). This 
causes the EA of the instruction following the branch instruction to be placed in the LR. 
Figure 9 shows how the branch target address is generated using this mode.

Figure 9. Branch relative addressing

Branch conditional to relative addressing mode

If branch conditions are met, instructions that use the branch conditional to relative 
addressing mode generate the next instruction address by sign extending and appending 
results to the immediate displacement operand (BD) and adding the resultant value to the 
current instruction address. Branches using this mode have the absolute addressing option 
disabled (AA field, bit 30, in the instruction encoding = 0). The LR update option can be 
enabled (LK field, bit 31, in the instruction encoding = 1). This option causes the EA of the 
instruction following the branch instruction to be placed in the LR. Figure 10 shows how the 
branch target address is generated using this mode.
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Figure 10. Branch conditional relative addressing

Branch to absolute addressing mode

Instructions that use branch to absolute addressing mode generate the next instruction 
address by sign extending and appending 0b00 to the LI operand. Branches using this 
addressing mode have the absolute addressing option enabled (AA field, bit 30, in the 
instruction encoding = 1). The LR update option can be enabled (LK field, bit 31, in the 
instruction encoding = 1). This option causes the EA of the instruction following the branch 
instruction to be placed in the LR. Figure 11 shows how the branch target address is 
generated using this mode.

Figure 11. Branch to absolute addressing
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Branch conditional to absolute addressing mode

If the branch conditions are met, instructions that use the branch conditional to absolute 
addressing mode generate the next instruction address by sign extending and appending 
0b00 to the BD operand. Branches using this addressing mode have the absolute 
addressing option enabled (AA field, bit 30, in the instruction encoding = 1). The LR update 
option can be enabled (bit 31 (LK) in the instruction encoding = 1). This option causes the 
EA of the instruction following the branch instruction to be placed in the LR. Figure 12 
shows how the branch target address is generated using this mode.

Figure 12. Branch conditional to absolute addressing

         

Branch conditional to link register addressing mode

If the branch conditions are met, the branch conditional to LR instruction generates the next 
instruction address by fetching the contents of the LR and clearing the two low-order bits to 
zero. The LR update option can be enabled (LK field, bit 31, in the instruction encoding = 1). 
This option causes the EA of the instruction following the branch instruction to be placed in 
the LR. Figure 13 shows how the branch target address is generated using this mode.

Figure 13. Branch conditional to link register addressing
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Branch conditional to count register addressing mode

If the branch conditions are met, the branch conditional to count register instruction 
generates the next instruction address by fetching the contents of the count register (CTR) 
and clearing the two low-order bits to zero. The LR update option can be enabled (LK field, 
bit 31, in the instruction encoding = 1). This option causes the EA of the instruction following 
the branch instruction to be placed in the LR. Figure 14 shows how the branch target 
address is generated when using this mode.

Figure 14. Branch conditional to count register addressing

         

Conditional branch control

Note: Some processors do not implement the static branch prediction defined in Book E and 
described here. For those processors, the BO operand is ignored for branch prediction.

For branch conditional instructions, the BO operand specifies the conditions under which the 
branch is taken. The first four bits of the BO operand specify how the branch is affected by 
or affects the condition and count registers. The fifth bit, shown in Table 89 as having the 
value y, is used by some implementations for branch prediction as described below. 

         

The encodings for the BO operands are shown in Table 89.
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Table 88. BO bit descriptions

BO Bits Description

0 Setting this bit causes the CR bit to be ignored.

1 Bit value to test against

2 Setting this causes the decrement to not be decremented.

3 Setting this bit reverses the sense of the CTR test.

4 Used for the y bit, which provides a hint about whether a conditional branch is likely to be 
taken and may be used by some implementations to improve performance.
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The branch always encoding of the BO operand does not have a y bit.

Clearing the y bit indicates a predicted behavior for the branch instruction as follows:

● For bcx with a negative value in the displacement operand, the branch is taken.

● In all other cases (bcx with a non-negative value in the displacement operand, bclrx, or 
bcctrx), the branch is not taken. 

Setting the y bit reverses the preceding indications.

The sign of the displacement operand is used as described above even if the target is an 
absolute address. The default value for the y bit should be 0 and should be set to 1 only if 
software has determined that the prediction corresponding to y = 1 is more likely to be 
correct than the prediction corresponding to y = 0. Software that does not compute branch 
predictions should clear the y bit.

In most cases, the branch should be predicted to be taken if the value of the following 
expression is 1, and predicted to fall through if the value is 0.

((BO[0] & BO[2]) | S) ≈ BO[4]

In the expression above, S (bit 16 of the branch conditional instruction coding) is the sign bit 
of the displacement operand if the instruction has a displacement operand and is 0 if the 
operand is reserved. BO[4] is the y bit, or 0 for the branch always encoding of the BO 
operand. (Advantage is taken of the fact that, for bclrx and bcctrx, bit 16 of the instruction is 
part of a reserved operand and therefore must be 0.)

The 5-bit BI operand in branch conditional instructions specifies which CR bit represents the 
condition to test. The CR bit selected is BI +32, as shown in Table 17. 

If the branch instructions contain immediate addressing operands, the target addresses can 
be computed sufficiently ahead of the branch instruction that instructions can be fetched 
along the target path. If the branch instructions use the link and count registers, instructions 
along the target path can be fetched if the link or count register is loaded sufficiently ahead 
of the branch instruction.

Table 89. BO operand encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR ≠ 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR ≠ 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR ≠ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

In this table, z indicates a bit that is ignored. Note that the z bits should be cleared, as they may be assigned 
a meaning in some future version of the architecture.
The y bit provides a hint about whether a conditional branch is likely to be taken and may be used by 
some implementations to improve performance. 
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Branching can be conditional or unconditional, and optionally a branch return address is 
created by storing the EA of the instruction following the branch instruction in the LR after 
the branch target address has been computed. This is done regardless of whether the 
branch is taken. 

         

Branch instructions 

Table 90 lists branch instructions provided by the Book E processors. A set of simplified 
mnemonics and symbols is provided for the most frequently used forms of branch 
conditional, compare, trap, rotate and shift, and certain other instructions. See Appendix B: 
Simplified mnemonics for PowerPC instructions on page 1110.” 

         

Note that the EIS defines the Integer Select instruction, isel, which can be used to more 
efficiently handle sequences with multiple conditional branches. Its syntax is given in 
Chapter 3.6.2.” A detailed description including an example of how isel can be used can be 
found in Chapter 7.1.2 on page 824.” 

         

Condition register (cr) logical Instructions 

CR logical instructions, shown in Table 91, and the Move Condition Register Field (mcrf) 
instruction are also defined as flow control instructions. 

         

Note that if the LR update option is enabled for any of these instructions, the Book E 
architecture defines these forms of the instructions as invalid. 

Table 90. Branch instructions 

Name Mnemonic Syntax 

Branch b (ba bl bla) target_addr 

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr 

Branch Conditional to Link Register bclr (bclrl) BO,BI 

Branch Conditional to Count Register bcctr (bcctrl) BO,BI 

Table 91. Condition register logical instructions  

Name Mnemonic Syntax 

Condition Register AND crand crbD,crbA,crbB 

Condition Register OR cror crbD,crbA,crbB 

Condition Register XOR crxor crbD,crbA,crbB 

Condition Register NAND crnand crbD,crbA,crbB 

Condition Register NOR crnor crbD,crbA,crbB 

Condition Register Equivalent creqv crbD,crbA,crbB 

Condition Register AND with Complement crandc crbD,crbA,crbB 

Condition Register OR with Complement crorc crbD,crbA,crbB 

Move Condition Register Field mcrf crfD,crfS 
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Trap instructions 

The trap instructions shown in Table 92 test for a specified set of conditions. If any of the 
conditions tested by a trap instruction are met, the system trap type program interrupt is 
taken. For more information, see Chapter 4.7.7: Program interrupt on page 265.” If the 
tested conditions are not met, instruction execution continues normally. See Appendix B: 
Simplified mnemonics for PowerPC instructions on page 1110.”

         

System linkage instruction 

The system call (sc) instruction permits a program to call on the system to perform a 
service; see Table 93 and System linkage instructions on page 182.”

         

Executing this instruction causes the system call interrupt handler to be invoked. For more 
information, see Chapter 4.7.9.”

Processor control instructions

Processor control instructions are used to read from and write to the CR, machine state 
register (MSR), and special-purpose registers (SPRs). 

Move to/from condition register instructions 

Table 94 summarizes the instructions for reading from or writing to the CR.

         

Move to/from special-purpose register instructions 

Table 95 lists the mtspr and mfspr instructions. 

         

Table 92. Trap instructions

Name Mnemonic Syntax 

Trap Word Immediate twi TO,rA,SIMM 

Trap Word tw TO,rA,rB 

Table 93. System linkage instruction 

Name Mnemonic Syntax 

System Call sc — 

Table 94. Move to/from condition register instructions 

Name Mnemonic Syntax 

Move to Condition Register Fields mtcrf CRM,rS 

Move to Condition Register from XER mcrxr crD 

Move from Condition Register mfcr rD 

Table 95. Move to/from special-purpose register instructions

Name Mnemonic Syntax 

Move to Special-Purpose Register mtspr SPR,rS 

Move from Special-Purpose Register mfspr rD,SPR 
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Table 96 summarizes all SPRs defined in Book E, indicating which are user-level access. 
The SPR number column lists register numbers used in the instruction mnemonics.

         

Table 96. Book E special-purpose registers (by SPR abbreviation)

SPR Name
Defined SPR number

Access
Supervisor 

only
Section/

pageDecimal Binary

CSRR0 Critical save/restore register 
0

58 00001 11010 Read/Write Yes  on page 82

CSRR1 Critical save/restore register 
1

59 00001 11011 Read/Write Yes  on page 82

CTR Count register 9 00000 01001 Read/Write No  on page 68

DAC1 Data address compare 1 316 01001 11100 Read/Write Yes Chapter 2.13.4

DAC2 Data address compare 2 317 01001 11101 Read/Write Yes Chapter 2.13.4

DBCR0 Debug control register 0 308 01001 10100 Read/Write Yes  on page 108

DBCR1 Debug control register 1 309 01001 10101 Read/Write Yes  on page 110

DBCR2 Debug control register 2 310 01001 10110 Read/Write Yes  on page 113

DBSR Debug status register 304 01001 10000 Read/Clear(1) Yes Chapter 2.13.2

DEAR Data exception address 
register

61 00001 11101 Read/Write Yes  on page 82

DEC Decrementer 22 00000 10110 Read/Write Yes Chapter 2.8.4

DECAR Decrementer auto-reload 54 00001 10110 Write-only Yes Chapter 2.8.5

DVC1 Data value compare 1 318 01001 11110
Read/Write Yes Chapter 2.13.5

DVC2 Data value compare 2 319 01001 11111

ESR Exception syndrome 
register

62 00001 11110 Read/Write Yes  on page 84

IAC1 Instruction address 
compare 1

312 01001 11000 Read/Write Yes Chapter 2.13.3

IAC2 Instruction address 
compare 2

313 01001 11001 Read/Write Yes Chapter 2.13.3

IAC3 Instruction address 
compare 3

314 01001 11010 Read/Write Yes Chapter 2.13.3

IAC4 Instruction address 
compare 4

315 01001 11011 Read/Write Yes Chapter 2.13.3

IVOR0 Critical input 400 01100 10000 Read/Write Yes  on page 83

IVOR1 Critical input interrupt offset 401 01100 10001 Read/Write Yes  on page 83

IVOR2 Data storage interrupt offset 402 01100 10010 Read/Write Yes  on page 83

IVOR3 Instruction storage interrupt 
offset

403 01100 10011 Read/Write Yes  on page 83

IVOR4 External input interrupt 
offset

404 01100 10100 Read/Write Yes  on page 83

IVOR5 Alignment interrupt offset 405 01100 10101 Read/Write Yes  on page 83
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IVOR6 Program interrupt offset 406 01100 10110 Read/Write Yes  on page 83

IVOR7 Floating-point unavailable 
interrupt offset

407 01100 10111 Read/Write Yes  on page 83

IVOR8 System call interrupt offset 408 01100 11000 Read/Write Yes  on page 83

IVOR9 Auxiliary processor 
unavailable interrupt offset

409 01100 11001 Read/Write Yes  on page 83

IVOR10 Decrementer interrupt offset 410 01100 11010 Read/Write Yes  on page 83

IVOR11 Fixed-interval timer interrupt 
offset

411 01100 11011 Read/Write Yes  on page 83

IVOR12 Watchdog timer interrupt 
offset

412 01100 11100 Read/Write Yes  on page 83

IVOR13 Data TLB error interrupt 
offset

413 01100 11101 Read/Write Yes  on page 83

IVOR14 Instruction TLB error 
interrupt offset

414 01100 11110 Read/Write Yes  on page 83

IVOR15 Debug interrupt offset 415 01100 11111 Read/Write Yes  on page 83

IVPR Interrupt vector 63 00001 11111 Read/Write Yes Chapter 2.13.3

LR Link register 8 00000 01000 Read/Write No Chapter 2.5.2

PID Process ID register (2) 48 00001 10000 Read/Write Yes Chapter 2.12.1

PIR Processor ID register 286 01000 11110 Read only Yes Chapter 2.7.3

PVR Processor version register 287 01000 11111 Read only Yes Chapter 2.7.4

SPRG0 SPR general 0 272 01000 10000 Read/Write Yes Chapter 2.10

SPRG1 SPR general 1 273 01000 10001 Read/Write Yes Chapter 2.10

SPRG2 SPR general 2 274 01000 10010 Read/Write Yes Chapter 2.10

SPRG3 SPR general 3 259 01000 00011 Read only No(3) Chapter 2.10

275 01000 10011 Read/Write Yes Chapter 2.10

SPRG4 SPR general 4 260 01000 00100 Read only No Chapter 2.10

276 01000 10100 Read/Write Yes Chapter 2.10

SPRG5 SPR general 5 261 01000 00101 Read only No Chapter 2.10

277 01000 10101 Read/Write Yes Chapter 2.10

SPRG6 SPR general 6 262 01000 00110 Read only No Chapter 2.10

278 01000 10110 Read/Write Yes Chapter 2.10

SPRG7 SPR general 7 263 01000 00111 Read only No Chapter 2.10

279 01000 10111 Read/Write Yes Chapter 2.10

SRR0 Save/restore register 0 26 00000 11010 Read/Write Yes  on page 81

SRR1 Save/restore register 1 27 00000 11011 Read/Write Yes  on page 81

Table 96. Book E special-purpose registers (by SPR abbreviation) (continued)

SPR Name
Defined SPR number

Access
Supervisor 

only
Section/

pageDecimal Binary
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Table 97 lists EIS-specific SPRs, indicating which can be accessed by user-level software. 
Compilers should recognize SPR names when parsing instructions. 

         

TBL Time base lower 268 01000 01100 Read only No Chapter 2.8.3

284 01000 11100 Write-only Yes Chapter 2.8.3

TBU Time base upper 269 01000 01101 Read only No Chapter 2.8.3

285 01000 11101 Write-only Yes Chapter 2.8.3

TCR Timer control register 340 01010 10100 Read/Write Yes Chapter 2.8.1

TSR Timer status register 336 01010 10000 Read/Clear(4) Yes Chapter 2.8.2

USPRG
0

User SPR general 0(5)
256 01000 00000 Read/Write No Chapter 2.10

XER Integer exception register 1 00000 00001 Read/Write No Chapter 2.3.2

1. The DBSR is read using mfspr. It cannot be directly written to. Instead, DBSR bits corresponding to 1 bits in the GPR can 
be cleared using mtspr.

2. Implementations may support more than one PID. If multiple PIDs are implemented, the Book E–defined PID is 
implemented as PID0. 

3. User-mode read access to SPRG3 is implementation-dependent.

4. The TSR is read using mfspr. It cannot be directly written to. Instead, TSR bits corresponding to 1 bits in the GPR can be 
cleared using mtspr.

5. USPRG0 is a separate physical register from SPRG0.

Table 96. Book E special-purpose registers (by SPR abbreviation) (continued)

SPR Name
Defined SPR number

Access
Supervisor 

only
Section/

pageDecimal Binary

Table 97. Implementation-specific SPRs (by SPR abbreviation)

SPR Name
SPR

number
Access

Supervisor 
only

Section/page

ATBL Alternate time base lower 526 Read-only No Chapter 2.15

ATBU Alternate time base upper 527 Read-only No Chapter 2.15

DSRR0 Debug save/restore register 0 574 R/W Yes  on page 86

DSRR1 Debug save/restore register 1 575 R/W Yes  on page 86

IVOR32 SPE/embedded floating-point APU 
unavailable interrupt offset

528 Read/Write Yes  on page 83

IVOR33 Embedded floating-point data exception 
interrupt offset

529 Read/Write Yes  on page 83

IVOR34 Embedded floating-point round exception 
interrupt offset

530 Read/Write Yes  on page 83

IVOR35 Performance monitor 531 Read/Write Yes  on page 83

L1CFG0 L1 cache configuration register 0 515 Read-only No Chapter 2.11.3

L1CFG1 L1 cache configuration register 1 516 Read-only No Chapter 2.11.3

L1CSR0 L1 cache control and status register 0 1010 Read/Write Yes Chapter 2.11.1

L1CSR1 L1 cache control and status register 1 1011 Read/Write Yes Chapter 2.11.2
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L1FINV0 L1 flush and invalidate control register 0 1016 Read/Write Yes Chapter 2.11.5

MAS0 MMU assist register 0 624 Read/Write Yes  on page 101

MAS1 MMU assist register 1 625 Read/Write Yes  on page 101

MAS2 MMU assist register 2 626 Read/Write Yes  on page 101

MAS3 MMU assist register 3 627 Read/Write Yes  on page 104

MAS4 MMU assist register 4 628 Read/Write Yes  on page 104

MAS5 MMU assist register 5. 629 Read/Write Yes  on page 104

MAS6 MMU assist register 6 630 Read/Write Yes  on page 104

MAS7 MMU assist register 7 944 Read/Write Yes  on page 107

MCAR Machine check address register 573 Read-only Yes  on page 107

MCSR Machine check syndrome register 572 Read/Write Yes  on page 88

MCSRR0 Machine-check save/restore register 0 570 Read/Write Yes  on page 88

MCSRR1 Machine-check save/restore register 1 571 Read/Write Yes  on page 88

MMUCFG MMU configuration register 1015 Read-only Yes Chapter 2.12.3

MMUCSR0 MMU control and status register 0 1012 Read/Write Yes Chapter 2.12.2

PID0 Process ID register 0. Book E defines only 
this PID register and refers to as PID, not 
PID0. 

48 Read/Write Yes Chapter 2.12.1

PID1 Process ID register 1 633 Read/Write Yes Chapter 2.12.1

PID2 Process ID register 2 634 Read/Write Yes Chapter 2.12.1

SPEFSCR Signal processing and embedded floating-
point status and control register

512 Read/Write No Chapter 2.14.1

SVR System version register 1023 Read-only Yes Chapter 2.7.5

TLB0CFG TLB configuration register 0 688 Read-only Yes Chapter 2.12.4

TLB1CFG TLB configuration register 1 689 Read-only Yes Chapter 2.12.4

Table 97. Implementation-specific SPRs (by SPR abbreviation) (continued)

SPR Name
SPR

number
Access

Supervisor 
only

Section/page
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Memory synchronization instructions

Memory synchronization instructions control the order in which memory operations 
complete with respect to asynchronous events and the order in which memory operations 
are seen by other mechanisms that access memory. See Table 98 for a summary.

         

Table 98. Memory synchronization instructions

Name Mnemonic Syntax EIS notes 

Instruction 
synchronize

isync — Refetch serializing. An isync waits for previous instructions 
(including any interrupts they generate) to complete before 
isync executes, which purges all instructions from the 
processor and refetches the next instruction. isync does not 
wait for pending stores in the store queue to complete. Any 
subsequent instruction sees all effects of instructions before 
the isync.
Because it prevents execution of subsequent instructions until 
preceding instructions complete, if an isync follows a 
conditional branch that depends on the value returned by a 
preceding load, the load on which the branch depends is 
performed before any loads caused by instructions after the 
isync even if the effects of the dependency are independent 
of the value loaded (for example, the value is compared to 
itself and the branch tests selected, CRn[EQ]), and even if the 
branch target is the next sequential instruction to be executed.

Load word 
and reserve 
indexed 

lwarx rD,rA,rB lwarx with stwcx. can emulate semaphore operations such 
as test and set, compare and swap, exchange memory, and 
fetch and add. Both instructions must use the same EA. 
Reservation granularity is implementation-dependent. 
Executing lwarx and stwcx. to a page marked write-through 
(WIMG = 10xx) or when the data cache is locked may cause a 
data storage interrupt. If the location is not word-aligned, an 
alignment interrupt occurs. 

Memory 
barrier

mbar MO mbar provides a pipelined memory barrier. (Note that mbar 
uses the same opcode as eieio, which is not defined by Book 
E.) The behavior of mbar is affected by the MO field (bits 6–
10) of the instruction. 

MO = 0—mbar behaves identically to msync. 

MO = 1—mbar is a weaker, faster memory barrier; see the 
user’s manual for implementation-specific behavior. 
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Atomic update primitives using lwarx and stwcx.

The lwarx and stwcx. instructions together permit atomic update of a memory location. 
Book E provides word and double word forms of each of these instructions. Described here 
is the operation of lwarx and stwcx.

A specified memory location that may be modified by other processors or mechanisms 
requires memory coherence. If the location is in write-through required or caching inhibited 
memory, the implementation determines whether these instructions function correctly or 
cause the system data storage error handler to be invoked. 

Note the following: 

● The memory coherence required attribute on other processors and mechanisms 
ensures that their stores to the specified location will cause the reservation created by 
the lwarx to be cancelled.

● Warning: Support for load and reserve and store conditional instructions for which the 
specified location is in caching-inhibited memory is being phased out of Book E. It is 
likely not to be provided on future implementations. New programs should not use 
these instructions to access caching inhibited memory.

A lwarx instruction is a load from a word-aligned location with the following side effects.

● A reservation for a subsequent stwcx. instruction is created.

● The memory coherence mechanism is notified that a reservation exists for the location 
accessed by the lwarx.

Memory 
synchronize 

msync — Provides an ordering function for the effects of all instructions 
executed by the processor executing the msync. Executing 
an msync ensures that all previous instructions complete 
before it completes and that no subsequent instructions are 
initiated until after it completes. It also creates a memory 
barrier, which orders the storage accesses associated with 
these instructions.

msync cannot complete before storage accesses associated 
with previous instructions are performed. msync is execution 
synchronizing. Note the following:
msync is used to ensure that all stores into a data structure 
caused by store instructions executed in a critical section of a 
program are performed with respect to another processor 
before the store that releases the lock is performed with 
respect to that processor. mbar is preferable in many cases.
On ST Book E devices: Unlike a context-synchronizing 
operations, msync does not discard prefetched instructions. 

Store word 
conditional 
indexed 

stwcx. rS,rA,rB lwarx with stwcx. can emulate semaphore operations such 
as test and set, compare and swap, exchange memory, and 
fetch and add. Both instructions must use the same EA. 
Reservation granularity is implementation-dependent. 
Executing lwarx and stwcx. to a page marked write-through 
(WIMG = 10xx) or cache-inhibited (WIMG = 01xx) when the 
data cache is locked may cause a data storage interrupt. If the 
location is not word-aligned, an alignment interrupt occurs. 

Table 98. Memory synchronization instructions (continued)

Name Mnemonic Syntax EIS notes 
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The stwcx. is a store to a word-aligned location that is conditioned on the existence of the 
reservation created by the lwarx and on whether both instructions specify the same 
location. To emulate an atomic operation, both lwarx and stwcx. must access the same 
location. lwarx and stwcx. are ordered by a dependence on the reservation, and the 
program is not required to insert other instructions to maintain the order of memory 
accesses caused by these two instructions.

A stwcx. performs a store to the target location only if the location accessed by the lwarx 
that established the reservation has not been stored into by another processor or 
mechanism between supplying a value for the lwarx and storing the value supplied by the 
stwcx.. If the instructions specify different locations, the store is not necessarily performed. 
CR0 is modified to indicate whether the store was performed, as follows:

CR0[LT,GT,EQ,SO] = 0b00 || store_performed || XER[SO]

If a stwcx. completes but does not perform the store because a reservation no longer 
exists, CR0 is modified to indicate that the stwcx. completed without altering memory.

A stwcx. that performs its store is said to succeed.

Examples using lwarx and stwcx. are given in Appendix C: Programming examples on 
page 1143.”

A successful stwcx. to a given location may complete before its store has been performed 
with respect to other processors and mechanisms. As a result, a subsequent load or lwarx 
from the given location on another processor may return a stale value. However, a 
subsequent lwarx from the given location on the other processor followed by a successful 
stwcx. on that processor is guaranteed to have returned the value stored by the first 
processor’s stwcx. (in the absence of other stores to the given location).

         

Reservations

The ability to emulate an atomic operation using lwarx and stwcx. is based on the 
conditional behavior of stwcx., the reservation set by lwarx, and the clearing of that 
reservation if the target location is modified by another processor or mechanism before the 
stwcx. performs its store.

A reservation is held on an aligned unit of real memory called a reservation granule. The 
size of the reservation granule is implementation-dependent, but is a multiple of 4 bytes for 
lwarx. The reservation granule associated with EA contains the real address to which the 
EA maps. (‘real_addr(EA)’ in the RTL for the load and reserve and store conditional 
instructions stands for ‘real address to which EA maps.’) When one processor holds a 
reservation and another processor performs a store, the first processor’s reservation is 
cleared if the store affects any bytes in the reservation granule.

Note: One use of lwarx and stwcx. is to emulate a compare and swap primitive like that provided 
by the IBM System/370 compare and swap instruction, which checks only that the old and 
current values of the word being tested are equal, with the result that programs that use 
such a compare and swap to control a shared resource can err if the word has been 
modified and the old value is subsequently restored. The use of lwarx and stwcx. improves 
on such a compare and swap, because the reservation reliably binds lwarx and stwcx. 
together. The reservation is always lost if the word is modified by another processor or 
mechanism between the lwarx and stwcx., so the stwcx. never succeeds unless the word 
has not been stored into (by another processor or mechanism) since the lwarx.
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A processor has at most one reservation at any time. Book E states that a reservation is 
established by executing a lwarx and is lost (or may be lost, in the case of the fourth and 
fifth bullets) if any of the following occurs.

● The processor holding the reservation executes another lwarx; this clears the first 
reservation and establishes a new one.

● The processor holding the reservation executes any stwcx., regardless of whether the 
specified address matches that of the lwarx.

● Another processor executes a store or dcbz to the same reservation granule.

● Another processor executes a dcbtst, dcbst, or dcbf to the same reservation granule; 
whether the reservation is lost is undefined.

● Another processor executes a dcba to the reservation granule. The reservation is lost if 
the instruction causes the target block to be newly established in the data cache or to 
be modified; otherwise, whether the reservation is lost is undefined.

● Some other mechanism modifies a location in the same reservation granule.

● Other implementation-specific conditions may also cause the reservation to be cleared, 
See the core reference manual. 

Interrupts are not guaranteed to clear reservations. (However, system software invoked by 
interrupts may clear reservations.)

In general, programming conventions must ensure that lwarx and stwcx. specify addresses 
that match; a stwcx. should be paired with a specific lwarx to the same location. Situations 
in which a stwcx. may erroneously be issued after some lwarx other than that with which it 
is intended to be paired must be scrupulously avoided. For example, there must not be a 
context switch in which the processor holds a reservation in behalf of the old context, and 
the new context resumes after a lwarx and before the paired stwcx.. The stwcx. in the new 
context might succeed, which is not what was intended by the programmer.

Such a situation must be prevented by issuing a stwcx. to a dummy writable word-aligned 
location as part of the context switch, thereby clearing any reservation established by the old 
context. Executing stwcx. to a word-aligned location is enough to clear the reservation, 
regardless of whether it was set by lwarx.

Forward progress

Forward progress in loops that use lwarx and stwcx. is achieved by a cooperative effort 
among hardware, operating system software, and application software.

Book E guarantees one of the following when a processor executes a lwarx to obtain a 
reservation for location X and then a stwcx. to store a value to location X:

1. The stwcx. succeeds and the value is written to location X.

2. The stwcx. fails because some other processor or mechanism modified location X.

3. The stwcx. fails because the processor’s reservation was lost for some other reason.

In cases 1 and 2, the system as a whole makes progress in the sense that some processor 
successfully modifies location X. Case 3 covers reservation loss required for correct 
operation of the rest of the system. This includes cancellation caused by some other 
processor writing elsewhere in the reservation granule for X, as well as cancellation caused 
by the operating system in managing certain limited resources such as real memory or 
context switches. It may also include implementation-dependent causes of reservation loss.

An implementation may make a forward progress guarantee, defining the conditions under 
which the system as a whole makes progress. Such a guarantee must specify the possible 
causes of reservation loss in case 3. Although Book E alone cannot provide such a 
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guarantee, the conditions in cases 1 and 2 are necessary for a guarantee. An 
implementation and operating system can build on them to provide such a guarantee.

Note that Book E does not guarantee fairness. In competing for a reservation, two 
processors can indefinitely lock out a third.

Reservation loss due to granularity

Lock words should be allocated such that contention for the locks and updates to nearby 
data structures do not cause excessive reservation losses due to false indications of sharing 
that can occur due to the reservation granularity.

A processor holding a reservation on any word in a reservation granule loses its reservation 
if some other processor stores anywhere in that granule. Such problems can be avoided 
only by ensuring that few such stores occur. This can most easily be accomplished by 
allocating an entire granule for a lock and wasting all but one word.

Reservation granularity may vary for each implementation. There are no architectural 
restrictions bounding the granularity implementations must support, so reasonably portable 
code must dynamically allocate aligned and padded memory for locks to guarantee absence 
of granularity-induced reservation loss.

Memory control instructions 

Memory control instructions can be classified as follows: 

● User- and supervisor-level cache management instructions. 

● Supervisor-level–only translation lookaside buffer management instructions 

This section describes the user-level cache management instructions. See Supervisor-level 
memory control instructions on page 183,” for information about supervisor-level cache and 
translation lookaside buffer management instructions. 

This section does not describe the cache-locking APU instructions, which are described in 
Chapter 3.6.4: Cache locking APU on page 200.” 

Cache management instructions

Cache management instructions obey the sequential execution model except as described 
in the example in this section of managing coherence between the instruction and data 
caches.

In the instruction descriptions the statements. “this instruction is treated as a load” and “this 
instruction is treated as a store,” mean that the instruction is treated as a load from or a store 
to the addressed byte with respect to address translation, memory protection, and the 
memory access ordering done by msync, mbar, and the other means described in Memory 
access ordering on page 290.”

If caches are combined, the same value should be given for an instruction cache attribute 
and the corresponding data cache attribute.

Each implementation provides an efficient way for software to ensure that all blocks that are 
considered to be modified in the data cache have been copied to main memory before the 
processor enters any power-saving mode in which data cache contents are not maintained. 
The means are described in the reference manual for the implementation.

It is permissible for an implementation to treat any or all of the cache touch instructions 
(icbt, dcbt, or dcbtst) as no-operations, even if a cache is implemented.
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The instruction cache is not necessarily kept consistent with the data cache or with main 
memory. When instructions are modified, software must ensure that the instruction cache is 
made consistent with data memory and that the modifications are made visible to the 
instruction fetching mechanism. The following instruction sequence can be used to 
accomplish this when the instructions being modified are in memory that is memory 
coherence required and one program both modifies the instructions and executes them. 
(Additional synchronization is needed when one program modifies instructions that another 
program will execute.) In this sequence, location ‘instr’ is assumed to contain modified 
instructions.

dcbst  instr   # update block in main memory

msync   # order update before invalidation

icbi  instr   # invalidate copy in instr cache

msync   # order invalidation before discarding prefetched instructions

isync  # discard prefetched instructions

Note: Because the optimal instruction sequence may vary between systems, many operating 
systems provide a system service to perform the function described above.
As stated above, the EA is translated using translation resources used for data accesses, 
even though the block being invalidated was copied into the instruction cache based on 
translation resources used for instruction fetches.

User-level cache instructions

The instructions listed in Table 99 help user-level programs manage on-chip caches if they 
are implemented. The following sections describe how these operations are treated with 
respect to the caches. The EIS supports the following CT values, defined by the EIS:

● CT = 0 indicates the L1 cache.

● CT = 1 indicates the I/O cache. (Note that some versions of the e500 documentation 
refer to the I/O cache as a frontside L2 cache.)

● CT = 2 indicates a backside L2 cache. 

As with other memory-related instructions, the effects of cache management instructions on 
memory are weakly-ordered. If the programmer must ensure that cache or other instructions 
have been performed with respect to all other processors and system mechanisms, an 
msync must be placed after those instructions.

Chapter 3.6.4,” describes cache-locking APU instructions. 
         

Table 99. User-level cache instructions 

Name Mnemonic Syntax Descriptions

Data cache block 
allocate 

dcba rA,rB This instruction is treated as a store with respect to any memory 
barriers, synchronization, translation and protection, and debug 
address comparisons. 
A no-op occurs if the cache is disabled or locked, if the page is 
marked write-through or cache-inhibited, or if a TLB protection 
violation occurs. 

An implementation may chose to no-op the instruction. 

Data cache block 
flush

dcbf rA,rB This instruction is treated as a load with respect to any memory 
barriers, synchronization, translation and protection, and debug 
address comparisons. 
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Data cache block 
set to zero 

dcbz rA,rB This instruction is treated as a store with respect to any memory 
barriers, synchronization, translation and protection, and debug 
address comparisons. 

If the block containing the byte addressed by EA is in the data cache, 
all bytes of the block are cleared. If the block containing the byte 
addressed by EA is not in the data cache and is in storage that is not 
caching inhibited, the block is established in the data cache without 
fetching the block from main storage and all bytes of the block are 
cleared. 

If the block containing the byte addressed by EA is not in the data 
cache and is in storage that is not caching inhibited and cannot be 
established in the cache, then one of the following occurs:
All bytes of the area of main storage that corresponds to the 
addressed block are set to zero

An alignment interrupt is taken
If the block containing the byte addressed by EA is in storage that is 
caching inhibited or write through required, one of the following 
occurs: 

All bytes of the area of main storage that corresponds to the 
addressed block are set to zero 

An alignment interrupt is taken. 

Data cache block 
store 

dcbst rA,rB This instruction is treated as a load with respect to any memory 
barriers, synchronization, translation and protection, and debug 
address comparisons. 

Data cache block 
touch (1)

dcbt CT,rA,rB This instruction is treated as a load with respect to any memory 
barriers, synchronization, translation and protection, and debug 
address comparisons. 
A no-op occurs if the cache is disabled or locked, if the page is 
marked write-through or cache-inhibited, or if a TLB protection 
violation occurs. 

An implementation may chose to no-op the instruction. 

Data cache block 
touch for store 1

dcbtst CT,rA,rB Depending on the implementation, this instruction is treated as a load 
or store with respect to any memory barriers, synchronization, 
translation and protection, and debug address comparisons. 
A no-op occurs if the cache is disabled or locked, if the page is 
marked write-through or cache-inhibited, or if a TLB protection 
violation occurs. 

An implementation may chose to no-op the instruction. 

         

Table 99. User-level cache instructions  (continued)

Name Mnemonic Syntax Descriptions
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3.3.2 Supervisor level instructions 

The Book E architecture includes the structure of the memory management model, 
supervisor-level registers, and the interrupt model. This section describes the supervisor-
level instructions defined by the EIS. 

System linkage instructions 

This section describes the system linkage instructions (see Table 100). The user-level sc 
instruction lets a user program call on the system to perform a service and causes the 
processor to take a system call interrupt. The supervisor-level rfi instruction is used for 
returning from an interrupt handler. The rfci instruction is used for critical interrupts. The EIS 
defines the rfmci for machine check interrupts and rfdi for debug APU interrupts.

         

         

Table 101 lists instructions for accessing the MSR. 

         

Instruction cache 
block invalidate 

icbi rA,rB This instruction is treated as a load with respect to any memory 
barriers, synchronization, translation and protection, and debug 
address comparisons. 

Instruction cache 
block touch 

icbt CT,rA,rB This instruction is treated as a load with respect to any memory 
barriers, synchronization, translation and protection, and debug 
address comparisons. 

A no-op occurs if the cache is disabled or locked, if the page is 
marked write-through or cache-inhibited, or if a TLB protection 
violation occurs. 

An implementation may chose to no-op the instruction. 

1. A program that uses dcbt and dcbtst improperly is less efficient. To improve performance, HID0[NOPTI] can be set, which 
causes dcbt and dcbtst to be no-oped at the cache. They do not cause bus activity and cause only a 1-clock execution 
latency. The default state of this bit is zero, which enables the use of these instructions. 

         

Table 99. User-level cache instructions  (continued)

Name Mnemonic Syntax Descriptions

Table 100. System linkage instructions—supervisor-level 

Name Mnemonic Syntax Implementation notes

Return from 
interrupt 

rfi — rfi is context-synchronizing

Return from 
debug interrupt

rfdi — Debug interrupt APU. When rfdi is executed, the values in 
the debug save and restore registers (DSRR0 and DSRR1) 
are restored. rfdi is context-synchronizing.

Return from 
machine check 
interrupt

rfmci — Machine check interrupt APU. When rfmci is executed, the 
values in the machine check interrupt save and restore 
registers (MCSRR0 and MCSRR1) are restored. rfmci is 
context-synchronizing. 

Return from 
critical interrupt

rfci — When rfci executes, the values in the critical interrupt save 
and restore registers (CSRR0 and CSRR1) are restored. rfci 
is context-synchronizing.

System call sc — The sc instruction is context-synchronizing. 
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Certain encodings of the SPR field of mtspr and mfspr instructions (shown in Table 95) 
provide access to supervisor-level SPRs. Table 96 lists encodings for architecture-defined 
SPRs. Encodings for EIS-defined, supervisor-level SPRs are listed in Table 102. Simplified 
mnemonics are provided for mtspr and mfspr. Appendix C: Programming examples on 
page 1143,” describes context synchronization requirements when altering certain SPRs.

         

Supervisor-level memory control instructions 

Memory control instructions include the following: 

● Cache management instructions (supervisor-level and user-level) 

● Translation lookaside buffer management instructions 

This section describes supervisor-level memory control instructions. Memory control 
instructions on page 179,” describes user-level memory control instructions. 

         

Supervisor-level cache instruction

Table 102 lists the only supervisor-level cache management instruction. 

         

See User-level cache instructions on page 180,” for cache instructions that provide user-
level programs the ability to manage the on-chip caches. 

Supervisor-level tlb management instructions

The address translation mechanism is defined in terms of TLBs and page table entries 
(PTEs) Book E processors use to locate the logical-to-physical address mapping for a 
particular access. See Chapter 5.4: Storage model on page 301,” for more information 
about TLB operations. Table 103 summarizes the operation of the TLB instructions.

         

Table 101. Move to/from machine state register instructions

Name Mnemonic Syntax Description 

Move from machine state register mfmsr rD —

Move to machine state register mtmsr rS —

Write MSR external enable wrtee rS Bit 48 of the contents of rS is placed 
into MSR[EE]. Other MSR bits are 
unaffected.

Write MSR external enable 
immediate

wrteei E The value of E is placed into MSR[EE]. 
Other MSR bits are unaffected.

Table 102. Supervisor-Level cache management instruction

Name Mnemonic Syntax Implementation notes

Data cache 
block 
invalidate

dcbi rA,rB This instruction is treated as a store with respect to any memory 
barriers, synchronization, translation and protection, and debug 
address comparisons. 
An implementation may first perform a dcbst operation before 
invalidating the cache block if the memory is marked as 
coherency required (WIMG = xx1x). 
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Table 103. TLB management instructions

Name Mnemonic Syntax Implementation Notes

TLB 
invalidate 
virtual 
address 
indexed

tlbivax rA, rB A TLB invalidate operation is performed whenever tlbivax is 
executed. tlbivax invalidates any TLB entry that corresponds to 
the virtual address calculated by this instruction as long as 
IPROT is not set; this includes invalidating TLB entries 
contained in TLBs on other processors and devices in addition 
to the processor executing tlbivax. Thus an invalidate operation 
is broadcast throughout the coherent domain of the processor 
executing tlbivax. See Chapter 5.4 on page 301.” 

TLB read 
entry

tlbre — tlbre causes the contents of a single TLB entry to be extracted 
from the MMU and be placed in the corresponding MAS register 
fields. The entry extracted is specified by the TLBSEL, ESEL 
and EPN fields of MAS0 and MAS2. The contents extracted 
from the MMU are placed in MAS0–MAS3 and MAS7. See 
Chapter 5.4.9 on page 317.”

TLB search 
indexed

tlbsx rA, rB tlbsx updates MAS conditionally based on the success or 
failure of a lookup in the MMU. The lookup is controlled by the 
EA provided by GPR[rB] specified in the instruction encoding 
and MAS6[SAS,SPID]. The values placed into MAS0–MAS3 
and MAS7 differ, depending on whether a successful or 
unsuccessful search occurred. 

Note that RA=0 is a preferred form for tlbsx and that some ST 
implementations take an illegal instruction exception program 
interrupt if RA != 0. 

TLB 
synchronize

tlbsync — Provides an ordering function for the effects of all tlbivax 
instructions executed by the processor executing the tlbsync 
instruction, with respect to the memory barrier created by a 
subsequent msync instruction executed by the same 
processor. Executing a tlbsync instruction ensures that all of the 
following occurs:
All TLB invalidations caused by tlbivax instructions preceding 
the tlbsync will have completed on any other processor before 
any storage accesses associated with data accesses caused by 
instructions following the msync instruction are performed with 
respect to that processor.
All storage accesses by other processors for which the address 
was translated using the translations being invalidated, will have 
been performed with respect to the processor executing the 
msync instruction, to the extent required by the associated 
memory coherence required attributes, before the mbar or 
msync instruction’s memory barrier is created.

See Chapter 5.4.9 on page 317.” 

TLB Write 
Entry

tlbwe — tlbwe causes the contents of certain fields of MAS0, MAS1, 
MAS2, and MAS3 to be written into a TLB entry specified by the 
TLBSEL, ESEL, and EPN fields of MAS0 and MAS2. If MAS7 is 
implemented, execution of tlbwe causes any MAS7[RPN] to be 
written to the selected TLB entry. See Chapter 5.4.9 on 
page 317.”
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3.3.3 Recommended simplified mnemonics 

The description of each instruction includes the mnemonic and a formatted list of operands. 
Book E–compliant assemblers support the mnemonics and operand lists. To simplify 
assembly language programming, a set of simplified mnemonics and symbols is provided 
for some of the most frequently used instructions; refer to Appendix B: Simplified 
mnemonics for PowerPC instructions on page 1110, for a complete list. Programs written to 
be portable across the various assemblers for the Book E architecture should not assume 
the existence of mnemonics not described in this document. 

3.3.4 Book E instructions with implementation-specific features

Book E defines several instructions in a general way, leaving the details of the execution up 
to the implementation. These are listed in Table 104. This section describes how the EIS 
further defines those instructions. See the user documentation for additional 
implementation-specific behavior. 

         

A list of user-level instructions defined by both the classic PowerPC architecture and Book E 
can be found in Chapter 3.7.” 

3.3.5 EIS instructions

The EIS defines the instructions listed in Table 105 (with cross references to more detailed 
descriptions) that extend the Book E instruction set in accordance with Book E. SPE and 
embedded floating-point APU instructions are listed in Table 108 and Table 117. 

         

Table 104. Implementation-specific instructions summary

Name Mnemonic Syntax Category

Move from APID Indirect mfapidi — Optional. If not implemented, attempted 
execution causes an illegal instruction 
exception type program interrupt. Move from Device Control 

Register
mfdcr —

Move to Device Control Register mtdcr —

TLB Invalidate Virtual Address 
Indexed

tlbivax rA, rB These are described generally in 
Supervisor-level tlb management 
instructions on page 183. 

TLB Read Entry tlbre —

TLB Search Indexed tlbsx rA, rB

TLB Write Entry tlbwe —

Table 105. EIS-defined instructions (except SPE and SPFP instructions)

Name Mnemonic Syntax Section #/page

Data Cache Block Lock Clear dcblc CT, rA, rB 

Chapter 3.6.4

Data Cache Block Touch and Lock Set dcbtls CT, rA, rB 

Data Cache Block Touch for Store and Lock Set dcbtstls CT, rA, rB

Instruction Cache Block Lock Clear icblc CT, rA, rB 

Instruction Cache Block Touch and Lock Set icbtls CT, rA, rB 

Integer Select isel rD, rA, rB, crb Chapter 3.6.2
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3.3.6 Context synchronization

Context synchronization is achieved by post- and presynchronizing instructions. An 
instruction is presynchronized by completing all instructions before dispatching the 
presynchronized instruction. Post-synchronizing is implemented by not dispatching any later 
instructions until the post-synchronized instruction is completely finished. 

3.4 Instruction fetching
In general, instructions are prefetched from the cache on a cache hit and from memory on a 
cache miss. Prefetched instructions may not be executed if the instruction stream is 
redirected after instructions are fetched and before they are scheduled for execution.

3.5 Memory synchronization
The msync instruction provides a memory barrier throughout the memory hierarchy. It waits 
for preceding data memory accesses to reach the point of coherency (that is, visible to the 
entire memory hierarchy); then it is broadcast. No subsequent instructions in the stream are 
initiated until after msync completes. Note that msync uses the same opcode as the sync 
instruction. The msync instruction is described in Memory synchronization instructions on 
page 175.”

See Memory access ordering on page 290,” for detailed information. 

3.6 EIS-specific instructions 
This section described EIS-defined instructions that are part of APUs or other extensions to 
the Book E architecture.

3.6.1 SPE and embedded floating-point APUs

The SPE and the embedded vector single-precision and embedded scalar double-precision 
APUs provide an extended GPR file with 32, 64-bit registers. The 32-bit Book E instructions 
operate on the lower (least significant) 32 bits of the 64-bit register. SPE APU vector 
instructions and embedded vector SPFP treat 64-bit registers as containing two 32-bit 
elements or four 16-bit elements as described in SPE APU instructions on page 188.” The 
embedded double-precision floating-point APU uses the extended GPRs to hold single, 
IEEE-compliant double-precision operands. 

Move from Performance Monitor Register mfpmr rD,PMRN
Chapter 3.6.3

Move to Performance Monitor Register mtpmr PMRN,rS

Return from Machine Check Interrupt rfmci — Chapter 3.6.5

Return from Debug Interrupt rfdi — Chapter 3.6.5

Table 105. EIS-defined instructions (except SPE and SPFP instructions) (continued)

Name Mnemonic Syntax Section #/page
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However, like 32-bit Book E instructions, scalar SPFP APU floating-point instructions use 
bits 32–63 of the GPRs to hold 32-bit single-precision operands, as described in Embedded 
vector and scalar floating-point APU instructions on page 196.”

There is no record form of SPE or embedded floating-point instructions. Vector compare 
instructions store the result of the comparison into the CR. The meaning of the CR bits is 
now overloaded for vector operations. Vector compare instructions specify a CR field and 
two source registers as well as the type of compare: greater than, less than, or equal. Two 
bits in the CR field are written with the result of the vector compare, one for each element. 
The two defined bits could be used either by a vector select instruction or by a UISA branch 
instruction. 

A partially visible accumulator register is architected for the integer and fractional multiply 
accumulate SPE instructions. It is described in Chapter 2.14.2 on page 122.”

Full descriptions of these instructions can be found in Chapter 13 on page 891.” 

SPE APU instruction architecture 

This section describes the instruction formats and instructions defined by the SPE APU. 

Signed fractions

In signed fractional format, the N-bit operand is represented in a 1.[N–1] format (1 sign bit, 
N–1 fraction bits). Signed fractional numbers are in the following range: 

         

         

The real value of the binary operand SF[0:N-1] is as follows:

         

         

The most negative and positive numbers representable in fractional format are as follows:

● The most negative number is represented by SF(0) = 1 and SF[1:N–1] = 0 (that is, 
N=32; 0x8000_0000 = –1.0).

● The most positive number is represented by SF(0) = 0 and SF[1:N–1] = all 1s (that is, 
N=32; 0x7FFF_FFFF = 1.0 - 2–(N–1)).

SPE APU—integer and fractional operations

Figure 15 shows data formats for signed integer and fractional multiplication. Note that low 
word versions of signed saturate and signed modulo fractional instructions are not 
supported. Attempting to execute an opcode corresponding to these instructions causes 
boundedly undefined results.

1.0 SF 1.0 2
N 1–( )–

–≤ ≤–

SF 1.0 SF 0( )•–= SF i( ) 2
i–•

i 1=

N 1–

∑+
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Figure 15. Integer and fractional operations

SPE APU instructions

SPE APU instructions treat 64-bit GPRs as being composed of a vector of two 32-bit 
elements. (Some instructions also read or write 16-bit elements.) The SPE APU supports a 
number of forms of multiply and multiply-accumulate operations, and of add and subtract to 
accumulator operations. The SPE supports signed and unsigned forms, and optional 
fractional forms. For these instructions, the fractional form does not apply to unsigned forms 
because integer and fractional forms are identical for unsigned operands. 

Table 106 shows how SPE APU vector multiply instruction mnemonics are structured.

         

Table 107 defines mnemonic extensions for these instructions.

S S

×

S S HP LP

2N Bits

(2N–1)–Bit Product

Signed Multiplier

Sign Extension

S S

×

0S HP LP

2N Bits

(2N–1)–Bit Product

Signed Multiplier

Zero fill

Integer Fractional
Signed Multiplication N × N → 2N – 1 Bits

Table 106. SPE APU vector multiply instruction mnemonic structure

Prefix Multiply element Data Type element Accumulate element

evm ho 

he 
hog

heg

wh 
wl 

wh
g

wlg

w 

half odd (16x16->32)

half even (16x16->32)
half odd guarded (16x16-
>32)
half even guarded (16x16-
>32)
word high (32x32->32)

word low (32x32->32)

word high guarded (32x32-
>32)

word low guarded (32x32-
>32)

word (32x32->64)

usi

umi
ssi

ssf
(1)

smi

smf1

unsigned saturate 
integer

unsigned modulo 
integer

signed saturate integer

signed saturate 
fractional

signed modulo integer
signed modulo 
fractional

a

aa
an

aa
w

an
w

write to ACC

write to ACC & added ACC
write to ACC & negate ACC

write to ACC & ACC in words

write to ACC & negate ACC in 
words

1. Low word versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to execute 
an opcode corresponding to these instructions causes boundedly undefined results. 



Instruction model RM0004

189/1176  

 

Table 108 lists SPE APU instructions.

         

         

Table 107. Mnemonic extensions for multiply-accumulate instructions

Extension Meaning Comments

Multiply form

he Half word even 16×16→32

heg Half word even guarded 16×16→32, 64-bit final accumulator result

ho Half word odd 16×16→32

hog Half word odd guarded 16×16→32, 64-bit final accumulator result

w Word 32×32→64

wh Word high 32×32→32, high-order 32 bits of product

wl Word low 32×32→32, low-order 32 bits of product

Data type

smf Signed modulo fractional (Wrap, no saturate)

smi Signed modulo integer (Wrap, no saturate)

ssf Signed saturate fractional

ssi Signed saturate integer

umi Unsigned modulo integer (Wrap, no saturate)

usi Unsigned saturate integer

Accumulate options

a Update accumulator Update accumulator (no add)

aa Add to accumulator Add result to accumulator (64-bit sum)

aaw Add to accumulator (words) Add word results to accumulator words (pair of 32-bit sums)

an Add negated Add negated result to accumulator (64-bit sum)

anw Add negated to accumulator 
(words)

Add negated word results to accumulator words (pair of 32-bit 
sums)

Table 108. SPE APU vector instructions

Instruction Mnemonic Syntax

Bit Reversed Increment brinc rD,rA,rB

Initialize Accumulator evmra rD,rA

Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and 
Accumulate 

evmhegsmfaa rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Fractional and 
Accumulate Negative 

evmhegsmfan rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate evmhegsmiaa rD,rA,rB

Multiply Half Words, Even, Guarded, Signed, Modulo, Integer and Accumulate 
Negative 

evmhegsmian rD,rA,rB
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Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and 
Accumulate 

evmhegumiaa rD,rA,rB

Multiply Half Words, Even, Guarded, Unsigned, Modulo, Integer and 
Accumulate Negative 

evmhegumian rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and 
Accumulate 

evmhogsmfaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Fractional and 
Accumulate Negative 

evmhogsmfan rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate evmhogsmiaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Signed, Modulo, Integer and Accumulate 
Negative 

evmhogsmian rD,rA,rB

Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and 
Accumulate 

evmhogumiaa rD,rA,rB

Multiply Half Words, Odd, Guarded, Unsigned, Modulo, Integer and 
Accumulate Negative 

evmhogumian rD,rA,rB

Vector Absolute Value evabs rD,rA

Vector Add Immediate Word evaddiw rD,rB,UIMM

Vector Add Signed, Modulo, Integer to Accumulator Word evaddsmiaaw rD,rA,rB

Vector Add Signed, Saturate, Integer to Accumulator Word evaddssiaaw rD,rA

Vector Add Unsigned, Modulo, Integer to Accumulator Word evaddumiaaw rD,rA

Vector Add Unsigned, Saturate, Integer to Accumulator Word evaddusiaaw rD,rA

Vector Add Word evaddw rD,rA,rB

Vector AND evand rD,rA,rB

Vector AND with Complement evandc rD,rA,rB

Vector Compare Equal evcmpeq crD,rA,rB

Vector Compare Greater Than Signed evcmpgts crD,rA,rB

Vector Compare Greater Than Unsigned evcmpgtu crD,rA,rB

Vector Compare Less Than Signed evcmplts crD,rA,rB

Vector Compare Less Than Unsigned evcmpltu crD,rA,rB

Vector Convert Floating-Point from Signed Fraction evfscfsf rD,rB

Vector Convert Floating-Point from Signed Integer evfscfsi rD,rB

Vector Convert Floating-Point from Unsigned Fraction evfscfuf rD,rB

Vector Convert Floating-Point from Unsigned Integer evfscfui rD,rB

Vector Convert Floating-Point to Signed Fraction evfsctsf rD,rB

Vector Convert Floating-Point to Signed Integer evfsctsi rD,rB

Vector Convert Floating-Point to Signed Integer with Round toward Zero evfsctsiz rD,rB

Vector Convert Floating-Point to Unsigned Fraction evfsctuf rD,rB

Table 108. SPE APU vector instructions (continued)

Instruction Mnemonic Syntax
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Vector Convert Floating-Point to Unsigned Integer evfsctui rD,rB

Vector Convert Floating-Point to Unsigned Integer with Round toward Zero evfsctuiz rD,rB

Vector Count Leading Sign Bits Word evcntlsw rD,rA

Vector Count Leading Zeros Word evcntlzw rD,rA

Vector Divide Word Signed evdivws rD,rA,rB

Vector Divide Word Unsigned evdivwu rD,rA,rB

Vector Equivalent eveqv rD,rA,rB

Vector Extend Sign Byte evextsb rD,rA

Vector Extend Sign Half Word evextsh rD,rA

Vector Floating-Point Absolute Value evfsabs rD,rA

Vector Floating-Point Add evfsadd  rD,rA,rB

Vector Floating-Point Compare Equal evfscmpeq crD,rA,rB

Vector Floating-Point Compare Greater Than evfscmpgt crD,rA,rB

Vector Floating-Point Compare Less Than evfscmplt crD,rA,rB

Vector Floating-Point Divide evfsdiv rD,rA,rB

Vector Floating-Point Multiply evfsmul rD,rA,rB

Vector Floating-Point Negate evfsneg rD,rA

Vector Floating-Point Negative Absolute Value evfsnabs rD,rA

Vector Floating-Point Subtract evfssub rD,rA,rB

Vector Floating-Point Test Equal evfststeq crD,rA,rB

Vector Floating-Point Test Greater Than evfststgt crD,rA,rB

Vector Floating-Point Test Less Than evfststlt crD,rA,rB

Vector Load Double into Half Words evldh rD,d(rA)

Vector Load Double into Half Words Indexed evldhx rD,rA,rB

Vector Load Double into Two Words evldw rD,d(rA)

Vector Load Double into Two Words Indexed evldwx rD,rA,rB

Vector Load Double Word into Double Word evldd rD,d(rA)

Vector Load Double Word into Double Word Indexed evlddx rD,rA,rB

Vector Load Half Word into Half Word Odd Signed and Splat evlhhossplat rD,d(rA)

Vector Load Half Word into Half Word Odd Signed and Splat Indexed evlhhossplatx rD,rA,rB

Vector Load Half Word into Half Word Odd Unsigned and Splat evlhhousplat rD,d(rA)

Vector Load Half Word into Half Word Odd Unsigned and Splat Indexed evlhhousplatx rD,rA,rB

Vector Load Half Word into Half Words Even and Splat evlhhesplat rD,d(rA)

Vector Load Half Word into Half Words Even and Splat Indexed evlhhesplatx rD,rA,rB

Vector Load Word into Half Words and Splat evlwhsplat rD,d(rA)

Table 108. SPE APU vector instructions (continued)

Instruction Mnemonic Syntax
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Vector Load Word into Half Words and Splat Indexed evlwhsplatx rD,rA,rB

Vector Load Word into Half Words Odd Signed (with sign extension) evlwhos rD,d(rA)

Vector Load Word into Half Words Odd Signed Indexed (with sign extension) evlwhosx rD,rA,rB

Vector Load Word into Two Half Words Even evlwhe rD,d(rA)

Vector Load Word into Two Half Words Even Indexed evlwhex rD,rA,rB

Vector Load Word into Two Half Words Odd Unsigned (zero-extended) evlwhou rD,d(rA)

Vector Load Word into Two Half Words Odd Unsigned Indexed (zero-extended) evlwhoux rD,rA,rB

Vector Load Word into Word and Splat evlwwsplat rD,d(rA)

Vector Load Word into Word and Splat Indexed evlwwsplatx rD,rA,rB

Vector Merge High evmergehi rD,rA,rB

Vector Merge High/Low evmergehilo rD,rA,rB

Vector Merge Low evmergelo rD,rA,rB

Vector Merge Low/High evmergelohi rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional evmhesmf rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate 
into Words 

evmhesmfaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional and Accumulate 
Negative into Words 

evmhesmfanw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Fractional, Accumulate evmhesmfa rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer evmhesmi rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate into 
Words 

evmhesmiaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer and Accumulate 
Negative into Words 

evmhesmianw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Modulo, Integer, Accumulate evmhesmia rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional evmhessf rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate 
into Words 

evmhessfaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional and Accumulate 
Negative into Words 

evmhessfanw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Fractional, Accumulate evmhessfa rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate 
into Words 

evmhessiaaw rD,rA,rB

Vector Multiply Half Words, Even, Signed, Saturate, Integer and Accumulate 
Negative into Words 

evmhessianw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer evmheumi rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate 
into Words 

evmheumiaaw rD,rA,rB

Table 108. SPE APU vector instructions (continued)

Instruction Mnemonic Syntax
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Vector Multiply Half Words, Even, Unsigned, Modulo, Integer and Accumulate 
Negative into Words 

evmheumianw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Modulo, Integer, Accumulate evmheumia rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate 
into Words 

evmheusiaaw rD,rA,rB

Vector Multiply Half Words, Even, Unsigned, Saturate, Integer and Accumulate 
Negative into Words 

evmheusianw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional evmhosmf rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate 
into Words 

evmhosmfaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional and Accumulate 
Negative into Words 

evmhosmfanw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Fractional, Accumulate evmhosmfa rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer evmhosmi rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate into 
Words 

evmhosmiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer and Accumulate 
Negative into Words 

evmhosmianw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Modulo, Integer, Accumulate evmhosmia rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional evmhossf rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate 
into Words 

evmhossfaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional and Accumulate 
Negative into Words 

evmhossfanw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Fractional, Accumulate evmhossfa rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate 
into Words 

evmhossiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Signed, Saturate, Integer and Accumulate 
Negative into Words 

evmhossianw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer evmhoumi rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate 
into Words 

evmhoumiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer and Accumulate 
Negative into Words 

evmhoumianw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Modulo, Integer, Accumulate evmhoumia rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate 
into Words 

evmhousiaaw rD,rA,rB

Vector Multiply Half Words, Odd, Unsigned, Saturate, Integer and Accumulate 
Negative into Words 

evmhousianw rD,rA,rB

Vector Multiply Word High Signed, Modulo, Fractional evmwhsmf rD,rA,rB

Table 108. SPE APU vector instructions (continued)

Instruction Mnemonic Syntax
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Vector Multiply Word High Signed, Modulo, Fractional and Accumulate evmwhsmfa rD,rA,rB

Vector Multiply Word High Signed, Modulo, Integer evmwhsmi rD,rA,rB

Vector Multiply Word High Signed, Modulo, Integer and Accumulate evmwhsmia rD,rA,rB

Vector Multiply Word High Signed, Saturate, Fractional evmwhssf rD,rA,rB

Vector Multiply Word High Signed, Saturate, Fractional and Accumulate evmwhssfa rD,rA,rB

Vector Multiply Word High Unsigned, Modulo, Integer evmwhumi rD,rA,rB

Vector Multiply Word High Unsigned, Modulo, Integer and Accumulate evmwhumia rD,rA,rB

Vector Multiply Word Low Signed, Modulo, Integer and Accumulate in Words evmwlsmiaaw rD,rA,rB

Vector Multiply Word Low Signed, Modulo, Integer and Accumulate Negative in 
Words 

evmwlsmianw rD,rA,rB

Vector Multiply Word Low Signed, Saturate, Integer and Accumulate in Words evmwlssiaaw rD,rA,rB

Vector Multiply Word Low Signed, Saturate, Integer and Accumulate Negative 
in Words 

evmwlssianw rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer evmwlumi rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate evmwlumia rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate in Words evmwlumiaaw rD,rA,rB

Vector Multiply Word Low Unsigned, Modulo, Integer and Accumulate Negative 
in Words 

evmwlumianw rD,rA,rB

Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate in 
Words 

evmwlusiaaw rD,rA,rB

Vector Multiply Word Low Unsigned, Saturate, Integer and Accumulate 
Negative in Words 

evmwlusianw rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional evmwsmf rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate evmwsmfa rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate evmwsmfaa rD,rA,rB

Vector Multiply Word Signed, Modulo, Fractional and Accumulate Negative evmwsmfan rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer evmwsmi rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate evmwsmia rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate evmwsmiaa rD,rA,rB

Vector Multiply Word Signed, Modulo, Integer and Accumulate Negative evmwsmian rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional evmwssf rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate evmwssfa rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate evmwssfaa rD,rA,rB

Vector Multiply Word Signed, Saturate, Fractional and Accumulate Negative evmwssfan rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer evmwumi rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate evmwumia rD,rA,rB

Table 108. SPE APU vector instructions (continued)
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Vector Multiply Word Unsigned, Modulo, Integer and Accumulate evmwumiaa rD,rA,rB

Vector Multiply Word Unsigned, Modulo, Integer and Accumulate Negative evmwumian rD,rA,rB

Vector NAND evnand rD,rA,rB

Vector Negate evneg rD,rA

Vector NOR evnor rD,rA,rB

Vector OR evor rD,rA,rB

Vector OR with Complement evorc rD,rA,rB

Vector Rotate Left Word evrlw rD,rA,rB

Vector Rotate Left Word Immediate evrlwi rD,rA,UIMM

Vector Round Word evrndw rD,rA

Vector Select evsel rD,rA,rB,crS

Vector Shift Left Word evslw rD,rA,rB

Vector Shift Left Word Immediate evslwi rD,rA,UIMM

Vector Shift Right Word Immediate Signed evsrwis rD,rA,UIMM

Vector Shift Right Word Immediate Unsigned evsrwiu rD,rA,UIMM

Vector Shift Right Word Signed evsrws rD,rA,rB

Vector Shift Right Word Unsigned evsrwu rD,rA,rB

Vector Splat Fractional Immediate evsplatfi rD,SIMM

Vector Splat Immediate evsplati rD,SIMM

Vector Store Double of Double evstdd rS,d(rA)

Vector Store Double of Double Indexed evstddx rS,rA,rB

Vector Store Double of Four Half Words evstdh rS,d(rA)

Vector Store Double of Four Half Words Indexed evstdhx rS,rA,rB

Vector Store Double of Two Words evstdw rS,d(rA)

Vector Store Double of Two Words Indexed evstdwx rS,rA,rB

Vector Store Word of Two Half Words from Even evstwhe rS,d(rA)

Vector Store Word of Two Half Words from Even Indexed evstwhex rS,rA,rB

Vector Store Word of Two Half Words from Odd evstwho rS,d(rA)

Vector Store Word of Two Half Words from Odd Indexed evstwhox rS,rA,rB

Vector Store Word of Word from Even evstwwex rS,d(rA)

Vector Store Word of Word from Even Indexed evstwwex rS,rA,rB

Vector Store Word of Word from Odd evstwwo rS,d(rA)

Vector Store Word of Word from Odd Indexed evstwwox rS,rA,rB

Vector Subtract from Word evsubfw rD,rA,rB

Vector Subtract Immediate from Word evsubifw rD,UIMM,rB

Table 108. SPE APU vector instructions (continued)

Instruction Mnemonic Syntax
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Embedded vector and scalar floating-point APU instructions

The embedded floating-point operations are IEEE-compliant with software exception 
handlers and offer a simpler exception model than the floating-point instructions defined by 
the PowerPC ISA. Instead of FPRs, these instructions use GPRs to offer improved 
performance for converting between floating-point, integer, and fractional values. Sharing 
GPRs allows vector floating-point instructions to use SPE load and store instructions. 

The SPFP APUs are described as follows:

● Vector SPFP instructions operate on a vector of two 32-bit, single-precision floating-
point numbers that reside in the upper and lower halves of the 64-bit GPRs. These 
instructions are listed in Table 117 alongside their scalar equivalents.

● Scalar SPFP instructions operate on single 32-bit operands that reside in the lower 32-
bits of the GPRs. These instructions are listed in Table 117.

● Scalar DPFP instructions operate on single 64-bit double-precision operands that 
reside in the 64-bit GPRs. These instructions are listed in Table 109.

Note: Note that the vector and scalar versions of the instructions have the same syntax.

         

Vector Subtract Signed, Modulo, Integer to Accumulator Word evsubfsmiaaw rD,rA

Vector Subtract Signed, Saturate, Integer to Accumulator Word evsubfssiaaw rD,rA

Vector Subtract Unsigned, Modulo, Integer to Accumulator Word evsubfumiaaw rD,rA

Vector Subtract Unsigned, Saturate, Integer to Accumulator Word evsubfusiaaw rD,rA

Vector XOR evxor rD,rA,rB

Table 108. SPE APU vector instructions (continued)

Instruction Mnemonic Syntax

Table 109. Vector and scalar floating-point APU instructions

Instruction
Single-precision Double- 

precision 
scalar

Syntax
Scalar Vector

Convert Floating-Point Double- from Single-Precision — — efdcfs rD,rB 

Convert Floating-Point from Signed Fraction efscfsf evfscfsf efdcfsf rD,rB 

Convert Floating-Point from Signed Integer efscfsi evfscfsi efdcfsi rD,rB 

Convert Floating-Point from Unsigned Fraction efscfuf evfscfuf efdcfuf rD,rB 

Convert Floating-Point from Unsigned Integer efscfui evfscfui efdcfui rD,rB 

Convert Floating-Point Single- from Double-Precision — — efscfd rD,rB 

Convert Floating-Point to Signed Fraction efsctsf evfsctsf efdctsf rD,rB 

Convert Floating-Point to Signed Integer efsctsi evfsctsi efdctsi rD,rB 

Convert Floating-Point to Signed Integer with Round 
toward Zero 

efsctsiz evfsctsiz efdctsiz rD,rB 

Convert Floating-Point to Unsigned Fraction efsctuf evfsctuf efdctuf rD,rB 

Convert Floating-Point to Unsigned Integer efsctui evfsctui efdctui rD,rB 

Convert Floating-Point to Unsigned Integer with Round 
toward Zero 

efsctuiz evfsctuiz efdctuiz rD,rB 



Instruction model RM0004

197/1176  

3.6.2 Integer select (isel) APU

The integer select APU consists of the isel instruction, a conditional register move that 
helps eliminate branches. Section 7.1: Integer select APU,” describes the use of isel.

3.6.3 Performance monitor APU

The EIS defines the performance monitor as an APU. Software communication with the 
performance monitor APU is achieved through performance monitor registers (PMRs) rather 

Floating-Point Absolute Value efsabs (1) evfsabs efdabs rD,rA

Floating-Point Add efsadd evfsadd efdadd rD,rA,rB 

Floating-Point Compare Equal efscmpeq evfscmpeq efdcmpeq crD,rA,rB 

Floating-Point Compare Greater Than efscmpgt evfscmpgt efdcmpgt crD,rA,rB 

Floating-Point Compare Less Than efscmplt evfscmplt efdcmplt crD,rA,rB 

Floating-Point Divide efsdiv evfsdiv efddiv rD,rA,rB 

Floating-Point Multiply efsmul evfsmul efdmul rD,rA,rB 

Floating-Point Negate efsneg 1 evfsneg efdneg rD,rA

Floating-Point Negative Absolute Value efsnabs 1 evfsnabs efdnabs rD,rA

Floating-Point Subtract efssub evfssub efdsub  rD,rA,rB 

Floating-Point Test Equal efststeq evfststeq efdtsteq crD,rA,rB 

Floating-Point Test Greater Than efststgt evfststgt efdtstgt crD,rA,rB 

Floating-Point Test Less Than efststlt evfststlt efdtstlt crD,rA,rB 

SPE Double Word Load/Store Instructions

Vector Load Double Word into Double Word — evldd evldd rD,d(rA)

Vector Load Double Word into Double Word Indexed — evlddx evlddx rD,rA,rB

Vector Merge High — evmergehi evmergehi rD,rA,rB

Vector Merge Low — evmergelo evmergelo rD,rA,rB

Vector Store Double of Double — evstdd evstdd rS,d(rA)

Vector Store Double of Double Indexed — evstddx evstddx rS,rA,rB

On some cores, floating-point operations that produce a result of zero may generate an incorrect sign. 

1. Exception detection for these instructions is implementation dependent. On some devices, Infinities, NaNs, and Denorms 
are always be treated as Norms. No exceptions are taken if SPEFSCR[FINVE] = 1.

Table 109. Vector and scalar floating-point APU instructions (continued)

Instruction
Single-precision Double- 

precision 
scalar

Syntax
Scalar Vector

         

Table 110. Integer select APU instruction

Name Mnemonic Syntax

Integer Select isel rD,rA,rB,crB
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than SPRs. New instructions are provided to move to and from these PMRs. Performance 
monitor APU instructions are described in Table 111. 

         

The Book E implementation standards defines a set of register resources used exclusively 
by the performance monitor. PMRs are similar to the SPRs defined in the Book E 
architecture and are accessed by mtpmr and mfpmr, which are also defined by the EIS. 
Table 112 lists supervisor-level PMRs. User-level software that attempts to read or write 
supervisor-level PMRs causes a privilege exception. 

         

Table 111. Performance monitor APU instructions

Name Mnemonic Syntax

Move from performance monitor 
register

mfpmr rD,PMRN

Move to performance monitor 
register

mtpmr PMRN,rS

Table 112. Performance monitor registers—supervisor level

Abbreviation Register name PMR number pmr[0–4] pmr[5–9] Section/page

PMGC0
Performance 
monitor global 
control register 0

400 01100 10000 Chapter 2.16.1

PMLCa0
Performance 
monitor local 
control a0

144 00100 10000

Chapter 2.16.3

PMLCa1
Performance 
monitor local 
control a1

145 00100 10001

PMLCa2
Performance 
monitor local 
control a2

146 00100 10010

PMLCa3
Performance 
monitor local 
control a3

147 00100 10011

PMLCb0
Performance 
monitor local 
control b0

272 01000 10000

Chapter 2.16.5

PMLCb1
Performance 
monitor local 
control b1

273 01000 10001

PMLCb2
Performance 
monitor local 
control b2

274 01000 10010

PMLCb3
Performance 
monitor local 
control b3

275 01000 10011
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User-level PMRs in Table 113 are read-only and are accessed with mfpmr. Attempting to 
write user-level registers in supervisor or user mode causes an illegal instruction exception.

         

PMC0
Performance 
monitor counter 0

16 00000 10000

Chapter 2.16.7

PMC1
Performance 
monitor counter 1

17 00000 10001

PMC2
Performance 
monitor counter 2

18 00000 10010

PMC3
Performance 
monitor counter 3

19 00000 10011

Table 113. Performance monitor registers—user level (read-only) 

Abbreviation Register Name
PMR 

Number
pmr[0–4] pmr[5–9] Section/Page

UPMGC0
User performance monitor global 
control register 0

384 01100 00000 Chapter 2.16.2

UPMLCa0
User performance monitor local 
control a0

128 00100 00000

Chapter 2.16.4

UPMLCa1
User performance monitor local 
control a1

129 00100 00001

UPMLCa2
User performance monitor local 
control a2

130 00100 00010

UPMLCa3
User performance monitor local 
control a3

131 00100 00011

UPMLCb0
User performance monitor local 
control b0

256 01000 00000

Section 2.16.6 
on page 129

UPMLCb1
User performance monitor local 
control b1

257 01000 00001

UPMLCb2
User performance monitor local 
control b2

258 01000 00010

UPMLCb3
User performance monitor local 
control b3

259 01000 00011

UPMC0
User performance monitor 
counter 0

0 00000 00000

Section 2.16.8 
on page 129

UPMC1
User performance monitor 
counter 1

1 00000 00001

UPMC2
User performance monitor 
counter 2

2 00000 00010

UPMC3
User performance monitor 
counter 3

3 00000 00011

Table 112. Performance monitor registers—supervisor level (continued)

Abbreviation Register name PMR number pmr[0–4] pmr[5–9] Section/page
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3.6.4 Cache locking APU

This section describes the instructions in the cache locking APU, which consists of the 
instructions described in Table 114. Lines are locked into the cache by software using a 
series of touch and lock set instructions. The following instructions are provided to lock data 
items into the data and instruction cache:

● dcbtls—Data Cache Block Touch and Lock Set

● dcbtstls—Data Cache Block Touch for Store and Lock Set

● icbtls—Instruction Cache Block Touch and Lock Set

The rA and rB operands to these instructions form a EA identifying the line to be locked. The 
CT field indicates which cache in the cache hierarchy should be targeted. These instructions 
are similar to the dcbt, dcbtst, and icbt instructions, but locking instructions can not 
execute speculatively and may cause additional exceptions. For unified caches, both the 
instruction lock set and the data lock set target the same cache.

Similarly, lines are unlocked from the cache by software using a series of lock-clear 
instructions. The following instructions are provided to lock instructions into the instruction 
cache:

● dcblc—Data Cache Block Lock Clear

● icblc—Instruction Cache Block Lock Clear

The rA and rB operands to these instructions form an EA identifying the line to be unlocked. 
The CT field indicates which cache in the cache hierarchy should be targeted.

Additionally, software may clear all the locks in the cache. For the primary cache, this is 
accomplished by setting the CLFC (DCLFC, ICLFC) bit in L1CSR0 (L1CSR1).

Cache lines can also be implicitly unlocked in the following ways:

● A locked line is invalidated if it is targeted by a dcbi, dcbf, or icbi instruction.

● A snoop hit on a locked line that requires the line to be invalidated. This can occur 
because the data the line contains has been modified external to the processor, or 
another processor has explicitly invalidated the line.

● The entire cache containing the locked line is flash invalidated.

An implementation is not required to unlock lines if data is invalidated in the cache. Although 
the data may be invalidated (and thus not in the cache), the cache can keep the lock 
associated with that cache line present and fill the line from the memory subsystem when 
the next access occurs. If the implementation does not clear locks when the associated line 
is invalidated, the method of locking is said to be persistent. An implementation may choose 
to implement locks as persistent or not persistent; the preferred method is persistent.

         

Table 114. Cache locking APU instructions

Name Mnemonic Syntax Description

Data Cache Block Lock 
Clear dcblc CT,rA,rB 

Treated as a load with respect to any memory 
barriers, synchronization, translation and 
protection, and debug address comparisons. 

Data Cache Block Touch and 
Lock Set dcbtls CT,rA,rB 

Treated as a load with respect to any memory 
barriers, synchronization, translation and 
protection, and debug address comparisons.



Instruction model RM0004

201/1176  

The cache-locking APU defines a flash clear for all data cache lock bits (using 
L1CSR0[CLFR]) and in the instruction cache (using L1CSR1[ICLFR]). This allows system 
software to clear all data cache locking bits without knowing the addresses of the lines 
locked.

3.6.5 Machine check APU 

The machine check APU defines a separate interrupt type for machine check interrupts. It 
provides additional save and restore SPRs (MCSRR and MCSRR1). The Return from 
Machine Check Interrupt instruction (rfmci), is described in Table 115.

         

3.6.6 VLE extension

This section lists instructions defined or supported by the VLE extension. Unless otherwise 
noted, instructions that are not prefixed with e_ or se_ have identical encodings and 
semantics as in Book E or in the EIS. Book E–defined instructions listed in the tables in this 
section can be executed when the processor is in VLE mode; Book E instructions not listed 
cannot. 

A complete list of supported instructions is provided in Instruction listings on page 217.”

Processor control instructions

This section lists processor control instructions that can be executed when a processor is in 
VLE mode. These instructions are grouped as follows:

● System linkage instructions on page 201”

● Processor control register manipulation instructions on page 202”

● Instruction synchronization instruction on page 202”

         

System linkage instructions

Data Cache Block Touch for 
Store and Lock Set

dcbtstls CT,rA,rB

It is implementation dependent whether this 
instruction is treated as a load or store with 
respect to any memory barriers, 
synchronization, translation and protection, 
and debug address comparisons.

Instruction Cache Block Lock 
Clear icblc CT,rA,rB 

Treated as a load with respect to any memory 
barriers, synchronization, translation and 
protection, and debug address comparisons.

Instruction Cache Block 
Touch and Lock Set icbtls CT,rA,rB 

Treated as a load with respect to any memory 
barriers, synchronization, translation and 
protection, and debug address comparisons.

Table 114. Cache locking APU instructions (continued)

Name Mnemonic Syntax Description

Table 115. Machine check APU instruction

Name Mnemonic Syntax Implementation notes

Return from machine check 
interrupt

rfmci — Restores MCSRR0 and MCSRR1 values; 
context-synchronizing.
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The se_sc, se_rfi, se_rfci, and se_rfdi system linkage instructions, shown in Table 116, 
enable a program to call on the system to perform a service (that is, invoke a system call 
interrupt), and enable the system to return from performing a service or from processing an 
interrupt. 

         

         

Processor control register manipulation instructions

In addition to the Book E processor control register manipulation instructions, the VLE 
extension provides 16-bit forms of instructions to move to/from the LR and CTR, listed in 
Table 117

         

Instruction synchronization instruction

Table 118 lists the VLE-defined se_isync instruction. 

         

         

Table 116. System linkage instruction set index

Mnemonic Instruction Reference

se_sc System Call Page -954

se_rfci` Return from critical interrupt Page -949

se_rfdi Return from debug interrupt Page -859

se_rfi Return from interrupt Page -950

Table 117. System register manipulation instruction set index

Mnemonic Instruction Reference

se_mfctr rX Move From Count Register Page -938

mfdcr rD,DCRN Move From Device Control Register Book E

se_mflr rX Move From Link Register Page -939

mfmsr rD Move From Machine State Register Book E

mfspr rD,SPRN Move From Special Purpose Register Book E

se_mtctr rX Move To Count Register Page -942

mtdcr DCRN,rS Move To Device Control Register Book E

se_mtlr rX Move To Link Register Page -943

mtmsr rS Move To Machine State Register Book E

mtspr SPRN,rS Move To Special Purpose Register Book E

wrtee rA Write MSR External Enable Book E

wrteei E Write MSR External Enable Immediate Book E

Table 118. Instruction Synchronization Instruction Set Index

Mnemonic Instruction Reference

se_isync Instruction Synchronize Page -929



Instruction model RM0004

203/1176  

Branch operation instructions

This section lists branch instructions that can be executed when a processor is in VLE 
mode. It also describes the registers that support them. 

         

Registers for branch operations

The sections listed in the following describe the registers that support branch operations:

● Chapter 2.5.1: Condition register (CR) on page 61”

● Chapter 2.5.2: Link register (LR) on page 66”

● Chapter 2.5.3: Count register (CTR) on page 67”

         

Branch instructions

The sequence of instruction execution can be changed by the branch instructions. Because 
VLE instructions must be aligned on half-word boundaries, the low-order bit of the 
generated branch target address is forced to 0 by the processor in performing the branch.

The branch instructions compute the EA of the target in one of the following ways, as 
described in Chapter 10.2: Instruction memory addressing modes on page 854.”

1. Adding a displacement to the address of the branch instruction.

2. Using the address contained in the LR (Branch to Link Register [and Link]).

3. Using the address contained in the CTR (Branch to Count Register [and Link]).

Branching can be conditional or unconditional, and the return address can optionally be 
provided. If the return address is to be provided (LK = 1), the EA of the instruction following 
the branch instruction is placed into the LR after the branch target address has been 
computed: this is done whether or not the branch is taken.

In branch conditional instructions, the BI32 or BI16 instruction field specifies the CR bit to be 
tested. For 32-bit instructions using BI32, CR[32–47] (corresponding to bits in CR0–CR3) 
may be specified. For 16-bit instructions using BI16, only CR[32–35] (bits within CR0) may 
be specified. 

In branch conditional instructions, the BO32 or BO16 field specifies the conditions under 
which the branch is taken and how the branch is affected by or affects the CR and CTR. 
Note that VLE instructions also have different encodings for the BO32 and BO16 fields than 
in Book E’s BO field. 

If the BO32 field specifies that the CTR is to be decremented, CTR[32–63] are 
decremented. If BO[16,32] specifies a condition that must be TRUE or FALSE, that 
condition is obtained from the contents of CR[BI+32]. (Note that CR bits are numbered 32–
63. BI refers to the BI field in the branch instruction encoding. For example, specifying BI = 2 
refers to CR[34].)

Encodings for the BO32 field for the VLE extension are shown in Table 120.

         

Table 119. VLE extension BO32 encodings

BO32 Description

00 Branch if the condition is FALSE.

01 Branch if the condition is TRUE.
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The encoding for the BO16 field for the VLE extension is shown in Table 120.

         

The various branch instructions supported by the VLE extension are shown in Table 121. 

         

Condition register instructions

Condition register instructions are provided to transfer values to/from various portions of the 
CR. The VLE extension does not introduce any additional functionality beyond that defined 
in Book E for CR operations, but does remap the CR-logical and mcrf instruction 
functionality into major opcode 31. These instructions operate identically to the Book E 
instructions, but are encoded differently. Table 122 lists condition register instructions 
supported in VLE mode. 

         

10 Decrement CTR[32–63], then branch if the decremented CTR[32–63]≠0.

11 Decrement CTR[32–63], then branch if the decremented CTR[32–63] = 0.

Table 120. VLE extension BO16 encodings

BO16 Description

0 Branch if the condition is FALSE.

1 Branch if the condition is TRUE.

Table 121. Branch instruction set index

Mnemonic Instruction Reference

e_b BD24

e_bl BD24

Branch

Branch & Link
Page -903

se_b BD8

se_bl BD8

Branch

Branch & Link
Page -903

e_bc BO32,BI32,BD15

se_bc BO16,BI16,BD8

e_bcl BO32,BI32,BD15

Branch Conditional

Branch Conditional

Branch Conditional & Link

Page -904

se_bctr 
se_bctrl 

Branch to Count Register

Branch to Count Register & Link
Page -906

se_blr 
se_blrl 

Branch to Link Register

Branch to Link Register & Link
Page -908

Table 122. Condition register instruction set index

Mnemonic Instruction Reference

e_crand crbD,crbA,crbB Condition Register AND Page -920

e_crandc crbD,crbA,crbB Condition Register AND with Complement Page -920

e_creqv crbD,crbA,crbB Condition Register Equivalent Page -920

e_crnand crbD,crbA,crbB Condition Register NAND Page -921

e_crnor crbD,crbA,crbB Condition Register NOR Page -922

Table 119. VLE extension BO32 encodings

BO32 Description



Instruction model RM0004

205/1176  

Integer instructions

This section lists the integer instructions supported by the VLE extension. 

         

Integer load instructions

The integer load instructions, listed in Table 123, compute the EA of the memory to be 
accessed as described in Chapter 10.1: Data memory addressing modes on page 854.”

The byte, half word, or word in memory addressed by EA is loaded into GPR(rD) or 
GPR(rZ).

The VLE extension supports both big- and little-endian byte ordering for data accesses.

Some integer load instructions have an update form in which GPR(rA) is updated with the 
EA. For these forms, if rA ≠ 0 and rA ≠ rD, the EA is placed into GPR(rA) and the memory 
element (byte, half word, word, or double word) addressed by EA is loaded into GPR(rD). If 
rA = 0 or rA = rD, the instruction form is invalid. This is the same behavior as specified for 
load with update instructions in Book E.

         

e_cror crbD,crbA,crbB Condition Register OR Page -923

e_crorc crbD,crbA,crbB Condition Register OR with Complement Page -923

e_crxor crbD,crbA,crbB Condition Register XOR Page -925

e_mcrf crD,crS Move Condition Register Field Page -936

mcrxr crD Move to Condition Register from Integer Exception 
Register

Book E

mfcr rD Move From condition register Book E

mtcrf FXM,rS Move to Condition Register Fields Book E

Table 123. Basic integer load instruction set index

Mnemonic Instruction Reference

e_lbz rD,D(rA)
e_lbzu rD,D8(rA)
se_lbz rZ,SD4(rX)

Load Byte and Zero

Load Byte and Zero with Update
Load Byte and Zero (16-bit form)

Page -930

lbzx rD,rA,rB
lbzux rD,rA,rB

Load Byte and Zero Indexed
Load Byte and Zero with Update Indexed

Book E

e_lha rD,D(rA)
e_lhau rD,D8(rA)

Load Halfword Algebraic
Load Halfword Algebraic with Update

Page -931

lhax rD,rA,rB
lhaux rD,rA,rB

Load Halfword Algebraic Indexed
Load Halfword Algebraic with Update Indexed

Book E

Table 122. Condition register instruction set index

Mnemonic Instruction Reference
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Integer load byte-reversed instructions are listed in Table 124.

         

         

The VLE-defined integer load multiple instruction is listed in Table 125.

         

         

The VLE-defined integer load and reserve instruction is listed in Table 126.

         

         

Integer store instructions

The integer store instructions compute the EA of the memory to be accessed as described 
in Chapter 10.1: Data memory addressing modes on page 854.”

The contents of GPR(rS) or GPR(rZ) are stored into the byte, half word, or word in memory 
addressed by EA.

The VLE extension supports both big- and little-endian byte ordering for data accesses.

e_lhz rD,D(rA)
e_lhzu rD,D8(rA)
se_lhz rZ,SD4(rX)

Load Halfword and Zero

Load Halfword and Zero with Update

Load Halfword and Zero (16-bit form)

Page -932

lhzx rD,rA,rB
lhzux rD,rA,rB

Load Halfword and Zero Indexed

Load Halfword and Zero with Update Indexed
Book E

e_lwz rD,D(rA)
e_lwzu rD,D8(rA)
se_lwz rZ,SD4(rX)

Load Word and Zero

Load Word and Zero with Update
Load Word and Zero (16-bit form)

Page -935

lwzx rD,rA,rB
lwzux rD,rA,rB

Load Word and Zero Indexed
Load Word and Zero with Update Indexed

Book E

Table 124. Integer load byte-reverse instruction set index

Mnemonic Instruction Reference

lhbrx rD,rA,rB Load Halfword Byte-Reverse Indexed Book E

lwbrx rD,rA,rB Load Word Byte-Reverse Indexed Book E

Table 125. Integer load multiple instruction set index

Mnemonic Instruction Reference

e_lmw rD,D8(rA) Load Multiple Word Page -934

Table 126. Integer load and reserve instruction set index

Mnemonic Instruction Reference

lwarx rD,rA,rB Load Word And Reserve Indexed Book E

Table 123. Basic integer load instruction set index

Mnemonic Instruction Reference
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Some integer store instructions have an update form, in which GPR(rA) is updated with the 
EA. For these forms, the following rules (from Book E) apply.

● If rA ≠ 0, the EA is placed into GPR(rA).

● If rS = rA, the contents of GPR(rS) are copied to the target memory element and then 
EA is placed into GPR(rA).

The basic integer store instructions are listed in Table 127.

         

         

The integer store byte-reverse instructions are listed in Table 128.

         

         

The integer store multiple instruction is listed in Table 129.

         

         

The integer store conditional instruction is listed in Table 130.

         

Table 127. Basic integer store instruction set index

Mnemonic Instruction Reference

e_stb rS,D(rA)
e_stbu rS,D8(rA)
se_stb rZ,SD4(rX)

Store Byte

Store Byte with Update

Store Byte (16-bit form)

Page -958

stbx rS,rA,rB
stbux rS,rA,rB

Store Byte Indexed

Store Byte with Update Indexed
Book E

e_sth rS,D(rA)
e_sthu rS,D8(rA)
se_sth rZ,SD4(rX)

Store Halfword

Store Halfword with Update

Store Halfword (16-bit form)

Page -959

sthx rS,rA,rB
sthux rS,rA,rB

Store Halfword Indexed

Store Halfword with Update Indexed
Book E

e_stw rS,D(rA)
e_stwu rS,D8(rA)
se_stw rZ,SD4(rX)

Store Word

Store Word with Update
Store Word (16-bit form)

Page -961

stwx rS,rA,rB
stwux rS,rA,rB

Store Word Indexed
Store Word with Update Indexed

Book E

Table 128. Integer store byte-reverse instruction set index

Mnemonic Instruction Reference

sthbrx rS,rA,rB Store Halfword Byte-Reverse Indexed Book E

stwbrx rS,rA,rB Store Word Byte-Reverse Indexed Book E

Table 129. Integer store multiple instruction set index

Mnemonic Instruction Reference

e_stmw rS,D8(rA) Store Multiple Word Page -960

Table 130. Integer store conditional instruction set index

Mnemonic Instruction Reference

stwcx. rS,rA,rB Store Word Conditional Indexed Book E
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Integer arithmetic instructions

The integer arithmetic instructions use the contents of the GPRs as source operands, and 
place results into GPRs, into status bits in the XER and into CR0.

The integer arithmetic instructions treat source operands as signed, two’s complement 
integers unless the instruction is explicitly identified as performing an unsigned operation.

The e_add2i. instruction and the OIM5-form instruction, se_subi., set the first three bits of 
CR0 to characterize bits 32–63 of the result. These bits are set by signed comparison of bits 
32–63 of the result to zero.

e_addic[.] and e_subfic[.] always set CA to reflect the carry out of bit 32.

The integer arithmetic instructions are listed in Table 131.

         

Table 131. Integer arithmetic instruction set index

Mnemonic Instruction Reference

add rD,rA,rB
add. rD,rA,rB
addo rD,rA,rB
addo. rD,rA,rB

Add

Book E

se_add rX,rY Add Page -897

addc rD,rA,rB
addc. rD,rA,rB
addco rD,rA,rB
addco. rD,rA,rB 

Add Carrying

Book E

adde rD,rA,rB
adde. rD,rA,rB
addeo rD,rA,rB
addeo. rD,rA,rB

Add Extended

Book E

e_addi rD,rA,SCI8

e_addi. rD,rA,SCI8
e_add16i rD,rA,SI
e_add2i. rD,SI
se_addi rX,OIMM

Add Immediate

Page -898

e_addic rD,rA,SCI8
e_addic. rD,rA,SCI8

Add Immediate Carrying
Page -900

e_add2is rD,SI Add Immediate Shifted Page -898

divw rD,rA,rB
divw. rD,rA,rB
divwo rD,rA,rB
divwo. rD,rA,rB

Divide Word

Book E

divwu rD,rA,rB
divwu. rD,rA,rB
divwuo rD,rA,rB
divwuo. rD,rA,rB

Divide Word Unsigned

Book E



Instruction model RM0004

209/1176  

         

Integer logical and move instructions

Logical instructions perform bit-parallel operations on 32-bit operands or move register or 
immediate values into registers. The move instructions move values into a GP from either 
another GPR, or an immediate value.

The X-form logical instructions with Rc = 1 and the SCI8-form logical instructions with 
Rc = 1 set the first three bits of CR field 0 as described in Integer arithmetic instructions on 
page 208.” The logical instructions do not change XER[SO,OV,CA].

The integer logical instructions are listed in Table 132.

         

mulhw rD,rA,rB
mulhw. rD,rA,rB

Multiply High Word
Book E

mulhwu rD,rA,rB
mulhwu. rD,rA,rB

Multiply High Word Unsigned
Book E

e_mulli rD,rA,SCI8

e_mull2i rD,SI

Multiply Low Immediate
Page -944

mullw rD,rA,rB
mullw. rD,rA,rB
mullwo rD,rA,rB
mullwo. rD,rA,rB

Multiply Low Word

Book E

se_mullw rX,rY Multiply Low Word Page -945

neg rD,rA
se_neg rX
neg. rD,rA
nego rD,rA
nego. rD,rA

Negate

Page -946

se_sub rX,rY Subtract Page -962

subf rD,rA,rB
subf. rD,rA,rB
subfo rD,rA,rB
subfo. rD,rA,rB

Subtract From

Book E

se_subf rX,rY Subtract From Page -963

subfc rD,rA,rB
subfc. rD,rA,rB
subfco rD,rA,rB
subfco. rD,rA,rB

Subtract From Carrying

Book E

e_subfic rD,rA,SCI8

e_subfic. rD,rA,SCI8

Subtract From Immediate Carrying
Page -964

se_subi rX,OIMM

se_subi. rX,OIMM

Subtract Immediate
Page -965

Table 131. Integer arithmetic instruction set index (continued)

Mnemonic Instruction Reference
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Table 132. Integer logical instruction set index

Mnemonic Instruction Reference

and[.] rA,rS,rB
se_and[.] rX,rY

AND
Page -901

andc[.] rA,rS,rB
se_andc rX,rY

AND with Complement
Page -901

e_andi[.] rA,rS,SCI8
se_andi rX,UI5
e_and2i. rD,UI

AND Immediate
Page -901

e_and2is. rD,UI AND Immediate Shifted Page -901

se_bclri rX,UI5 Bit Clear Page -905

se_bgeni rX,UI5 Bit Generate Page -907

se_bmski rX,UI5 Bit Mask Generate Page -909

se_bseti rX,UI5 Bit Set Page -910

cntlzw rA,rS
cntlzw. rA,rS

Count Leading Zeros Word
Book E

eqv rA,rS,rB
eqv. rA,rS,rB

Equivalent
Book E

extsb rA,rS
extsb. rA,rS
se_extsb rX

Extend Sign Byte

Page -926

extsh rA,rS
extsh. rA,rS
se_extsh rX

Extend Sign Halfword
Page -926

se_extzb rX Extend with Zeros Byte Page -927

se_extzh rX Extend with Zeros Halfword Page -927

e_li rD,LI20

se_li rX,UI7

Load Immediate
Page -933

e_lis rD,UI Load Immediate Shifted Page -933

se_mfar rX,arY Move from Alternate Register Page -937

se_mr rX,rY Move Register Page -940

se_mtar arX,rY Move to Alternate Register Page -941

nand rA,rS,rB
nand. rA,rS,rB

NAND
Book E

nor rA,rS,rB
nor. rA,rS,rB

NOR
Book E

or rA,rS,rB
or. rA,rS,rB
se_or rX,rY

OR

Page -948

se_not rX NOT Page -947
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Integer compare and bit test instructions

The integer compare instructions compare the contents of GPR(rA) with one of the 
following:

● The value of the SCI8 field

● The zero-extended value of the UI field

● The zero-extended value of the UI5 field

● The sign-extended value of the SI field

● The contents of GPR(rB) or GPR(rY). 

The following comparisons are signed: e_cmph, e_cmpi, e_cmp16i, e_cmph16i, se_cmp, 
se_cmph, and se_cmpi. 

The following comparisons are unsigned: e_cmphl, e_cmpli, e_cmphl16i, e_cmpl16i, 
se_cmpli, se_cmpl, and se_cmphl.

When operands are treated as 32-bit signed quantities, GPRn[32] is the sign bit. When 
operands are treated as 16-bit signed quantities, GPRn[48] is the sign bit.

For 32-bit implementations, the L field must be zero.

Compare instructions set one of the left-most three bits of the designated CR field and 
clears the other two. XER[SO] is copied to bit 3 of the designated CR field. 

The CR field is set as shown in Table 133.

         

         

The integer bit test instruction tests the bit specified by the UI5 instruction field and sets the 
CR0 field as shown in Table 134.

orc rA,rS,rB
orc. rA,rS,rB

OR with Complement
Book E

e_ori[.] rA,rS,SCI8
e_or2i rD,UI

OR Immediate
Page -966

e_or2is rD,UI OR Immediate Shifted Page -966

xor rA,rS,rB
xor. rA,rS,rB

XOR
Book E

e_xori[.] rA,rS,SCI8 XOR Immediate Page -966

Table 133. CR settings for compare instructions

Bit Name Description

0 LT (rA or rX) < SCI8, SI, UI5, or GPR(rB or rY) (signed comparison)
(rA or rX) <u SCI8, UI, UI5 or GPR(rB or rY) (unsigned comparison)

1 GT (rA or rX) > SCI8, SI, UI5, or GPR(rB or rY) (signed comparison)

(rA or rX) >u SCI8, UI, UI5 or GPR(rB or rY) (unsigned comparison)

2 EQ (rA or rX) = SCI8, SI, UI, UI5, or GPR(rB or rY)

3 SO Summary overflow from the XER

Table 132. Integer logical instruction set index (continued)

Mnemonic Instruction Reference



RM0004 Instruction model

212/1176

         

Table 135 is an index for integer compare and bit test operations. 

         

         

Integer select instruction 

The isel instruction provides a means to select one of two registers and place the result in a 
destination register under the control of a predicate value supplied by a CR bit. 

The integer select instruction is listed in Table 136.

         

         

Integer trap instructions

Trap instructions test for a specified set of conditions by comparing the contents of one GPR 
with a second GPR. If any of the conditions tested by a Trap instruction are met, a trap 

Table 134. CR settings for integer bit test instructions

Bit Name Description

0 LT Always cleared

1 GT RXui5 == 1

2 EQ RXui5 == 0

3 SO Summary overflow from the XER

Table 135. Integer compare and bit test instruction set index

Mnemonic Instruction Reference

se_btsti rX,UI5 Bit Test Immediate Page -911

cmp crD,L,rA,rB
se_cmp rX,rY

Compare
Page -912

e_cmph crD,rA,rB
se_cmph rX,rY

Compare Halfword
Page -914

e_cmph16i rA,SI16 Compare Halfword Immediate Page -914

e_cmphl crD,rA,rB
se_cmphl rX,rY

Compare Halfword Logical
Page -916

e_cmphl16i rA,UI16 Compare Halfword Logical Immediate Page -916

e_cmpi crD,rA,SCI8
e_cmp16i rA,SI16

se_cmpi rX,UI5

Compare Immediate
Page -912

cmpl crD,L,rA,rB
se_cmpl rX,rY

Compare Logical
Page -918

e_cmpli crD,rA,SCI8

e_cmpl16i rA,UI16

se_cmpli rX,UI5

Compare Logical Immediate

Page -918

Table 136. Integer select instruction set index

Mnemonic Instruction Reference

isel rD,rA,rB,crb Integer Select EIS
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exception type program interrupt is invoked. If none of the tested conditions are met, 
instruction execution continues normally.

The contents of GPR(rA) are compared with the contents of GPR(rB). For twi and tw, only 
the contents of bits 32–63 of rA (and rB) participate in the comparison.

This comparison results in five conditions that are ANDed with TO. If the result is not 0, the 
trap exception type program interrupt is invoked. These conditions are as shown in 
Table 137.

         

         

The integer trap instruction is listed in Table 138.

         3

         

Integer rotate and shift instructions

Instructions are provided that perform shifts and rotates on data from a GPR and return the 
result, or a portion of the result, to a GPR.

The rotation operations rotate a 32-bit quantity left by a specified number of bit positions. 
Bits that exit from position 32 enter at position 63.

The rotate32 operation is used to rotate a given 32-bit quantity.

Some rotate and shift instructions employ a mask generator. The mask is 32 bits long, and 
consists of 1 bits from a start bit, mstart, through and including a stop bit, mstop, and 0-bits 
elsewhere. The values of mstart and mstop range from 32 to 63. If mstart > mstop, the 1 bits 
wrap around from position 63 to position 0. Thus the mask is formed as follows:

    if mstart ≤ mstop then

       maskmstart:mstop   = ones

       maskall other bits = zeros

    else

       maskmstart:63      = ones

       mask32:mstop        = ones

       maskall other bits = zeros

There is no way to specify an all-zero mask.

Table 137. Integer trap conditions

TO Bit ANDed with condition

0 Less Than, using signed comparison

1 Greater Than, using signed comparison

2 Equal

3 Less Than, using unsigned comparison

4 Greater Than, using unsigned comparison

Table 138. Integer trap instruction set index

Mnemonic Instruction Reference

tw TO,rA,rB Trap Word Book E
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For instructions that use the rotate32 operation, the mask start and stop positions are always 
in bits 32–63 of the mask.

The use of the mask is described in following sections.

The rotate word and shift word instructions with Rc = 1 set the first three bits of CR field 0 as 
described in Book E. Rotate and shift instructions do not change the OV and SO bits. Rotate 
and shift instructions, except algebraic right shifts, do not change the CA bit.

The instructions in Table 139 rotate the contents of a register. Depending on the instruction 
type, the amount of the rotation is either specified as an immediate, or contained in a GPR.

         

The instructions in Table 140 rotate the contents of a register. Depending on the instruction 
type, the result of the rotation is either inserted into the target register under control of a 
mask (if a mask bit is 1, the associated bit of the rotated data is placed into the target 
register; if a mask bit is 0, the associated bit in the target register remains unchanged) or 
ANDed with a mask before being placed into the target register.

The rotate left instructions allow right-rotation of the contents of a register to be performed 
(in concept) by a left-rotation of 32-n, where n is the number of bits by which to rotate right. 
They allow right-rotation of the contents of bits 32–63 of a register to be performed (in 
concept) by a left-rotation of 32-n, where n is the number of bits by which to rotate right.

         

         

The integer shift instructions are listed in Table 141.

         

Table 139. Integer rotate instruction set index

Mnemonic Instruction Reference

e_rlw rA,rS,rB Rotate Left Word Page -951

e_rlwi rA,rS,SH Rotate Left Word Immediate Page -951

Table 140. Integer rotate with mask instruction set index

Mnemonic Instruction Reference

e_rlwimi rA,rS,SH,MB,ME Rotate Left Word Immediate then Mask Insert Page -952

e_rlwinm rA,rS,SH,MB,ME Rotate Left Word Immediate then AND with Mask Page -953

Table 141. Integer shift instruction set index

Mnemonic Instruction Reference

slw rA,rS,rB
slw. rA,rS,rB
se_slw rX,rY

Shift Left Word
Page -955

e_slwi rA,rS,SH

se_slwi rX,UI5

Shift Left Word Immediate
Page -955

sraw rA,rS,rB
sraw. rA,rS,rB
se_sraw rX,rY

Shift Right Algebraic Word

Page -956

srawi rA,rS,SH

srawi. rA,rS,SH
se_srawi rX,UI5

Shift Right Algebraic Word Immediate

Page -956
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srw rA,rS,rB
srw. rA,rS,rB
se_srw rX,rY

Shift Right Word

Page -957

e_srwi rA,rS,SH

se_srwi rX,UI5

Shift Right Word Immediate
Page -957

Table 141. Integer shift instruction set index

Mnemonic Instruction Reference
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Storage control instructions

This section lists storage control instructions, which include the following:

Storage synchronization instructions on page 216”

Cache management instructions on page 216”

TLb management instructions on page 216”

         

Storage synchronization instructions

The memory synchronization instructions implemented by the VLE extension are identical to 
those defined in Book E. 

The storage synchronization instructions are listed in Table 142.

         

Cache management instructions

Cache management instructions implemented by the VLE extension are identical to those 
defined in Book E.

The cache management instructions are listed in Table 143.

         

TLb management instructions

The TLB management instructions implemented by the VLE extension are identical to those 
defined in Book E and in the EIS. The TLB management instructions are listed in Table 144.

         

Table 142. Storage synchronization instruction set index

Mnemonic Instruction Reference

mbar Memory Barrier Book E

msync Memory Synchronize Book E

Table 143. Cache management instruction set index

Mnemonic Instruction Reference

dcba rA,rB Data Cache Block Allocate Book E

dcbf rA,rB Data Cache Block Flush Book E

dcbi rA,rB Data Cache Block Invalidate Book E

dcbst rA,rB Data Cache Block Store Book E

dcbt CT,rA,rB Data Cache Block Touch Book E

dcbtst CT,rA,rB Data Cache Block Touch for Store Book E

dcbz rA,rB Data Cache Block set to Zero Book E

icbi rA,rB Instruction Cache Block Invalidate Book E

icbt CT,rA,rB Instruction Cache Block Touch Book E



Instruction model RM0004

217/1176  

VLE instruction alignment and byte ordering

An instruction fetched from memory must be placed in the pipeline with its bytes in the 
proper order. Otherwise, the instruction decoder cannot recognize it. Book E allows 
instructions to be placed into memory marked as either big- or little-endian. This is 
manageable because Book E instructions are always word-size aligned on word 
boundaries. The VLE extension includes both half-word– and word-length instructions are 
aligned on half-word boundaries. Because of this, only big-endian instruction memory is 
supported when executing from a page of VLE instructions. Attempts to execute VLE 
instructions from a page marked as little-endian generate an instruction storage interrupt 
byte-ordering exception.

Instruction listings

This section lists instructions either defined or supported by the VLE extension. 

Table 145 lists instructions by instruction name. 

         

Table 144. TLB management instruction set index

Mnemonic Instruction Reference

tlbivax rA,rB TLB Invalidate Virtual Address Indexed Book E

tlbre TLB Read Entry Book E

tlbsx rA,rB TLB Search Indexed Book E

tlbsync TLB Synchronize Book E

tlbwe TLB Write Entry Book E

Table 145. Instructions listed by name

Instruction Mnemonic Reference

Add add rD,rA,rB
add. rD,rA,rB
addo rD,rA,rB
addo. rD,rA,rB

Book E

Add Carrying addc rD,rA,rB
addc. rD,rA,rB
addco rD,rA,rB
addco. rD,rA,rB 

Book E

Add Extended adde rD,rA,rB
adde. rD,rA,rB
addeo rD,rA,rB
addeo. rD,rA,rB

Book E

AND with Complement andc[.] rA,rS,rB
se_andc rX,rY

Book E

Page -901

AND and[.] rA,rS,rB
se_and[.] rX,rY

Book E

Page -901

Compare cmp crD,L,rA,rB
se_cmp rX,rY

Book E

Page -912



RM0004 Instruction model

218/1176

Compare Logical cmpl crD,L,rA,rB
se_cmpl rX,rY

Book E

Page -918

Count Leading Zeros Word cntlzw rA,rS
cntlzw. rA,rS

Book E

Data Cache Block Allocate dcba rA,rB Book E

Data Cache Block Flush dcbf rA,rB Book E

Data Cache Block Invalidate dcbi rA,rB Book E

Data Cache Block Store dcbst rA,rB Book E

Data Cache Block Touch dcbt CT,rA,rB Book E

Data Cache Block Touch for Store dcbtst CT,rA,rB Book E

Data Cache Block set to Zero dcbz rA,rB Book E

Divide Word divw rD,rA,rB
divw. rD,rA,rB
divwo rD,rA,rB
divwo. rD,rA,rB

Book E

Divide Word Unsigned divwu rD,rA,rB
divwu. rD,rA,rB
divwuo rD,rA,rB
divwuo. rD,rA,rB

Book E

Equivalent eqv rA,rS,rB
eqv. rA,rS,rB

Book E

Extend Sign Byte extsb rA,rS
extsb. rA,rS
se_extsb rX

Book E
Book E

Page -926

Extend Sign Halfword extsh rA,rS
extsh. rA,rS
se_extsh rX

Book E

Book E

Page -926

Add Immediate Shifted e_add2is rD,SI Page -897

Add Immediate e_addi rD,rA,SCI8

e_addi. rD,rA,SCI8

e_add16i rD,rA,SI
e_add2i. rD,SI

se_addi rX,OIMM

Page -897

Add Immediate Carrying e_addic rD,rA,SCI8

e_addic. rD,rA,SCI8
Page -900

AND Immediate Shifted e_and2is. rD,UI Page -901

AND Immediate e_andi[.] rA,rS,SCI8

se_andi rX,UI5
e_and2i. rD,UI

Page -901

Table 145. Instructions listed by name (continued)

Instruction Mnemonic Reference
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Branch Conditional

Branch Conditional

Branch Conditional & Link

e_bc BO32,BI32,BD15

se_bc BO16,BI16,BD8

e_bcl BO32,BI32,BD15

Page -904

Branch

Branch & Link

e_b BD24

e_bl BD24
Page -903

Compare Halfword e_cmph crD,rA,rB
se_cmph rX,rY

Page -914

Compare Halfword Immediate e_cmph16i rA,SI16 Page -914

Compare Halfword Logical e_cmphl crD,rA,rB
se_cmphl rX,rY

Page -916

Compare Halfword Logical Immediate e_cmphl16i rA,UI16 Page -916

Compare Immediate e_cmpi crD,rA,SCI8

e_cmp16i rA,SI16

se_cmpi rX,UI5

Page -912

Compare Logical Immediate e_cmpli crD,rA,SCI8

e_cmpl16i rA,UI16
se_cmpli rX,UI5

Page -918

Condition Register AND e_crand crbD,crbA,crbB Page -920

Condition Register AND with Complement e_crandc crbD,crbA,crbB Page -920

Condition Register Equivalent e_creqv crbD,crbA,crbB Page -920

Condition Register NAND e_crnand crbD,crbA,crbB Page -921

Condition Register NOR e_crnor crbD,crbA,crbB Page -922

Condition Register OR e_cror crbD,crbA,crbB Page -923

Condition Register OR with Complement e_crorc crbD,crbA,crbB Page -924

Condition Register XOR e_crxor crbD,crbA,crbB Page -925

Load Byte and Zero

Load Byte and Zero with Update

Load Byte and Zero (16-bit form)

e_lbz rD,D(rA)
e_lbzu rD,D8(rA)
se_lbz rZ,SD4(rX)

Page -930

Load Halfword Algebraic

Load Halfword Algebraic with Update

e_lha rD,D(rA)
e_lhau rD,D8(rA)

Page -931

Load Halfword and Zero

Load Halfword and Zero with Update
Load Halfword and Zero (16-bit form)

e_lhz rD,D(rA)
e_lhzu rD,D8(rA)
se_lhz rZ,SD4(rX)

Page -932

Load Immediate e_li rD,LI20
se_li rX,UI7

Page -933

Load Immediate Shifted e_lis rD,UI Page -933

Load Multiple Word e_lmw rD,D8(rA) Page -934

Table 145. Instructions listed by name (continued)

Instruction Mnemonic Reference
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Load Word and Zero

Load Word and Zero with Update

Load Word and Zero (16-bit form)

e_lwz rD,D(rA)
e_lwzu rD,D8(rA)
se_lwz rZ,SD4(rX)

Page -935

Move Condition Register Field e_mcrf crD,crS Page -936

Multiply Low Immediate e_mulli rD,rA,SCI8

e_mull2i rD,SI
Page -944

OR Immediate Shifted e_or2is rD,UI Page -948

OR Immediate e_ori[.] rA,rS,SCI8
e_or2i rD,UI

Page -948

Rotate Left Word e_rlw rA,rS,rB Page -951

Rotate Left Word Immediate e_rlwi rA,rS,SH Page -951

Rotate Left Word Immediate then Mask Insert e_rlwimi rA,rS,SH,MB,ME Page -952

Rotate Left Word Immediate then AND with Mask e_rlwinm rA,rS,SH,MB,ME Page -953

Shift Left Word Immediate e_slwi rA,rS,SH

se_slwi rX,UI5
Page -955

Shift Right Word Immediate e_srwi rA,rS,SH

se_srwi rX,UI5
Page -957

Store Byte

Store Byte with Update
Store Byte (16-bit form)

e_stb rS,D(rA)
e_stbu rS,D8(rA)
se_stb rZ,SD4(rX)

Page -958

Store Halfword
Store Halfword with Update

Store Halfword (16-bit form)

e_sth rS,D(rA)
e_sthu rS,D8(rA)
se_sth rZ,SD4(rX)

Page -959

Store Multiple Word e_stmw rS,D8(rA) Page -960

Store Word
Store Word with Update

Store Word (16-bit form)

e_stw rS,D(rA)
e_stwu rS,D8(rA)
se_stw rZ,SD4(rX)

Page -961

Subtract From Immediate Carrying e_subfic rD,rA,SCI8

e_subfic. rD,rA,SCI8
Page -964

XOR Immediate e_xori[.] rA,rS,SCI8 Page -966

Instruction Cache Block Invalidate icbi rA,rB Book E

Instruction Cache Block Touch icbt CT,rA,rB Book E

Integer Select isel rD,rA,rB,crb EIS

Load Byte and Zero Indexed
Load Byte and Zero with Update Indexed

lbzx rD,rA,rB
lbzux rD,rA,rB

Book E

Load Halfword Algebraic Indexed
Load Halfword Algebraic with Update Indexed

lhax rD,rA,rB
lhaux rD,rA,rB

Book E

Load Halfword Byte-Reverse Indexed lhbrx rD,rA,rB Book E

Table 145. Instructions listed by name (continued)

Instruction Mnemonic Reference
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Load Halfword and Zero Indexed

Load Halfword and Zero with Update Indexed

lhzx rD,rA,rB
lhzux rD,rA,rB

Book E

Load Word And Reserve Indexed lwarx rD,rA,rB Book E

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB Book E

Load Word and Zero Indexed

Load Word and Zero with Update Indexed

lwzx rD,rA,rB
lwzux rD,rA,rB

Book E

Memory Barrier mbar Book E

Move to Condition Register from Integer Exception 
Register

mcrxr crD
Book E

Move From condition register mfcr rD Book E

Move From Device Control Register mfdcr rD,DCRN Book E

Move From Machine State Register mfmsr rD Book E

Move From Special Purpose Register mfspr rD,SPRN Book E

Memory Synchronize msync Book E

Move to Condition Register Fields mtcrf FXM,rS Book E

Move To Device Control Register mtdcr DCRN,rS Book E

Move To Machine State Register mtmsr rS Book E

Move To Special Purpose Register mtspr SPRN,rS Book E

Multiply High Word mulhw rD,rA,rB
mulhw. rD,rA,rB

Book E

Multiply High Word Unsigned mulhwu rD,rA,rB
mulhwu. rD,rA,rB

Book E

Multiply Low Word mullw rD,rA,rB
mullw. rD,rA,rB
mullwo rD,rA,rB
mullwo. rD,rA,rB

Book E

NAND nand rA,rS,rB
nand. rA,rS,rB

Book E

Negate neg rD,rA
se_neg rX
neg. rD,rA
nego rD,rA
nego. rD,rA

Book E
Page -946

Book E

Book E
Book E

NOR nor rA,rS,rB
nor. rA,rS,rB

Book E

OR or rA,rS,rB
or. rA,rS,rB
se_or rX,rY

Book E
Book E

Page -948

Table 145. Instructions listed by name (continued)
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OR with Complement orc rA,rS,rB
orc. rA,rS,rB

Book E

Add se_add rX,rY Page -897

Bit Clear se_bclri rX,UI5 Page -905

Branch to Count Register

Branch to Count Register & Link

se_bctr 
se_bctrl 

Page -906

Bit Generate se_bgeni rX,UI5 Page -907

Branch to Link Register

Branch to Link Register & Link

se_blr 
se_blrl 

Page -908

Bit Mask Generate se_bmski rX,UI5 Page -909

Bit Set se_bseti rX,UI5 Page -910

Branch

Branch & Link

se_b BD8

se_bl BD8
Page -903

Bit Test Immediate se_btsti rX,UI5 Page -911

Extend with Zeros Byte se_extzb rX Page -927

Extend with Zeros Halfword se_extzh rX Page -927

Instruction Synchronize se_isync Page -929

Move from Alternate Register se_mfar rX,arY Page -937

Move From Count Register se_mfctr rX Page -938

Move From Link Register se_mflr rX Page -939

Move Register se_mr rX,rY Page -940

Move to Alternate Register se_mtar arX,rY Page -941

Move To Count Register se_mtctr rX Page -942

Move To Link Register se_mtlr rX Page -943

Multiply Low Word se_mullw rX,rY Page -945

NOT se_not rX Page -947

Subtract se_sub rX,rY Page -962

Subtract From se_subf rX,rY Page -963

Subtract Immediate se_subi rX,OIMM

se_subi. rX,OIMM
Page -965

Shift Left Word slw rA,rS,rB
slw. rA,rS,rB
se_slw rX,rY

Book E

Book E

Page -955

Shift Right Algebraic Word sraw rA,rS,rB
sraw. rA,rS,rB
se_sraw rX,rY

Book E

Book E
Page -956

Table 145. Instructions listed by name (continued)

Instruction Mnemonic Reference



Instruction model RM0004

223/1176  

Table 145 lists instructions that can be executed in VLE mode by mnemonic. 

         

Shift Right Algebraic Word Immediate srawi rA,rS,SH

srawi. rA,rS,SH

se_srawi rX,UI5

Book E

Book E

Page -956

Shift Right Word srw rA,rS,rB
srw. rA,rS,rB
se_srw rX,rY

Book E

Book E
Page -957

Store Byte Indexed
Store Byte with Update Indexed

stbx rS,rA,rB
stbux rS,rA,rB

Book E

Store Halfword Byte-Reverse Indexed sthbrx rS,rA,rB Book E

Store Halfword Indexed

Store Halfword with Update Indexed

sthx rS,rA,rB
sthux rS,rA,rB

Book E

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB Book E

Store Word Conditional Indexed stwcx. rS,rA,rB Book E

Store Word Indexed

Store Word with Update Indexed

stwx rS,rA,rB
stwux rS,rA,rB

Book E

Subtract From subf rD,rA,rB
subf. rD,rA,rB
subfo rD,rA,rB
subfo. rD,rA,rB

Book E

Subtract From Carrying subfc rD,rA,rB
subfc. rD,rA,rB
subfco rD,rA,rB
subfco. rD,rA,rB

Book E

TLB Invalidate Virtual Address Indexed tlbivax rA,rB Book E

TLB Read Entry tlbre Book E

TLB Search Indexed tlbsx rA,rB Book E

TLB Synchronize tlbsync Book E

TLB Write Entry tlbwe Book E

Trap Word tw TO,rA,rB Book E

Write MSR External Enable wrtee rA Book E

Write MSR External Enable Immediate wrteei E Book E

XOR xor rA,rS,rB
xor. rA,rS,rB

Book E

Table 145. Instructions listed by name (continued)
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Table 146. Instructions listed by mnemonic

Mnemonic Instruction Reference

add rD,rA,rB
add. rD,rA,rB
addo rD,rA,rB
addo. rD,rA,rB

Add

Book E

addc rD,rA,rB
addc. rD,rA,rB
addco rD,rA,rB
addco. rD,rA,rB 

Add Carrying

Book E

adde rD,rA,rB
adde. rD,rA,rB
addeo rD,rA,rB
addeo. rD,rA,rB

Add Extended

Book E

andc[.] rA,rS,rB AND with Complement Book E

and[.] rA,rS,rB AND Book E

cmp crD,L,rA,rB Compare Book E

cmpl crD,L,rA,rB Compare Logical Book E

cntlzw rA,rS
cntlzw. rA,rS

Count Leading Zeros Word
Book E

dcba rA,rB Data Cache Block Allocate Book E

dcbf rA,rB Data Cache Block Flush Book E

dcbi rA,rB Data Cache Block Invalidate Book E

dcbst rA,rB Data Cache Block Store Book E

dcbt CT,rA,rB Data Cache Block Touch Book E

dcbtst CT,rA,rB Data Cache Block Touch for Store Book E

dcbz rA,rB Data Cache Block set to Zero Book E

divw rD,rA,rB
divw. rD,rA,rB
divwo rD,rA,rB
divwo. rD,rA,rB

Divide Word

Book E

divwu rD,rA,rB
divwu. rD,rA,rB
divwuo rD,rA,rB
divwuo. rD,rA,rB

Divide Word Unsigned

Book E

eqv rA,rS,rB
eqv. rA,rS,rB

Equivalent
Book E

extsb rA,rS
extsb. rA,rS

Extend Sign Byte
Book E

extsh rA,rS
extsh. rA,rS

Extend Sign Halfword
Book E
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e_add2is rD,SI Add Immediate Shifted Page -897

e_addi rD,rA,SCI8
e_addi. rD,rA,SCI8

e_add16i rD,rA,SI
e_add2i. rD,SI

Add Immediate

Page -897

e_addic rD,rA,SCI8
e_addic. rD,rA,SCI8

Add Immediate Carrying
Page -900

e_and2is. rD,UI AND Immediate Shifted Page -901

e_andi[.] rA,rS,SCI8

e_and2i. rD,UI

AND Immediate
Page -901

e_bc BO32,BI32,BD15

e_bcl BO32,BI32,BD15

Branch Conditional

Branch Conditional & Link
-904Page 

e_b BD24

e_bl BD24

Branch

Branch & Link
Page -903

e_cmph crD,rA,rB Compare Halfword Page -914

e_cmph16i rA,SI16 Compare Halfword Immediate Page -914

e_cmphl crD,rA,rB Compare Halfword Logical Page -916

e_cmphl16i rA,UI16 Compare Halfword Logical Immediate Page -916

e_cmpi crD,rA,SCI8
e_cmp16i rA,SI16

Compare Immediate
Page -912

e_cmpli crD,rA,SCI8
e_cmpl16i rA,UI16

Compare Logical Immediate
Page -918

e_crand crbD,crbA,crbB Condition Register AND Page -920

e_crandc crbD,crbA,crbB Condition Register AND with Complement Page -920

e_creqv crbD,crbA,crbB Condition Register Equivalent Page -920

e_crnand crbD,crbA,crbB Condition Register NAND Page -921

e_crnor crbD,crbA,crbB Condition Register NOR Page -922

e_cror crbD,crbA,crbB Condition Register OR Page -923

e_crorc crbD,crbA,crbB Condition Register OR with Complement Page -924

e_crxor crbD,crbA,crbB Condition Register XOR Page -925

e_lbz rD,D(rA)
e_lbzu rD,D8(rA)

Load Byte and Zero

Load Byte and Zero with Update
Page -930

e_lha rD,D(rA)
e_lhau rD,D8(rA)

Load Halfword Algebraic

Load Halfword Algebraic with Update
Page -931

e_lhz rD,D(rA)
e_lhzu rD,D8(rA)

Load Halfword and Zero

Load Halfword and Zero with Update
Page -932

e_li rD,LI20 Load Immediate Page -933

e_lis rD,UI Load Immediate Shifted Page -933

Table 146. Instructions listed by mnemonic (continued)
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e_lmw rD,D8(rA) Load Multiple Word Page -935

e_lwz rD,D(rA)
e_lwzu rD,D8(rA)

Load Word and Zero
Load Word and Zero with Update

Page -936

e_mcrf crD,crS Move Condition Register Field Page -944

e_mulli rD,rA,SCI8

e_mull2i rD,SI

Multiply Low Immediate
Page -948

e_or2is rD,UI OR Immediate Shifted Page -948

e_ori[.] rA,rS,SCI8
e_or2i rD,UI

OR Immediate
Page -951

e_rlw rA,rS,rB Rotate Left Word Page -951

e_rlwi rA,rS,SH Rotate Left Word Immediate Page -952

e_rlwimi rA,rS,SH,MB,ME Rotate Left Word Immediate then Mask Insert Page -953

e_rlwinm rA,rS,SH,MB,ME Rotate Left Word Immediate then AND with Mask Page -955

e_slwi rA,rS,SH Shift Left Word Immediate Page -935

e_srwi rA,rS,SH Shift Right Word Immediate Book E

e_stb rS,D(rA)
e_stbu rS,D8(rA)

Store Byte

Store Byte with Update
Page -958

e_sth rS,D(rA)
e_sthu rS,D8(rA)

Store Halfword

Store Halfword with Update
Page -959

e_stmw rS,D8(rA) Store Multiple Word Page -960

e_stw rS,D(rA)
e_stwu rS,D8(rA)

Store Word
Store Word with Update

Page -961

e_subfic rD,rA,SCI8
e_subfic. rD,rA,SCI8

Subtract From Immediate Carrying
Page -964

e_xori[.] rA,rS,SCI8 XOR Immediate Page -966

icbi rA,rB Instruction Cache Block Invalidate Book E

icbt CT,rA,rB Instruction Cache Block Touch Book E

isel rD,rA,rB,crb Integer Select EIS

lbzx rD,rA,rB
lbzux rD,rA,rB

Load Byte and Zero Indexed

Load Byte and Zero with Update Indexed
Book E

lhax rD,rA,rB
lhaux rD,rA,rB

Load Halfword Algebraic Indexed

Load Halfword Algebraic with Update Indexed
Book E

lhbrx rD,rA,rB Load Halfword Byte-Reverse Indexed Book E

lhzx rD,rA,rB
lhzux rD,rA,rB

Load Halfword and Zero Indexed

Load Halfword and Zero with Update Indexed
Book E

lwarx rD,rA,rB Load Word And Reserve Indexed Book E

lwbrx rD,rA,rB Load Word Byte-Reverse Indexed Book E

Table 146. Instructions listed by mnemonic (continued)
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lwzx rD,rA,rB
lwzux rD,rA,rB

Load Word and Zero Indexed

Load Word and Zero with Update Indexed
Book E

mbar Memory Barrier Book E

mcrxr crD Move to Condition Register from Integer Exception 
Register

Book E

mfcr rD Move From condition register Book E

mfdcr rD,DCRN Move From Device Control Register Book E

mfmsr rD Move From Machine State Register Book E

mfspr rD,SPRN Move From Special Purpose Register Book E

msync Memory Synchronize Book E

mtcrf FXM,rS Move to Condition Register Fields Book E

mtdcr DCRN,rS Move To Device Control Register Book E

mtmsr rS Move To Machine State Register Book E

mtspr SPRN,rS Move To Special Purpose Register Book E

mulhw rD,rA,rB
mulhw. rD,rA,rB

Multiply High Word
Book E

mulhwu rD,rA,rB
mulhwu. rD,rA,rB

Multiply High Word Unsigned
Book E

mullw rD,rA,rB
mullw. rD,rA,rB
mullwo rD,rA,rB
mullwo. rD,rA,rB

Multiply Low Word

Book E

nand rA,rS,rB
nand. rA,rS,rB

NAND
Book E

neg rD,rA
neg. rD,rA
nego rD,rA
nego. rD,rA

Negate

Book E

nor rA,rS,rB
nor. rA,rS,rB

NOR
Book E

or rA,rS,rB
or. rA,rS,rB

OR
Book E

orc rA,rS,rB
orc. rA,rS,rB

OR with Complement
Book E

se_add rX,rY Add Page -897

se_addi rX,OIMM Add Immediate Page -897

se_andc rX,rY AND with Complement Page -901

se_andi rX,UI5 AND Immediate Page -901

Table 146. Instructions listed by mnemonic (continued)
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se_and[.] rX,rY AND Page -901

se_bc BO16,BI16,BD8 Branch Conditional Page -904

se_bclri rX,UI5 Bit Clear Page -905

se_bctr 
se_bctrl 

Branch to Count Register

Branch to Count Register & Link
Page -905

se_bgeni rX,UI5 Bit Generate Page -906

se_blr 
se_blrl 

Branch to Link Register
Branch to Link Register & Link

Page -907

se_bmski rX,UI5 Bit Mask Generate Page -908

se_bseti rX,UI5 Bit Set Page -909

se_b BD8

se_bl BD8

Branch

Branch & Link
Page -910

se_btsti rX,UI5 Bit Test Immediate Page -903

se_cmp rX,rY Compare Page -912

se_cmph rX,rY Compare Halfword Page -914

se_cmphl rX,rY Compare Halfword Logical Page -916

se_cmpi rX,UI5 Compare Immediate Page -912

se_cmpl rX,rY Compare Logical Page -918

se_cmpli rX,UI5 Compare Logical Immediate Page -918

se_extsb rX Extend Sign Byte Page -926

se_extsh rX Extend Sign Halfword Page -926

se_extzb rX Extend with Zeros Byte Page -927

se_extzh rX Extend with Zeros Halfword Page -927

se_isync Instruction Synchronize Page -929

se_lbz rZ,SD4(rX) Load Byte and Zero (16-bit form) Page -930

se_lhz rZ,SD4(rX) Load Halfword and Zero (16-bit form) Page -932

se_li rX,UI7 Load Immediate Page -933

se_lwz rZ,SD4(rX) Load Word and Zero (16-bit form) Page -935

se_mfar rX,arY Move from Alternate Register Page -937

se_mfctr rX Move From Count Register Page -938

se_mflr rX Move From Link Register Page -939

se_mr rX,rY Move Register Page -940

se_mtar arX,rY Move to Alternate Register Page -941

se_mtctr rX Move To Count Register Page -942

se_mtlr rX Move To Link Register Page -943

Table 146. Instructions listed by mnemonic (continued)
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se_mullw rX,rY Multiply Low Word Page -945

se_neg rX Negate Page -946

se_not rX NOT Page -947

se_or rX,rY OR Page -948

se_slw rX,rY Shift Left Word Page -955

se_slwi rX,UI5 Shift Left Word Immediate Page -955

se_sraw rX,rY Shift Right Algebraic Word Page -956

se_srawi rX,UI5 Shift Right Algebraic Word Immediate Page -956

se_srw rX,rY Shift Right Word Page -957

se_srwi rX,UI5 Shift Right Word Immediate Page -957

se_stb rZ,SD4(rX) Store Byte (16-bit form) Page -958

se_sth rZ,SD4(rX) Store Halfword (16-bit form) Page -959

se_stw rZ,SD4(rX) Store Word (16-bit form) Page -961

se_sub rX,rY Subtract Page -962

se_subf rX,rY Subtract From Page -963

se_subi rX,OIMM
se_subi. rX,OIMM

Subtract Immediate
Page -965

slw rA,rS,rB
slw. rA,rS,rB

Shift Left Word
Book E

sraw rA,rS,rB
sraw. rA,rS,rB

Shift Right Algebraic Word
Book E

srawi rA,rS,SH
srawi. rA,rS,SH

Shift Right Algebraic Word Immediate
Book E

srw rA,rS,rB
srw. rA,rS,rB

Shift Right Word
Book E

stbx rS,rA,rB
stbux rS,rA,rB

Store Byte Indexed
Store Byte with Update Indexed

Book E

sthbrx rS,rA,rB Store Halfword Byte-Reverse Indexed Book E

sthx rS,rA,rB
sthux rS,rA,rB

Store Halfword Indexed

Store Halfword with Update Indexed
Book E

stwbrx rS,rA,rB Store Word Byte-Reverse Indexed Book E

stwcx. rS,rA,rB Store Word Conditional Indexed Book E

stwx rS,rA,rB
stwux rS,rA,rB

Store Word Indexed
Store Word with Update Indexed

Book E

Table 146. Instructions listed by mnemonic (continued)
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3.7 Instruction listing
Table 147 lists instructions defined in Book E, in the PowerPC architecture, and by the EIS. 
A check mark (√) or text in a column indicates that the instruction is defined or implemented. 
The EIS-specific instructions are indicated by the name of the APU or architectural 
extension that defines the instruction. 

         

subf rD,rA,rB
subf. rD,rA,rB
subfo rD,rA,rB
subfo. rD,rA,rB

Subtract From

Book E

subfc rD,rA,rB
subfc. rD,rA,rB
subfco rD,rA,rB
subfco. rD,rA,rB

Subtract From Carrying

Book E

tlbivax rA,rB TLB Invalidate Virtual Address Indexed Book E

tlbre TLB Read Entry Book E

tlbsx rA,rB TLB Search Indexed Book E

tlbsync TLB Synchronize Book E

tlbwe TLB Write Entry Book E

tw TO,rA,rB Trap Word Book E

wrtee rA Write MSR External Enable Book E

wrteei E Write MSR External Enable Immediate Book E

xor rA,rS,rB
xor. rA,rS,rB

XOR
Book E

Table 146. Instructions listed by mnemonic (continued)

Mnemonic Instruction Reference

Table 147. List of instructions

Mnemonic Book E Classic EIS Mnemonic Book E Classic EIS

addc[o][.] √ √ e_cmpli VLE

adde[o][.] √ √ e_crand VLE

addi √ √ e_crandc VLE

addic[.] √ √ e_creqv VLE

addis √ √ e_crnand VLE

addme[o][.] √ √ e_crnor VLE

addze[o][.] √ √ e_cror VLE

add[o].] √ √ e_crorc VLE

andc[.] √ √ e_crxor VLE

andi. √ √ e_lbz VLE
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andis. √ √ e_lbzu VLE

and[.] √ √ e_lha VLE

b √ √ e_lhau VLE

ba √ √ e_lhz VLE

bc √ √ e_lhzu VLE

bca √ √ e_li VLE

bcctr √ √ e_lis VLE

bcctrl √ √ e_lmw VLE

bcl √ √ e_lwz VLE

bcla √ √ e_lwzu VLE

bclr √ √ e_mcrf VLE

bclrl √ √ e_mull2i VLE

bl √ √ e_mulli VLE

bla √ √ e_or2i VLE

brinc 
SPE 
APU

e_or2is VLE

cmp √ √ e_ori[.] VLE

cmpi √ √ e_rlw VLE

cmpl √ √ e_rlwi VLE

cmpli √ √ e_rlwimi VLE

cntlzw[.] √ √ e_rlwinm VLE

crand √ √ e_slwi VLE

crandc √ √ e_srwi VLE

creqv √ √ e_stb VLE

crnand √ √ e_stbu VLE

crnor √ √ e_sth VLE

cror √ √ e_sthu VLE

crorc √ √ e_stmw VLE

crxor √ √ e_stw VLE

dcba √ √ e_stwu VLE

dcbf √ √ e_subfic VLE

dcbi √ √ e_subfic. VLE

dcblc
Cache 
locking

e_xori[.] VLE

dcbst √ √ fabs[.] √ √

Table 147. List of instructions (continued)
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RM0004 Instruction model

232/1176

dcbt √ √ fadds[.] √ √

dcbtls
Cache 
locking

fadd[.] √ √

dcbtst √ √ fcfid[.] √ √

dcbtstls
Cache 
locking

fcmpo √ √

dcbz √ √ fcmpu √ √

divwu[o][.] √ √ fctidz[.] √ √

divw[o][.] √ √ fctid[.] √ √

eciwx √ fctiwz[.] √ √

ecowx √ fctiw[.] √ √

efsabs 
Scalar 
SPFP

fdivs[.] √ √

efsadd 
Scalar 
SPFP

fdiv[.] √ √

efscfsf 
Scalar 
SPFP

fmadds[.] √ √

efscfsi 
Scalar 
SPFP

fmadd[.] √ √

efscfuf
Scalar 
SPFP

fmr[.] √ √

efscfui 
Scalar 
SPFP

fmsubs[.] √ √

efscmpeq 
Scalar 
SPFP

fmsub[.] √ √

efscmpgt 
Scalar 
SPFP

fmuls[.] √ √

efscmplt 
Scalar 
SPFP

fmul[.] √ √

efsctsf
Scalar 
SPFP

fnabs[.] √ √

efsctsi
Scalar 
SPFP

fneg[.] √ √

efsctsiz
Scalar 
SPFP

fnmadds[.] √ √

efsctuf
Scalar 
SPFP

fnmadd[.] √ √

efsctui
Scalar 
SPFP

fnmsubs[.] √ √

efsctuiz
Scalar 
SPFP

fnmsub[.] √ √

Table 147. List of instructions (continued)
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efsdiv 
Scalar 
SPFP

fres[.] √ √

efsmul
Scalar 
SPFP

frsp[.] √ √

efsnabs
Scalar 
SPFP

frsqrte[.] √ √

efsneg 
Scalar 
SPFP

fsel[.] √ √

efssub
Scalar 
SPFP

fsqrts[.] √ √

efststeq 
Scalar 
SPFP

fsqrt[.] √ √

efststgt 
Scalar 
SPFP

fsubs[.] √ √

efststlt 
Scalar 
SPFP

fsub[.] √ √

eieio
Now 
mbar

√ icbi √ √

eqv[.] √ √ icblc
Cache 
locking

evabs 
SPE 
APU

icbt √

evaddiw 
SPE 
APU

icbtls
Cache 
locking

evaddsmiaaw
SPE 
APU

isel
Integer 
select

evaddssiaaw
SPE 
APU

isync √ √

evaddumiaaw
SPE 
APU

lbz √ √

evaddusiaaw
SPE 
APU

lbzu √ √

evaddw 
SPE 
APU

lbzux √ √

evand
SPE 
APU

lbzx √ √

evandc 
SPE 
APU

ld √

evcmpeq 
SPE 
APU

ldarx √

evcmpgts
SPE 
APU

ldu √

Table 147. List of instructions (continued)
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evcmpgtu
SPE 
APU

ldux √

evcmplts
SPE 
APU

ldx √

evcmpltu
SPE 
APU

lfd √ √

evcntlsw 
SPE 
APU

lfdu √ √

evcntlzw 
SPE 
APU

lfdux √ √

evdivws
SPE 
APU

lfdx √ √

evdivwu
SPE 
APU

lfs √ √

eveqv
SPE 
APU

lfsu √ √

evextsb 
SPE 
APU

lfsux √ √

evextsh
SPE 
APU

lfsx √ √

evfsabs 
Vector 
SPFP

lha √ √

evfsadd 
Vector 
SPFP

lhau √ √

evfscfsf 
Vector 
SPFP

lhaux √ √

evfscfsi 
Vector 
SPFP

lhax √ √

evfscfuf
Vector 
SPFP

lhbrx √ √

evfscfui 
Vector 
SPFP

lhz √ √

evfscmpeq 
Vector 
SPFP

lhzu √ √

evfscmpgt 
Vector 
SPFP

lhzux √ √

evfscmplt 
Vector 
SPFP

lhzx √ √

evfsctsf
Vector 
SPFP

lmw √ √

evfsctsi
Vector 
SPFP

lswi √ √
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evfsctsiz
Vector 
SPFP

lswx √ √

evfsctuf
Vector 
SPFP

lwa √

evfsctui
Vector 
SPFP

lwarx √ √

evfsctuiz
Vector 
SPFP

lwaux √

evfsdiv 
Vector 
SPFP

lwax √

evfsmul
Vector 
SPFP

lwbrx √ √

evfsnabs
Vector 
SPFP

lwz √ √

evfsneg 
Vector 
SPFP

lwzu √ √

evfssub
Vector 
SPFP

lwzux √ √

evfststeq 
Vector 
SPFP

lwzx √ √

evfststgt 
Vector 
SPFP

mbar √

evfststlt 
Vector 
SPFP

mcrf √ √

evldd
SPE 
APU

mcrfs √ √

evlddx
SPE 
APU

mcrxr √ √

evldh
SPE 
APU

mfapidi √

evldhx
SPE 
APU

mfcr √ √

evldw
SPE 
APU

mfdcr √

evldwx
SPE 
APU

mffs[.] √ √

evlhhesplat
SPE 
APU

mfmsr √ √

evlhhesplatx
SPE 
APU

mfpmr
Performa

nce 
monitor
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evlhhossplat
SPE 
APU

mfspr √ √

evlhhossplatx
SPE 
APU

mfsr √

evlhhousplat
SPE 
APU

mfsrin √

evlhhousplatx
SPE 
APU

mftb √

evlwhe
SPE 
APU

msync √

evlwhex
SPE 
APU

mtcrf √ √

evlwhos
SPE 
APU

mtdcr √

evlwhosx
SPE 
APU

mtfsb0[.] √ √

evlwhou
SPE 
APU

mtfsb1[.] √ √

evlwhoux
SPE 
APU

mtfsfi[.] √ √

evlwhsplat
SPE 
APU

mtfsf[.] √ √

evlwhsplatx
SPE 
APU

mtmsr √ √

evlwwsplat
SPE 
APU

mtmsrd 64-bit only

evlwwsplatx
SPE 
APU

mtpmr
Performa

nce 
monitor

evmergehi 
SPE 
APU

mtspr √ √

evmergehilo 
SPE 
APU

mtsr √

evmergelo 
SPE 
APU

mtsrd √

evmergelohi 
SPE 
APU

mtsrdin √

evmhegsmfaa
SPE 
APU

mtsrin √

evmhegsmfan
SPE 
APU

mulhd. √
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evmhegsmiaa
SPE 
APU

mulhdu. √

evmhegsmian
SPE 
APU

mulhwu[.] √ √

evmhegumiaa
SPE 
APU

mulhw[.] √ √

evmhegumian
SPE 
APU

mulld. √

evmhesmf
SPE 
APU

mulldo. √

evmhesmfa
SPE 
APU

mulli √ √

evmhesmfaaw
SPE 
APU

mullw[o][.] √ √

evmhesmfanw
SPE 
APU

nand[.] √ √

evmhesmi
SPE 
APU

neg[o][.] √ √

evmhesmia
SPE 
APU

nor[.] √ √

evmhesmiaaw
SPE 
APU

orc[.] √ √

evmhesmianw
SPE 
APU

ori √ √

evmhessf
SPE 
APU

oris √ √

evmhessfa
SPE 
APU

or[.] √ √

evmhessfaaw
SPE 
APU

rfci √

evmhessfanw
SPE 
APU

rfi √ √

evmhessiaaw
SPE 
APU

rfid √

evmhessianw
SPE 
APU

rfmci
Machine 

check

evmheumi
SPE 
APU

rldcl. √

evmheumia
SPE 
APU

rldcr. √

evmheumiaaw
SPE 
APU

rldic. √
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evmheumianw
SPE 
APU

rldicl. √

evmheusiaaw
SPE 
APU

rldicr. √

evmheusianw
SPE 
APU

rldimi. √

evmhogsmfaa
SPE 
APU

rlwimi[.] √ √

evmhogsmfan
SPE 
APU

rlwinm[.] √ √

evmhogsmiaa
SPE 
APU

rlwnm[.] √ √

evmhogsmian
SPE 
APU

sc √ √

evmhogumiaa
SPE 
APU

se_add VLE

evmhogumian
SPE 
APU

se_addi VLE

evmhosmf
SPE 
APU

se_andc VLE

evmhosmfa
SPE 
APU

se_andi VLE

evmhosmfaaw
SPE 
APU

se_and[.] VLE

evmhosmfanw
SPE 
APU

se_b VLE

evmhosmi
SPE 
APU

se_bc VLE

evmhosmia
SPE 
APU

se_bclri VLE

evmhosmiaaw
SPE 
APU

se_bctr VLE

evmhosmianw
SPE 
APU

se_bctrl VLE

evmhossf
SPE 
APU

se_bgeni VLE

evmhossfa
SPE 
APU

se_bl VLE

evmhossfaaw
SPE 
APU

se_blr VLE

evmhossfanw
SPE 
APU

se_blrl VLE
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evmhossiaaw
SPE 
APU

se_bmski VLE

evmhossianw
SPE 
APU

se_bseti VLE

evmhoumi
SPE 
APU

se_btsti VLE

evmhoumia
SPE 
APU

se_cmp VLE

evmhoumiaaw
SPE 
APU

se_cmph VLE

evmhoumianw
SPE 
APU

se_cmphl VLE

evmhousiaaw
SPE 
APU

se_cmpi VLE

evmhousianw
SPE 
APU

se_cmpl VLE

evmra
SPE 
APU

se_cmpli VLE

evmwhsmf
SPE 
APU

se_extsb VLE

evmwhsmfa
SPE 
APU

se_extsh VLE

evmwhsmi
SPE 
APU

se_extzb VLE

evmwhsmia
SPE 
APU

se_extzh VLE

evmwhssf
SPE 
APU

se_isync VLE

evmwhssfa
SPE 
APU

se_lbz VLE

evmwhumi
SPE 
APU

se_lhz VLE

evmwhumia
SPE 
APU

se_li VLE

evmwlsmiaaw
SPE 
APU

se_lwz VLE

evmwlsmianw
SPE 
APU

se_mfar VLE

evmwlssiaaw
SPE 
APU

se_mfctr VLE

evmwlssianw
SPE 
APU

se_mflr VLE

Table 147. List of instructions (continued)

Mnemonic Book E Classic EIS Mnemonic Book E Classic EIS



RM0004 Instruction model

240/1176

evmwlumi
SPE 
APU

se_mr VLE

evmwlumia
SPE 
APU

se_mtar VLE

evmwlumiaaw
SPE 
APU

se_mtctr VLE

evmwlumianw
SPE 
APU

se_mtlr VLE

evmwlusiaaw
SPE 
APU

se_mullw VLE

evmwlusianw
SPE 
APU

se_neg VLE

evmwsmf
SPE 
APU

se_not VLE

evmwsmfa
SPE 
APU

se_or VLE

evmwsmfaa
SPE 
APU

se_slw VLE

evmwsmfan
SPE 
APU

se_slwi VLE

evmwsmi
SPE 
APU

se_sraw VLE

evmwsmia
SPE 
APU

se_srawi VLE

evmwsmiaa
SPE 
APU

se_srw VLE

evmwsmian
SPE 
APU

se_srwi VLE

evmwssf
SPE 
APU

se_stb VLE

evmwssfa
SPE 
APU

se_sth VLE

evmwssfaa
SPE 
APU

se_stw VLE

evmwssfan
SPE 
APU

se_sub VLE

evmwumi
SPE 
APU

se_subf VLE

evmwumia
SPE 
APU

se_subi VLE

evmwumiaa
SPE 
APU

se_subi. VLE
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evmwumian
SPE 
APU

slbia √

evnand
SPE 
APU

slbie √

evneg 
SPE 
APU

sldi √

evnor
SPE 
APU

slw[.] √ √

evor
SPE 
APU

srad. √

evorc
SPE 
APU

sradi. √

evrlw 
SPE 
APU

srawi[.] √ √

evrlwi
SPE 
APU

sraw[.] √ √

evrndw 
SPE 
APU

srd. √

evsel 
SPE 
APU

srw[.] √ √

evslw
SPE 
APU

stb √ √

evslwi
SPE 
APU

stbu √ √

evsplatfi 
SPE 
APU

stbux √ √

evsplati 
SPE 
APU

stbx √ √

evsrwis 
SPE 
APU

std √

evsrwiu 
SPE 
APU

stdcx. √

evsrws 
SPE 
APU

stdu √

evsrwu 
SPE 
APU

stdux √

evstdd
SPE 
APU

stdx √

evstddx
SPE 
APU

stfd √ √

evstdh
SPE 
APU

stfdu √ √

Table 147. List of instructions (continued)

Mnemonic Book E Classic EIS Mnemonic Book E Classic EIS



RM0004 Instruction model

242/1176

evstdhx
SPE 
APU

stfdux √ √

evstdw
SPE 
APU

stfdx √ √

evstdwx
SPE 
APU

stfiwx √ √

evstwhe
SPE 
APU

stfs √ √

evstwhex
SPE 
APU

stfsu √ √

evstwho
SPE 
APU

stfsux √ √

evstwhox
SPE 
APU

stfsx √ √

evstwwex
SPE 
APU

sth √ √

evstwwex
SPE 
APU

sthbrx √ √

evstwwo
SPE 
APU

sthu √ √

evstwwox 
SPE 
APU

sthux √ √

evsubfsmiaaw
SPE 
APU

sthx √ √

evsubfssiaaw
SPE 
APU

stmw √ √

evsubfumiaaw
SPE 
APU

stswi √ √

evsubfusiaaw
SPE 
APU

stswx √ √

evsubfw 
SPE 
APU

stw √ √

evsubifw 
SPE 
APU

stwbrx √ √

evxor
SPE 
APU

stwcx. √ √

extsb[.] √ √ stwu √ √

extsh[.] √ √ stwux √ √

extsw. 64-bit only stwx √ √

e_add16i VLE subfc[o][.] √ √

e_add2i. VLE subfe[o][.] √ √
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e_add2is VLE subfic √ √

e_addi VLE subfme[o][.] √ √

e_addi. VLE subfze[o][.] √ √

e_addic VLE subf[o][.] √ √

e_addic. VLE sync
Now 

msync
√

e_and2i. VLE tlbia √

e_and2is. VLE tlbie √

e_andi[.] VLE tlbivax √

e_b VLE tlbre √

e_bc VLE tlbsx √

e_bcl VLE tlbsync √ √

e_bl VLE tlbwe √

e_cmp16i VLE tw √ √

e_cmph VLE twi √ √

e_cmph16i VLE wrtee √

e_cmphl VLE wrteei √

e_cmphl16i VLE xori[.] √ √

e_cmpi VLE xor[.] √ √

e_cmpl16i VLE
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4 Interrupts and exceptions

This chapter provides a general description of the Book E exception and interrupt models as 
they are implemented on ST processors. It identifies and describes the portions of the 
interrupt model that are defined by the Book E architecture and by the Book E 
implementation standards (EIS).

Note: : Terminology

The Book E architecture has defined additional resources for interrupt handling. As a result, 
the terms ‘interrupt’ and ‘exception’ differ somewhat from their use in previous ST 
documentation, such as the Programming Environments Manual. Use of these terms is now 
as follows:

- An interupt is the action in which the processor saves its context (typically the machine 
state register (MSR) and next instruction address) and begins execution at a predetermined 
interrupt handler address with a modified MSR.

- An exception is the event that, if enabled, causes the processor to take an interrupt. 
Book E describes exceptions as being generated by signals from internal and external 
peripherals, instructions, the internal timer facility, debug events, or error conditions.

4.1 Overview
Book E defines are two categories of interrupts, noncritical and critical, for which separate 
resources are provided to save state when the interrupt is taken and to restore state when 
the interrupt handler returns control to the interrupted program. 

Using the model provided by the Book E architecture, the EIS defines additional interrupt 
types which may be implemented on ST Book E devices. These are described in Table 148. 

         

Table 148. Interrupt types

Category Description Programming resources 

Book E defined

Noncritical
interrupts

First-level interrupts that let the processor 
change program flow to handle conditions 
generated by external signals, errors, or 
unusual conditions arising from program 
execution or from programmable timer-
related events. These interrupts are largely 
identical to those defined by the OEA.

SRR0/SRR1 SPRs and rfi instruction. 
Asynchronous noncritical interrupts can 
be masked by the external interrupt 
enable bit, MSR[EE].

Critical 
interrupts

Book E–defined. Critical input, watchdog 
timer, and debug interrupts. these interrupts 
can be taken during a noncritical interrupt or 
during regular program flow. 

Book E defines the critical input, watchdog 
timer, debug, and machine check interrupts 
as critical interrupts. The EIS defines 
additional resources for machine check and 
debug interrupts.

Critical save and restore SPRs 
(CSRR0/CSRR1) and the rfci 
instruction. Critical input and watchdog 
timer critical interrupts can be masked by 
the critical enable bit, MSR[CE]. Debug 
events can be masked by the debug 
enable bit MSR[DE]. 
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All interrupts except EIS-defined interrupts are ordered within the two categories of 
noncritical and critical, such that only one interrupt of each category is reported, and when 
an interrupt is processed (taken), no program state is lost. Because save/restore register 
pairs are serially reusable, care must be taken to preserve program state that may be lost 
when an unordered interrupt is taken. (See Chapter 4.10.”)

All interrupts except the machine check interrupt are context synchronizing as defined in 
Context synchronization on page 144.” A machine check interrupt acts like a context-
synchronizing operation with respect to subsequent instructions; that is, a machine check 
interrupt need not satisfy items 1 and 2 of Context synchronization on page 144,” but 
satisfies items 3 and 4.

EIS defined (consult implementation documentation to 
determine whether these interrupts are implemented)

Machine 
check 
interrupt

The EIS-defined machine check APU 
provides a separate set of resources for the 
machine check interrupt, which is similar to 
the Book E–defined critical interrupt type. 

Machine check save and restore SPRs 
(MCSRR0/MCSRR1) and the rfmci 
instruction. Can be masked by the 
machine check enable bit, MSR[ME].

Debug 
interrupt

The EIS-defined debug APU provides a 
separate set of resources for the debug 
interrupt, which is similar to the Book E–
defined critical interrupt type. 

Debug save and restore SPRs 
(DSRR0/DSRR1) and the rfdi 
instruction. Can be masked by the 
machine check enable bit, MSR[DE]. 
The debug APU extends the Book E 
debug register model for more detailed 
control of debug resources. 

Table 148. Interrupt types

Category Description Programming resources 
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4.2 EIs interrupt definitions
This section gives an overview of additions and modifications to the Book E interrupt model 
defined by the EIS. Specific details are also provided throughout this chapter. Except for the 
following, the core complex reports exceptions as specified in Book E:

● The machine check exception differs as follows:

– It is not processed as a critical interrupt, but uses MCSRR0 and MCSRR1 for 
saving the return address and the MSR in case the machine check is recoverable.

– Return From Machine Check Interrupt instruction (rfmci) is implemented to 
support the return to the address saved in MCSRR0.

– A machine check syndrome register, MCSR, logs the cause of the machine check 
(instead of ESR).

The core complex reports the machine check exception as described in Chapter 4.7.2.” 

● The following interrupts are defined for use with the embedded floating-point and 
signal-processing (SPE) APUs:

– SPE/embedded floating-point unavailable interrupt. IVOR32 (SPR 528) contains 
the vector offset. 
See SPE/embedded floating-point APU unavailable interrupt on page 272.”

– Embedded floating-point data interrupt. IVOR33 (SPR 529) contains the vector 
offset. See Embedded floating-point data interrupt on page 272.”

– Embedded floating-point round interrupt. IVOR34 (SPR 530) contains the vector 
offset. See Embedded floating-point round interrupt on page 273.”

The following additional bits are defined to support SPE and SPFP exceptions:

– MSR[38] is defined as the vector available bit (SPE). If this bit is clear and software 
attempts to execute any of the SPE instructions, the SPE unavailable interrupt is 
taken. If this bit is set, software can execute any SPE instructions.

Note: SPFP instructions require MSR[SPE] to be set. An attempt to execute an SPFP instruction 
when MSR[SPE] is 0 causes an SPE APU unavailable interrupt. Embedded vector and 
scalar floating-point APU instructions on page 196,” lists affected instructions.

– ESR[SPE], the SPE exception bit, is set when the processor reports an exception 
related to the execution of SPFP or SPE instructions.

● The debug exception implementation does not support IAC3, IAC4, DAC3, and DAC4 
comparisons.

● The core complex supports instruction address compare (IAC1 and IAC2) and data 
address compare (DAC1 and DAC2) for effective addresses only. Real-address support 
is not provided.

● Some implementations do not support the Book E-defined floating-point unavailable 
and auxiliary processor unavailable interrupts.

● Data value compare (DVC) debug exceptions are not supported.

● The interrupt priorities differ from those specified in Book E as described in 
Chapter 4.11.”

● Alignment exceptions. Vector operations can cause alignment exceptions as described 
in Chapter 4.7.6.”

● Book E and the machine check APU define sources of externally generated interrupts. 
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4.2.1 Recoverability from interrupts

All interrupts except some machine check interrupts are recoverable. The state of the core 
complex (return address and MSR contents) is saved when a machine check interrupt is 
taken. The conditions that cause a machine check may or may not prohibit recovery. 

4.3 Interrupt registers
Table 149 summarizes registers used for interrupt handling. These registers are described 
in detail in Chapter 2.”
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Table 149. Interrupt registers defined by the PowerPC architecture 

Register Description

Book E Interrupt Registers

Save/restore register 
0 (SRR0)

On a noncritical interrupt, SRR0 is set to the current or next instruction 
address. When rfi is executed, instruction execution continues at the address 
in SRR0. In general, SRR0 contains the address of the instruction that caused 
the noncritical interrupt or the address of the instruction to return to after a 
noncritical interrupt is serviced.

Save/restore register 
1 (SRR1)

When a noncritical interrupt is taken, MSR contents are placed into SRR1. 
When rfi is executed, SRR1 contents are placed into the MSR. SRR1 bits that 
correspond to reserved MSR bits are also reserved. Note that an MSR bit that 
is reserved may be altered by rfi.

Critical save/restore 
register 0 (CSRR0)

When a critical interrupt is taken, CSRR0 is set to the current or next 
instruction address. When rfci is executed, instruction execution continues at 
the address in CSRR0. In general, CSRR0 contains the address of the 
instruction that caused the critical interrupt, or the address of the instruction to 
return to after a critical interrupt is serviced.

Critical save/restore 
register 1 (CSRR1)

When a critical interrupt is taken, MSR contents are placed into CSRR1. 
When rfci is executed, CSRR1 contents are placed into the MSR. CSRR1 bits 
that correspond to reserved MSR bits are also reserved. Note that an MSR bit 
that is reserved may be altered by rfci.

Data exception 
address register 
(DEAR)

DEAR contains the address referenced by a load, store, or cache 
management instruction that caused an alignment, data TLB miss, or data 
storage interrupt.

Interrupt vector 
prefix register 
(IVPR)

IVPR[32–47] provides the high-order 48 bits of the address of the interrupt 
handling routine for each interrupt type. The 16-bit vector offsets are 
concatenated to the right of IVPR to form the address of the interrupt handling 
routine. IVPR[48–63] are reserved. 
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Exception syndrome 
register (ESR)

Provides a syndrome to differentiate between exceptions that can generate 
the same interrupt type. When one of these types of interrupts is generated, 
bits corresponding to the specific exception that generated the interrupt are 
set and all other ESR bits are cleared. Other interrupt types do not affect the 
ESR. ESR does not need to be cleared by software. Exception syndrome 
register (ESR) on page 84,” shows ESR bit definitions.

An implementation may define additional ESR bits to identify implementation-
specific or architected interrupt types; the EIS defines ESR[ILK] and 
ESR[SPE].

Note: System software may need to identify the type of 
instruction that caused the interrupt and examine the TLB 
entry and ESR to fully identify the exception or 
exceptions. For example, because both protection 
violation and byte-ordering exception conditions may be 
present, and either causes a data storage interrupt, 
system software would have to look beyond ESR[BO], 
such as the state of MSR[PR] in SRR1 and the TLB entry 
page protection bits, to determine if a protection violation 
also occurred.

The EIS defines ESR[56] as the SPE exception bit (SPE). It is set when the 
processor reports an exception related to the execution of an SPFP or SPE 
instruction. Note that the EIS definition of the machine check interrupt uses 
the machine check syndrome register (MCSR) rather than the ESR. 

Table 149. Interrupt registers defined by the PowerPC architecture  (continued)

Register Description
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Interrupt vector 
offset registers 
(IVORs)

Holds the quad-word index from the base address provided by the IVPR for 
each interrupt type. IVOR0–IVOR15 are provided for defined interrupt types. 
SPR numbers corresponding to IVOR16–IVOR31 are reserved. IVOR[32–
47,60–63] are reserved. SPR numbers for IVOR32–IVOR63 are allocated for 
implementation-dependent use. (IVOR32–IVOR34 (SPR 528–530) are used 
by interrupts defined by the EIS.) IVOR assignments are shown below.

Book E–defined interrupts
IVOR Number Interrupt Type
IVOR0 Critical input
IVOR1 Machine check
IVOR2 Data storage
IVOR3 Instruction storage
IVOR4 External input
IVOR5 Alignment
IVOR6 Program
IVOR7 Floating-point 

unavailable
IVOR8 System call
IVOR9 Auxiliary 

processor unavailable
IVOR10 Decrementer
IVOR11 Fixed-interval 

timer interrupt
IVOR12 Watchdog timer 

interrupt
IVOR13 Data TLB error
IVOR14 Instruction TLB 

error
IVOR15 Debug
IIVOR16–IVOR31 Reserved 

EIS-defined interrupts (IVOR32–
IVOR63)

IVOR Number Interrupt Type
IVOR32 SPE APU 

unavailable
IVOR33 Embedded floating-

point data 
IVOR34 Embedded floating-

point round
IVOR35 Performance 

monitor
IVOR36 Processor doorbell 
IVOR37 Processor doorbell 

critical

Machine state 
register (MSR)

MSR[38] is defined as the vector available bit (SPE). It functions as follows:
0: If software attempts to execute an instruction that tries to access the upper 
word of a 64-bit GPR, an SPE APU unavailable interrupt is taken.
1: Software can execute any embedded floating-point or SPE instructions.

EIS-Specific Interrupt Registers

Machine check 
save/restore register 
0 (MCSRR0)

When a machine check interrupt is taken, MCSRR0 is set to the current or next 
instruction address. When rfmci is executed, instruction execution continues at 
the address in MCSRR0. In general, MCSRR0 contains the address of the 
instruction that caused the machine check interrupt, or the address of the 
instruction to return to after a machine check interrupt is serviced.

Machine check 
save/restore register 
1 (MCSRR1)

When a machine check interrupt is taken, MSR contents are placed into 
MCSRR1. When rfmci is executed, MCSRR1 contents are restored to MSR. 
MCSRR1 bits that correspond to reserved MSR bits are also reserved. Note 
that an MSR bit that is reserved may be altered by rfmci.

Table 149. Interrupt registers defined by the PowerPC architecture  (continued)

Register Description



Interrupts and exceptions RM0004

251/1176  

Machine check 
syndrome register 
(MCSR)

When a machine check interrupt is taken, MCSR is updated to differentiate 
among machine check conditions. MCSR also indicates whether a machine 
check condition is recoverable. ABIST status is logged in MCSR[48–54]. 
These read-only bits do not initiate machine check (or any other interrupt). An 
ABIST bit being set indicates an error being detected in the corresponding 
module. 

Processors that do not implement the machine check APU use the Book E–
defined ESR for this purpose. 

Machine check syndrome register (MCSR) on page 88,” shows MCSR bit 
definitions. 

Machine check 
address register 
(MCAR)

When a machine check interrupt is taken, MCAR is updated with the address 
of the data associated with the machine check. Note that if a machine check 
interrupt is caused by a signal, the MCAR contents are not meaningful. See 
Machine check address register (MCAR/MCARU) on page 88.”

Table 149. Interrupt registers defined by the PowerPC architecture  (continued)

Register Description
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4.4 Exceptions
Exceptions are caused directly by instruction execution or by an asynchronous event. In 
either case, the exception may cause one of several types of interrupts to be invoked.

The following examples are of exceptions caused directly by instruction execution:

● An attempt to execute a reserved-illegal instruction (illegal instruction exception-type 
program interrupt)

● An attempt by an application program to execute a privileged instruction or to access a 
privileged SPR (privileged instruction exception-type program interrupt)

● In general, an attempt by an application program to access a nonexistent SPR 
(unimplemented operation instruction exception-type program interrupt). Note the 
following behavior defined by the EIS:

– If MSR[PR] = 1 (user mode), SPR bit 5 = 0 (user-accessible SPR), and the SPR 
number is invalid, an illegal instruction exception is taken. 

– If MSR[PR] = 0 (supervisor mode) and the SPR number is invalid, an illegal 
instruction exception is taken. 

– If MSR[PR] = 1, SPR bit 5 = 1, and invalid SPR address (supervisor-only SPR), a 
privileged instruction exception-type program interrupt is taken.

● Execution of a defined instruction using an invalid form (illegal instruction exception-
type program interrupt, unimplemented operation exception-type program interrupt, or 
privileged instruction exception-type program interrupt). 

● An attempt to access a location that is either unavailable (instruction or data TLB error 
interrupt) or not permitted (instruction or data storage interrupt)

● An attempt to access a location with an effective address alignment not supported by 
the implementation (alignment interrupt)

● Execution of a System Call (sc) instruction (system call interrupt)

● Execution of a trap instruction whose trap condition is met (trap interrupt type)

● Execution of a floating-point instruction when floating-point instructions are unavailable 
(floating-point unavailable interrupt)

● Execution of a floating-point instruction that causes a floating-point enabled exception 
to exist (enabled exception-type program interrupt)

● Execution of a defined instruction that is not implemented (illegal instruction exception 
or unimplemented operation exception-type program interrupt)

● Execution of an allocated instruction that is not implemented (illegal instruction 
exception or unimplemented operation exception-type program interrupt)

● Execution of an allocated instruction when the auxiliary instruction is unavailable 
(auxiliary unavailable interrupt)

● Execution of an allocated instruction that causes an auxiliary enabled exception 
(enabled exception-type program interrupt)

Invocation of an interrupt is precise, except that if one of the imprecise modes for invoking a 
floating-point enabled exception-type program interrupt is in effect, the invocation may be 
imprecise. When the interrupt is invoked imprecisely, the excepting instruction does not 
appear to complete before the next instruction starts (because the invocation of the interrupt 
required to complete execution has not occurred).
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4.5 Interrupt classes
All interrupts except machine check are categorized by two independent characteristics:

● Critical/noncritical. Some interrupt types demand immediate attention even if other 
interrupt types being processed have not had the opportunity to save the machine state 
(that is, return address and captured state of the MSR). To enable taking a critical 
interrupt immediately after a noncritical interrupt is taken (that is, before the machine 
state is saved), two sets of save/restore register pairs are provided. Critical interrupts 
use CSRR0/CSRR1, and noncritical interrupts use SRR0/SRR1. 

● Asynchronous/synchronous. Asynchronous interrupts are caused by events external to 
instruction execution; synchronous interrupts are caused by instruction execution and 
are either precise or imprecise. Table 150 describes asynchronous and synchronous 
interrupts.

         

Table 150. Asynchronous and synchronous interrupts 

Class Description

Asynchronous

Caused by events independent from instruction execution. For asynchronous 
interrupts, the address reported to the interrupt handling routine is the address of 
the instruction that would have executed next, had the asynchronous interrupt not 
occurred.
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4.5.1 Requirements for system reset generation

Book E does not specify a system reset interrupt as was defined in the AIM version of the 
PowerPC architecture. A system reset is typically initiated in one of the following ways:

● Assertion of a signal that resets the internal state of the core complex

● By writing a 1 to DBCR0[34], if MSR[DE] = 1 

Synchronous,
Precise

Caused directly by instruction execution. Synchronous interrupts are precise or 
imprecise. 
These interrupts precisely indicate the address of the instruction causing the 
exception or, for certain synchronous, precise interrupt types, the address of the 
immediately following instruction. When the execution or attempted execution of an 
instruction causes a synchronous, precise interrupt, the following conditions exist at 
the interrupt point:
Whether SRR0 or CSRR0 addresses the instruction causing the exception or the 
next instruction is determined by the interrupt type and status bits.
An interrupt is generated such that all instructions before the instruction causing the 
exception appear to have completed with respect to the executing processor. 
However, some accesses associated with these preceding instructions may not 
have been performed with respect to other processors and mechanisms.

The exception-causing instruction may appear not to have begun execution (except 
for causing the exception), may be partially executed, or may have completed, 
depending on the interrupt type. See Chapter 4.9.”

Architecturally, no instruction beyond the exception-causing instruction executed.

Synchronous,
Imprecise

Imprecise interrupts may indicate the address of the instruction causing the 
exception that generated the interrupt or some instruction after that instruction. 
When execution or attempted execution of an instruction causes an imprecise 
interrupt, the following conditions exist at the interrupt point.

SRR0 or CSRR0 addresses either the exception-causing instruction or some 
instruction following the exception-causing instruction that generated the interrupt.

An interrupt is generated such that all instructions preceding the instruction 
addressed by SRR0 or CSRR0 appear to have completed with respect to the 
executing processor.

If context synchronization forces the imprecise interrupt due to an instruction that 
causes another exception that generates an interrupt (for example, alignment or 
data storage interrupt), SRR0 addresses the interrupt-forcing instruction, which may 
have partially executed (see Chapter 4.9”).

If execution synchronization forces an imprecise interrupt due to an execution-
synchronizing instruction other than msync or isync, SRR0 or CSRR0 addresses 
the interrupt-forcing instruction, which appears not to have begun execution (except 
for its forcing the imprecise interrupt). If the interrupt is forced by msync or isync, 
SRR0 or CSRR0 may address msync or isync, or the following instruction.

If context or execution synchronization forces an imprecise interrupt, the instruction 
addressed by SRR0 or CSRR0 may have partially executed (see Chapter 4.9”). No 
instruction following the instruction addressed by SRR0 or CSRR0 has executed.

Table 150. Asynchronous and synchronous interrupts  (continued)

Class Description
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4.6 Interrupt processing
Associated with each kind of interrupt is an interrupt vector, the address of the initial 
instruction that is executed when an interrupt occurs.

Interrupt processing consists of saving a small part of the processor’s state in certain 
registers, identifying the cause of the interrupt in another register, and continuing execution 
at the corresponding interrupt vector location. When an exception exists that causes an 
interrupt to be generated and it has been determined that the interrupt can be taken, the 
following steps are performed:

1. SRR0 (for noncritical class interrupts) or CSRR0 (for critical class interrupts) or 
MCSRR0 for machine check interrupts is loaded with an instruction address that 
depends on the type of interrupt; see the specific interrupt description for details.

2. The ESR or MCSR is loaded with information specific to the exception type. Note that 
many interrupt types can only be caused by a single type of exception event, and thus 
do not need nor use an ESR setting to indicate the cause of the interrupt.

3. SRR1 (for noncritical class interrupts) or CSRR1 (for critical class interrupts) or 
MCSRR1 for machine check interrupts is loaded with a copy of the MSR contents.

4. New MSR values take effect beginning with the first instruction following the interrupt. 
The MSR is updated as follows:

– MSR[SPE,WE,EE,PR,FP,FE0,FE1,IS,DS] are cleared by all interrupts.

– MSR[CE,DE] are cleared by critical class interrupts and unchanged by noncritical 
class interrupts.

– MSR[ME] is cleared by machine check interrupts and unchanged by other 
interrupts.

– Other defined MSR bits are unchanged by all interrupts.

MSR fields are described in Chapter 2.6.1: Machine state register (MSR) on page 68.”

5. Instruction fetching and execution resumes, using the new MSR value, at a location 
specific to the interrupt type (IVPR[32–47] || IVORn[48–59] || 0b0000)

The IVORn for the interrupt type is described in Table 151. IVPR and IVOR contents 
are indeterminate upon reset and must be initialized by system software.

Interrupts do not clear reservations obtained with load and reserve instructions. The 
operating system should do so at appropriate points, such as at process switch.

At the end of a noncritical interrupt handling routine, executing rfi causes the MSR to be 
restored from the SRR1 contents and instruction execution to resume at the address 
contained in SRR0. Likewise, rfci and rfmci perform the same function at the end of critical 
and machine check interrupt handling routines respectively, using the critical and machine 
check save/restore registers. 

Note: In general, at process switch, due to possible process interlocks and possible data 
availability requirements, the operating system needs to consider executing the following:

stwcx.—Clears outstanding reservations to prevent pairing a lwarx in the old process with a 
stwcx. in the new one

msync—Ensures that memory operations of an interrupted process complete with respect 
to other processors before that process begins executing on another processor

rfi, rfci, rfmci, or isync—Ensures that instructions in the new process execute in the new 
context
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4.7 Interrupt definitions
Table 151 summarizes each interrupt type, the various exception types that may cause that 
interrupt, the interrupt classification, which ESR bits can be set, which MSR bits can mask 
the interrupt type, and which IVOR is used to specify the vector address.

         

Table 151. Interrupt and exception types

IVOR
Interrupt 

Type
Exception Type

Exception 
Class(1) ESR(2) Mask Bits Notes Page

IVOR0 Critical input Critical input
A, C  — MSR[CE] (3) 4.7.1 on 

page 258

IVOR1 Machine 
check

Machine check
C — MSR[ME] (4),(5) 4.7.2 on 

page 259

IVOR2 Data storage 
(DSI)

Access
SP

[SPE],[ST],
[FP,AP]

— (6)

4.7.3 on 
page 260

Load reserve or 
store conditional 
to write- through 
required location 
(W = 1)

SP [ST] — 6

Cache locking
SP

{DLK0,DLK1}
[DLK,ILK],[ST]

— (7)

Byte ordering SP [ST],[FP,AP],BO — —

IVOR3 Instruction 
storage (ISI)

Access SP — — — 4.7.4 on 
page 262Byte ordering SP BO — —

IVOR4 External input
A — MSR[EE] 3 4.7.5 on 

page 263

IVOR5 Alignment
SP

[ST],[FP,AP],
[SPE,AP,ST]

— —
4.7.6 on 
page 263

IVOR6 Program Illegal SP PIL — —

4.7.7 on 
page 265

Privileged SP PPR,[AP] — —

Trap SP PTR — —

Floating-point 
enabled 

SP, SI FP,[PIE] MSR[FE0,FE1] (8),(9)

Auxiliary 
processor enabled 

SP AP — 9

Unimplemented 
op

SP PUO,[FP,AP] — 11

IVOR7 Floating-point unavailable 
SP —

4.7.8 on 
page 267

IVOR8 System call
SP — — —

4.7.9 on 
page 267

IVOR9 Auxiliary processor unavailable 
SP —

4.7.10 on 
page 267
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IVOR10 Decrementer
A —

MSR[EE], 
TCR[DIE]

—
4.7.11 on 
page 268

IVOR11 Fixed interval timer
A —

MSR[EE], 
TCR[FIE]

—
4.7.12 on 
page 268

IVOR12 Watchdog
A, C —

MSR[CE], 
TCR[WIE]

—
4.7.13 on 
page 269

IVOR13 Data TLB 
error

Data TLB miss
SP

[SPE],[ST],
[FP,AP] 

— —
4.7.14 on 
page 269

IVOR14 Instruction 
TLB error

Instruction TLB 
miss

SP — — —
4.7.15 on 
page 270

IVOR15 Debug Trap 
(synchronous)

A, SP, C —
MSR[DE], 

DBCR0[IDM]
—

4.7.16 on 
page 271

Instruction 
address compare 
(synchronous)

A, SP, C —
MSR[DE], 

DBCR0[IDM]
—

Data address 
compare 
(synchronous)

A, SP, C —
MSR[DE], 

DBCR0[IDM]
—

Instruction 
complete

SP, C —
MSR[DE], 

DBCR0[IDM]
(10)

Branch taken
SP, C —

MSR[DE], 
DBCR0[IDM]

10

Return from 
interrupt

SP, C —
MSR[DE], 

DBCR0[IDM]
—

Interrupt taken
SI, C —

MSR[DE], 
DBCR0[IDM]

—

Unconditional 
debug event

SI, C —
MSR[DE], 

DBCR0[IDM]
—

IVOR32 SPE / 
Embedded
FP APU 
unavailable

SPE APU 
unavailable

SP — — (11)  on page 
272

IVOR33 Embedded 
FP data

Embedded FP 
data exception

SP — — 11  on page 
272

IVOR34 Embedded 
FP round

Embedded FP 
round exception

SP — — 11  on page 
273

1. A = asynchronous, C = critical, SI = synchronous, imprecise, SP = synchronous, precise

2. In general, when an interrupt causes an ESR bit or bits to be set (or cleared) as indicated in the table, it also causes all 
other ESR bits to be cleared. Special rules may apply for implementation-specific ESR bits

Legend: xxx (no brackets) means ESR[xxx] is set.
[xxx] means ESR[xxx] could be set.
[xxx,yyy] means either ESR[xxx] or ESR[yyy] may be set, but never both.
{xxx,yyy} means either ESR[xxx] or ESR[yyy] may be set, or possibly both.

3. Although not part of Book E, system interrupt controllers commonly provide independent mask and status bits for critical 
input and external input interrupt sources.

Table 151. Interrupt and exception types (continued)

IVOR
Interrupt 

Type
Exception Type

Exception 
Class(1) ESR(2) Mask Bits Notes Page
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4.7.1 Critical input interrupt

A critical input interrupt occurs when no higher priority exception exists, a critical input 
exception is presented to the interrupt mechanism, and MSR[CE] = 1. The specific definition 
of a critical input exception is implementation-dependent but is typically caused by assertion 
of an asynchronous signal that is part of the system. In addition to MSR[CE], 
implementations may provide other ways to mask the critical input interrupt.

CSRR0, CSRR1, and MSR are updated as shown in Table 152.

         

Instruction execution resumes at address IVPR[32–47] || IVOR0[48–59] || 0b0000.

Critical interrupt input signals are level sensitive; to guarantee that the core complex can 
take a critical input interrupt, the critical input interrupt signal must be asserted until the 
interrupt is taken. Otherwise, whether the core complex takes an critical interrupt depends 
on whether MSR[CE] is set when the critical interrupt signal is asserted. 

Note: To avoid redundant critical input interrupts, software must take any actions required by the 
implementation to clear any critical input exception status before reenabling MSR[CE].

4. Machine check interrupts are not asynchronous or synchronous. See Chapter 4.7.2.”

5. Machine check status information is commonly provided as part of the system implementation but is not part of Book E. 

6. Software must examine the instruction and the subject TLB entry to determine the exact cause of the interrupt.

7. Cache locking and cache locking exceptions are implementation-dependent. 

8. The precision of the floating-point enabled exception type is controlled by MSR[FE0,FE1], as described in <Cross 
Refs>Table 161. See Chapter 4.7.7.” Also, exception status on the exact cause is available in the FPSCR. (See 
Chapter 2.4.2: Floating-point status and control register (FPSCR) on page 58.”)

The precision of the auxiliary processor enabled exception type program interrupt is implementation-dependent. 

9. Auxiliary processor exception status is commonly provided as part of the implementation and is not part of Book E.

10. Instruction complete and branch taken debug events are defined only for MSR[DE] = 1 for internal debug mode 
DBCR0[IDM] = 1. In other words, for internal debug mode with MSR[DE] = 0, instruction complete and branch taken debug 
events cannot occur, no DBSR status bits are set, and no subsequent imprecise debug interrupt can occur.

11. EIS-defined exception

Table 152. Critical input interrupt register settings

Register Setting

CSRR0 Set to the effective address of the next instruction to be executed

CSRR1 Set to the MSR contents at the time of the interrupt

MSR ME is unchanged. All other MSR bits are cleared.
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4.7.2 Machine check interrupt 

The EIS defines the machine check APU, which differs from the Book E definition of the 
machine check interrupt as follows:

● Book E defines machine check interrupts as critical interrupts, but the machine check 
APU treats them as a distinct interrupt type.

● Machine check is no longer a critical interrupt but uses MCSRR0 and MCSRR1 to save 
the return address and the MSR in case the machine check is recoverable.

● Return from machine check interrupt instruction (rfmci) is implemented to support the 
return to the address saved in MCSRR0.

● An address related to the machine check may be stored in MCAR, according to 
Table 153.

● A machine check syndrome register, MCSR, is used to log the cause of the machine 
check (instead of ESR). The MCSR is described in Table 153.

The following general information applies to both the Book E and EIS definitions. A machine 
check interrupt occurs when no higher priority exception exists, a machine check exception 
is presented to the interrupt mechanism, and MSR[ME] = 1. Specific causes of machine 
check exceptions are implementation-dependent, as are the details of the actions taken on 
a machine check interrupt. 

Machine check interrupts are typically caused by a hardware or memory subsystem failure 
or by an attempt to access an invalid address. They may be caused indirectly by execution 
of an instruction, but may not be recognized or reported until long after the processor has 
executed past the instruction that caused the machine check. As such, machine check 
interrupts are not thought of as synchronous or asynchronous nor as precise or imprecise. 

The following general rules apply:

● No instruction after the one whose address is reported to the machine check interrupt 
handler in MCSRR0 has begun execution.

● The instruction whose address is reported to the machine check interrupt handler in 
MCSRR0 and all prior instructions may or may not have completed successfully. All 
instructions certain to complete appear to have done so within the context existing 
before the machine check interrupt. No further interrupts (other than possible additional 
machine check interrupts) occur as a result of those instructions.

If MSR[ME] is cleared, the processor enters checkstop state immediately on detecting the 
machine check condition.

When a machine check interrupt is taken, registers are updated as shown in Table 153.

         

Table 153. Machine check interrupt settings

Register Setting

CSRR0(1)
Set to an instruction address. As closely as possible, set to the effective address of an 
instruction that was executing or about to be executing when the machine check 
exception occurred.

CSRR11 Set to the MSR contents at the time of the interrupt

MSR UCLE, SPE, WE, CE, EE, PR, FP, ME, FE0, FE1, DE, IS, DS, PMM, and RI are cleared.

ESR Implementation-dependent. The EIS uses the MCSR rather than the ESR. 

Machine Check APU Registers
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Instruction execution resumes at address IVPR[32–47] || IVOR1[48–59] || 0b0000.

Note: 1 If a memory subsystem error causes a machine check interrupt, the subsystem may return 
incorrect data, which may be placed into registers or on-chip caches.

2 For implementations on which a machine check interrupt is caused by referring to an invalid 
physical address, executing dcbz or dcba can cause a delayed machine check interrupt by 
establishing a data cache block associated with an invalid physical address. A machine 
check interrupt can occur later if and when an attempt is made to write that block to main 
memory, for example as the result of executing an instruction that causes a cache miss for 
which the block is the target for replacement or as the result of executing dcbst or dcbf.

4.7.3 Data storage interrupt

A data storage interrupt (DSI) occurs when no higher priority exception exists and a data 
storage exception is presented to the interrupt mechanism. Table 154 describes exception 
conditions for a data storage interrupt as defined by Book E.

         

MCSRR0
On a best-effort basis, the core complex sets this to an effective address of some 
instruction that was executing or about to be executing when the machine check 
condition occurred. 

MCSRR1
MSR[37–38,46–55,57–59,61–63] are loaded with equivalent MSR bits. All other bits are 
reserved.

MCAR/
MCARU

When a machine check interrupt is taken, the machine check address register is updated 
with the address of the data associated with the machine check. Note that if a machine 
check interrupt is caused by a signal, the MCAR contents are not meaningful. See 
Machine check address register (MCAR/MCARU) on page 88.

MCARU is an alias to the upper 32 bits of MCAR. 

MCSR Set according to the machine check condition. See Table 20.

1. These registers are used if the machine check APU is not implemented.

Table 153. Machine check interrupt settings (continued)

Register Setting

Table 154. Data storage interrupt exception conditions

Exception Cause

Read access 
control 
exception

Occurs when either of the following conditions exists:

● In user mode (MSR[PR] = 1), a load or load-class cache 
management instruction attempts to access a memory location that is 
not user-mode read enabled (page access control bit UR = 0).

● In supervisor mode (MSR[PR] = 0), a load or load-class cache 
management instruction attempts to access a location that is not 
supervisor-mode read enabled (page access control bit SR = 0).

Write access 
control 
exception

Occurs when either of the following conditions exists:

● In user mode (MSR[PR] = 1), a store or store-class cache 
management instruction attempts to access a location that is not 
user-mode write enabled (page access control bit UW = 0).

● In supervisor mode (MSR[PR] = 0), a store or store-class cache 
management instruction attempts to access a location that is not 
supervisor-mode write enabled (page access control bit SW = 0).
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Instructions icbt, dcbt, dcbtst, and dcba, and lswx or stswx with a length of zero cannot 
cause a data storage interrupt, regardless of the effective address.

Note: icbi and icbt are treated as loads from the addressed byte with respect to address 
translation and protection. They use MSR[DS], not MSR[IS], to determine translation for 
their operands. Instruction storage interrupts and instruction TLB error interrupts are 
associated with instruction fetching and not execution. Data storage interrupts and data TLB 
error interrupts are associated with the execution of instruction cache management 
instructions.

When a data storage interrupt occurs, the processor suppresses execution of the instruction 
causing the data storage exception.

SRR0, SRR1, ESR, MSR, and DEAR, are updated as follows:

Byte-ordering 
exception

The implementation cannot access data in the byte order specified by the page’s 
endian attribute.

Note: Note: The byte-ordering exception is provided to assist 
implementations that cannot support dynamically switching 
byte ordering between consecutive accesses, the byte order 
for a class of accesses, or misaligned accesses using a 
specific byte order.

Load/store accesses that cross a page boundary such that endianness changes 
cause a byte-ordering exception. 

Cache locking 
exception 

(EIS) The locked state of one or more cache lines has the potential to be altered. 
This exception is implementation-dependent. A cache locking exception occurs 
with the execution of icbtls, icblc, dcbtls, dcbtstls, or dcblc when (MSR[PR] = 1) 
and (MSR[UCLE] = 0). ESR is set as follows:

● For icbtls and icblc, ESR[ILK] is set. 

● For dcbtls, dcbtstls, or dcblc, ESR[DLK] is set. Book E refers to this 
as a cache-locking exception.

Storage
synchronization
exception

Occurs when either of the following conditions exists:

● An attempt is made to execute a load and reserve or store conditional 
instruction from or to a location that is write-through required or 
caching inhibited. (If the interrupt does not occur, the instruction 
executes correctly.) 

● A store conditional instruction produces an effective address for which 
a normal store would cause a data storage interrupt but the processor 
does not have the reservation from a load and reserve instruction. 
Book E states that it is implementation-dependent whether a data 
storage interrupt occurs. The EIS defines that the data storage 
interrupt is taken.

Table 154. Data storage interrupt exception conditions (continued)

Exception Cause
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Instruction execution resumes at address IVPR[32–47] || IVOR2[48–59] || 0b0000.

4.7.4 Instruction storage interrupt

An instruction storage interrupt occurs when no higher priority exception exists and an 
instruction storage exception is presented to the interrupt mechanism. Instruction storage 
exception conditions are described in Table 156.

         

Note that Book E provides this exception to assist implementations that cannot dynamically 
switch byte ordering between consecutive accesses, do not support the byte order for a 
class of accesses, or do not support misaligned accesses using a specific byte order.

When an instruction storage interrupt occurs, the processor suppresses execution of the 
instruction causing the exception. 

SRR0, SRR1, MSR, and ESR are updated as shown in Table 157.

         

Table 155. Data Storage Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the instruction causing the interrupt

SRR1 Set to the MSR contents at the time of the interrupt

ESR FPSet if the instruction causing the interrupt is a floating-point load or store; otherwise 
cleared
STSet if the instruction causing the interrupt is a store or store-class cache management 
instruction; otherwise cleared
DLKDLK is set when a DSI occurs because dcbtls, dcbtstls, or dcblc is executed in user 
mode and MSR[UCLE] = 0.
APSet if the instruction causing the interrupt is an auxiliary processor load or store; 
otherwise cleared
BOSet if the instruction caused a byte-ordering exception; otherwise cleared

All other defined ESR bits are cleared.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

DEAR Set to the effective address of a byte that lies both within the range of bytes being 
accessed by the access or cache management instruction and within the page whose 
access caused the exception

Table 156. Instruction storage interrupt exception conditions

Exception Cause

Execute access 
control exception

In user mode, an instruction fetch attempts to access a memory location that is 
not user mode execute enabled (page access control bit UX = 0).

In supervisor mode, an instruction fetch attempts to access a memory location 
that is not supervisor mode execute enabled (page access control bit SX = 0).

Byte-ordering 
exception

The implementation cannot fetch the instruction in the byte order specified by the 
page’s endian attribute. The EIS defines that accesses that cross a page 
boundary such that endianness changes cause a byte-ordering exception. 
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Note: Permissions violation and byte-ordering exceptions are not mutually exclusive. Even if 
ESR[BO] is set, system software must examine the TLB entry accessed by the fetch to 
determine whether a permissions violation also may have occurred.

Instruction execution resumes at address IVPR[32–47] || IVOR3[48–59] || 0b0000.

4.7.5 External input interrupt 

An external input interrupt occurs when no higher priority exception exists, an external input 
exception is presented to the interrupt mechanism, and MSR[EE] = 1. The specific definition 
of an external input exception is implementation-dependent and is typically caused by 
assertion of an asynchronous signal that is part of the processing system. 

To guarantee that the core complex can take an external interrupt, the external interrupt pin 
must be asserted until the interrupt is taken. Otherwise, whether the external interrupt is 
taken depends on whether MSR[EE] is set when the external interrupt signal is asserted. 

In addition to MSR[EE], implementations may provide other ways to mask this interrupt. 

SRR0, SRR1, and MSR are updated as shown in Table 158.

         

Instruction execution resumes at address IVPR[32–47] || IVOR4[48–59] || 0b0000.

Note: To avoid redundant external input interrupts, software must take any actions required to 
clear any external input exception status before reenabling MSR[EE].

4.7.6 Alignment interrupt

An alignment interrupt occurs when no higher priority exception exists and an alignment 
exception is presented to the interrupt mechanism. An alignment exception may occur when 
an implementation cannot perform a data access for one of the following reasons:

● The operand of a load or store is not aligned.

● The instruction is a move assist, load multiple, or store multiple.

● A dcbz operand is in write-through-required or caching-inhibited memory, or dcbz is 
executed in an implementation with no data cache or a write-through data cache.

● The operand of a store, except store conditional, is in write-through required memory.

Table 157. Instruction storage interrupt register settings

Register Setting

SRR0 Set to the effective address of the instruction causing the instruction storage interrupt

SRR1 Set to the MSR contents at the time of the interrupt

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

ESR
BO is set if the instruction fetch caused a byte-ordering exception; otherwise cleared. All 
other defined ESR bits are cleared.

Table 158. External input interrupt register settings

Register Setting

SRR0 Set to the effective address of the next instruction to be executed

SRR1 Set to the MSR contents at the time of the interrupt

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.
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The EIS defines the following alignment exception conditions:

● Execution of a dcbz references a page marked as write-through or cache inhibited. 

● A load multiple word instruction (lmw) reads an address that is not a multiple of four. 

● A lwarx or stwcx. instruction references an address that is not a multiple of four.

● SPFP and SPE APU instructions are not aligned on a natural boundary. A natural 
boundary is defined by the size of the data element being accessed. 

● A vector operation reports an exception if the physical address of the following 
instructions is not aligned to the 64-bit boundary: evldd, evlddx, evldw, evldwx, 
evldh, evldhx, evstdd, evstddx, evstdw, evstdwx, evstdh, and evstdhx. Table 159 
describes additional ESR settings. 

For lmw and stmw with a non–word-aligned operand and for load and reserve and store 
conditional instructions with an misaligned operand, an implementation may yield boundedly 
undefined results instead of causing an alignment interrupt. A store conditional to a write-
through required location may either cause an alignment or data storage interrupt or may 
correctly execute the instruction. For all other cases listed above, an implementation may 
execute the instruction correctly instead of causing an alignment interrupt. For dcbz, correct 
execution means clearing each byte of the block in main memory.

Note: Book E does not support use of an misaligned effective address by load and reserve and 
store conditional instructions. If an misaligned effective address is specified, the alignment 
interrupt handler should treat the instruction as a programming error and must not attempt to 
emulate the instruction.

When an alignment interrupt occurs, the processor suppresses the execution of the 
instruction causing the alignment exception.

SRR0, SRR1, MSR, DEAR, and ESR are updated as shown in Table 159.

         

Instruction execution resumes at address IVPR[32–47] || IVOR5[48–59] || 0b0000.

Table 159. Alignment interrupt register settings

Register Setting

SRR0 Set to the effective address of the instruction causing the alignment interrupt

SRR1 Set to the MSR contents at the time of the interrupt

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

DEAR
Set to the EA of a byte that is both within the range of the bytes being accessed by the 
memory access or cache management instruction, and within the page whose access 
caused the alignment exception

ESR

FP Set if the instruction causing the interrupt is a floating-point load or store; otherwise 
cleared

ST Set if the instruction causing the interrupt is a store; otherwise cleared
AP Set if the instruction causing the interrupt is an auxiliary processor load or store; 
otherwise cleared
The following bits may be affected for vector alignment exception conditions:

SPE Set

AP Set (May not be supported on all processors)
ST Set only if the instruction causing the exception is a store and is cleared for a load

All other defined ESR bits are cleared.
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4.7.7 Program interrupt

A program interrupt occurs when no higher priority exception exists and a program 
exception is presented to the interrupt mechanism. A program interrupt is caused when any 
of the following exceptions occurs during execution of an instruction.

         

Table 160. Program interrupt exception conditions

Exception Cause

Floating-point 
enabled exception 

Caused when (MSR[FE0] | MSR[FE1]) & FPSCR[FEX] = 1. FPSCR[FEX] is set 
by the execution of a floating-point instruction that causes an enabled exception, 
including the case of a Move to FPSCR instruction that causes an exception bit 
and the corresponding enable bit both to be 1. Note that in this context, the term 
‘enabled exception’ refers to the enabling provided by FPSCR control bits. See 
Chapter 2.4.2: Floating-point status and control register (FPSCR) on page 58.” 
Whether the interrupt is precise or imprecise is determined by MSR[FE0,FE1], 
as described in Table 20. 

Auxiliary processor 
enabled exception

Implementation dependent

Illegal instruction 
exception

Always occurs when execution of any of the following kinds of instructions is 
attempted.

– A reserved-illegal instruction

– In user mode, an mtspr or mfspr that specifies an SPRN value with 
SPRN[5] = 0 (user-mode accessible) that represents an unimplemented SPR

– (EIS) If an invalid SPR address is accessible only in supervisor mode and the 
processor is in supervisor mode (MSR[PR] = 0), results are undefined. 

– (EIS) If the invalid SPR address is accessible only in the supervisor mode and 
the processor is in user mode (MSR[PR] = 1), a privileged instruction 
exception is taken.

May occur when execution is attempted of any of the following kinds of 
instructions. If the exception does not occur, the alternative is shown in 
parentheses. See the user’s manual for the implementation.
– An instruction that is in invalid form (boundedly undefined results). 

– An lswx instruction for which rA or rB is in the range of registers to be loaded 
(boundedly undefined results)

– A reserved no-op instruction (no-operation performed is preferred). 

– A defined or allocated instruction that is not implemented (unimplemented 
operation exception). Unimplemented Book E instructions take an illegal 
instruction exception. 

– The EIS defines that an attempt to execute a 64-bit Book E instruction causes 
an illegal instruction exception.

Privileged 
instruction 
exception

Occurs when MSR[PR] = 1 and execution is attempted of any of the following:
– A privileged instruction

– An mtspr or mfspr instruction that specifies a privileged SPR (SPRN[5] = 1)

– (EIS) An mtpmr or mfpmr instruction that specifies a privileged PMR 
(PMRN[5] = 1)

Trap exception Occurs when any of the conditions specified in a trap instruction are met.

Unimplemented 
operation 
exception

May occur when a defined or allocated instruction is encountered that is not 
implemented. Otherwise an illegal instruction exception occurs. See the 
reference manual for the implementation. 
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Whether a floating-point enabled interrupt is precise or imprecise is determined by 
MSR[FE0,FE1], as described in Table 161. 

         

SRR0, SRR1, MSR, and ESR are updated as shown in Table 162.

         

Instruction execution resumes at address IVPR[32–47] || IVOR6[48–59] || 0b0000.

Table 161. MSR[FE0,FE1] settings

FE0,FE1 Description

01,10 Imprecise. When such a program interrupt is taken, if the address saved in SRR0 is not 
that of the instruction that caused the exception (that is, the instruction that caused 
FPSCR[FEX] to be set), ESR[PIE] is set. Note that some implementations may ignore 
these bit settings and treat all affected interrupts as precise. 

11 Precise. 

 00 The interrupt is masked and the interrupt subsequently occurs if and when floating-point 
enabled exception-type program interrupts are enabled by setting either or both FE0,FE1 
and also causes ESR[PIE] to be set. 

Table 162. Program interrupt register settings

Register Description

SRR0 For all program interrupts except an enabled exception when in an imprecise mode (see 
Table 164), set to the EA of the instruction that caused the interrupt.

For an imprecise enabled exception, set to the EA of the excepting instruction or of some 
subsequent instruction that has not been executed (in which case ESR[PIE] is set). If the 
instruction is msync or isync, SRR0 does not point more than 4 bytes beyond the msync 
or isync.
If FPSCR[FEX] = 1 but both MSR[FE0,FE1] = 00, an enabled exception-type program 
interrupt occurs before or at the next synchronizing event if [FE0,FE1] are altered by any 
instruction so that the expression (MSR[FE0] | MSR[FE1]) & FPSCR[FEX] is 1. When this 
occurs, ESR[PIE] is set and SRR0 is loaded with the EA of the instruction that would have 
executed next, not with the EA of the instruction that modified MSR causing the interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

ESR PIL Set if an illegal instruction exception-type program interrupt; otherwise cleared.
PPR Set if a privileged instruction exception-type program interrupt; otherwise cleared.

PTR Set if a trap exception-type program interrupt; otherwise cleared.

PUO Set if an unimplemented operation exception-type program interrupt; otherwise 
cleared.

FP Set if the instruction causing the interrupt is a floating-point instruction; otherwise 
cleared.

PIE Set if a floating-point enabled exception-type program interrupt, and the address 
saved in SRR0 is not the address of the instruction causing the exception (that is, the 
instruction that caused FPSCR[FEX] to be set); otherwise cleared.

AP Set if the instruction causing the interrupt is an auxiliary processor instruction; 
otherwise cleared.

All other defined ESR bits are cleared.
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4.7.8 Floating-point unavailable interrupt

A floating-point unavailable interrupt occurs when no higher priority exception exists, an 
attempt is made to execute a floating-point instruction (including floating-point loads, stores, 
and moves), and MSR[FP] = 0.

When a floating-point unavailable interrupt occurs, the processor suppresses execution of 
the instruction causing the floating-point unavailable interrupt.

SRR0, SRR1, and MSR are updated as shown in Table 163.

         

Instruction execution resumes at address IVPR[32–47]||IVOR7[48–59]||0b0000.

4.7.9 System call interrupt

A system call interrupt occurs when no higher priority exception exists and a System Call 
(sc) instruction is executed. SRR0, SRR1, and MSR are updated as shown in Table 164.

         

Instruction execution resumes at address IVPR[32–47] || IVOR8[48–59] || 0b0000.

4.7.10 Auxiliary processor unavailable interrupt

An auxiliary processor unavailable interrupt occurs when no higher priority exception exists, 
an attempt is made to execute an auxiliary processor instruction (including auxiliary 
processor loads, stores, and moves), the target auxiliary processor is present on the 
implementation, and the auxiliary processor is configured as unavailable. Details of the 
auxiliary processor and its configuration are implementation-dependent. See the reference 
manual for the implementation.

When an auxiliary processor unavailable interrupt occurs, the processor suppresses 
execution of the instruction causing the auxiliary processor unavailable interrupt.

Registers SRR0, SRR1, and MSR are updated as shown in Table 165.

Table 163. Floating-point unavailable interrupt register settings

Register Description

SRR0 Set to the effective address of the instruction that caused the interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

Table 164. System call interrupt register settings

Register Description

SRR0 Set to the effective address of the instruction after the sc instruction.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.



RM0004 Interrupts and exceptions

268/1176

         

Instruction execution resumes at address IVPR[32–47]||IVOR9[48–59]||0b0000.

4.7.11 Decrementer Interrupt

A decrementer interrupt occurs when no higher priority exception exists, a decrementer 
exception exists (TSR[DIS] = 1) & the interrupt is enabled (TCR[DIE] = 1 and MSR[EE] = 1). 

MSR[EE] also enables external input and fixed-interval timer interrupts.

SRR0, SRR1, MSR, and TSR are updated as shown in Table 166.

         

Instruction execution resumes at address IVPR[32–47] || IVOR10[48–59] || 0b0000.

Note: To avoid redundant decrementer interrupts, before reenabling MSR[EE], the interrupt 
handling routine must clear TSR[DIS] by writing a word to TSR using mtspr with a 1 in any 
bit position to be cleared and 0 in all others. The data written to the TSR is not direct data, 
but a mask. Writing a 1 to this bit causes it to be cleared; writing a 0 has no effect.

4.7.12 Fixed-interval timer interrupt

A fixed-interval timer interrupt occurs when no higher priority exception exists, a fixed-
interval timer exception exists (TSR[FIS] = 1), and the interrupt is enabled (TCR[FIE] = 1 
and MSR[EE] = 1). 

The fixed-interval timer period is determined by TCR[FP], which, when concatenated with 
TCR[FPEXT], specifies one of 64 bit locations of the time base used to signal a fixed-
interval timer exception on a transition from 0 to 1.

TCR[FPEXT],TCR[FP] = 000000 selects TBU[32]. TCR[FPEXT],TCR[FP] = 111111 selects 
TBL[63].

Note: MSR[EE] also enables external input and decrementer interrupts.

SRR0, SRR1, MSR, and TSR are updated as shown in Table 167.

         

Table 165. Auxiliary processor unavailable interrupt register settings

Register Setting

SRR0 Set to the effective address of the instruction that caused the interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

Table 166. Decrementer interrupt register settings

Register Setting

SRR0 Set to the effective address of the next instruction to be executed.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

TSR DIS is set. 
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Instruction execution resumes at address IVPR[32–47] || IVOR11[48–59] || 0b0000.

Note: To avoid redundant fixed-interval timer interrupts, before reenabling MSR[EE], the interrupt 
handling routine must clear TSR[FIS] by writing a word to TSR using mtspr with a 1 in any 
bit position to be cleared and 0 in all others. The data written to the TSR is not direct data, 
but a mask. Writing a 1 causes the bit to be cleared; writing a 0 has no effect.

4.7.13 Watchdog timer interrupt

A watchdog timer interrupt occurs when no higher priority exception exists, a watchdog 
timer exception exists (TSR[WIS] = 1), and the interrupt is enabled (TCR[WIE] = 1 and 
MSR[CE] = 1). 

MSR[CE] also enables the critical input interrupt.

CSRR0, CSRR1, MSR, and TSR are updated as shown in Table 168.

         

Instruction execution resumes at address IVPR[32–47] || IVOR12[48–59] || 0b0000.

Note: To avoid redundant watchdog timer interrupts, before reenabling MSR[CE], the interrupt 
handling routine must clear TSR[WIS] by writing a word to TSR using mtspr with a 1 in any 
bit position to be cleared and 0 in all others. The data written to the TSR is not direct data, 
but a mask. Writing a 1 to this bit causes it to be cleared; writing a 0 has no effect.

4.7.14 Data tlb error interrupt

A data TLB error interrupt occurs when no higher priority exception exists and the exception 
described in Table 169 is presented to the interrupt mechanism. 

         

Table 167. Fixed-interval timer interrupt register settings

Register Setting

SRR0 Set to the effective address of the next instruction to be executed.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

TSR FIS is set. 

Table 168. Watchdog timer interrupt register settings

Register Setting

CSRR0 Set to the effective address of the next instruction to be executed.

CSRR1 Set to the MSR contents at the time of the interrupt.

MSR ME is unchanged; all other MSR bits are cleared.

TSR WIS is set. 

Table 169. Data tlb error interrupt exception conditions

Exception Description

Data TLB miss exception Virtual addresses associated with an instruction fetch do not match any 
valid TLB entry.
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If a store conditional instruction produces an effective address for which a normal store 
would cause a data TLB error interrupt, but the processor does not have the reservation 
from a load and reserve instruction, Book E defines it as implementation-dependent 
whether a data TLB error interrupt occurs. The EIS defines that the interrupt is taken. 

When a data TLB error interrupt occurs, the processor suppresses execution of the 
instruction causing the data TLB error exception.

SRR0, SRR1, MSR, DEAR, and ESR are updated as shown in Table 170. 

         

Table 192 shows MAS register settings for data and instruction TLB error interrupts. MAS 
register updates for exceptions, tlbsx, and tlbre on page 328,” describes how these values 
are set as defined by the EIS. 

Instruction execution resumes at address IVPR[32–47] || IVOR13[48–59] || 0b0000.

4.7.15 Instruction tlb error interrupt

An instruction TLB error interrupt occurs when no higher priority exception exists and the 
exception described in Table 171 is presented to the interrupt mechanism. 

         

When an instruction TLB error interrupt occurs, the processor suppresses execution of the 
instruction causing the instruction TLB miss exception.

SRR0, SRR1, and MSR are updated as shown in Table 172.

Table 170. Data tlb error interrupt register settings

Register Setting

SRR0 Set to the effective address of the instruction causing the data TLB error interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

DEAR Set to the EA of a byte that is both within the range of the bytes being accessed by the 
memory access or cache management instruction and within the page whose access 
caused the data TLB error exception.

ESR STSet if the instruction causing the interrupt is a store, dcbi, or dcbz instruction; 
otherwise cleared.

FPSet if the instruction causing the interrupt is a floating-point load or store; otherwise 
cleared.

APSet if the instruction causing the interrupt is an auxiliary processor load or store; 
otherwise cleared.

All other defined ESR bits are cleared.

MASn See Table 193.

Table 171. Instruction TLB error interrupt exception conditions

Exception Description

Instruction TLB miss exception The virtual addresses associated with a fetch do not match any valid 
TLB entry.



Interrupts and exceptions RM0004

271/1176  

Instruction execution resumes at address IVPR[32–47] || IVOR14[48–59] || 0b0000.

4.7.16 Debug interrupt

A debug interrupt occurs when no higher priority interrupt exists, a debug exception exists in 
the DBSR, and debug interrupts are enabled (DBCR0[IDM] = 1 and MSR[DE] = 1). A debug 
exception occurs when a debug event causes a corresponding DBSR bit to be set. 

         

CSRR0, CSRR1, MSR, and DBSR are updated as shown in Table 173.

Instruction execution resumes at address IVPR[32–47] || IVOR15[48–59] || 0b0000.

4.7.17 EIS-defined interrupts

The interrupts in this section are defined by the EIS.

Table 172. Instruction TLB error interrupt register settings

Register Setting

SRR0 Set to the effective address of the instruction causing the instruction TLB error interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

MASn See Table 192.

Table 173. Debug interrupt register settings

Register Setting

CSRR0 For debug exceptions that occur while debug interrupts are enabled (DBCR0[IDM] = 1 
and MSR[DE] = 1), CSRR0 is set as follows:

– For instruction address compare (IAC registers), data address compare (DAC1R, 
DAC1W, DAC2R, and DAC2W), data value compare (DVC1 and DVC2), trap (TRAP), or 
branch taken (BRT) debug exceptions, set to the address of the instruction causing the 
debug interrupt.

– For instruction complete (ICMP) debug exceptions, set to the address of the instruction 
that would have executed after the one that caused the debug interrupt.

– For unconditional debug event (UDE) debug exceptions, set to the address of the 
instruction that would have executed next if the debug interrupt had not occurred.

– For interrupt taken (IRPT) debug exceptions, set to the interrupt vector value of the 
interrupt that caused the interrupt taken debug event.

– For return from interrupt (RET) debug exceptions, set to the address of the instruction 
that would have executed after the rfi, rfci, or rfmci that caused the debug interrupt.

– For debug exceptions that occur while debug interrupts are disabled (DBCR0[IDM] = 0 
or MSR[DE] = 0), a debug interrupt occurs at the next synchronizing event if 
DBCR0[IDM] and MSR[DE] are modified such that they are both set and if the debug 
exception status is still set in the DBSR. When this occurs, CSRR0 holds the address of 
the instruction that would have executed next, not the address of the instruction that 
modified DBCR0 or MSR and thus caused the interrupt.

CSRR1 Set to the MSR contents at the time of the interrupt.

MSR ME is unchanged. All other MSR bits are cleared.

DBSR Set to indicate type of debug event. 
(See Chapter 2.13.2: Debug status register (DBSR) on page 116.)
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SPE/embedded floating-point APU unavailable interrupt

An SPE APU unavailable interrupt is taken if MSR[SPE] is cleared and an SPE, embedded 
scalar double-precision or embedded vector single-precision floating-point instruction is 
executed. It is not used by the embedded scalar single-precision floating-point APU. 

When an SPE unavailable interrupt occurs, the processor suppresses execution of the 
instruction causing the interrupt. Table 174 describes register settings. If the 
SPE/embedded floating-point unavailable interrupt occurs, the processor suppresses 
execution of the instruction causing the exception. The SRR0, SRR1, MSR, and ESR 
registers are modified as shown in Table 174.

         

Instruction execution resumes at address IVPR–47] || IVOR32[48–59] || 0b0000.

Embedded floating-point data interrupt

An embedded floating-point data interrupt is generated in the following cases:

● SPEFSCR[FINVE] = 1 and either SPEFSCR[FINVH,FINV] = 1

● SPEFSCR[FDBZE] = 1and either SPEFSCR[FDBZH,FDBZ] = 1

● SPEFSCR[FUNFE] = 1 and either SPEFSCR[FUNFH,FUNF] = 1

● SPEFSCR[FOVFE] = 1 and either SPEFSCR[FOVFH,FOVF] = 1

Note that although SPEFSCR status bits can be updated by using mtspr, interrupts occur 
only if they are set as the result of an arithmetic operation. 

When an embedded floating-point data interrupt occurs, the processor suppresses 
execution of the instruction causing the interrupt. Table 175 shows register settings.

         

Instruction execution resumes at address IVPR[32–47] || IVOR33[48–59] || 0b0000.

Table 174. SPE/embedded floating-point APU unavailable interrupt register settings

Register Setting

SRR0 Set to the effective address of the instruction causing the interrupt.

SRR1 Set to the MSR contents at the time of the interrupt. 

MSR CE, ME, and DE are unchanged. All other bits are cleared.

ESR SPE (bit 24) is set. All other ESR bits are cleared.

Table 175. Embedded floating-point data interrupt register settings

Register Setting

SRR0 Set to the effective address of the instruction causing the interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other bits are cleared.

ESR SPE (bit 24) is set. All other ESR bits are cleared.

SPEFSCR One or more of the FINVH, FINV, FDBZH, FDBZ, FUNFH, FUNF, FOVFH, or FOVF bits 
are set to indicate the interrupt type. 



Interrupts and exceptions RM0004

273/1176  

Embedded floating-point round interrupt

The embedded floating-point round interrupt is taken on any of the following conditions:

● SPEFSCR[FINXE] = 1 and any of the SPEFSCR[FGH,FXH,FG,FX] bits = 1

● SPEFSCR[FRMC] = 0b10 (+∞)

● SPEFSCR[FRMC] = 0b11 (–∞)

Note that although these SPEFSCR status bits can be updated by using an 
mtspr[SPEFSCR], interrupts occur only if they are set as the result of an arithmetic 
operation. 

When an embedded floating-point round interrupt occurs, the unrounded (truncated) result 
is placed in the target register. Table 176 describes register settings.

         

Instruction execution resumes at address IVPR[32–47] || IVOR34[48–59] || 0b0000.

4.8 Performance monitor interrupt
The performance monitor provides a performance monitor interrupt that is triggered by an 
enabled condition or event. An enabled condition or event is as follows:

A PMCx register overflow condition occurs with the following settings:

● PMLCax[CE] = 1; that is, for the given counter the overflow condition is enabled.

● PMCx[32] = 1; that is, the given counter indicates an overflow.

For a performance monitor interrupt to be signaled on an enabled condition or event, 
PMGC0[PMIE] must be set.

The performance monitor can also freeze the performance monitor counters triggered by an 
enabled condition or event. For the performance monitor counters to freeze on an enabled 
condition or event, PMGC0[FCECE] must be set.

Although the interrupt condition could occur with MSR[EE] = 0, the interrupt cannot be taken 
until MSR[EE] = 1. If a counter overflows while PMGC0[FCECE] = 0, PMLCa[CE] = 1, and 
MSR[EE] = 0, it is possible for the counter to wrap around to all zeros again without the 
performance monitor interrupt being taken.

The priority of the performance monitor interrupt is below that of the fixed-interval interrupt 
and above that of the decrementer interrupt. 

Table 176. Embedded floating-point round interrupt register settings

Register Setting

SRR0 Set to the effective address of the instruction following the instruction causing the 
interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR CE, ME, and DE are unchanged. All other MSR bits are cleared.

ESR SPE (bit 24) is set. All other ESR bits are cleared.

SPEFSCR FGH, FXH, FG, FX, and FRMC are set appropriately to indicate the interrupt type.
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4.9 Partially executed instructions
In general, the PowerPC architecture permits load and store instructions to be partially 
executed, interrupted, and then restarted from the beginning upon return from the interrupt. 
To guarantee that a particular load or store instruction completes without being interrupted 
and restarted, software must mark the memory as guarded and use an elementary (non-
string or non-multiple) load or store aligned on an operand-sized boundary.

To guarantee that load and store instructions can, in general, be restarted and completed 
correctly without software intervention, the following rules apply when an execution is 
partially executed and then interrupted:

● For an elementary load, no part of a target register rD or frD has been altered.

● For update forms of load or store, the update register, rA, will not have been altered.

The following effects are permissible when certain instructions are partially executed and 
then restarted:

● For any store, bytes at the target location may have been altered (if write access to that 
page in which bytes were altered is permitted by the access control mechanism). In 
addition, for store conditional instructions, CR0 has been set to an undefined value, 
and it is undefined whether the reservation has been cleared or not.

● For any load, bytes at the addressed location may have been accessed (if read access 
to that page in which bytes were accessed is permitted by the access control 
mechanism).

● For load multiple or load string, some registers in the range to be loaded may have 
been altered. Including the addressing registers rA and possibly rB in the range to be 
loaded is a programming error, and thus the rules for partial execution do not protect 
these registers against overwriting.

In no case is access control violated.

As previously stated, elementary, aligned, guarded loads and stores are the only access 
instructions guaranteed not to be interrupted after being partially executed. The following list 
identifies the specific instruction types for which interruption after partial execution may 
occur, as well as the specific interrupt types that could cause the interruption:

1. Any load or store (except elementary, aligned, or guarded):

– Any asynchronous interrupt

– Machine check

– Program (imprecise mode floating-point enabled)

– Program (imprecise mode auxiliary processor enabled)

– Decrementer

– Fixed-interval timer

– Watchdog timer

– Debug (unconditional debug event)

2. Misaligned elementary load or store, or any multiple or string:

All of the above listed under item 1, plus the following:

– Alignment 

– Data storage (if the access crosses a protection boundary)

– Debug (data address compare, data value compare)
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The mtcrf and mfcr instructions can also be partially executed due to the occurrence of any 
of the interrupts listed under item 1 at the time mtcrf or mfcr was executing.

● All instructions before mtcrf or mfcr have completed execution. Some memory 
accesses generated by these preceding instructions may not have completed.

● No subsequent instruction has begun execution.

● The mtcrf or mfcr instruction, whose address was saved in SRR0/CSRR0 at the time 
of the interrupt, may appear not to have begun or may have partially executed.

4.10 Interrupt ordering and masking
Multiple exceptions that can each generate an interrupt can exist simultaneously. However, 
the PowerPC architecture does not provide for reporting multiple simultaneous interrupts of 
the same class (critical or noncritical). Therefore, the PowerPC architecture defines that 
interrupts must be ordered with one another and provides a way to mask certain persistent 
interrupt types.

When an interrupt type is masked (disabled) and an event causes an exception that would 
normally generate an interrupt of that type, the exception persists as a status bit in a register 
(which register depends upon the exception type) but no interrupt is generated. Later, if the 
interrupt type is enabled (unmasked) and the exception status has not been cleared by 
software, the interrupt due to the original exception event is finally generated. (A typical 
implementation has such a mechanism for certain debug events. A signal that triggers an 
asynchronous interrupt, such as external input, must be asserted until they are taken. There 
is no mechanism for saving the external interrupt if the signal is negated before the interrupt 
is taken. All interrupts are level-sensitive except for machine check, which is edge-
triggered.)

All asynchronous interrupt types and some synchronous interrupt types can be masked. An 
example of a maskable synchronous interrupt type is the floating-point enabled exception-
type program interrupt. The execution of a floating-point instruction that causes 
FPSCR[FEX] to be set is considered an exception event, regardless of the setting of 
MSR[FE0,FE1]. If MSR[FE0,FE1] are both 0, the floating-point enabled exception-type 
program interrupt is masked, but the exception persists in FPSCR[FEX]. Later, if 
MSR[FE0,FE1] are enabled, the interrupt is generated.

The PowerPC architecture allows implementations to avoid situations in which an interrupt 
would cause state information (saved in save/restore registers) from a previous interrupt to 
be overwritten and lost. As a first step, upon any noncritical class interrupt, hardware 
automatically disables further asynchronous, noncritical class interrupts (external input) by 
clearing MSR[EE]. Likewise, upon any critical class interrupt, hardware automatically 
disables further asynchronous interrupts, both critical and noncritical, by clearing MSR[CE] 
and MSR[EE]. Critical input, watchdog timer, and debug interrupts are disabled by clearing 
MSR[CE,DE]. Note that machine check interrupts, while considered neither asynchronous 
nor synchronous, are not maskable by MSR[CE,DE,EE] and could be presented in a 
situation that could cause loss of state information.

This first step of clearing MSR[EE] (and MSR[CE,DE] for critical class interrupts) prevents 
subsequent asynchronous interrupts from overwriting save/restore registers before software 
can save their contents. On any interrupt, hardware also automatically clears 
MSR[WE,PR,FP,FE0,FE1,IS,DS], which helps avoid subsequent interrupts of certain other 
types. However, guaranteeing that these interrupt types do not occur also requires system 
software to avoid executing instructions that could cause (or enable) a subsequent interrupt, 
if SRR1 contents have not been saved.
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4.10.1 Guidelines for system software 

Table 177 lists actions system software must avoid before saving save/restore register 
contents.

         

If the machine check APU is not implemented, machine check interrupts are a special case. 
Machine checks are critical interrupts, but normal critical interrupts (critical input, watchdog 
timer, and debug) do not automatically disable machine checks. Machine checks are 
disabled by clearing MSR[ME], and only a machine check interrupt itself automatically 
clears this bit. Thus there is always the risk that a machine check interrupt could occur 

Table 177. Operations to avoid

Operation Reason

Reenabling MSR[EE] (or MSR[CE,DE] in critical 
class interrupt handlers)

Prevents any asynchronous interrupts, snd (in 
the case of MSR[DE]) any debug interrupts, 
including synchronous and asynchronous 
types

Branching (or sequential execution) to addresses 
not mapped by the TLB, mapped without UX = 1 or 
SX = 1 permission, or causing large address or 
instruction address overflow exceptions.

Prevents instruction storage, instruction TLB 
error, and instruction address overflow 
interrupts

Load, store, or cache management instructions to 
addresses not mapped by the TLB or not having 
required access permissions.

Prevents data storage and data TLB error 
interrupts

Execution of system call (sc) or trap (tw, twi, td, tdi) Prevents system call and trap exception-type 
program interrupts

Execution of any floating-point instruction Prevents floating-point unavailable interrupts. 
Note that this interrupt would occur upon 
execution of any floating-point instruction, due 
to the automatic clearing of MSR[FP]. 
However, even if software were to reenable 
MSR[FP], floating-point instructions must still 
be avoided to prevent program interrupts due 
to various possible program interrupt 
exceptions (floating-point enabled, 
unimplemented operation).

Reenabling of MSR[PR] Prevents privileged instruction exception-type 
program interrupts. Alternatively, software 
could reenable MSR[PR] but avoid executing 
any privileged instructions.

Execution of any auxiliary processor instruction Prevents auxiliary processor unavailable, 
auxiliary processor enabled type, and 
unimplemented operation type program 
interrupts 

Execution of any illegal instructions Prevents illegal instruction exception-type 
program interrupts

Execution of any instruction that could cause an 
alignment interrupt

Prevents alignment interrupts, including string 
or multiple instructions and misaligned 
elementary load or store instructions. 
Chapter 4.7.6: Alignment interrupt,” lists 
instructions that cause alignment interrupts.
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within a normal critical interrupt handler before it saves the save/restore registers’ contents. 
In such a case, the interrupt may not be recoverable.

It is unnecessary for hardware or software to avoid critical-class interrupts from within 
noncritical-class interrupt handlers (hence hardware does not automatically clear 
MSR[CE,ME,DE] on a noncritical interrupt), since the two interrupt classes use different 
save/restore registers. However, because a critical class interrupt can occur within a 
noncritical handler before the noncritical handler saves SRR0/SRR1, hardware and 
software must cooperate to avoid both critical and noncritical class interrupts from within 
critical class interrupt handlers. Therefore, within the critical class interrupt handler, both 
pairs of save/restore registers may contain data necessary to system software. 

4.10.2 Interrupt order

Enabled interrupt types for which simultaneous exceptions can exist are prioritized as 
follows:

1. Synchronous (non-debug) interrupts: 

– Data storage

– Instruction storage

– Alignment

– Program

– Floating-point unit unavailable

– Auxiliary processor unavailable

– System call

– Data TLB error

– Instruction TLB error

Only one of the above synchronous interrupt types may have an existing exception 
generating it at a given time. This is guaranteed by the exception priority mechanism 
(see Chapter 4.11: Exception priorities”) and the sequential execution model.

2. Machine check

3. Debug

4. Critical input

5. Watchdog timer

6. External input

7. Fixed-interval timer

8. Decrementer

Although, as indicated above, noncritical, synchronous exception types listed under item 1 
are generated with higher priority than critical interrupt types in items 2–5, noncritical 
interrupts are immediately followed by the highest priority existing critical interrupt type, 
without executing any instructions at the noncritical interrupt handler. This is because 
noncritical interrupt types do not automatically disable MSR mask bits for critical interrupt 
types (CE and ME). In all other cases, a particular interrupt type listed above automatically 
disables subsequent interrupts of the same type, as well as all lower priority interrupt types.
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4.11 Exception priorities
Book E requires all synchronous (precise and imprecise) exceptions to be reported in 
program order, as required by the sequential execution model. The one exception to this rule 
is the case of multiple synchronous imprecise exceptions. Upon a synchronizing event, all 
previously executed instructions are required to report any synchronous imprecise interrupt-
generating exceptions, and the interrupt is then generated with all of those exception types 
reported cumulatively in the ESR and in any status registers associated with the particular 
exception type (such as the FPSCR).

For any single instruction attempting to cause multiple exceptions for which the 
corresponding synchronous interrupt types are enabled, this section defines the priority 
order by which the instruction is permitted to cause a single enabled exception, thus 
generating a particular synchronous interrupt. Note that it is this exception priority 
mechanism, along with the requirement that synchronous interrupts be generated in 
program order, that guarantees that at any given time there exists for consideration only one 
of the synchronous interrupt types listed in item 1 of Chapter 4.10.2: Interrupt order.” The 
exception priority mechanism also prevents certain debug exceptions from existing in 
combination with certain other synchronous interrupt-generating exceptions.

The EIS defines priorities for all exceptions including those defined in optional APUs. 
Interrupt types are defined as either synchronous (the interrupt is as a direct result of an 
instruction in execution) or asynchronous, (the interrupt results from an event external to the 
execution of a particular instruction or an instruction removes a gating condition to a 
pending exception). Except for machine check interrupts, which can be either synchronous 
or asynchronous, interrupts are either synchronous or asynchronous exclusively.

Because asynchronous interrupts may temporally be sampled either before or after an 
instruction is completed, an implementation can order asynchronous interrupts among only 
asynchronous interrupts and order synchronous interrupts among only synchronous 
interrupt. The distinction is important because synchronous interrupts that require post-
completion actions (such as system call or debug instruction complete exceptions) cannot 
be separated from the completion of the instruction. Therefore, asynchronous interrupts 
cannot be sampled during the completion and post-completion synchronous exceptions for 
a given instruction.

The relative priorities for asynchronous exceptions is given in Table 178 and for 
synchronous exceptions in and Table 179. In many cases, certain exceptions cannot occur 
at the same time (for example, program-trap and program-Illegal cannot occur on the same 
instruction). In general those exceptions are grouped at the same relative priority. 
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Table 178. EIS asynchronous exception priorities

Relative 
priority

Exception
Interrupt 
level(1)

1. The interrupt level defines the set of save/restore registers used when the interrupt is taken—base 
(SRR0/SRR1), critical (CSRR0/CSRR1), debug (DSRR0/DSRR1), and machine check 
(MCSRR0/MCSRR1).

Interrupt 
nature

Pre/post 
completion

(2)

2. Pre- or post-completion refers to whether the exception occurs before an instruction completes (pre) and 
the corresponding interrupt points to the instruction causing the exception, or if the instruction completes 
(post) and the corresponding interrupt points to the next instruction to be executed.

Comments

0 Machine check Machine check Asynch/synch pre for 
synch

Asynchronous 
exceptions may 
come from processor 
or from an external 
source.

1 Debug—UDE Critical/debug Asynch N/A Generally used for an 
externally generated 
high priority attention 
signal.

Debug—IDE Critical/debug Asynch N/A Usually taken after 
MSR[DE] goes from 
0 to 1 via rfdi/rfci or 
mtmsr.

Debug—interrupt 
taken

Critical/debug Asynch N/A Debug interrupt taken 
after original interrupt 
changed NIA and 
MSR.

Debug—critical 
interrupt taken

Debug Asynch N/A Debug interrupt taken 
after original critical 
interrupt has 
changed NIA and 
MSR.

2 Critical input Critical Asynch N/A

3 Watchdog Critical Asynch N/A

4 External input Base Asynch N/A

18 Fixed interval timer Base Asynch N/A

19 Decrementer Base Asynch N/A

20 Performance 
Monitor

Base Asynch N/A
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Table 179. EIS synchronous exception priorities

Relative

priority
Exception

Interrupt

level(1)
Interrupt

nature

Pre/post

completion
(2)

Comments

5
Debug–instruction 
address compare

Critical/debug Synch pre

6
ITLB Base Synch pre

ISI Base Synch pre

7

FP unavailable Base Synch pre

AltiVec unavailable Base Synch pre Defined by the AltiVec 
APU.

SPE unavailable Base Synch pre Defined by the SPE 
APU.

Embedded floating-
point unavailable

Base Synch pre Defined by the 
embedded floating point 
APUs.

8 Debug—trap Critical/debug Synch pre

9

Program—illegal 
instruction

Base Synch pre

Program—
unimplemented 
operation

Base Synch pre

Program—privileged 
instruction

Base Synch pre

Program—Trap Base Synch pre

Program—FP enabled Base Synch pre An FP enabled interrupt 
may be imprecise.

10
(Alignment) Base Synch pre Alignment may be 

handled at either 
priority.

11
DTLB Base Synch pre

Data storage Base Synch pre

12
Alignment Base Synch pre Alignment may be 

handled at either 
priority.
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13

System call Base Synch post Points SRR0 to 
instruction after sc (post 
completion).

Embedded FP data Base Synch pre Defined by the SPE 
APU.

Embedded FP round Base Synch post Points SRR0 to the 
instruction after the one 
causing the exception 
(post completion). 
Defined by SPE APU.

AltiVec Assist Base Synch pre Defined by the AltiVec 
APU.

14

Debug—return from 
interrupt

Critical/debug Synch pre

Debug—Return from 
critical interrupt

Debug Synch pre Defined by the 
enhanced debug APU.

Debug—branch taken Critical/debug Synch pre

15
Debug—DAC Critical/debug Synch pre or post Preferred method is pre-

completion.

16
Debug—DVC Critical/debug Synch pre or post Preferred method is pre-

completion.

17
Debug—instruction 
complete

Critical/debug Synch post Points [CD]SRR0 to 
next instruction (post 
completion).

1. The interrupt level defines the set of save/restore registers used when the interrupt is taken—base 
(SRR0/SRR1), critical (CSRR0/CSRR1), debug (DSRR0/DSRR1), and machine check 
(MCSRR0/MCSRR1).

2. Pre- or post-completion refers to whether the exception occurs before an instruction completes (pre) and 
the corresponding interrupt points to the instruction causing the exception, or if the instruction completes 
(post) and the corresponding interrupt points to the next instruction to be executed.

Table 179. EIS synchronous exception priorities (continued)

Relative

priority
Exception

Interrupt

level(1)
Interrupt

nature

Pre/post

completion
(2)

Comments
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5 Storage architecture

This chapter describes the cache and MMU portions of the Book E implementation 
standards (EIS). Note that not all features that are defined by the EIS storage architecture 
are supported on all ST EIS processors; consult the user documentation. This chapter is 
organized into three section:

● Chapter 5.2: Memory and cache coherency”

● Chapter 5.3: Cache model”

● Chapter 5.4: Storage model”

5.1 Overview
The Book E architecture memory and cache definitions support a wide variety of embedded 
implementations. To provide such flexibility, Book E defines many features in a very general 
way, leaving specific details up to the implementation. To ensure consistency among its 
Book E cores and devices, ST has defined more specific implementation standards. 
However, these standards still leave many details up to individual implementations. To 
provide context for those features, this chapter describes aspects of the memory hierarchy 
and the memory management model defined by Book E; it also describes the ST EIS.

Note: This chapter describes some features (in particular, registers) in a very general way that 
does not include some details that are important to the programmer. There are also small 
differences in how some features are defined here and how they are implemented. For 
implementation-specific details, see the user documentation.

Throughout this chapter, references to load instructions include cache management and 
other instructions that are stated in the instruction descriptions to be treated as a load, and 
references to store instructions include the cache management and other instructions that 
are treated as a store.

The following APUs, which are part of the EIS storage architecture, are defined in 
Chapter 8: Storage-related APUs on page 848”:

● Cache line locking APU

● Cache way partitioning APU

● Direct cache flush APU

These APUs may be implemented independently of each other. They are defined together in 
a single specification because it is likely that an implementation will include more than one 
of these APUs.

5.2 Memory and cache coherency
The primary objective of a coherent memory system is to provide the same image of 
memory to all devices using the system. Coherency allows synchronization and cooperative 
use of shared resources. Otherwise, multiple copies of data corresponding to a memory 
location, some containing outdated values, could exist in a system, resulting in errors when 
the outdated values are used. Each memory-sharing device must follow rules for managing 
the state of its cache. This section describes the coherency mechanisms of the Book E 
architecture and the cache coherency protocols that the ST Book E devices support.
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Unless specifically noted, the discussion of coherency in this section applies to the core 
complex data cache only. The instruction cache is not snooped for general coherency with 
other caches; however, it is snooped when the Instruction Cache Block Invalidate (icbi) 
instruction is executed by this processor or any processor in the system. 

5.2.1 Memory/Cache access attributes 

Some memory characteristics can be set on a page basis by using the WIMGE bits in the 
translation lookaside buffer (TLB) entries. These bits allow both uniprocessor and 
multiprocessor system designs to exploit numerous system-level performance 
optimizations. The WIMGE attributes control the following:

● Write-through (W bit)

● Caching-inhibited (I bit)

● Memory-coherency-required (M bit)

● Guarded (G bit)

● Endianness (E bit)

In addition to the WIMGE bits, the Book E MMU model defines the following attributes on a 
page basis:

● User-definable (U0, U1, U2, U3)

The EIS defines the following optional attributes, which are manipulated by software through 
MMU assist register 2 (MAS2):

● Alternate coherency mode (ACM). The ACM attribute, programmed through 
MAS2[ACM], allows an implementation to employ multiple coherency methods and to 
participate in multiple coherency protocols. If the M attribute (memory coherence 
required) is not set for a page (M = 0), the page has no coherency associated with it 
and the ACM attribute is ignored. If the M attribute is set for a page (M = 1), the ACM 
attribute determines the coherency domain (or protocol) used. ACM values are 
implementation dependent. 

● Variable length encoding (VLE). The VLE attribute, MAS2[VLE], identifies pages that 
contain instructions from the VLE instruction set. If VLE = 0, instructions fetched from 
the page are decoded and executed as PowerPC (and associated EIS APUs) 
instructions. If VLE = 1, instructions fetched from the page are decoded and executed 
as Power Embedded instructions. 

Consult the user documentation to determine whether the EIS-defined attributes are 
implemented. 

The WIMGE attributes are programmed by the operating system for each page. The W and 
I attributes control how the processor performing an access uses its own cache. The M 
attribute ensures that coherency is maintained for all copies of the addressed memory 
location. The G attribute prevents speculative loading from the addressed memory location. 
(An operation is said to be performed speculatively if, at the time that it is performed, it is not 
known to be required by the sequential execution model.) The E attribute defines the order 
in which the bytes that comprise a multiple-byte data object are stored in memory (big- or 
little-endian).

The WIMGE attributes occupy 5 bits in the TLB entries for page address translation. The 
operating system writes the WIMGE bits for each page into the TLB entries in system 
memory as it maps translations. For more information, see TLB entries on page 319.”
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All combinations of these attributes are supported except those that simultaneously specify 
a region as write-through and caching-inhibited. Write-through and caching-inhibited 
attributes are mutually exclusive because the write-through attribute permits the data to be 
in the data cache while the caching-inhibited attribute does not. 

Memory that is write-through or caching-inhibited is not intended for general-purpose 
programming. For example, lwarx and stwcx. instructions may cause the system DSI 
exception handler to be invoked if they specify a location in memory having either of these 
attributes. Some implementations take a data storage interrupt if the location is write-
through but does not take the interrupt if the location is cache-inhibited. Note that, except 
that the guarded bit does not prevent instruction prefetches, the definitions of the WIMG bits 
are unchanged 

Write-through attribute

A page marked W = 0 is considered to be write-back. If some store instructions executed by 
a given processor access locations in a block as write-through and other store instructions 
executed by the same processor access locations in that block as write-back, software must 
ensure that the block cannot be accessed by another processor or mechanism in the 
system. 

A store to a write-through (W = 1) memory location is performed in main memory and may 
cause additional memory locations to be accessed. If a copy of the block containing the 
specified location is retained in the data cache, the store is also performed in the data 
cache. A store to write-through memory cannot cause a block to be put in a modified state in 
the data cache. 

Also, if a store instruction that accesses a block in a location marked as write-through is 
executed when the block is already considered to be modified in the data cache, the block 
may continue to be considered to be modified in the data cache even if the store causes all 
modified locations in the block to be written to main memory. In some processors, accesses 
caused by separate store instructions that specify locations in write-through memory may be 
combined into one access. This is called store-gathering. Such combining does not occur if 
the store instructions are separated by an msync or an mbar. 

Caching-inhibited attribute

A load instruction that specifies a location in caching-inhibited (I = 1) memory is performed 
to main memory and may cause additional locations in main memory to be accessed unless 
the specified location is also guarded. An instruction fetch from caching-inhibited memory 
may cause additional words in main memory to be accessed. No copy of the accessed 
locations is placed into the caches. 

In some processors, nonoverlapping accesses caused by separate load instructions that 
specify locations in caching-inhibited memory may be combined into one access, as may 
nonoverlapping accesses caused by separate store instructions to caching-inhibited 
memory (that is, store-gathering). Such combining does not occur if the load or store 
instructions are separated by an msync instruction, or by an mbar instruction if the memory 
is also guarded. 

Memory-coherence-required attribute

Memory coherence refers to the ordering of stores to a single location. Atomic stores to a 
given location are coherent if they are serialized in some order, and no processor or 
mechanism is able to observe any subset of those stores as occurring in a conflicting order. 
This serialization order is an abstract sequence of values; the physical location need not 
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assume each of the values written to it. For example, a processor may update a location 
several times before the value is written to physical memory. 

The result of a store operation is not available to every processor or mechanism at the same 
instant, and it may be that a processor or mechanism observes only some of the values that 
are written to a location. However, when a location is accessed atomically and coherently by 
all processors and mechanisms, the sequence of values loaded from the location by any 
processor or mechanism during any interval of time forms a sub-sequence of the sequence 
of values that the location logically held during that interval. That is, a processor or 
mechanism can never load a newer value first and then, later, load an older value. 

Memory coherence is managed in blocks called coherence blocks. Although a block’s size is 
implementation-dependent, it is usually larger than a word and is often the size of a cache 
block. 

When memory coherence is not required (M = 0), the hardware need not enforce data 
coherence for memory accesses initiated by the processor. When memory coherence is 
required (M = 1), the hardware must enforce data coherence for memory accesses initiated 
by the processor. Hardware support for the memory-coherence-required attribute is optional 
for implementations that do not support multiprocessing.

Guarded attribute

When the guarded bit is set, the page is designated as guarded. This setting can be used to 
protect certain memory areas from read accesses made by the processor that are not 
dictated directly by the program. If areas of physical memory are not fully populated (in other 
words, there are holes in the physical memory map within this area), this setting can protect 
the system from undesired accesses caused by speculative (referred to as ‘out of order’ in 
the architecture specification, and described in Definition of apeculative and out-of-order 
memory accesses on page 285”) load operations that could lead to the generation of the 
machine check exception. Also, the guarded bit can be used to prevent speculative load 
operations from occurring to certain peripheral devices that produce undesired results when 
accessed in this way. 

Definition of apeculative and out-of-order memory accesses 

In the architecture definition, the term ‘out of order’ replaced the term ‘speculative’ with 
respect to memory accesses to avoid a conflict between the word’s meaning in the context 
of execution of instructions past unresolved branches. The architecture’s use of out of order 
in this context could in turn be confused with the notion of loads and stores being reordered 
in a weakly ordered memory system. 

In the context of memory accesses, this document uses the terms ‘speculative’ and ‘out of 
order’ as follows:

● Speculative memory access—An access to memory that occurs before it is known to 
be required by the sequential execution model.

● Out-of-order memory access—A memory access performed ahead of one that may 
have preceded it in the sequential model, such as is allowed by a weakly ordered 
memory model. 

Performing operations speculatively 

An operation is said to be nonspeculative if it is guaranteed to be required by the sequential 
execution model. Any other operation is said to be performed speculatively, which the 
architecture specification refers to as out of order.
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Operations are performed speculatively by hardware on the expectation that the results will 
be needed by an instruction that will be required by the sequential execution model. 
Whether the results are needed depends on whether control flow is diverted away from the 
instruction by an event such as an exception, branch, trap, system call, return from interrupt 
instruction, or anything else that changes the context in which the instruction is executed.

Typically, the hardware performs operations speculatively when it has resources that would 
otherwise be idle, so the operation incurs little or no cost. If subsequent events such as 
branches or exceptions indicate that the operation would not have been performed, the 
processor abandons any results of the operation except as described below.

Most operations can be performed speculatively, as long as the machine appears to follow 
the sequential execution model. Certain speculative operations are restricted, as follows:

● Stores—A store instruction cannot execute speculatively in a manner such that the 
alteration of the target location can be observed by other processors or mechanisms.

● Accessing guarded memory—The restrictions for this case are given in Speculative 
accesses to guarded memory on page 286.”

No error of any kind other than a machine check exception may be reported due to an 
operation that is performed speculatively, until such time as it is known that the operation is 
required by the sequential execution model. The only other permitted side effect (other than 
machine check) of performing an operation speculatively is that nonguarded memory 
locations that could be fetched into a cache by nonspeculative execution may be fetched 
speculatively into that cache.

Guarded memory

Memory is said to be well behaved if the corresponding physical memory exists and is not 
defective, and if the effects of a single access to it are indistinguishable from the effects of 
multiple identical accesses to it. Data and instructions can be fetched speculatively from 
well-behaved memory without causing undesired side effects. 

Memory is said to be guarded if the G bit is set for the page. In general, memory that is not 
well-behaved should be guarded. Because such memory may represent an I/O device or 
include nonexistent locations, a speculative access to such memory may cause an I/O 
device to perform incorrect operations or may cause a machine check.

Note that if separate store instructions access memory that is both caching-inhibited and 
guarded, the accesses are performed in the order specified by the program. If an aligned 
load or store that is not a string or multiple access to caching-inhibited, guarded memory 
has accessed main memory and an external, decrementer, or imprecise-mode floating-point 
enabled exception is pending, the load or store is completed before the exception is taken.

Speculative accesses to guarded memory

Accesses for load instructions from guarded memory may be performed speculatively if a 
copy of the target location is in a cache; in this case, the location may be accessed from the 
cache or from main memory.

Note that software should ensure that only well-behaved memory is loaded into a cache, 
either by marking as caching-inhibited (and guarded) all memory that may not be well-
behaved or by marking such memory caching-allowed (and guarded) and referring only to 
cache blocks that are well-behaved.
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Instrubction accesses: guarded memory and no-execute memory

The G bit is ignored for instruction fetches, and instructions are speculatively fetched from 
guarded pages. To prevent speculative fetches from pages that do not contain instructions 
and are not well-behaved, the page should be designated as no-execute (with the UX/SX 
page permission bits cleared). If the effective address of the current instruction is mapped to 
no-execute memory, an ISI exception is generated.

Endianness

Objects may be loaded from or stored to memory in byte, half-word, word, or double-word 
units. For a particular data length, the load and store operations are symmetrical; a store 
followed by a load of the same data object yields an unchanged value. Book E makes no 
guarantees about the order in which the bytes that comprise multiple-byte data objects are 
stored into memory. The endianness (E) page attribute distinguishes between memory that 
is big or little endian, as described in the following subsections.

Except for instruction fetches, it is always permitted to access the same location using two 
effective addresses with different E bit settings. Instruction pages must be flushed from any 
caches before the E bit can be changed for those addresses. See Byte ordering on 
page 141,” for more information about endianness.

Big-endian pages

If a stored multiple-byte object is probed by reading its component bytes one at a time using 
load-byte instructions, the store order may be perceived. If such probing shows that the 
lowest memory address contains the highest-order byte of the multiple-byte scalar, the next-
higher sequential address the next-least-significant byte, and so on, the multiple-byte object 
is stored in big-endian form. Big-endian memory is defined on a page basis by the 
memory/cache attribute, E = 0.

Note that strings are not multiple-byte scalars but are interpreted as a series of single-byte 
scalars. Bytes in a string are loaded from memory using a load string word instruction, 
starting at the lowest-numbered address, and placed into the target register or registers 
starting at the left-most byte of the least-significant word. Bytes in a string are stored using a 
store string word instruction from the source register, starting at the left-most byte of the 
least-significant word, and placed into memory, starting at the lowest-numbered address.

Little-endian pages

Alternatively, if the probing shows that the lowest memory address contains the lowest-order 
byte of the multiple-byte scalar, the next-higher sequential address the next-most-significant 
byte, and so on, the multiple-byte object is stored in little-endian form. Little-endian memory 
is defined on a page basis by the memory/cache attribute, E = 1, and for Book E devices is 
defined as true little-endian memory.

Structure mapping examples

The following C programming example defines the data structure S used in this section to 
demonstrate how the bytes that comprise each element (a, b, c, d, e, and f) are mapped into 
memory. The structure contains scalars (shown in hexadecimal in the comments) and a 
sequence of characters, shown in single quotation marks.

struct {
int a; /* 0x1112_1314 word*/
double b; /* 0x2122_2324_2526_2728double word*/
char * c; /* 0x3132_3334 word*/
char d[7]; /* 'L','M','N','O','P','Q','R' array of bytes*/
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short e; /* 0x5152 half word*/
int f; /* 0x6162_6364 word*/

} S;

big-endian mapping of the structure ia shown below.

Big-endian mapping of structure 

Note that the MSB of each scalar is at the lowest address. The mapping uses padding 
(indicated by (x)) to align the scalars—4 bytes between elements a and b, 1 byte between d 
and e, and 2 bytes between e and f. Note that the padding is determined by the compiler, not 
the architecture.

The structure using little-endian mapping, showing double words laid out with addresses 
increasing from right to left. 

Little-endian mapping of structure S—alternate view

Contents 11 12 13 14 (x) (x) (x) (x)

Address 00 01 02 03 04 05 06 07

Contents 21 22 23 24 25 26 27 28

Address 08 09 0A 0B 0C 0D 0E 0F

Contents 31 32 33 34 ‘L’ ‘M’ ‘N’ ‘O’

Address 10 11 12 13 14 15 16 17

Contents ‘P’ ‘Q’ ‘R’ (x) 51 52 (x) (x)

Address 18 19 1A 1B 1C 1D 1E 1F

Contents 61 62 63 64 (x) (x) (x) (x)

Address 20 21 22 23 24 25 26 27

Contents (x) (x) (x) (x) 11 12 13 14

Address 07 06 05 04 03 02 01 00

Contents 21 22 23 24 25 26 27 28

Address 0F 0E 0D 0C 0B 0A 09 08

Contents ‘O’ ‘N’ ‘M’ ‘L’ 31 32 33 34

Address 17 16 15 14 13 12 11 10

Contents (x) (x) 51 52 (x) ‘R’ ‘Q’ ‘P’

Address 1F 1E 1D 1C 1B 1A 19 18

Contents (x) (x) (x) (x) 61 62 63 64

Address 27 26 25 24 23 22 21 20
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Mismatched memory cache attributes

Accesses to the same memory location using two effective addresses for which the write-
through required attribute (W bit) differs meet the memory coherence requirements 
described in Write-through attribute on page 284,” if the accesses are performed by a single 
processor. If the accesses are performed by two or more processors, coherence is enforced 
by the hardware only if the write-through attribute is the same for all the accesses. 

Loads, stores, dcbz instructions, and instruction fetches to the same memory location using 
two effective addresses for which the caching-inhibited attribute (I bit) differs must meet the 
requirement that a copy of the target location of an access to caching-inhibited memory not 
be in the cache. Violation of this requirement is considered a programming error; software 
must ensure that the location has not previously been brought into the cache or, if it has, that 
it has been flushed from the cache. If the programming error occurs, the result of the access 
is boundedly undefined. It is not considered a programming error if the target location of any 
other cache management instruction to caching-inhibited memory is in the cache.

Accesses to the same memory location using two effective addresses for which the memory 
coherence attribute (M bit) differs may require explicit software synchronization before 
accessing the location with M = 1 if the location has previously been accessed with M = 0. 
Any such requirement is system-dependent. For example, in some systems that use bus 
snooping, no software synchronization may be required. In some directory-based systems, 
software may be required to execute dcbf instructions on each processor to flush all cache 
entries accessed with M = 0 before accessing those locations with M = 1.

Accesses to the same memory location using two effective addresses for which the guarded 
attribute (G bit) differs are always permitted.

Except for instruction fetches, accesses to the same memory location using two effective 
addresses for which the endian storage attribute (E bit) differs are always permitted as 
described in Endianness on page 287.” Instruction memory locations must be flushed before 
the endian attribute can be changed for those addresses.

The requirements on mismatched user-defined memory attributes (U0–U3) is 
implementation-dependent. 

Coherency paradoxes and WIMGE

Care must be taken with respect to the use of the WIMGE bits if coherent memory support 
is desired. Careless programming of these bits may create situations that present coherency 
paradoxes to the processor. These paradoxes can occur within a single processor or across 
several processors. It is important to note that, in the presence of a paradox, the operating 
system software is responsible for correctness.

In particular, a coherency paradox can occur when the state of these bits is changed without 
appropriate precautions (such as flushing the pages that correspond to the changed bits 
from the caches of all processors in the system) or when the address translations of aliased 
real addresses specify different values for certain WIMGE bit values. For more information, 
see Mismatched memory cache attributes on page 289.” 

Support for M = 1 memory is optional. Cache attribute settings where both W = 1 and I = 1 
are not supported. For all supported combinations of the W, I, and M bits, both G and E may 
be 0 or 1. 

The default setting of the WIMGE bits is 0b01000.
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Self-modifying code

When a processor modifies any memory location that can contain an instruction, software 
must ensure that the instruction cache is made consistent with data memory and that the 
modifications are made visible to the instruction fetching mechanism. This must be done 
even if the cache is disabled or if the page is marked caching-inhibited. 

The following instruction sequence can be used to accomplish this when the instructions 
being modified are in memory that is memory-coherence required and one processor both 
modifies the instructions and executes them. (Additional synchronization is needed when 
one processor modifies instructions that another will execute.)

The following sequence synchronizes the instruction stream (using either dcbst or dcbf):

dcbst (or dcbf)|update memory
msync |wait for update 
icbi |remove (invalidate) copy from instruction cache
msync |ensure that ICBI invalidation at icache has completed
isync |remove copy in own instruction buffer

5.2.2 Shared memory

The architecture supports sharing memory between programs, between different instances 
of the same program, and between processors and other mechanisms. It also supports 
access to a memory location by one or more programs using different effective addresses. 
In these cases, memory is shared in blocks that are an integral number of pages. When one 
physical memory location has different effective addresses, the addresses are said to be 
aliases. Each application can be granted separate access privileges to aliased pages.

Lock acquisition and import barriers on page 294,” gives examples of how msync and mbar 
are used to control memory access ordering when memory is shared among programs.

Memory access ordering

The memory model in Book E for memory access ordering is weakly consistent. This 
provides an opportunity for improved performance over a model with stronger consistency 
rules but places the responsibility on the program to ensure that ordering or synchronization 
instructions are properly placed for correct execution of the program.

The order in which a processor accesses memory, the order in which those accesses are 
performed with respect to other processors or mechanisms, and the order in which they are 
performed in main memory may all be different. Table 180 describes how the architecture 
defines requirements for ordering of loads and stores. 
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When a processor (P1) executes msync or mbar, a memory barrier is created that 
separates applicable memory accesses into two groups, G1 and G2. G1 includes all 
applicable memory accesses associated with instructions preceding the barrier-creating 
instruction, and G2 includes all applicable memory accesses associated with instructions 
following the barrier-creating instruction. 

Table  shows an example using a two-processor system.

         

Table 180. Load and store ordering

Type of Access Architecture definition

Load ordering with 
respect to other 
loads

The architecture guarantees that loads that are both caching-inhibited (I = 1) 
and guarded (G = 1) are not reordered with respect to one another.

If a load instruction depends on the value returned by a preceding load 
(because the value is used to compute the effective address specified by the 
second load), the corresponding memory accesses are performed in program 
order with respect to any processor or mechanism to the extent required by the 
associated memory coherence required attributes (that is, the memory 
coherence required attribute, if any, associated with each access). This applies 
even if the dependency does not affect program logic (for example, the value 
returned by the first load is ANDed with zero and then added to the effective 
address specified by the second load).

Store ordering with 
respect to other 
stores

If two store instructions specify memory locations that are both caching 
inhibited and guarded, the corresponding memory accesses are performed in 
program order with respect to any processor or mechanism. Otherwise, stores 
are weakly ordered with respect to one another.

Store ordering with 
respect to loads

The architecture specifies that an msync or mbar must be used to ensure 
sequential ordering of loads with respect to stores. 

Table 181. Memory barrier when coherency is required (M = 1) 

Processor 1 (P1)
Memory access groups G1 

and G2
Processor 2 (P2)

Instruction 1 G1: Memory accesses 
generated by P1 
before the memory barrier

When memory coherence is 
required, G1 accesses that 

affect P2 are also performed 
before the memory barrier.

Instruction 2

Instruction 3

Instruction 4

Instruction 5 (msync or mbar)—Memory barrier

Barrier generated by P1 does 
not order P2 instructions or 
associated accesses with 

respect to other P2 instructions 
and associated accesses.

Instruction 6 G2: Memory accesses 
generated by P1 after the 
memory barrier When memory coherence is 

required, G2 accesses that 
affect P2 are also performed 

after the memory barrier.

Instruction 7

Instruction 8

Instruction 9

Instruction 10
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The memory barrier ensures that all memory accesses in G1 are performed with respect to 
any processor or mechanism, to the extent required by the associated memory coherence 
required attributes (that is, the memory-coherence required attribute, if any, associated with 
each access), before any memory accesses in G2 are performed with respect to that 
processor or mechanism.

The ordering enforced by a memory barrier is said to be cumulative if it also orders memory 
accesses that are performed by processors and mechanisms other than P1, as follows:

● G1 includes all applicable memory accesses by any such processor or mechanism that 
have been performed with respect to P1 before the memory barrier is created.

● G2 includes all applicable memory accesses by any such processor or mechanism that 
are performed after a load instruction executed by that processor or mechanism has 
returned the value stored by a store that is in G2.

Table 182 shows an example of a cumulative memory barrier in a two-processor system.

         

Table 182. Cumulative memory barrier

A memory barrier created by msync is cumulative and applies to all accesses except those 
associated with fetching instructions following the msync. See the definition of mbar in 
Memory synchronization instructions on page 175,” for a description of the corresponding 
properties of the memory barrier created by that instruction.

Programming considerations

Because stores cannot be performed out of program order, as described in Book E, if a 
store instruction depends on the value returned by a preceding load (because the value the 
load returns is needed to compute either the effective address specified by the store or the 
value to be stored), the corresponding accesses are guaranteed to be performed in program 
order. The same applies whether or not the store instruction executes is dependent upon a 
conditional branch that in turn depends on the value returned by a preceding load. For 
example, if a conditional branch depends on a preceding load and that branch chooses 

Processor 1 (P1) Memory access groups G1 and G2 Processor 2 (P2)

P1 Instruction 1 G1: Memory accesses generated by P1 and P2 that affect 
P1. Includes accesses generated by executing P2 
instructions L–O (assuming that the access generated by 
instruction O occurs before P1’s msync is executed).

P2 Instruction L

P1 Instruction 2 P2 Instruction M

P1 Instruction 3 P2 Instruction N

P1 Instruction 4 P2 Instruction O

P1 Instruction 5 (msync)—Cumulative memory barrier applies to all accesses 
except those associated with fetching instructions following msync.

P2 Instruction P

P2 Instruction Q

P2 Instruction R

P1 Instruction 6 G2: Memory accesses generated by P1 and P2. Includes 
accesses generated by P2 instructions P–X (assuming that 
the access generated by instruction P occurs after P1’s 
msync is executed) performed after a load instruction 
executed by P2 has returned the value stored by a store 
that is in G2. 
The msync memory barrier does not affect accesses 
associated with instruction fetching that occur after the 
msync. 

P2 Instruction S

P1 Instruction 7 P2 Instruction T

P1 Instruction 8 P2 Instruction U

P1 Instruction 9 P2 Instruction V

P1 Instruction 10 P2 Instruction W

P1 Instruction 11 P2 Instruction X
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between a path that includes a store instruction if the condition is met, that dependent store 
is not performed unless and until the condition determined by the load is met. 

Because instructions following an isync cannot execute until all instructions preceding 
isync have completed, if an isync follows a conditional branch instruction that depends on 
the value returned by a preceding load instruction, that load is performed before any loads 
caused by instructions following the isync. This is true even if the effects of the dependency 
are independent of the value loaded (for example, the value is compared to itself and the 
branch tests CRn[EQ]), and even if the branch target is the next sequential instruction.

Except for the cases described above and earlier in this section, data and control 
dependencies do not order memory accesses. Examples include the following: 

● If a load specifies the same memory location as a preceding store and the location is 
not caching inhibited, the load may be satisfied from a store queue (a buffer into which 
the processor places stored values before presenting them to the memory subsystem) 
and not be visible to other processors and mechanisms. As a result, if a subsequent 
store depends on the value returned by the load, the two stores need not be performed 
in program order with respect to other processors and mechanisms.

● Because a store conditional instruction may complete before its store is performed, a 
conditional branch instruction that depends on the CR0 value set by a store conditional 
instruction does not order that store with respect to memory accesses caused by 
instructions that follow the branch.

For example, in the following sequence, the stw is the bc instruction’s target:

stwcx.
bc
stw

To complete, the stwcx. must update the architected CR0 value, even though its store 
may not have been performed. The architecture does not require that the store 
generated by the stwcx. must be performed before the store generated by the stw.

● Because processors may predict branch target addresses and branch condition 
resolution, control dependencies (branches, for example) do not order memory 
accesses except as described above. For example, when a subroutine returns to its 
caller, the return address may be predicted, with the result that loads caused by 
instructions at or after the return address may be performed before the load that 
obtains the return address is performed.

Some processors implement nonarchitected duplicates of architected resources such as 
GPRs, CR fields, and the LR, so resource dependencies (for example, specification of the 
same target register for two load instructions) do not force ordering of memory accesses.

Examples of correct uses of dependencies, msync, and mbar to order memory accesses 
can be found in hi.”

Because the memory model is weakly consistent, the sequential execution model as applied 
to instructions that cause memory accesses guarantees only that those accesses appear to 
be performed in program order with respect to the processor executing the instructions. For 
example, an instruction may complete, and subsequent instructions may be executed, 
before memory accesses caused by the first instruction have been performed. However, for 
a sequence of atomic accesses to the same memory location for which memory coherence 
is required, the definition of coherence guarantees that the accesses are performed in 
program order with respect to any processor or mechanism that accesses the location 
coherently, and similarly if the location is one for which caching is inhibited.
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Because caching-inhibited memory accesses are performed in main memory, memory 
barriers and dependencies on load instructions order such accesses with respect to any 
processor or mechanism even if the memory is not marked as requiring memory coherence.

Programming examples

Example 1 shows cumulative ordering of memory accesses preceding a memory barrier, 
Example 2 shows cumulative ordering of memory accesses following a memory barrier. In 
both examples, assume that locations X, Y, and Z initially contain the value 0. In both, 
cumulative ordering dictates that the value loaded from location X by processor C is 1.

Example 1:

● Processor A stores the value 1 to location X.

● Processor B loads from location X obtaining the value 1, executes an msync, then 
stores the value 2 to location Y.

● Processor C loads from location Y obtaining the value 2, executes an msync, then 
loads from location X.

Example 2:

● Processor A stores the value 1 to location X, executes an msync, then stores the value 
2 to location Y.

● Processor B loops, loading from location Y until the value 2 is obtained, then stores the 
value 3 to location Z.

● Processor C loads from location Z obtaining the value 3, executes an msync, then 
loads from location X. 

Lock acquisition and import barriers

An import barrier is an instruction or instruction sequence that prevents memory accesses 
caused by instructions following the barrier from being performed before memory accesses 
that acquire a lock have been performed. An import barrier can be used to ensure that a 
shared data structure protected by a lock is not accessed until the lock has been acquired. 
An msync can always be used as an import barrier, but the approaches shown below 
generally yield better performance because they order only the relevant memory accesses.

Acquire lock and import shared memory

If lwarx and stwcx. are used to obtain the lock, an import barrier can be constructed by 
placing an isync immediately following the loop containing the lwarx and stwcx.. The 
following example uses the compare and swap primitive (see Chapter C.1.1: 
Synchronization primitives on page 1144”) to acquire the lock.

This example assumes that the address of the lock is in GPR 3, the value indicating that the 
lock is free is in GPR 4, the value to which the lock should be set is in GPR 5, the old value 
of the lock is returned in GPR 6, and the address of the shared data structure is in GPR 9.
loop:lwarxr6,0,r3  # load lock and reserve

cmpw r4,r6 # skip ahead if
bne- wait # lock not free
stwcx. r5,0,r3 # try to set lock
bne- loop # loop if lost reservation
isync # import barrier
lwz r7,data1(r9) # load shared data

.

.
wait: ... #wait for lock to free
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The second bne- does not complete until CR0 has been set by the stwcx.. The stwcx. does 
not set CR0 until it has completed (successfully or unsuccessfully). The lock is acquired 
when the stwcx. completes successfully. Together, the second bne- and the subsequent 
isync create an import barrier that prevents the load from data1 from being performed until 
the branch is resolved to be not taken.

Obtain pointer and import shared memory

If lwarx and stwcx. are used to obtain a pointer into a shared data structure, an import 
barrier is not needed if all the accesses to the shared data structure depend on the value 
obtained for the pointer. The following example uses the fetch and add primitive (see 
Section C.1.1: Synchronization primitives”) to obtain and increment the pointer.

In this example, it is assumed that the address of the pointer is in GPR 3, the value to be 
added to the pointer is in GPR 4, and the old value of the pointer is returned in GPR 5.

loop: lwarx r5,0,r3 # load pointer and reserve
add r0,r4,r5 # increment the pointer
stwcx. r0,0,r3 # try to store new 

value
bne- loop # loop if lost reservation
lwz r7,data1(r5) # load shared data

The load from data1 cannot be performed until the lwarx loads the pointer value into GPR 5. 
The load from data1 may be performed out of order before the stwcx.. But if the stwcx. 
fails, the branch is taken and the value returned by the load from data1 is discarded. If the 
stwcx. succeeds, the value returned by the load from data1 is valid even if the load is 
performed out of order, because the load uses the pointer value returned by the instance of 
the lwarx that created the reservation used by the successful stwcx..

An isync could be placed between the bne- and the subsequent lwz, but no isync is 
needed if all accesses to the shared data structure depend on the value returned by the 
lwarx.

Atomic memory references

The Book E architecture defines the Load Word and Reserve Indexed (lwarx) and the store 
word conditional indexed (stwcx.) instructions to provide an atomic update function for a 
single, aligned word of memory. These instructions can be used to develop a rich set of 
multiprocessor synchronization primitives. Note that atomic memory references constructed 
using lwarx/stwcx. instructions depend on the presence of a coherent memory system for 
correct operation. These instructions should not be expected to provide atomic access to 
noncoherent memory.

The lwarx instruction performs a load word from memory operation and creates a 
reservation for the same reservation granule that contains the accessed word. Reservation 
granularity is implementation-dependent.

The lwarx instruction makes a nonspecific reservation with respect to the executing 
processor and a specific reservation with respect to other masters. This means that any 
subsequent stwcx. executed by the same processor, regardless of address, cancels the 
reservation. Also, any bus write or invalidate operation from another processor to an 
address that matches the reservation address cancels the reservation.
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5.3 Cache model
A cache model in which there is one cache for instructions and another cache for data is 
called a ‘Harvard-style’ cache. This is the model assumed by Book E, for example in the 
descriptions of the cache management instructions in Chapter 3: Instruction model on 
page 133.” Book E allows the following additional cache models are defined by the EIS:

● Unified cache, in which a cache is shared by both instructions and data 

● Multi-level caches, which must support the programming model implied by a Harvard-
style cache.

A processor is not required to maintain copies of storage locations in the instruction cache 
that are consistent with modifications to those storage locations (that is, modifications by 
store instructions).

In general, a location in the data cache is considered to be modified in that cache if the 
location has been modified (for example, by a store instruction) and the modified data has 
not been written to main storage. The only exception to this rule is described in Write-
through attribute on page 284.”

Cache management instructions are provided so that programs can manage the caches 
when needed. For example, program management of the caches is needed when a program 
generates or modifies code that will be executed (i.e., when the program modifies data in 
storage and then attempts to execute the modified data as instructions). Cache 
management instructions are also useful in optimizing the use of memory bandwidth in such 
applications as graphics and numerically intensive computing. The functions performed by 
these instructions depend on the storage attributes associated with the specified storage 
location.

Cache management instructions allow the program to do the following.

● Give a hint that a block of storage should be copied to the instruction cache, so that the 
copy of the block is more likely to be in the cache when subsequent accesses to the 
block occur, thereby reducing delays (icbt)

● Invalidate the copy of storage in an instruction cache block (icbi)

● Discard prefetched instructions (isync)

● Invalidate the copy of storage in a data cache block (dcbi)

● Give a hint that a block of storage should be copied to the data cache, so that the copy 
of the block is more likely to be in the cache when subsequent accesses to the block 
occur, thereby reducing delays (dcbt, dcbtst)

● Allocate a data cache block and set the contents of that block to zeros, but no-operation 
if no access is allowed to the data cache block and do not cause any exceptions (dcba)

● Set the contents of a data cache block to zeros (dcbz)

● Copy the contents of a modified data cache block to main storage (dcbst)

● Copy the contents of a modified data cache block to main storage and make the copy of 
the block in the data cache invalid (dcbf).

5.3.1 Cache programming model

This section summarizes the register and instructions defined to support the cache model. 
Full descriptions of these resources are provided in Chapter 2: Register model on page 46, 
and Chapter 3: Instruction model on page 133.
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Cache model registers

The EIS cache model implements the following registers and register fields:

● Machine state register (MSR). Defines the processor state (that is, enabling and 
disabling of interrupts and debugging exceptions, enabling and disabling of address 
translation for instruction and data memory accesses, enabling and disabling some 
APUs, and specifying whether the processor is in supervisor or user mode). EIS 
storage defines the user cache locking enable bit (MSR[UCLE]) as part of the cache 
line locking APU.

Book E and the EIS define the MSR fields described in Table 183. The MSR is 
described in detail in Chapter 2.6.1: Machine state register (MSR) on page 68.”

         

● Exception syndrome register (ESR). The ESR provides a syndrome to differentiate 
between different kinds of exceptions that can generate the same interrupt type. When 
such an interrupt is generated, bits corresponding to the exception that generated the 
interrupt are set and all other ESR bits are cleared. Other interrupt types do not affect 
ESR contents. The ESR does not need to be cleared by software. 

● Book E and the EIS defines the storage-related ESR fields described in Table 184. The 
ESR is described in detail in Exception syndrome register (ESR) on page 84.” 

         

Table 183. Storage related MSR fields

Bits Name Description

37 UCLE

(EIS-defined) User-mode cache lock enable. Used to restrict user-
mode cache-line locking by the operating system.

0Any cache lock instruction executed in user-mode takes a cache-
locking exception and data storage interrupt and sets either 
ESR[DLK] or ESR[ILK]. This allows the operating system to 
manage and track the locking/unlocking of cache lines by user-
mode tasks.

1Cache-locking instructions can be executed in user-mode and 
they do not take a DSI for cache-locking (they may still take a DSI 
for access violations though).

58 IS

(Book E–defined) Instruction address space

0The processor directs all instruction fetches to address space 0 
(TS = 0 in the relevant TLB entry).

1The processor directs all instruction fetches to address space 1 
(TS = 1 in the relevant TLB entry).

59 DS

(Book E–defined) Data address space

0The processor directs data memory accesses to address space 
0 (TS = 0 in the relevant TLB entry).

1The processor directs data memory accesses to address space 
1 (TS = 1 in the relevant TLB entry).
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Table 184. Exception syndrome register (ESR) definition 

Bits Name Syndrome Interrupt types

39 FP
(Book E–defined) Floating-point operations Alignment, data 

storage, data TLB, 
program

40 ST
(Book E–defined) Store operation Alignment, data 

storage, data TLB error

42 DLK

Defined by cache line locking APU. Instruction cache 
locking attempt. Set when a DSI occurs because a 
dcbtls, dcbtstls, or dcblc was executed in user mode 
(MSR[PR] = 1) while MSR[UCLE] = 0. 

0Default

1DSI occurred on an attempt to lock line in data cache 
when MSR[UCLE] = 0.

Data storage

43 ILK

Defined by cache line locking APU. Instruction cache 
locking attempt. Set when a DSI occurs because an 
icbtls or icblc was executed in user mode (MSR[PR] = 1) 
while MSR[UCLE] = 0. 
0Default

1DSI occurred on an attempt to lock line in instruction 
cache when MSR[UCLE] = 0.

Data storage

44 APU
(Book E–defined) Auxiliary processor operation. Alignment, data 

storage, data TLB, 
program

46 BO
Byte-ordering exception. Defined by Book E and the VLE 
extension.

Data storage,
instruction storage
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● L1 cache control and status registers (L1CSR0–L1CSR1).

– L1CSR0 provides general control and status for the processor’s primary data 
cache. If a processor implements a unified L1 cache, L1CSR0 applies to the 
unified cache and L1CSR1 is not implemented. See Chapter 2.11.1: L1 cache 
control and status register 0 (L1CSR0) on page 90.” 

– L1CSR1 provides general control and status for the processor’s primary 
instruction cache. If a processor implements a unified L1 cache, L1CSR0 applies 

56 SPE

Defined by SPE, embedded floating-point APU. 
SPE/embedded floating-point exception bit
0 Default

1 Any exception caused by an SPE/embedded floating-
point instruction occurred.

Data storage,

Data TLB error,

Alignment,
SPE unavailable,

Embedded FP 
unavailable,

Embedded FP data,

Embedded FP round

58 VLEMI

Defined by VLE extension. VLEMI indicates that an 
interrupt was caused by a VLE instruction. VLEMI is set 
on an exception associated with execution or attempted 
execution of a VLE instruction. 

0 The instruction page associated with the instruction 
causing the exception does not have the VLE attribute set 
or the VLE extension is not implemented.
1 The instruction page associated with the instruction 
causing the exception has the VLE attribute set and the 
VLE extension is implemented.

Data storage,

Data TLB error,
Instruction storage,

Program,

System Call,
Alignment,

SPE unavailable,

Embedded FP 
unavailable,

Embedded FP data,

Embedded FP round

62 MIF

Defined by the VLE extension. MIF indicates that an 
interrupt was caused by a misaligned instruction fetch 
(NIA62 != 0) and the VLE attribute is cleared for the page 
or the second half of a 32-bit VLE instruction caused an 
instruction TLB error. 

0Default.

1NIA62 != 0 and the instruction page associated with NIA 
does not have the VLE attribute set or the second half of a 
32-bit VLE instruction caused an instruction TLB error.

Instruction TLB error,

Instruction Storage

63 XTE

External transaction error. An external transaction 
reported an error but the error was handled precisely by 
the core. SRR0 holds the address of the instruction that 
initiated the transaction.
0Default. No external transaction error was precisely 
detected.
1An external transaction reported an error that was 
precisely detected.

Instruction storage,
Data storage

Table 184. Exception syndrome register (ESR) definition  (continued)

Bits Name Syndrome Interrupt types
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to the unified cache and L1CSR1 is not implemented. See Chapter 2.11.2: L1 
cache control and status register 1 (L1CSR1) on page 92.”

● L1 cache configuration registers (L1CFG0)

– L1CFG0 provides configuration information for the processor’s primary data 
cache. If a processor implements a unified cache, L1CFG0 applies to the unified 
cache and L1CFG1 is not implemented. See Chapter 2.11.3: L1 cache 
configuration register 0 (L1CFG0) on page 94.”

– L1CFG1 provides configuration information for the processor’s primary instruction 
cache. If a processor implements a unified cache, L1CFG0 applies to the unified 
cache and L1CFG1 is not implemented. L1CFG1 allows software to identify the 
organization and capabilities of the primary instruction cache. Chapter 2.11.4: L1 
cache configuration register 1 (L1CFG1) on page 95.”

Cache model instructions

The Book E PowerPC architecture defines instructions for controlling both the instruction 
and data caches (when they exist). 

● Data Cache Block Touch (dcbt)

● Data Cache Block Touch for Store (dcbtst) 

● Data Cache Block Zero (dcbz) 

● Data Cache Block Store (dcbst)

● Data Cache Block Flush (dcbf)

● Data Cache Block Allocate (dcba)

● Data Cache Block Invalidate (dcbi)

● Instruction Cache Block Invalidate (icbi)

● Instruction Synchronize (isync)

● Instruction Cache Block Touch (icbt)

These instructions are described in User-level cache instructions on page 180,” and 
Supervisor-level cache instruction on page 183.” Note that the behavior of many of these 
instructions is determined by the value of the cache target operand (CT). See CT instruction 
field on page 301.” Permission control and cache management instructions on page 316,” 
describes conditions in which cache control instructions can generate protection violations. 

The cache block locking APU, defined by the EIS, adds the following instructions:

● Data Cache Block Lock Clear (dcblc)

● Data Cache Block Touch and Lock Set (dcbtls) 

● Data Cache Block Touch for Store and Lock Set (dcbtstls) 

● Instruction Cache Block Lock Clear (icblc) 

● Instruction Cache Block Touch and Lock Set (icbtls) 

These instructions are described in Chapter 8.1: Cache line locking APU on page 848.”
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CT instruction field

Instructions having a CT (cache target) field for specifying a cache hierarchy use the value 0 
to specify the primary cache. ST devices interpret this operand as follows:

● CT = 0 indicates the L1 cache.

● CT = 1 indicates the I/O cache. (Note that some versions of the e500 documentation 
refer to the I/O cache as a frontside L2 cache.)

● CT = 2 indicates a backside L2 cache.

5.3.2 Primary (L1) cache model

This section describes the L1 cache model defined by the EIS. 

Types

Primary caches may separate instruction and data caches into two separate structures 
(commonly known as Harvard architecture), or they may provide a unified cache combining 
instructions and data. Caches are physically tagged.

Storage attributes and coherency

Primary data caches must support the storage attributes defined by Book E with the 
following advisory:

Note: The primary data cache may be implemented not to snoop (that is, not coherent with 
transactions outside the processor). System software is then responsible to maintain 
coherency. Thus the setting of the M attribute is meaningless. The preferred implementation 
provides snooping for primary data caches.

Primary instruction caches must support the storage attributes defined by Book E with the 
following advisory:

● The guarded attribute should be ignored for instruction fetch accesses. To prevent 
speculative fetch accesses to guarded memory, software should mark those pages as 
no-execute.

● The cache may be implemented not to snoop (that is, not coherent with transactions 
outside the processor). System software is then responsible to maintain coherency. 
The preferred implementation does not provide snooping for primary instruction 
caches.

As with other memory-related instructions, the effects of cache management instructions on 
memory are weakly-ordered. If the programmer must ensure that cache or other instructions 
have been performed with respect to all other processors and system mechanisms, an 
msync must be placed after those instructions.

5.4 Storage model 
This section describes the storage model as it is defined by Book E and by the EIS. 

5.4.1 Storage programming model

This section summarizes the register and instructions defined to support the cache model. 
Full descriptions of these resources are provided in Chapter 2: Register model on page 46,” 
and Chapter 3: Instruction model on page 133.”



RM0004 Storage architecture

302/1176

Storage model registers

This section provides an overview of the registers used for programming the MMU. Full 
descriptions are provided in Chapter 2.12: MMU registers on page 97.” These registers 
consist of the following:

● Process ID registers (PID0–PID2) are used by system software to identify TLB entries 
that are used by the processor to accomplish address translation for loads, stores, and 
instruction fetches. Book E defines one PID register (PID synonymous with PID0). The 
EIS defines 14 additional PID registers, PID1 through PID14. A implementation may 
choose to provide any number of PIDs up to a maximum of 15. The number of PIDs 
implemented is indicated by the value of MMUCFG[NPIDS] and the number of bits 
implemented in each PID register is indicated by the value of MMUCFG[PIDSIZE]. PID 
values are used to construct virtual addresses for accessing memory (see 
Chapter 5.4.6”).

● MMU assist registers (MAS0–MAS7) are used to transfer data to and from the TLB 
arrays. Software uses mfspr and mtspr to read and write MAS registers. Executing 
tlbre causes the TLB entry specified by MAS0[TLBSEL,ESEL] and MAS2[EPN] to be 
copied to the MAS registers. Conversely, execution of a tlbwe instruction causes the 
TLB entry specified by MAS0[TLBSEL,ESEL] and MAS2[EPN] to be written with the 
MAS register contents. Hardware can also updated MAS registers on the occurrence of 
an instruction or data TLB error interrupt or as the result of a tlbsx.

All MAS registers are supervisor level, and all except MAS5 and MAS7 must be 
implemented. MAS7 is not required if the processor supports 32 bits or less of physical 
address. Implementing MAS5 is implementation dependent.

Processors are required to implement only the necessary bits of any multiple-bit MAS 
register field such that only the resources supplied by the processor are represented. 
Any non-implemented bits in a field should have no effect when writing and should 
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always read as zero. For example, a processor that implements only two TLB arrays 
would likely implement only the lower-order MAS0[TLBSEL] bits.

– MAS0, contains fields for identifying and selecting a TLB entry.

– MAS1, contains fields for selecting a TLB entry during translation.

– MAS2, contains fields for specifying the effective page address and the storage 
attributes for a TLB entry. 

– MAS3, contains fields for specifying the real page address and the permission 
attributes for a TLB entry. 

– MAS4, contains fields for specifying default information to be pre-loaded on 
certain MMU-related exceptions. 

– The optional MAS5 register, contains fields for specifying PID values to be used 
when searching TLB entries with the tlbsx instruction. 

– MAS6, contains fields for specifying PID and AS values used when the tlbsx 
instruction is used to search TLB entries. 

MAS7, contains the high-order address bits of the RPN for implementations that 
support more than 32 bits of physical address. Implementations that support 32 bits or 
fewer do not implement MAS7. 

● MMU configuration register (MMUCFG), provides configuration information about the 
MMU. 

● TLB configuration registers (TLBnCFG). One TLBnCFG register, is implemented to 
provide information about each TLB implemented. TLB0CFG corresponds to TLB0, 
TLB1CFG corresponds to TLB1, etc.

● MMU control and status register (MMUCSR0), is used for general control of the MMU 
including flash invalidation of the TLB arrays and page sizes for programmable fixed 
size arrays. For TLB arrays with programmable fixed sizes, the TLBn_PS fields allow 
software to specify the page size.

Storage model instructions

The address translation mechanism is defined in terms of TLBs and page table entries 
(PTEs) Book E processors use to locate the logical-to-physical address mapping for a 
particular access. Table 103 on page 184 describes the operation of the TLB instructions, 
which are summarized as follows:

● TLB Invalidate Virtual Address Indexed (tlbivax)

● TLB Read Entry (tlbre)

● TLB Search Indexed (tlbsx) 

● TLB Synchronize (tlbsync)

● TLB Write Entry (tlbwe)

5.4.2 The storage architecture

This section describes the storage model as it is defined by Book E and by the ST EIS.

Book E storage architecture

The memory management approach defined by the Book E EIS is suited for desktop 
applications and has the simplicity and flexibility necessary for embedded applications. 
Book E supports demand-paged virtual memory as well as a variety of other management 
schemes that depend on precise control of effective-to-real address translation and flexible 
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memory protection. Address translation misses and protection faults cause precise 
exceptions. Sufficient information is available to correct the fault and restart the faulting 
instruction.

Each program on a 32-bit implementation can access 232 bytes of effective address (EA) 
space, subject to limitations imposed by the operating system. In a typical Book E system, 
each program’s EA space is a subset of a larger virtual address (VA) space managed by the 
operating system.

Each effective (logical) address is translated to a real (physical) address before being used 
to access physical memory or an I/O device. Hardware does this by using the address 
translation mechanism described in Chapter 5.4.6.” The operating system manages the 
physically addressed resources of the system by setting up the tables used by the address 
translation mechanism.

The Book E architecture divides the effective address space into pages. The page 
represents the granularity of effective address translation, permission control, and 
memory/cache attributes. Up to 12 page sizes (1, 4, 16, 64, or 256 Kbytes; 1, 4, 16, 64, or 
256 Mbytes; or 1 Gbyte) may be simultaneously supported. For an effective-to-real address 
translation to exist, a valid entry for the page containing the effective address must be in a 
translation lookaside buffer (TLB). Addresses for which no TLB entry exists cause TLB miss 
exceptions (instruction or data TLB error interrupts).

The instruction addresses generated by a program and the addresses used by load, store, 
and cache management instructions are effective addresses. However, in general, the 
physical memory space may not be large enough to map all the virtual pages used by the 
currently active applications. With support provided by hardware, the operating system can 
attempt to use the available real pages to map enough virtual pages for an application. If a 
sufficient set is maintained, paging activity is minimized, therefore maximizing performance.

The operating system can restrict access to virtual pages by selectively granting 
permissions for user-state read, write, and execute, and supervisor-state read, write, and 
execute on a per-page basis. These permissions can be set up for a particular system (for 
example, program code might be execute-only, data structures may be mapped as 
read/write/no-execute) and can also be changed by the operating system based on 
application requests and operating system policies.

EIS storage architecture

The standard for Book E MMUs establishes a common way of implementing Book E 
processors to provide a programming model that is consistent across all products in the 
family. Having a standard reduces the software efforts required in porting to a new 
processor because the common programming model minimizes implementation differences. 
Thus, the standard defines configuration information for features such as TLBs, caches, and 
other entities that have standard forms, but differing attributes (like cache sizes and 
associativity) such that a single software implementation can be created that works 
efficiently for all implementations of a class.
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The Book E MMU standard defines functions and structures that are visible to the execution 
model of the processor. These consist of the following definitions:

● The TLB, from a programming point of view, consists of zero or more TLB arrays, each 
of which may have differing characteristics.

● The logical-to-physical address translation mechanism

● Methods and effects of changing and manipulating TLB arrays

● Configuration information available to the operating system that describes the structure 
and form of the TLB arrays and translation mechanism

To assist or accelerate translation, implementations may contain other TLB structures not 
visible to the programming model. These structures and the methods for using them are not 
explicitly defined in the architecture or the ST standard, but they may be considered at the 
operating system level because they may affect an implementation’s performance. 

5.4.3 Virtual address (VA)

Book E defines a virtual address space composed of the effective address of an access, the 
1-bit current address space (AS) of the access and the 32-bit process ID (PID) of an access, 
as shown in Figure 16. The following subsections describe the selection of AS and PID for 
an effective address, both used to construct the virtual address for an access.

Figure 16. Virtual Address Space in Book E

5.4.4 Address spaces

Instruction accesses are generated by sequential instruction fetches or due to a change in 
program flow (branches and interrupts). Data accesses are generated by load, store, and 
cache management instructions.

The Book E architecture defines two address spaces for instruction accesses and two 
address spaces for data accesses. The current address space for instruction or data 
accesses is determined by the value of MSR[IS] and MSR[DS], respectively, as shown in 
Figure 17. 

Figure 17. Current address space

Effective Address Virtual Address Real Address
(Logical) (Physical)
(Program)

64-bit 1 + 32 +  64 bits  64-bit
AS PID EA

MSR[IS]
0 +
1

MSR[DS]
0 +
1

Data effective address <ea>

Instruction effective address <ea>

0 63

0 63
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If the type of translation performed is an instruction fetch, the value of the AS bit is taken 
from the contents of MSR[IS]. If the type of translation performed is a load, store, or other 
data translation including target addresses of software-initiated instruction fetch hints and 
locks (icbt, icbtls, icbtlc) the value of the AS bit is taken from the contents of MSR[DS].

The address space indicator (MSR[IS] or MSR[DS], as appropriate) is used in addition to 
the effective address generated by the processor for translation into a physical address by 
the TLB mechanism. 

Because MSR[IS] and MSR[DS] are cleared when an interrupt occurs, an address space 
value of zero can be used to denote interrupt-related address spaces, or possibly all system 
software address spaces; an address space value of one can be used to denote non–
interrupt-related address spaces, or possibly all user address spaces.

Software Note: Although system software is free to use address space bits as it sees fit, on 
an interrupt, the MSR[IS] and MSR[DS] are cleared. This encourages software to use 
address space 0 for system software and address space 1 for user software.

Instruction address spaces

The two effective instruction address spaces are defined by the value of MSR[IS], and 
instruction fetch addresses are translated from the effective address space specified by the 
current value of MSR[IS]. Changing the value of MSR[IS] is considered a context-altering 
operation, requiring a context synchronization operation to follow it. When a context 
synchronizing event occurs, any prefetched instructions are discarded and instructions are 
refetched using the then-current state of MSR[IS] and the then-current program counter. 
See Context synchronization on page 144,” for more information on the definition of context 
synchronizing events. 

Instructions are not fetched from memory designated by the TLB mechanism as no-execute 
(UX = 0 or SX = 0). If the effective address of the current instruction is mapped to no-
execute memory, an instruction storage interrupt (ISI) is generated.

Note that mapping a page as no-execute does not affect instruction caches in the system (or 
any instructions resident in unified caches). Thus, if an instruction is loaded into a cache 
when its effective address is mapped to execute permitted memory, and the execute 
permissions for that page are later changed to no-execute, any instructions fetched before 
the no-execute mapping remain in the cache until explicitly evicted by an icbi instruction or 
through the cache’s replacement policy. However, attempted execution of such instructions 
still results in an ISI. Thus, for example, the operating system can change the designation of 
an application’s instruction pages to no-execute without having to first flush instruction 
cache blocks that map to these pages.

Data address spaces

The two effective data address spaces are defined by the value of MSR[DS] and data is 
accessed to/from the effective address space specified by the current value of MSR[DS]. As 
is the case with MSR[IS], changing the value of MSR[DS] is considered a context-altering 
operation, requiring a context synchronization operation to follow it. When a context 
synchronizing event occurs, subsequent accesses are made using the new state of 
MSR[DS] (see Context synchronization on page 144”).

Data can be read from a page, provided the user read (UR) permission bit is set in the TLB 
for a user access, or the supervisor read (SR) bit is set for a supervisor access. Likewise, 
data write access permissions are determined by the user write (UW) and supervisor write 
(SW) permission bits. If permissions are violated, the appropriate interrupt is taken.
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5.4.5 Process ID

As described in Chapter 2.12.1: Process ID registers (PID0–PIDn) on page 97,” Book E 
defines that a PID value be associated with each effective address (instruction or data) 
generated by the processor. At the Book E level, one 32-bit PID register maintains the PID 
value for the current process. This value is used to construct a virtual address for accessing 
memory.

Figure 18. Current PID Value 

System software uses PIDs to identify TLB entries that the processor uses to translate 
addresses for loads, stores, and instruction fetches. PID contents are compared to the TID 
field in TLB entries as part of selecting appropriate TLB entries for address translation. PID 
values are used to construct virtual addresses for accessing memory. Note that individual 
processors may not implement all 14 bits of the process ID field. 

Book E defines one PID register that holds the PID value for the current process. ST devices 
may implement from 1 to 15 PID registers. The number of PIDs implemented is indicated by 
the value of MMUCFG[NPIDS]. Consult the user documentation for the implementation to 
determine if other PID registers are implemented. 

PID registers are more fully described in Chapter 2.12.1: Process ID registers (PID0–PIDn) 
on page 97.” 

Software Note: The suggested PID usage is for PID0 to denote private mappings for a 
process and for other PIDs to handle mappings that may be common to multiple processes. 
This method allows for processes sharing address space to also share TLB entries if the 
shared address space is mapped at the same virtual address in each process.

Process ID (PID) registers 

The Book E architecture specifies that a process ID (PID) value be associated with each EA 
(instruction or data) generated by the processor. 

System software uses PIDs to identify TLB entries that the processor uses to translate 
addresses for loads, stores, and instruction fetches. PID contents are compared to the TID 
field in TLB entries as part of selecting appropriate TLB entries for address translation. PID 
values are used to construct virtual addresses for accessing memory. Note that individual 
processors may not implement all 14 bits of the process ID field. 

Book E defines one PID register that holds the PID value for the current process. ST devices 
may implement from 1 to 15 PID registers. The number of PIDs implemented is indicated by 
the value of MMUCFG[NPIDS]. Consult the user documentation for the implementation to 
determine if other PID registers are implemented. 

The 15 PID registers supported by the EIS are implemented as SPR registers set by system 
software, and collectively reflect the process ID of the currently executing context. The 
system maintains multiple PID values in order to allow the sharing of TLB entries for pages 
that are shared among multiple execution contexts. For example, system software may 

PID
0xnnnn_nnnn  effective address <ea>

0 63
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assign PID0 to contain the unique process ID (for private mappings for the current 
processes) and may assign PID1 to contain the unique process ID for a common set of 
shared libraries.

Note that Book E defines the value of all zeros for a TID field in a TLB entry as an entry that 
is globally shared. Thus, when PID values (up to 12 bits for ST devices) are compared to the 
TID fields in the TLB arrays for matches, if a TLB entry contains all zeros in the TID field, it 
globally matches all PID values. PID registers are more fully described in Chapter 2.12.1: 
Process ID registers (PID0–PIDn) on page 97.”

Address space identifiers

The AS bit is the address space identifier. Thus there are two possible address spaces, 0 
and 1. The value of the AS bit is determined by the type of translation performed and from 
the contents of the MSR when an address is translated. If the type of translation performed 
is an instruction fetch, the value of the AS bit is taken from the contents of MSR[IS]. If the 
type of translation performed is a load, store, or other data translation including target 
addresses of software initiated instruction fetch hints and locks (icbt, icbtls, icbtlc) the 
value of the AS bit is taken from the contents of MSR[DS]. The AS bit is defined by Book E.

Note: Although system software is free to use address space bits as it sees fit, it should be noted 
that on interrupt, the MSR[IS] and MSR[DS] bits are cleared. This encourages software to 
use address space 0 for system software and address space 1 for user software.

5.4.6 Address translation

The effective address (EA) is the untranslated address for an instruction fetch address or for 
a data address that is calculated as a result of a load, store, or cache management 
instruction. The EA, concatenated with the MSR[IS] or MSR[DS] address space (AS) value, 
is compared to the appropriate number of bits of the EPN field (depending on the page size) 
and the TS field of the TLB entry. If a match occurs, that TLB entry is a candidate for a 
translation match. In addition to a match in the EPN field and TS, a matching TLB entry 
must match with the current process ID of the access.

Figure 19 shows the translation match logic for the effective address plus its attributes 
(collectively called the virtual address) and how it is compared with the corresponding fields 
in the TLB entries.
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Figure 19. Virtual address and TLB-entry comparison

The generation of the physical address occurs as shown in Figure 20.

Figure 20. Effective-to-real address translation

The EA combines with the AS and each PID register to form one virtual address for each 
unique PID register value. Also. an implicit virtual address is formed using a PID value of 0. 
Thus the following virtual addresses (VAs) are formed:

VA0 ← AS || 0  || EA
VA1 ← AS || PID0 || EA

...

VAn+1 ← AS || PIDn || EA
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Note that a PID register containing a 0 value (or the same value as another PID register) 
forms a non-unique VA. Duplicate VAs are ignored.

Each of the unique VAs are compared to all the valid TLB entries by comparing specific 
fields of each TLB entry to each of the VAs. The fields of each valid (TLB[V] = 1) TLB entry 
are combined to form a set of matching TLB address (TAs):

TA ← TLBTS || TLBTID || TLBEPN  || 120 

Each TA is compared to all VAs under a mask based on the page size (TLB[SIZE]) of the 
TLB entry. The mask of the comparison of the EA and EPN portions of the virtual and 
translation addresses is computed as follows:

mask ← ~(1024 << (2 * TLBSIZE)) - 1)

where the number of bits in the mask is equal to the number of bits in a TA (or VA). If a TA 
matches any VA the TLB entry is said to match. If more than one TA/VA match occurs, it is 
considered a serious programming error and the results are undefined. The recommended 
behavior is that a machine check interrupt is taken.

Once a match occurs the matching TLB is used for access control, storage attributes, and 
effective to real address translation. Access control, storage attributes, and address 
translation are defined by Book E (additional storage attributes are defined within this 
document).

5.4.7 Address translation and the ST EIS

Translating an effective address to a real address is defined by Book E to require four 
elements:

● The address space value. Depending on the type of translation (instruction or data), 
MSR[IS] or MSR[DS] is used.

● The TLB entries in the TLB arrays

● The effective address being translated

The following subsections describe these elements as they are further defined by the EIS.

Match criteria for TLB entries

TLB arrays contain TLB entries that are used to match any address presented for 
translation. All TLB entries for any given implementation are candidates for any given 
translation. The TLB itself is unordered with respect to the various elements used in address 
translations, and regardless of implementation, should be considered to perform the 
translation comparison with all entries in parallel.

There should be only one valid matching translation for a given effective address, PID value, 
and address space value. If the TLB contains more than one matching entry, it is considered 
a programming error, and the behavior of any such translation is undefined. In this case, the 
processor is likely to enter checkstop state or take a machine check interrupt.
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The following fields are compared in the TLB entries:

● V—The matching entry must have the V bit set.

● TS—The address space identifier used for translation. The appropriate bit of MSR[IS] 
or MSR[DS] must match the TS bit for a matching entry.

● TID—The contents of a PID register must match the TID field of a matching entry, or 
the TID field must be all zeros for a matching entry.

● EPN—The appropriate number of bits (depending on the page size) of the effective 
address being translated is compared to the EPN field of the TLB entry.

If a match occurs on all the fields listed above, the physical address is formed by replacing 
the effective page number in the effective address with the value in the RPN field of the 
matching TLB entry. The number of bits in the page number depends on the page size for 
that TLB entry.

Translation algorithms

The following algorithm describes how translation operates at the ST Book E level:

ea = effective address
if translation is an instruction address then

as = MSR[IS]
else // data address translation

as = MSR[DS]
for all TLB entries

if ! TLBV then
next // compare next TLB entry

if as != TLBTS then
next

if TLBTID == 0 then
goto pid_match

for all PID registers
if this PID register == TLBTID then

goto pid_match
endfor
next // no PIDs matched

pid_match: // translation match
mask = ~((1024 << (2 * TLBTSIZE)) - 01)
if (ea & mask) != TLBEPN then

next // no address match
real address = TLBRPN | (ea & ~mask) // real address computed

end translation -- success
endfor
end translation -- tlbmiss

The algorithm for the granting of permission is as follows:

if MSRPR == 0 then
x = TLBSX
r = TLBSR
w = TLBSW

else
x = TLBUX
r = TLBUR
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w = TLBUW

if instruction fetch address then
if x == 0 then

Instruction Storage Interrupt
else // data access

if data read (load) then
if r == 0 then

 Data Storage Interrupt
else // write access (store)

if w == 0 then
Data Storage Interrupt

Access control

If address translation results in a match (hit), the matching TLB entry is used to perform 
access control (permission checks). These checks are based on the privilege level of the 
access (MSR[PR]) and the type of access (fetch for execute, read for loads, and write for 
stores). The TLB entry’s permission bits (TLB[US,SX,UW,SW,UR,SR]) determine if the 
operation should succeed. If permission is denied, execution of the instruction is 
suppressed and an instruction storage interrupt or data storage interrupt occurs as defined 
in Book E. Software uses the ESR, SRR0, and the DEAR to determine the type of operation 
attempted and then must perform a TLB search if updating the TLB is desired.

The algorithm for determining access control is as follows:

if MSRPR = 0 then
x ← TLBSX
r ← TLBSR
w ← TLBSW

else
x ← TLBUX
r ← TLBUR
w ← TLBUW

if instruction_fetch & x = 0 then
take instruction storage interrupt

else if load & r = 0 then
take data storage interrupt

else if store & w = 0 then
take data storage interrupt

else
access permitted

Physical (real) address generation

If permission checking is successful, the real address is formed by combining the TLB[RPN] 
with the lower order offset bits of the EA based on the page size of the TLB entry.

mask ← ~(1024 << (2 * TLBSIZE)) - 1)
real_address ← ((TLBRPN << 12) & mask) | (EA & ~mask)
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Where mask contains the same number of bits as a real address. The real address is then 
used to access the memory subsystem using the TLB[ACM,VLE,W,I,M,G,E] fields from the 
TLB entry to determine how the location should be accessed.

Page size and effective address bits compared

The page size defined for a TLB entry determines how many bits of the effective address 
are compared with the corresponding EPN field in the TLB entry as shown in Table 185. 

         

Permission attribute comparison

As part of the translation process, the selected TLB entry provides the access permission 
bits (UX, SX, UW, SW, UR, SR), and memory/cache attributes (U0, U1, U2, U3, W, I, M, G, 
and E) for the access. These bits specify whether or not the access is allowed and how the 
access is to be performed.

If a matching TLB entry has been identified, Book E provides an access permission 
mechanism that selectively grants shared access, grants execute access, grants read 
access, grants write access, and prohibits access to areas of memory based on a number of 
criteria. Book E defines the permission bits in TLB entries as follows:

● SR—Supervisor read permission

● SW—Supervisor write permission

● SX—Supervisor execute permission

● UR—User read permission

● UW—User write permission

● UX—User execute permission

If the virtual address translation comparison with TLB entries was successful, the 
permission bits for the matching entry are checked as shown in Figure 21. If the access is 
not allowed by the access permission mechanism, the processor generates an instruction or 
data storage interrupt (ISI or DSI).

Table 185. Page size and EPN field comparison

SIZE Field Page Size (4SIZEKbytes) EA to EPN Comparison (Bits 32–53; 2×SIZE)

0b0000 1 Kbyte EA[32–53] = ? EPN[32–53]

0b0001 4 Kbyte EA[32–51] = ? EPN[32–51]

0b0010 16 Kbyte EA[32–49] = ? EPN[0–49]

0b0011 64 Kbyte EA[32–47] = ? EPN[32–47]

0b0100 256 Kbyte EA[32–45] = ? EPN[32–45]

0b0101 1 Mbyte EA[32–43] = ? EPN[32–43]

0b0110 4 Mbyte EA[32–41] = ? EPN[32–41]

0b0111 16 Mbyte EA[32–39] = ? EPN[32–39]

0b1000 64 Mbyte EA[32–37] = ? EPN[32–37]

0b1001 256 Mbyte EA[32–35] = ? EPN[32–35]

0b1010 1 Gbyte EA[32–33] = ? EPN[32–33]
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Figure 21. Granting of Access Permission

The permission attributes defined by Book E are defined in detail in Chapter 5.4.8.”

Page size and real address generation

If no virtual address match occurs, the translation fails and a TLB miss exception occurs. 
Depending on the access type (instruction or data address), either the instruction TLB error 
interrupt or the data TLB error interrupt is taken. 

Otherwise, the real page number (RPN) field of the matching TLB entry provides the 
translation for the effective address of the access. Based on the setting of the SIZE field of 
the matching TLB entry, the RPN field replaces the corresponding most-significant n bits of 
the effective address where n = 32 - log2(page size). Note that the untranslated bits must be 
zero in the RPN field.

         

Table 186. Real address generation

Size field Page size (4SIZEKbytes)
RPN bits required to be equal 

to 0
Real address

0b0000 1 Kbyte none RPN[32–53] ||  EA[54–63]

0b0001 4 Kbyte RPN[52–53] = 0 RPN[32–51] ||  EA[52–63]

0b0010 16 Kbyte RPN[50–53] = 0 RPN[32–49] ||  EA[50–63]

0b0011 64 Kbyte RPN[48–53] = 0 RPN[32–47] ||  EA[48–63]

0b0100 256 Kbyte RPN[46–53] = 0 RPN[32–45] ||  EA[46–63]

0b0101 1 Mbyte RPN[44–53] = 0 RPN[32–43] ||  EA[44–63]

0b0110 4 Mbyte RPN[42–53] = 0 RPN[32–41] ||  EA[42–63]

0b0111 16 Mbyte RPN[40–53] = 0 RPN[32–39] ||  EA[40–63]

0b1000 64 Mbyte RPN[38–53] = 0 RPN[32–37] ||  EA[38–63]

0b1001 256 Mbyte RPN[36–53] = 0 RPN[32–35] ||  EA[36–63]

0b1010 1 Gbyte RPN[34–53] = 0 RPN[32–33] ||  EA[34–63]

access

instruction fetch
MSR[PR]

TLB_entry[UX]

TLB_entry[SX]

load-class data access
TLB_entry[UR]

TLB_entry[SR]

store-class data access
TLB_entry[UW]

TLB_entry[SW]

TLB match (see Figure 19)

 granted
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5.4.8 Permission attributes

The permission attributes defined in Book E are shown in Table 187 and described in the 
following subsections.

         

Execute access permission

The UX and SX bits of the TLB entry control execute access to the corresponding page.

Instructions may be fetched and executed from a page in memory if MSR[PR] = 1 (user 
mode) if the UX access control bit for that page is set. If the UX access control bit is cleared, 
instructions from that page are not fetched and they are not placed into any cache while the 
processor is in user mode.

Instructions may be fetched and executed from a page in memory if MSR[PR] = 0 
(supervisor mode) and the SX access control bit for that page is set. If the SX access control 
bit is cleared, instructions from that page are not fetched and are not placed into any cache 
while the processor is in supervisor mode. 

If the sequential execution model calls for the execution of an instruction from a page that is 
not enabled for execution (that is, UX = 0 when MSR[PR] = 1 or SX = 0 when MSR[PR] = 0), 
an execute access control exception-type instruction storage interrupt (ISI) is taken.

Read access permission

The UR and SR bits of the TLB entry control read access to the corresponding page.

Load operations (including load-class cache management instructions) are permitted from a 
page in memory while the processor is in user mode (MSR[PR] = 1) if the UR access control 
bit for that page is set. If the UR access control bit is cleared, execution of the load 
instruction is suppressed and a read access control exception-type data storage interrupt 
(DSI) is taken.

Similarly, load operations (including load-class cache management instructions) are 
permitted from a page in memory if MSR[PR] = 0 (supervisor mode) and the SR access 
control bit for that page is set. If the SR access control bit is cleared, execution of the load 
instruction is suppressed and a read access control exception-type data storage interrupt 
(DSI) is taken.

Write access permission

The UW and SW bits of the TLB entry control write access to the corresponding page.

Table 187. Permission control for instruction, data read, and data write accesses

Access type MSR[PR]
TLB[UX] TLB[SX] TLB[UR] TLB[SR] TLB[UW] TLB[SW]

0 1 0 1 0 1 0 1 0 1 0 1

Instruction fetch
0 — — ISI √ — — — — — — — —

1 ISI √ — — — — — — — — — —

Data read 
(load)

0 — — — — — — DSI √ — — — —

1 — — — — DSI √ — — — — — —

Data write 
(store)

0 — — — — — — — — — — DSI √

1 — — — — — — — — DSI √ — —
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Store operations (including store-class cache management instructions) are permitted to a 
page in memory if MSR[PR] = 1 (user mode) and the UW access control bit for that page is 
set. If the UW access control bit is cleared, execution of the store instruction is suppressed 
and a write access control exception-type data storage interrupt (DSI) is taken.

Similarly, store operations (including store-class cache management instructions) are 
permitted to a page in memory if MSR[PR] = 0 (supervisor mode) and the SW access 
control bit for that page is set. If the SW access control bit is cleared, execution of the store 
instruction is suppressed and a write access control exception-type data storage interrupt 
(DSI) is taken.

Permission control and cache management instructions

The dcbi and dcbz instructions are treated as stores because they can change data (or 
cause loss of data by invalidating a modified line). As such, they both can cause write 
access control exception-type DSIs.

The dcba instruction is treated as a store because it can also change data. As such, it can 
also cause a write access control exception. However, these exceptions do not result in a 
data storage interrupt and if a permission violation occurs, the instruction execution 
completes, but the allocate operation is merely cancelled (essentially, a no-op).

The icbi instruction is treated as a load with respect to permissions checking. As such, it 
can cause a read access control exception-type data storage interrupt.

The dcbt, dcbtst, and icbt instructions are treated as loads with respect to permissions 
checking. As such, they can cause read access control exceptions. However, such 
exceptions do not result in data storage interrupts and if a permission violation occurs, the 
instruction execution completes, but the operation is cancelled (essentially, a no-op).

The dcbf and dcbst instructions are treated as loads with respect to permissions checking. 
Flushing or storing a line from the cache is not considered a store because the store has 
already been performed to update the cache and the dcbf or dcbst instruction is only 
updating the copy in main memory. Like load instructions, these instructions can cause read 
access control exception-type data storage interrupts.

Table 188 summarizes exception cases caused by the cache management instructions due 
to permissions violations.

         

Table 188. Permission control and cache instructions

Instruction
Can cause read permission violation 

exception?
Can cause write permission violation 

exception?

dcba No Yes(1)

dcbf Yes No

dcbi No Yes

dcbst Yes No

dcbt Yes1 No

dcbtst Yes1 No

dcbz No Yes

icbi Yes No

icbt Yes1 No
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Permissions control and string instructions

When the string length is zero, neither lswx nor stswx can cause data storage interrupts 
due to permissions violations.

Use of permissions to maintain page history

The Book E architecture TLB entry definition does not define bits for maintaining page 
history information. The U0–U3 bits in the TLB entries can be used by software for storing 
history information, but implementations may ignore these bits internally. 

Page changed bit status can be implemented in the system software by disabling write 
permissions to all pages. The first attempt to write to the page results in a data storage 
interrupt. At this point, system software can record the page changed bit in memory, update 
the TLB entry permission to allow writes to that page, and return to the user program 
allowing further writes to the page to proceed without exception.

Crossing page boundaries

Care must be taken with single instruction accesses (load/stores) that cross page 
boundaries. Examples are lmw and stmw instructions and misaligned accesses on 
implementations that support misaligned load/stores. Architecturally, each of the parts of the 
access that cross the natural boundary of the access size (half word, word, double word) are 
treated separately with respect to exception conditions. Additionally, these types of 
instructions may optionally partially complete. For example, a store word instruction that 
crosses a page boundary because it is misaligned to the last half word of a page might 
actually store the first 16 bits because the access was permitted, but produce a DSI or data 
TLB error exception because the second 16 bits in the next page were not valid or they were 
protected. An implementation may choose to suppress the first 16-bit store or perform it. 

5.4.9 Translation lookaside buffer (TLB) arrays

The MMU contains up to four TLB arrays, which are on-chip storage areas for holding TLB 
entries. A TLB entry contains effective-to-physical address mappings for loads, stores, and 
instruction fetches. A TLB array must contain TLB entries that share the same 
characteristics and contains zero or more TLB entries. Each TLB entry has specific fields 
that can be addressed by the corresponding fields in the MMU assist registers (see 
Chapter 2.12.5: MMU assist registers (MAS0–MAS7) on page 101”). Each implemented 
TLB array has an associated configuration register (TLBnCFG) describing the size and 
attributes of the TLB entries in that array. See Chapter 2.12.4: TLB configuration registers 
(TLBnCFG) on page 100.”

The architected fields of a TLB entry are described in Table 189.

         

1. dcba, dcbt, dcbtst, and icbt may cause a read access control exception but does not result in a data 
storage interrupt (DSI).
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5.4.10 TLB management

TLB entries are managed by software using the set of MAS registers, which are used to 
move data between software and the TLB entries, to identify TLB entries, and to provide 

Table 189. TLB entry

Name Description

V Valid bit. A 1-bit entry that specifies whether this TLB entry is valid for translation. 
(1 = valid).

TID Translation ID. Identifies which process ID (PID) that this TLB entry is valid for. 
Translation IDs are compared with Process IDs (PIDs) during translation to identify 
which TLB entry to use for translating an address. A TID value of 0 is considered 
global and matches all PID values.

TS Translation space. Identifies which address space that this TLB entry is valid for. The 
translation space field is compared with MSR[IS] for instruction accesses and the 
MSR[DS] bit for data accesses. This allows for an efficient change of address space 
when a transition from user mode to supervisor mode occurs. This is a 1 bit field.

SIZE Page size. Describes the size of the page. An implementation is not required to 
support variable page sizes or any particular page size. If a TLB array does not 
support variable size pages (that is, TLBnCFG[AVAIL] = 0) then this field is ignored. 
Page sizes range from 4 Kbytes to 1 Tbyte in powers of 4. EIS does not support 1-
Kbyte page sizes defined in Book E. Page size encoding is defined by Book E.

EPN Effective page number. Describes the logical or effective starting address of the page. 
The number of bits that are valid (used in translation) depends on the size of the page 
and if the processor is a 32- or 64-bit implementation. This field is used to compare 
with the EA being translated to identify which TLB entry to use for translation. For 32-
bit implementations, this field is 2 to 20 bits, depending on the page size (SIZE). 

RPN Real page number. Describes the physical starting address of the page. The real 
page number is substituted for the effective page number from the address being 
translated which results in the real address. This field is 2 to 52 bits depending on the 
page size and the number of bits of real address supported by the implementation.

WIMGE Storage attributes. Describe the characteristics of any memory/fetch accesses to the 
page and the subsequent treatment of those data items with respect to the memory 
subsystem (caches and bus transactions). The WIMGE bits are defined by Book E.

ACM Alternate coherency mode. Optional. An implementation may optionally support 
additional coherency models. If such coherency models are provided, they are 
encoded in this field. ACM values are implementation dependent. The Alternate 
Coherence Mode is used only when the M bit (from WIMGE) is set.

VLE Variable length encoding. Optional. If an implementation supports the VLE extension, 
clearing VLE causes instruction access to this page to decode and execute as 
PowerPC Book E (and EIS APUs) instructions, and setting VLE causes instruction 
access to this page to decode and execute as VLE (and EIS APU) instructions.

SR,SW,SX,
UR,UW,UX

Permissions. User and supervisor read, write, and execute permission bits. 
Supervisor and user permission bits are defined by Book E.

U0,U1,U2,U3 User bits. Implementation dependent. Consult the user’s manual for any 
implementation usage. It is strongly recommended to leave these as storage 
associated with a TLB entry to be used by system software.

IPROT Invalidation protection. Invalidation protection. This entry is protected from all TLB 
invalidation mechanisms except the explicit writing of a 0 to the V bit.
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default values when translation or protection faults occur. See Chapter 2.12.5: MMU assist 
registers (MAS0–MAS7) on page 101.”

TLB configuration information

Information about the configuration for a given TLB implementation is available to system 
software by reading the contents of the MMU configuration SPRs. These SPRs describe the 
architectural version of the MMU, the number of TLB arrays, and the characteristics of each 
TLB array. MMU architecture version number 1 is defined as these SPRs with the field 
definitions as described in this section.

● MMU configuration register (MMUCFG), implemented by all ST Book E processors, 
contains basic information about the MMU architecture for each device. TLB 
configuration registers (TLBnCFG). Implemented by all ST Book E processors for each 
of the TLBs specified in MMUCFG[NTLBS]. They contain configuration information 
about each particular TLB. See Chapter 2.12.3: MMU configuration register 
(MMUCFG) on page 99.”

● The TLBnCFG number assignment is the same as the value in MAS0[TLBSEL]. For 
example, TLB0CFG provides configuration information about TLB0, and TLB1CFG 
provides configuration information about TLB1. See Chapter 2.12.4: TLB configuration 
registers (TLBnCFG) on page 100.”

TLB entries

The software-visible TLB is subdivided into zero or more TLB arrays. Each array must 
contain TLB entries that share the same characteristics. Each TLB array contains one or 
more TLB entries. Each entry has specific fields that correspond to fields in the seven MMU 
assist (MAS) registers, described in Chapter 2.12.5: MMU assist registers (MAS0–MAS7) 
on page 101.” Some TLB fields are architected in Book E and others are architected in the 
EIS. Note that Book E architected fields may have restrictions or enhancements imposed by 
the EIS for the Book E implementations.

The IPROT TLB entry, architected by the EIS, designates TLB entries as protected from 
certain kinds of invalidation. TLB invalidation and the IPROT field are described further in 
Invalidating TLB entries on page 321.” 

Reading and writing TLB entries

All TLB entries are updated by executing tlbwe instructions. At the time of tlbwe execution, 
the MMU assist registers (MAS0–MAS6), a set of SPRs defined by the EIS, are used to 
index a specific TLB entry. The MAS registers also contain the information that is written to 
the indexed entry, such that they serve as the ports into the TLBs, as shown in Figure 22. 
The contents of the MAS registers are described in Chapter 2.12.5: MMU assist registers 
(MAS0–MAS7) on page 101.
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Figure 22. TLBs accessed through MAS registers and TLB instructions

Similarly, TLB entries are read by executing tlbre instructions. At the time of tlbre execution, 
the MAS registers are used to index a specific TLB entry and upon completion of the tlbre 
instruction, the MAS registers contain the contents of the indexed TLB entry. To read or write 
TLB entries, the MAS registers are first loaded by system software using mtspr instructions 
and then the desired tlbre or tlbwe instructions must be executed.

Note that RA = 0 is a preferred form for tlbsx and that some Book E implementations take 
an illegal instruction exception program interrupt if RA ≠ 0. 

Reading TLB entries

TLB entries are read by executing tlbre instructions. At the time of tlbre execution, the MAS 
registers are used to index a specific TLB entry and upon completion of the tlbre, the MAS 
registers contain the contents of the indexed TLB entry.

Selection of the TLB entry to read is performed by setting MAS0[TLBSEL], MAS0[ESEL] 
and MAS2[EPN] to indicate the entry to read. MAS0[TLBSEL] selects which TLB the entry 
should be read from (0 to 3) and MAS2[EPN] selects the set of entries from which 
MAS0[ESEL] selects an entry. For fully associative TLBs, MAS2[EPN] is not required since 
the value in MAS0[ESEL] fully identifies the TLB entry. Valid values for MAS0[ESEL] are 
from 0 to associativity - 1.

The selected TLB entry is then used to update the following fields of the MAS registers: V, 
IPROT, TID, TS, TSIZE, EPN, ACM, VLE, WIMGE, RPN, U0—U3, & permissions. If the TLB 
array supports NV, it is used to update the NV field in the MAS registers, otherwise the 
contents of NV field are undefined. The update of MAS registers as a result of a tlbre 
instruction is summarized in Table 191.

No operands are given for the tlbre instruction and the Book E defined implementation 
dependent field should be treated as a reserved field.

Specifying invalid values for MAS0[TLBSEL] and MAS0[ESEL] produce boundedly 
undefined results.

Writing TLB entries

TLB entries are written by executing tlbwe instructions. At the time of tlbwe execution, the 
MAS registers are used to index a specific TLB entry and contain the contents to be written 
to the indexed TLB entry. Upon completion of the tlbwe instruction, the TLB entry contents 
of the MAS registers are written to the indexed TLB entry.

tlbwe, tlbre, tlbsx, tlbivax

mtspr mfsprGPR GPR

TLB0 TLB1 TLBn

MAS Registers
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Selection of the TLB entry to write is performed by setting MAS0[TLBSEL], MAS0[ESEL] 
and MAS2[EPN] to indicate the entry to write. MAS0[TLBSEL] selects which TLB the entry 
should be written from (0 to 3) and MAS2[EPN] selects the set of entries from which 
MAS0[ESEL] selects an entry. For fully associative TLBs, MAS2[EPN] is not used to identify 
a TLB entry since the value in MAS0[ESEL] fully identifies the TLB entry. Valid values for 
MAS0[ESEL] are from 0 to associativity minus 1.

The selected TLB entry is then written with following fields of the MAS registers: V, IPROT, 
TID, TS, TSIZE, EPN, ACM, VLE, WIMGE, RPN, U0—U3, and permissions. If the TLB array 
supports NV, it is written with the NV value.

The effects of updating the TLB entry are not guaranteed to be visible to the programming 
model until the completion of a context synchronizing operation. Writing a TLB entry that is 
used by the programming model prior to a context synchronizing operation produces 
undefined behavior.

No operands are given for the tlbwe instruction and the Book E defined implementation 
dependent field should be treated as a reserved field.

Specifying invalid values for MAS0[TLBSEL] and MAS0[ESEL] produce boundedly 
undefined results.

Note: Writing TLB entries should be followed by an isync or an rfi before the new entries are to be 
used by the programming model.

Invalidating TLB entries

TLB entries may be invalidated by any of the following methods:

● A TLB entry can be invalidated as the result of a tlbwe instruction that clears MAS0[V] 
in the entry. 

● As a result of a tlbivax instruction or from a received broadcast invalidation resulting 
from a tlbivax on another processor in an SMP system. 

● As a result of a flash invalidate.

In both multiprocessor and uniprocessor systems, invalidations can occur on a wider set of 
TLB entries than intended. This are called generous invalidations That is, a virtual address 
presented for invalidation may invalidate not only the targeted TLB, but also may invalidate 
other TLB entries, depending on the implementation. This is because parts of the translation 
mechanism may not be fully specified to the hardware at invalidate time. This is especially 
true in SMP systems where the invalidation address must be broadcast globally to all 
processors in the system. Hardware may impose other limitations. 

The architecture ensures that the intended TLB is invalidated, but does not guarantee that it 
is the only one. A TLB entry invalidated by clearing the V bit of the TLB entry by use of a 
tlbwe is guaranteed to invalidate only the addressed TLB entry. However, invalidates 
occurring from tlbivax instructions or from the multiprocessor broadcasts as a result of 
tlbivax instructions may cause generous invalidates.

The architecture provides a method to protect against generous invalidations. This is 
important, because certain virtual memory regions (most notably, the code memory region 
that serves as the exception handler for MMU faults) must be properly mapped to for forward 
progress to occur. If this region does not have a valid mapping, an MMU exception cannot 
be handled because the first address of the interrupt handler causes another MMU 
exception. To prevent this, the architecture specifies an IPROT bit for TLB entries. Setting 
the MAS0[PROT] protects the corresponding TLB entry from invalidations resulting from 
tlbivax instructions, as a result of broadcast invalidation from another processor in an SMP 
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system, or from flash invalidations. TLB entries with the IPROT field set can be invalidated 
only by explicitly writing the TLB entry and specifying a 0 for MAS1[V].

Note: Software Note: Not all TLB arrays in a given implementation implement the IPROT attribute. 
It is likely that implementations that are suitable for demand page environments implement it 
for only a single array, while not implementing it for other arrays.

Software Note: Operating systems must use great care when using protected (IPROT) TLB 
entries, particularly in SMP systems. An SMP system that contains TLB entries on other 
processors requires a cross-processor interrupt or some other synchronization mechanism 
to assure that each processor performs the required invalidation by writing its own TLB 
entries.

Invalidations using tlbivax:

The tlbivax instruction provides a virtual address as a target for invalidation. EA[0–51] are 
used to find a TLB entry with a matching EPN field. The page size of the TLB entry is used 
to mask the low order bits in the comparison. The comparison is performed only for TLB 
entries in the specified TLB array, do not have the IPROT attribute set (if supported by the 
TLB array), and are valid. The AS bit does not participate in the comparison. The EA 
specified by the rA and rB operands in the tlbivax instruction contains fields in the lower 
order bits to augment the invalidation to specific TLB arrays and to flash invalidate those 
arrays. Note that TLB entry invalidations resulting from tlbivax instructions do not invalidate 
any entry that has IPROT = 1 unless the specified TLB array does not support the IPROT 
attribute. The encoding of the EA used by tlbivax is shown in Table 190.

Note: Software Note: To ensure a TLB entry that is not protected by IPROT is invalidated if 
software does not know which TLB array the entry is in, software should issue a tlbivax 
instruction targeting each TLB in the implementation with the EA to be invalidated.

Software Note: The preferred form of the tlbivax instruction contains the entire EA in rB and 
zero in rA. Some implementations may take an Unimplemented Instruction exception if rA is 
non-zero.

EA format for tlbivax ia shown below. 

EA Format for tlbivax

         

Table 190 describes EA fields for tlbivax. 

0 51 52 58 59 60 61 62 63

EA for tlbivax EA0:51 — TLB IA —
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Flash invalidations using MMUCSR0:

All entries in a TLB array may be flash invalidated using the MMUCSR0 register. Flash 
invalidation of an array is started when the corresponding flash invalidate bit is set in 
MMUCSR0 (MMUCSR0[TLBn_FI]). The flash invalidation is complete when the 
corresponding flash invalidate bit is cleared by the processor. Writing a 0 to a flash invalidate 
bit in MMUCSR0 has no effect. Note that TLB entry invalidations resulting from MMUCSR0 
flash invalidations do not invalidate any entry that has IPROT = 1 unless the specified TLB 
array does not support the IPROT attribute.

Searching TLB Entries

Software may search the MMU by using the tlbsx instruction that is provided by Book E. 
The tlbsx instruction uses PID values and an AS value from the MAS registers instead of 
the PID registers and the MSR. This allows software to search address spaces that differ 
from the current address space defined by the PID registers. This is useful for TLB fault 
handling.

To properly execute a search for a TLB, software loads MAS5 and MAS6 registers with PID 
and AS values to search for. These are MAS6[SPID0], MAS6[SPID1], MAS5[SPID2], 
MAS5[SPID3], MAS6[SAS]. Software then executes a tlbsx instruction. The search 
performs the same TA to VA comparison described in Chapter 5.4.6,” except that the PID 
and AS values are taken from the MAS registers. If a matching, valid TLB entry is found, the 
MAS register are loaded with the information from that TLB entry as if the TLB entry was 
read from a tlbre instruction. Software can examine the MAS1[V] bit to determine if the 
search was successful. Successful searches cause the valid bit to be set. Table 191 
summarizes the update of MAS registers as a result of a tlbsx instruction.

The preferred form of the tlbsx is rA = 0. Some implementations may take an 
unimplemented instruction exception or an illegal instruction exception if rA != 0.

TLB replacement hardware assist

The architecture provides mechanisms to accelerate software in creating and updating TLB 
entries when MMU related exceptions occur. This is called TLB replacement hardware 
assist. Hardware updates the MAS registers on the occurrence of a data TLB error interrupt 
or instruction TLB error interrupt.

When a TLB error exception (miss) occurs, MAS0, MAS1, and MAS2 are automatically 
updated using the defaults specified in MAS4 as well as the AS and EPN values 

Table 190. Fields for EA format of tlbivax

Field Name Comments or function when set

0–51 EA0:51 The upper bits of the address to invalidate.

52–58 — Reserved, should be cleared.

59–60 TLB Selects TLB array for invalidation.

00TLB0

01TLB1
10TLB2

11TLB3

61 IA Invalidate all entries in selected TLB array.

62–63 — Reserved, should be cleared.
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corresponding to the access that caused the exception. MAS6 is updated to set 
MAS6[SPID0] to the value of PID0 and MAS6[SAS] to the value of MSR[DS] or MSR[IS] 
depending on the type of access that caused the TLB error. In addition, if MAS4[TLBSELD] 
identifies a TLB array that supports NV (next victim), MAS0[ESEL] is loaded with a value 
that hardware believes represents the best TLB entry to victimize to create a new TLB entry 
and MAS0[NV] is updated with the TLB entry index of what hardware believes to be the next 
victim. Thus MAS0[ESEL] identifies the current TLB entry to be replaced, and MAS0[NV] 
points to the next victim. When software writes the TLB entry, MAS0[NV] is written to the 
TLB array. The algorithm used by the hardware to determine which TLB entry should be 
targeted for replacement is implementation dependent.

The automatic update of MAS registers sets up all the necessary fields for creating a new 
TLB entry with the exception of RPN, the U0–U3 attribute bits, and the permission bits. With 
the exception of the upper 32 bits of RPN and the page attributes (should software desire to 
specify changes from the default attributes), all remaining fields are located in MAS3, 
requiring only the single MAS register manipulation by software before writing the TLB entry.

For ISI and DSI related exceptions, the MAS registers are not updated. Software must 
explicitly search the TLB to find the appropriate entry.

The update of MAS registers through TLB replacement hardware assist is summarized in 
Table 191.

         

Table 191. MAS register update summary

MAS field 
updated

Value loaded on event

TLB error interrupt tlbsx hit tlbsx miss tlbre

MAS0[TLBSEL] MAS4[TLBSELD] TLB array that hit MAS4[TLBSELD] —

MAS0[ESEL] if MAS4[TLBSELD] 
supports next victim 
then hardware hint,
else undefined

Number of entry that hit if MAS4[TLBSELD] 
supports next victim 
then hardware hint,
else undefined

—

MAS0[NV] if MAS4[TLBSELD] 
supports next victim 
then next hardware hint,

else undefined

if MAS4[TLBSELD] supports 
next victim then hardware 
hint,

else undefined

if MAS4[TLBSELD] 
supports next victim 
then next hardware 
hint,
else undefined

if 
MAS4[TLBSELD] 
supports next 
victim then 
hardware hint,

else undefined

MAS1[V] 1 1 0 TLB[V]

MAS1I[PROT] 0 TLB[IPROT] 0 TLB[IPROT]

MAS1[TID] if PID[MAS4[TIDSELD]]
implemented then 
PID[MAS4[TIDSELD]] 
else 0

TLB[TID] MAS6[SPID0] TLB[TID]

MAS1[TS] MSR[IS] or MSR[DS] TLB[TS] MAS6[SAS] TLB[TS]

MAS1[TSIZE] MAS4[TSIZED] TLB[SIZE] MAS4[TSIZED] TLB[SIZE]

MAS2[EPN] EA0:51 TLB[EPN] — TLB[EPN]

MAS2[ACM] MAS4[ACMD] TLB[ACM] MAS4[ACMD] TLB[ACM]

MAS2[VLE] MAS4[VLED] TLB[VLE] MAS4[VLED] TLB[VLE]
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5.4.11 MAS registers and exception handling

When translation-related exceptions occur, hardware preloads the MAS registers with 
information that the interrupt handler likely needs to handle the fault. For a TLB miss 
exception, some MAS register fields are loaded with default information specified in MAS4. 
System software should set up the default information in MAS4 before allowing exceptions. 
In most cases, system software sets this up once depending on its scheme for handling 
page faults. This simplifies translation-related exception handling. The following subsections 
detail specific MAS register fields and the contents loaded for each exception type.

TLB miss exception types

The Book E architecture defines that a TLB miss exception is caused when a virtual address 
for an access does not match with that of any on-chip TLB entry. This condition causes one 
of the following:

● An instruction TLB error interrupt 

● A data TLB error interrupt

Instruction TLB error interrupt settings

An instruction TLB error interrupt occurs when the virtual address associated with an 
instruction address (fetch) does not match any valid entry in the TLB (that is, the address for 
the instruction cannot be translated). In addition to the values automatically written to the 

MAS2[W] MAS4[WD] TLB[W] MAS4[WD] TLB[W]

MAS2[I] MAS4[ID] TLB[I] MAS4[ID] TLB[I]

MAS2[M] MAS4[MD] TLB[M] MAS4[MD] TLB[M]

MAS2[G] MAS4[GD] TLB[G] MAS4[GD] TLB[G]

MAS2[E] MAS4[ED] TLB[E] MAS4[ED] TLB[E]

MAS3[RPN] 0 TLB[RPN]

(bits 32:51)

0 TLB[RPN]

(bits 32:51)

MAS3[U0,U1,U
2,U3]

— TLB[U0,U1,U2,U3] — TLB[U0,U1,U2,U
3]

MAS3[UX,SX,U
W,
SW,UR,SR]

0 TLB[UX,SX,UW,
SW,UR,SR]

0 TLB[UX,SX,UW,
SW,UR,SR]

MAS4 — — — —

MAS5 — — — —

MAS6[SPID0] PID0 — — —

MAS6[SPID1] — — — —

MAS6[SAS] MSR[IS] or MSR[DS] — — —

MAS7[RPN] 0 TLB[RPN]
(bits 0–31)

0 TLB[RPN]
(bits 0–31)

Table 191. MAS register update summary (continued)

MAS field 
updated

Value loaded on event

TLB error interrupt tlbsx hit tlbsx miss tlbre
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MAS registers (described in TLB miss exception MAS register settings on page 326”), 
SRR0 contains the address of the instruction that caused the instruction TLB error. This 
SRR0 value is used to identify the EA for handling the exception as well as the address to 
return to when system software has resolved the exception condition by writing a new TLB 
entry.

Data TLB error interrupt settings

A data TLB error interrupt occurs when the virtual address associated with a data reference 
from a load, store, or cache management instruction does not match any valid entry in the 
TLB (that is, the address of the data item of a load or store instruction cannot be translated). 
In addition to the values automatically written to the MAS registers (described in TLB miss 
exception MAS register settings on page 326”), the effective address of the data access that 
caused the exception is automatically loaded in the data exception address register (DEAR). 
Also, SRR0 contains the address of the instruction that caused the data TLB error and its 
value is used to identify the address to return to when system software has resolved the 
exception condition (by writing a new TLB entry).

TLB miss exception MAS register settings

When either an instruction or data TLB error interrupt occurs, the TLB information and 
selection fields of the MAS registers are loaded with default values from other MAS registers 
to assist in processing the exception. The intention is that the common case of a page fault 
generally requires only system software to load the RPN (corresponding to the physical 
address that will be used for this page), and the access permissions and the defaults can be 
used for the remaining MAS fields. 

The processor may use the next victim (NV) field from the TLB array to select which TLB 
entry should be used for the new translation. The method used to select the candidate TLB 
for replacement (the next victim) is implementation-dependent and may vary on different 
Book E implementations. In any case, software is free to choose any TLB entry for the 
replacement (software can overwrite the value in MAS0[ESEL]). 

The EIS defines the fields set in the MAS registers at exception time for an instruction or 
data TLB error interrupt as shown in Table 192. 
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All other MAS register values are unchanged.

Permissions violation exception types

The Book E architecture also defines that a permissions violation exception is caused when 
an effective address for an access matches with a TLB entry but the permission attributes in 
the matching TLB entry do not allow the access to proceed, as described in Chapter 5.4.8.” 
This condition causes an instruction storage interrupt (ISI) or a data storage interrupt (DSI)

Instruction storage interrupt settings

An instruction storage interrupt occurs when the effective address associated with an 
instruction address (fetch) matches a valid entry in the TLB but one of the permission bits in 
the TLB does not allow the instruction fetch. In addition to the values automatically written to 
the MAS registers (described in Permissions violation mas register settings on page 328”), 
SRR0 contains the address of the instruction that caused the instruction TLB error and this 
value is used to identify the effective address for handling the exception as well as the 
address to return to when system software has resolved the exception condition (by writing 
a new TLB entry).

Table 192. MAS settings for an instruction or data TLB error interrupt

MAS Field Value

TLBSEL Set to value in TLBSELD (default). This defines the TLB array to be used for the new TLB entry that 
will be written.

ESEL May be set to an implementation-dependent value, usually based on the NV field of the array 
selected by TLBSELD, if that TLB supports the NV function. If the selected TLB does not support NV, 
the value loaded into ESEL is undefined.

NV Set to an implementation-dependent value to select which TLB entry to replace on the next TLB 
miss. The NV field of the TLB array is updated by the value of NV in the MAS registers when tlbwe is 
executed.

V Set

IPROT Cleared

TID Set to the contents of the PID register referenced by TIDSELD. That is, if TIDSELD contains the 
value 1, the contents of PID1 are written to the TID field.

TS Set to the value of the IS or DS bit in the MSR at the time of the exception (that is, the MSR that 
described the context that was running when the exception occurred).

TSIZE Set to TSIZED

EPN Set to the effective page number of the instruction or data address causing the exception. The 
number of bits of the page number is implementation-dependent, but should be consistent with the 
TLB array selected if the TLB has a fixed page size. If the TLB array selected by TLBSELD contains 
variable-sized pages, the value for EPN is undefined.

WIMGE 
and X bits

Set to corresponding default values in the MAS registers

RPN Cleared

Permissions SR, UR, UW, SW, UX, SX cleared to 0 (no permissions); note that U0–U3 are unchanged.
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Data storage interrupt settings

A data storage interrupt occurs when the EA associated with a data reference from a load or 
store instruction matches with a valid entry in the TLB but one of the permission bits in the 
TLB does not allow the data access. In addition to the values automatically written to the 
MAS registers (described in Permissions violation mas register settings on page 328”), the 
effective address of the data access that caused the exception is contained in the data 
exception address register (DEAR). This address is used by system software to identify the 
address that caused the exception. Also, SRR0 contains the address of the instruction that 
caused the data storage interrupt and its value is used to identify the address to return to 
when system software has resolved the exception condition by writing a new TLB entry.

Permissions violation mas register settings 

When either an instruction or data storage interrupt occurs, only the SPIDx and the SAS 
fields are automatically loaded into the MAS registers to assist in processing the interrupt. 
System software is required to then execute a tlbsx instruction to load the MAS registers 
with the TLB entry associated with the instruction address. System software may then make 
any desired changes to the TLB entry prior to writing it. Table 193 describes the fields set in 
the MAS registers at exception time for instruction or data storage interrupts.

         

All other MAS register values are unchanged.

MAS register updates for exceptions, tlbsx, and tlbre

Table 194 summarizes MAS register fields updates from the perspective of the EIS as a 
result of various events. Note that the implementations further define how certain MAS fields 
are set on exceptions. 

         

Table 193. MAS settings for permissions violation ISI or DSI 

Field Setting

SPID0 Set to PID0

SPID1 Set to PID1

SPID2 Set to PID2

SPID3 Set to PID3

SAS Set to the value of MSR[IS] (for an instruction storage interrupt) or MSR[DS] (for a 
data storage interrupt) at the time of the exception (that is, the MSR that described 
the context that was running when the exception occurred).
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Table 194. MMU assist register field updates—EIS definition

MASn
bit/field

Value loaded for each case

ITLB/DTLB error tlbsx hit tlbsx miss ISI DSI tlbre tlbwe

TLBSEL TLBSELD Which TLB hit TLBSELD — — — —

ESEL If TLBSELD supports 
NV:
TLB0[NV]
else, undefined

Number of 
entry that hit

If TLBSELD 
supports NV:
TLB0[NV]
else, undefined

— — — —

NV If TLBSELD supports 
NV:
next NV (array)
else, undefined

If TLBSEL
supports NV:
NV (array)
else, undefined

If TLBSELD 
supports NV:
next NV (array)
else, undefined

— — If TLBSEL
supports NV:
NV (array)

else, undefined

—

V 1 1 0 — — V (array) —

IPROT 0 If TLB that hits
supports 
IPROT:
matched 
IPROT value; 
else, 0

0 — — If TLB that hits
supports 
IPROT:
matched 
IPROT value; 
else, 0

—

TID PIDn values selected 
by TIDSELD 

TID (array) SPID0 — — TID(array) —

TS MSR[IS/DS] SAS SAS — — TS (array) —

TSIZE[0–3] TSIZED TSIZE (array) TSIZED — — TSIZE (array) —

EPN[32–51] If TLBSELD has fixed 
page size:
EPN of access 

else, undefined

EPN (array) — — — EPN (array) —

X0, X1
WIMGE

X0D, X1D

WIMGED

X0, X1 (array)

WIMGE (array)

X0D, X1D

WIMGED

— — X0, X1 (array)

WIMGE (array)

—

RPN[32–51] Zeros RPN(array) Zeros — — RPN (array) —

PERMIS Zeros PERMIS (array) Zeros — — PERMIS (array) —

TLBSELD — — — — — — —

TIDSELD — — — — — — —

TSIZED — — — — — — —

WIMGED — — — — — — —
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6 Instruction set

This chapter describes the following instructions:

● Book E instructions defined for 32-bit implementations. This includes instructions not 
implemented in all Book E devices. 

● Instructions defined by the EIS, except for the instructions defined by the VLE 
extension. Full descriptions of these instructions are provided in Chapter 13: VLE 
instruction set on page 891.”

6.1 Notation
The following definitions and notation are used throughout this chapter in the instruction 
descriptions.

         

Table 195. Notation conventions

Symbol Meaning

Xp Bit p of register/field X

Xfield
The bits composing a defined field of X. For example, Xsign, Xexp, and Xfrac represent the 
sign, exponent, and fractional value of a floating-point number X

Xp:q Bits p through q of register/field X

Xp q ... Bits p, q,... of register/field X

¬X The one’s complement of the contents of X

Field i Bits 4× i through 4× i+3 of a register

. 
As the last character of an instruction mnemonic, this character indicates that the 
instruction records status information in certain fields of the condition register as a side 
effect of execution, as described in Chapter 2.5.1: Condition register (CR) on page 61.”

|| 
Describes the concatenation of two values. For example, 010 || 111 is the same as 
010111.

xn x raised to the nth power

nx 

The replication of x, n times (i.e., x concatenated to itself n–1 times). n0 and n1 are special 
cases: 
n0 means a field of n bits with each bit equal to 0. Thus 50 is equivalent to 0b0_0000.
n1 means a field of n bits with each bit equal to 1. Thus 51 is equivalent to 0b1_1111.

/, //, ///, 
A reserved field in an instruction or in a register. Each bit and field in instructions, in status 
and control registers (such as the XER or FPSCR), and in SPRs is either defined, 
allocated, or reserved, as described in Chapter 3.2.1: Classes of instructions on page 135.”
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6.2 Instruction fields
Table 196 describes instruction fields.

         

         

Table 196. Instruction field descriptions

Field Description

AA (30)

Absolute address bit.

0 The immediate field represents an address relative to the current instruction 
address. 

For I-form branch instructions the effective address of the branch target is the 
value 320 || (CIA+EXTS(LI||0b00))32–63.

For B-form branch instructions the effective address of the branch target is the 
value 320 || (CIA+EXTS(BD||0b00))32–63.

For I-form branch extended instructions the effective address of the branch 
target is the value CIA+EXTS(LI||0b00).

For B-form branch extended instructions the effective address of the branch 
target is the value CIA+EXTS(BD||0b00).
1 The immediate field represents an absolute address.

For I-form branch instructions the effective address of the branch target is the 
value 320 || EXTS(LI||0b00)32–63.

For B-form branch instructions the effective address of the branch target is the 
value 320 || EXTS(BD||0b00)32–63.

For I-form branch extended instructions the effective address of the branch 
target is the value EXTS(LI||0b00).

For B-form branch extended instructions the effective address of the branch 
target is the value EXTS(BD||0b00).

crbA (11–15) Used to specify a condition register bit to be used as a source

crbB (16–20) Used to specify a condition register bit to be used as a source

crD (6–8) Used to specify a CR or FPSCR field to be used as a target

crS (11–13) Used to specify a CR or FPSCR field to be used as a source

BI (11–15)
Used to specify a condition register bit to be used as the condition of a branch 
conditional instruction

BO (6–10)
Used to specify options for branch conditional instructions. See Branch and flow 
control instructions on page 163.” 

crbD (6–10) Used to specify a CR or FPSCR bit to be used as a target

CT (6–10)
Used by cache touch instructions (dcbt, dcbtst, and icbt) to specify the target 
portion of the cache facility to place the prefetched data or instructions and is 
implementation-dependent

D (16–31)
Immediate field used to specify a 16-bit signed two’s complement integer that is 
sign-extended to 64 bits

DCRN(16–20||11–
15)

Used to specify a device control register for the mtdcr and mfdcr instructions

E (15)
Immediate field used to specify a 1-bit value used by wrteei to place in MSR[EE] 
(external input enable bit)

FM (7–14)
Field mask used to identify FPSCR fields that are to be updated by the mtfsf 
instruction
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frA (11–15) Used to specify an FPR to be used as a source

frB (16–20) Used to specify an FPR to be used as a source

frC (21–25) Used to specify an FPR to be used as a source

frS (6–10) Used to specify an FPR to be used as a source

frD (6–10) Used to specify an FPR to be used as a target

CRM (12–19)
Field mask used to identify the condition register fields to be updated by the 
mtcrf instruction

LI (6–29)
Immediate field specifying a 24-bit signed two’s complement integer that is 
concatenated on the right with 0b00 and sign-extended to 64 bits

LK (31)

LINK bit. Indicates whether the link register (LR) is set. 

0Do not set the LR.

1Set the LR. The sum of the value 4 and the address of the branch instruction is 
placed into the LR.

MB (21–25) and 
ME (26–30)

Fields used in M-form rotate instructions to specify a 64-bit mask consisting of 1 
bits from bit MB+32 through bit ME+32 inclusive and 0 bits elsewhere. 

MO (6–10)
Used to specify the subset of memory accesses ordered by a Memory Barrier 
instruction (mbar).

NB (16–20)
Used to specify the number of bytes to move in an immediate Move Assist 
instruction

OPCD (0–5) Primary opcode field

rA (11–15) Used to specify a GPR to be used as a source or as a target

rB (16–20) Used to specify a GPR to be used as a source

Rc (31)
Record bit.
0Do not alter the condition register.

1Set condition register field 0 or field 1.

RS (6–10) Used to specify a GPR to be used as a source

rD (6–10) Used to specify a GPR to be used as a target

SH (16–20)
Used to specify a shift amount in rotate word immediate and shift word 
immediate instructions

SIMM (16–31) Immediate field used to specify a 16-bit signed integer

SPRN (16–20||11–
15)

Used to specify an SPR for mtspr and mfspr instructions

TO (6–10)
Used to specify the conditions on which to trap. The encoding is described in 
Table 92: Trap instructions on page 170.”

U (16–19) Immediate field used as the data to be placed into a field in the FPSCR

UIMM (16–31) Immediate field used to specify a 16-bit unsigned integer

XO (21–29, 21–
30, 22–30, 26–30, 
27–29, 27–30, 28–

31)

Extended opcode field

Table 196. Instruction field descriptions (continued)

Field Description
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6.3 Description of instruction operations
The operation of most instructions is described by a series of statements using a semiformal 
language at the register transfer level (RTL), which uses the general notation given in 
Table 195 and Table 196 and the RTL-specific conventions in Table 197. See the example in 
Figure 23. Some of this notation is used in the formal descriptions of instructions. 

The RTL descriptions cover the normal execution of the instruction, except that ‘standard’ 
setting of the condition register, integer exception register, and floating-point status and 
control register are not always shown. (Non-standard setting of these registers, such as the 
setting of condition register field 0 by the stwcx. instruction, is shown.) The RTL 
descriptions do not cover all cases in which exceptions may occur, or for which the results 
are boundedly undefined, and may not cover all invalid forms.

RTL descriptions specify the architectural transformation performed by the execution of an 
instruction. They do not imply any particular implementation.

         

Table 197. RTL notation

Notation Meaning

← Assignment

←f Assignment in which the data may be reformatted in the target location

¬ NOT logical operator (one’s complement)

+ Two’s complement addition

– Two’s complement subtraction, unary minus

× Multiplication

÷ Division (yielding quotient)

+dp Floating-point addition, double precision

–dp Floating-point subtraction, double precision

×dp Floating-point multiplication, double precision

÷dp Floating-point division quotient, double precision

+sp Floating-point addition, single precision

–sp Floating-point subtraction, single precision

×sf

Signed fractional multiplication. Result of multiplying two quantities 
having bit lengths x and y taking the least significant x+y–1 bits of the 
product and concatenating a 0 to the least significant bit forming a 
signed fractional result of x+y bits.

×si Signed integer multiplication

×sp Floating-point multiplication, single precision

÷sp Floating-point division, single precision

×fp Floating-point multiplication to infinite precision (no rounding)

×ui Unsigned integer multiplication

FPSquareRoot-
Double(x)

Floating-point , result rounded to double-precisionx
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FPSquareRoot-
Single(x)

Floating-point , result rounded to single-precision

FPReciprocal-
Estimate(x)

Floating-point estimate of 

FPReciprocal-SquareRoot-
Estimate(x)

Floating-point estimate of 

Allocate-DataCache-
Block(x)

If the block containing the byte addressed by x does not exist in the 
data cache, allocate a block in the data cache and set the contents of 
the block to 0.

Flush-DataCache-
Block(x)

If the block containing the byte addressed by x exists in the data cache 
and is dirty, the block is written to main memory and is removed from 
the data cache.

Invalidate-DataCache-
Block(x)

If the block containing the byte addressed by x exists in the data cache, 
the block is removed from the data cache.

Store-DataCache-
Block(x)

If the block containing the byte addressed by x exists the data cache 
and is dirty, the block is written to main memory but may remain in the 
data cache.

Prefetch-DataCache-
Block(x,y)

If the block containing the byte addressed by x does not exist in the 
portion of the data cache specified by y, the block in memory is copied 
into the data cache.

Prefetch-ForStore-
DataCache-Block(x,y)

If the block containing the byte addressed by x does not exist in the 
portion of the data cache specified by y, the block in memory is copied 
into the data cache and made exclusive to the processor executing the 
instruction.

ZeroDataCache-
Block(x)

The contents of the block containing the byte addressed by x in the 
data cache is cleared.

Invalidate-Instruction-
CacheBlock(x)

If the block containing the byte addressed by x is in the instruction 
cache, the block is removed from the instruction cache.

Prefetch-Instruction-
CacheBlock(x,y)

If the block containing the byte addressed by x does not exist in the 
portion of the instruction cache specified by y, the block in memory is 
copied into the instruction cache.

=, ≠ Equals, Not Equals relations

<, ≤, >, ≥ Signed comparison relations

<u, >u Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

⊕, ≡ Exclusive OR, Equivalence logical operators ((a≡b) = (a⊕¬b))

>>, << Shift right or left logical

ABS(x) Absolute value of x

APID(x)
Returns an implementation-dependent information on the presence 
and status of the auxiliary processing extensions specified by x

CEIL(x) Least integer ≥ x

Table 197. RTL notation (continued)

Notation Meaning

x

1
x
---

1

x
-------
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DCREG(x) Device control register x

DOUBLE(x)
Result of converting x from floating-point single format to floating-point 
double format

EXTS(x) Result of extending x on the left with signed bits

EXTZ(x) Result of extending x on the left with zeros

FPR(x) Floating-point register x 

GPR(x) General-purpose register x

MASK(x, y)
Mask having 1s in bit positions x through y (wrapping if x>y) and 0s 
elsewhere

MEM(x,1) Contents of the byte of memory located at address x

MEM(x,y)
(for y={2,4,8})

Contents of y bytes of memory starting at address x.
If big-endian memory, the byte at address x is the MSB and the byte at 
address x+y–1 is the LSB of the value being accessed.

If little-endian memory, the byte at address x is the LSB and the byte at 
address x+y–1 is the MSB of the value being accessed.

MOD(x,y) Modulo y of x (remainder of x divided by y)

ROTL32(x, y) Result of rotating the value x left y positions, where x is 32 bits long

SINGLE(x)
Result of converting x from floating-point double format to floating-point 
single format

SPREG(x) Special-purpose register x

TRAP Invoke a trap-type program interrupt

characterization
Reference to the setting of status bits in a standard way that is 
explained in the text

undefined
An undefined value. The value may vary between implementations and 
between different executions on the same implementation.

CIA

Current instruction address, the address of the instruction being 
described in RTL. Used by relative branches to set the next instruction 
address (NIA) and by branch instructions with LK=1 to set the LR. CIA 
does not correspond to any architected register.

NIA

Next instruction address, the address of the next instruction to be 
executed. For a successful branch, the next instruction address is the 
branch target address: in RTL, this is indicated by assigning a value to 
NIA. For other instructions that cause non-sequential instruction 
fetching, the RTL is similar. For instructions that do not branch, and do 
not otherwise cause instruction fetching to be non-sequential, the next 
instruction address is CIA+4. NIA does not correspond to any 
architected register.

if … then … 
else …

Conditional execution, indenting shows range; else is optional

Table 197. RTL notation (continued)

Notation Meaning
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Precedence rules for RTL operators are summarized in Table 198. Operators higher in the 
table are applied before those lower in the table. Operators at the same level in the table 
associate from left to right, from right to left, or not at all, as shown. (For example, –
associates from left to right, so a–b–c = (a–b)–c.) Parentheses are used to override the 
evaluation order implied by the table or to increase clarity; parenthesized expressions are 
evaluated before serving as operands.

         

6.3.1 SPE APU saturation and bit-reverse models

For saturation and bit reversal, the pseudo RTL is provided here to more accurately describe 
those functions that are referenced in the instruction pseudo RTL.

Saturation

SATURATE(overflow, carry, saturated_underflow, saturated_overflow, value)
if overflow then

if carry then
return saturated_underflow

else
return saturated_overflow

else
return value

do
Do loop, indenting shows range. ‘To’ and/or ‘by’ clauses specify 
incrementing an iteration variable, and a ‘while’ clause gives 
termination conditions.

leave Leave innermost do loop, or do loop described in leave statement.

Table 198. Operator precedence

Operators Associativity

Subscript, function evaluation Left to right

Pre-superscript (replication), post-superscript (exponentiation) Right to left

unary –, ¬ Right to left

×, ÷ Left to right

+, – Left to right

|| Left to right

=, ≠, <, ≤, >, ≥, <u, >u, ? Left to right

&, ⊕, ≡ Left to right

| Left to right

: (range) None

← None

Table 197. RTL notation (continued)

Notation Meaning
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Bit reverse

BITREVERSE(value)
result ← 0
mask ← 1
shift ← 31
cnt ← 32
while cnt > 0 then do

t ← data & mask
if shift >= 0 then

result ← (t << shift) | result
else

result ← (t >> -shift) | result
cnt ← cnt - 1
shift ← shift - 2
mask ← mask << 1

return result

6.3.2 Embedded floating-point conversion models

The embedded floating-point instructions defined by the signal processing engine (SPE) 
APU and the single-precision floating-point (SPFP) APUs contain floating-point conversion 
to and from integer and fractional type instructions. The floating-point to-and-from non–
floating-point conversion model pseudo RTL is provided here as a group of functions that is 
called from the individual instruction pseudo RTL descriptions.

         

Table 199. Conversion models

Function Name Reference

Common functions

Round a 32-bit value Round32(fp,guard,sticky)  on page 339

Round a 64-bit value Round64(fp,guard,sticky) Chapter

Signal floating-point error SignalFPError  on page 339

Is a 32-bit value a NaN or Infinity? Isa32NaNorInfinity(fp)  on page 339

Floating-point conversions

Convert from single-precision 
floating-point to integer word with 
saturation

CnvtFP32ToI32Sat(fp,signed,upper_lower,rou
nd,fractional)

on page 351

Convert from double-precision 
floating-point to integer word with 
saturation

CnvtFP64ToI32Sat(fp,signed,round,fractional) on page 353

Convert from double-precision 
floating-point to integer double word 
with saturation

CnvtFP64ToI64Sat(fp,signed,round) on page 355

Convert to single-precision floating-
point from integer word with 
saturation

CnvtI32ToFP32Sat(v,signed,upper_lower,fracti
onal)

on page 356
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Convert to double-precision floating-
point from integer double word with 
saturation

CnvtI64ToFP64Sat(v,signed) on page 358

Integer Saturate

Integer saturate SATURATE(ovf,carry,neg_sat,pos_sat,value) Chapter

Table 199. Conversion models

Function Name Reference
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Common embedded floating-point functions

This section includes common functions used by the functions in subsequent sections.

32-Bit NaN or Infinity Test
// Determine if fp value is a NaN or Infinity
Isa32NaNorInfinity(fp)
return (fpexp = 255)
Isa32NaN(fp)
return ((fpexp = 255) & (fpfrac ≠ 0))
Isa32Infinity(fp)
return ((fpexp = 255) & (fpfrac = 0))
// Determine if fp value is denormalized
Isa32Denorm(fp)
return ((fpexp = 0) & (fpfrac ≠ 0))
// Determine if fp value is a NaN or Infinity
Isa64NaNorInfinity(fp)
return (fpexp = 2047)
Isa64NaN(fp)
return ((fpexp = 2047) & (fpfrac ≠ 0))
Isa64Infinity(fp)
return ((fpexp = 2047) & (fpfrac = 0))
// Determine if fp value is denormalized
Isa64Denorm(fp)
return ((fpexp = 0) & (fpfrac ≠ 0))

Signal Floating-Point Error
// Signal a Floating-Point Error in the SPEFSCR
SignalFPError(upper_lower, bits)
if (upper_lower = UPPER) then

bits ← bits << 15
SPEFSCR ← SPEFSCR | bits
bits ← (FG | FX)
if (upper_lower = UPPER) then

bits ← bits << 15
SPEFSCR ← SPEFSCR & ¬bits

Round a 32-Bit Value
// Round a result
Round32(fp, guard, sticky)
FP32format fp;
if (SPEFSCRFINXE = 0) then

if (SPEFSCRFRMC = 0b00) then // nearest
if (guard) then

if (sticky | fpfrac[22]) then
v[0:23] ← fpfrac + 1
if v[0] then

if (fpexp >= 254) then
// overflow
fp ← fpsign || 0b11111110 || 231

else



RM0004 Instruction set

 340/1176

fpexp ← fpexp + 1
fpfrac ← v1:23

else
fpfrac ← v[1:23]

else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes
// implementation dependent

return fp

Round a 64-Bit Value
// Round a result
Round64(fp, guard, sticky)
FP32format fp;
if (SPEFSCRFINXE = 0) then

if (SPEFSCRFRMC = 0b00) then // nearest
if (guard) then

if (sticky | fpfrac[51]) then
v[0:52] ← fpfrac + 1
if v[0] then

if (fpexp >= 2046) then
// overflow
fp ← fpsign || 0b11111111110 || 521

else
fpexp ← fpexp + 1
fpfrac ← v1:52

else
fpfrac ← v1:52

else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes
// implementation dependent

return fp

Convert from single-precision floating-point to integer word 
with saturation

// Convert 32-bit floating point to integer/factional
// signed = SIGN or UNSIGN
// upper_lower = UPPER or LOWER
// round = ROUND or TRUNC
// fractional = F (fractional) or I (integer)

CnvtFP32ToI32Sat(fp, signed, upper_lower, round, fractional)

FP32format fp;

if (Isa32NaNorInfinity(fp)) then // SNaN, QNaN, +-INF
SignalFPError(upper_lower, FINV)
if (Isa32NaN(fp)) then

return 0x00000000 // all NaNs
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
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if (fpsign = 1) then
return 0x00000000

else
return 0xffffffff

if (Isa32Denorm(fp)) then
SignalFPError(upper_lower, FINV)
return 0x00000000 // regardless of sign

if ((signed = UNSIGN) & (fpsign = 1)) then
SignalFPError(upper_lower, FOVF) // overflow
return 0x00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000 // all zero values

if (fractional = I) then // convert to integer
max_exp ← 158
shift ← 158 - fpexp
if (signed = SIGN) then

if ((fpexp ≠ 158) | (fpfrac ≠ 0) | (fpsign ≠ 1)) then
max_exp ← max_exp - 1

else // fractional conversion
max_exp ← 126
shift ← 126 - fpexp
if (signed = SIGN) then

shift ← shift + 1

if (fpexp > max_exp) then
SignalFPError(upper_lower, FOVF) // overflow
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
return 0xffffffff

result ← 0b1 || fpfrac || 0b00000000 // add U to frac
guard ← 0
sticky ← 0

for (n ← 0; n < shift; n ← n + 1) do
sticky ← sticky | guard
guard ← result & 0x00000001
result ← result > 1

// Report sticky and guard bits

if (upper_lower = UPPER) then
SPEFSCRFGH ← guard
SPEFSCRFXH ← sticky

else
SPEFSCRFG ← guard
SPEFSCRFX ← sticky
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if (guard | sticky) then
SPEFSCRFINXS ← 1

// Round the integer result

if ((round = ROUND) & (SPEFSCRFINXE = 0)) then
if (SPEFSCRFRMC = 0b00) then // nearest

if (guard) then
if (sticky | (result & 0x00000001)) then

result ← result + 1
else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes

// implementation dependent

if (signed = SIGN) then
if (fpsign = 1) then

result ← ¬result + 1

return result

Convert from double-precision floating-point to integer word 
with saturation

// Convert 64-bit floating point to integer/fractional
// signed = SIGN or UNSIGN
// round = ROUND or TRUNC
// fractional = F (fractional) or I (integer)

CnvtFP64ToI32Sat(fp, signed, round, fractional)

FP64format fp;

if (Isa64NaNorInfinity(fp)) then // SNaN, QNaN, +-INF
SignalFPError(LOWER, FINV)
if (Isa64NaN(fp)) then

return 0x00000000 // all NaNs
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
if (fpsign = 1) then

return 0x00000000
else

return 0xffffffff

if (Isa64Denorm(fp)) then
SignalFPError(LOWER, FINV)
return 0x00000000 // regardless of sign

if ((signed = UNSIGN) & (fpsign = 1)) then
SignalFPError(LOWER, FOVF) // overflow
return 0x00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000 // all zero values
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if (fractional = I) then // convert to integer
max_exp ← 1054
shift ← 1054 - fpexp
if (signed ← SIGN) then

if ((fpexp ≠ 1054) | (fpfrac ≠ 0) | (fpsign ≠ 1)) then
max_exp ← max_exp - 1

else // fractional conversion
max_exp ← 1022
shift ← 1022 - fpexp
if (signed = SIGN) then

shift ← shift + 1

if (fpexp > max_exp) then
SignalFPError(LOWER, FOVF) // overflow
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000

else
return 0x7fffffff

else
return 0xffffffff

result ← 0b1 || fpfrac[0:30] // add U to frac
guard ← fpfrac[31]
sticky ← (fpfrac[32:63] ≠ 0)
for (n ← 0; n < shift; n ← n + 1) do

sticky ← sticky | guard
guard ← result & 0x00000001
result ← result > 1

// Report sticky and guard bits

SPEFSCRFG ← guard
SPEFSCRFX ← sticky

if (guard | sticky) then
SPEFSCRFINXS ← 1

// Round the result

if ((round = ROUND) & (SPEFSCRFINXE = 0)) then
if (SPEFSCRFRMC = 0b00) then // nearest

if (guard) then
if (sticky | (result & 0x00000001)) then

result ← result + 1
else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes

// implementation dependent

if (signed = SIGN) then
if (fpsign = 1) then

result ← ¬result + 1

return result
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Convert from double-precision floating-point to integer double 
word with saturation

// Convert 64-bit floating point to integer/fractional
// signed = SIGN or UNSIGN
// round = ROUND or TRUNC

CnvtFP64ToI64Sat(fp, signed, round)

FP64format fp;

if (Isa64NaNorInfinity(fp)) then // SNaN, QNaN, +-INF
SignalFPError(LOWER, FINV)
if (Isa64NaN(fp)) then

return 0x00000000_00000000 // all NaNs
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000_00000000

else
return 0x7fffffff_ffffffff

else
if (fpsign = 1) then

return 0x00000000_00000000
else

return 0xffffffff_ffffffff

if (Isa64Denorm(fp)) then
SignalFPError(LOWER, FINV)
return 0x00000000_00000000 // regardless of sign

if ((signed = UNSIGN) & (fpsign = 1)) then
SignalFPError(LOWER, FOVF) // overflow
return 0x00000000_00000000

if ((fpexp = 0) & (fpfrac = 0)) then
return 0x00000000_00000000 // all zero values

max_exp ← 1086
shift ← 1086 - fpexp
if (signed = SIGN) then

if ((fpexp ≠ 1086) | (fpfrac ≠ 0) | (fpsign ≠ 1)) then
max_exp ← max_exp - 1

if (fpexp > max_exp) then
SignalFPError(LOWER, FOVF) // overflow
if (signed = SIGN) then

if (fpsign = 1) then
return 0x80000000_00000000

else
return 0x7fffffff_ffffffff

else
return 0xffffffff_ffffffff

result ← 0b1 || fpfrac || 0b00000000000 // add U to frac
guard ← 0
sticky ← 0
for (n ← 0; n < shift; n ← n + 1) do
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sticky ← sticky | guard
guard ← result & 0x00000000_00000001
result ← result > 1

// Report sticky and guard bits

SPEFSCRFG ← guard
SPEFSCRFX ← sticky

if (guard | sticky) then
SPEFSCRFINXS ← 1

// Round the result

if ((round = ROUND) & (SPEFSCRFINXE = 0)) then
if (SPEFSCRFRMC = 0b00) then // nearest

if (guard) then
if (sticky | (result & 0x00000000_00000001)) then

result ← result + 1
else if ((SPEFSCRFRMC & 0b10) = 0b10) then // infinity modes

// implementation dependent

if (signed = SIGN) then
if (fpsign = 1) then

result ← ¬result + 1

return result

Convert to single-precision floating-point from integer word 
with saturation

// Convert from integer/factional to 32-bit floating point
// signed = SIGN or UNSIGN
// upper_lower = UPPER or LOWER
// fractional = F (fractional) or I (integer)

CnvtI32ToFP32Sat(v, signed, upper_lower, fractional)

FP32format result;

resultsign ← 0
if (v = 0) then

result ← 0
if (upper_lower = UPPER) then

SPEFSCRFGH ← 0
SPEFSCRFXH ← 0

else
SPEFSCRFG ← 0
SPEFSCRFX ← 0

else
if (signed = SIGN) then

if (v0 = 1) then
v ← ¬v + 1
resultsign ← 1

if (fractional = F) then // fractional bit pos alignment
maxexp ← 127
if (signed = UNSIGN) then



RM0004 Instruction set

 346/1176

maxexp ← maxexp - 1
else

maxexp ← 158 // integer bit pos alignment
sc ← 0
while (v0 = 0)

v ← v << 1
sc ← sc + 1

v0 ← 0 // clear U bit
resultexp ← maxexp - sc
guard ← v24
sticky ← (v25:31 ≠ 0)

// Report sticky and guard bits

if (upper_lower = UPPER) then
SPEFSCRFGH ← guard
SPEFSCRFXH ← sticky

else
SPEFSCRFG ← guard
SPEFSCRFX ← sticky

if (guard | sticky) then
SPEFSCRFINXS ← 1

// Round the result

resultfrac ← v1:23
result ← Round32(result, guard, sticky)

return result

Convert to double-precision floating-point from integer word 
with saturation

// Convert from integer/factional to 64-bit floating point
// signed = SIGN or UNSIGN
// fractional = F (fractional) or I (integer)

CnvtI32ToFP64Sat(v, signed, fractional)

FP64format result;

resultsign ← 0
if (v = 0) then

result ← 0
SPEFSCRFG ← 0
SPEFSCRFX ← 0

else
if (signed = SIGN) then

if (v[0] = 1) then
v ← ¬v + 1
resultsign ← 1

if (fractional = F) then // fractional bit pos alignment
maxexp ← 1023
if (signed = UNSIGN) then

maxexp ← maxexp - 1
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else
maxexp ← 1054 // integer bit pos alignment

sc ← 0
while (v0 = 0)

v ← v << 1
sc ← sc + 1

v0 ← 0 // clear U bit
resultexp ← maxexp - sc

// Report sticky and guard bits

SPEFSCRFG ← 0
SPEFSCRFX ← 0

resultfrac ← v1:31 || 210

return result

Convert to double-precision floating-point from integer double 
word with saturation

// Convert from 64 integer to 64-bit floating point
// signed = SIGN or UNSIGN

CnvtI64ToFP64Sat(v, signed)

FP64format result;

resultsign ← 0
if (v = 0) then

result ← 0
SPEFSCRFG ← 0
SPEFSCRFX ← 0

else
if (signed = SIGN) then

if (v0 = 1) then
v ← ¬v + 1
resultsign ← 1

maxexp ← 1054
sc ← 0

while (v0 = 0)
v ← v << 1
sc ← sc + 1

v0 ← 0 // clear U bit
resultexp ← maxexp - sc
guard ← v53
sticky ← (v54:63 ≠ 0)

// Report sticky and guard bits

SPEFSCRFG ← guard
SPEFSCRFX ← sticky
if (guard | sticky) then

SPEFSCRFINXS ← 1
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// Round the result

resultfrac ← v1:52
result ← Round64(result, guard, sticky)

return result

6.3.3 Integer saturation models

// Saturate after addition

SATURATE(ovf, carry, neg_sat, pos_sat, value)

if ovf then
if carry then

return neg_sat
else

return pos_sat
else

return value

6.3.4  Embedded floating-point results

Appendix E: Embedded floating-point results on page 1156,” summarizes results of various 
types of SPE and SPFP floating-point operations on various combinations of input 
operands. 

6.4 Instruction set
The rest of this chapter describes individual instructions, which are listed in alphabetical 
order by mnemonic. Figure 23 shows the format for instruction description pages.
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Figure 23. Instruction description

Note: The execution unit that executes the instruction may not be the same for all processors. 

add add
Add 

add rD,rA,rB (OE=0, Rc=0)
add. rD,rA,rB (OE=0, Rc=1)
addo rD,rA,rB (OE=1, Rc=0)
addo. rD,rA,rB (OE=1, Rc=1)

carry0–63 ← Carry(rA + rB)
sum0–63   ←       rA + rB
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32–63 < 0
GT  ← sum32–63 > 0
EQ  ← sum32–63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum

The sum of the contents of rA and rB is placed into rD.

Other registers altered:

• CR0 (if Rc=1)
SO OV  (if OE=1)

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rD rA rB OE 1 0 0 0 0 1 0 1 0 Rc

Book E UserInstruction mnemonic

Instruction name

Instruction syntax

Instruction encoding

RTL description of 

Text description of

Registers altered by

instruction operation

instruction operation

User/Supervisor access

Architecture
Key: 

 instruction
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add add

Add 

add rD,rA,rB (OE=0, Rc=0)

add. rD,rA,rB (OE=0, Rc=1)
addo rD,rA,rB (OE=1, Rc=0)
addo. rD,rA,rB (OE=1, Rc=1)

carry0:63 ← Carry(rA + rB)
sum0:63   ←       rA + rB
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32:63 < 0
GT  ← sum32:63 > 0
EQ  ← sum32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum

carry0:63 ← Carry(rA + rB)
sum0:63   ←       rA + rB
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32:63 < 0
GT  ← sum32:63 > 0
EQ  ← sum32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum

The sum of the contents of rA and rB is placed into rD.

Other registers altered:

● CR0 (if Rc=1)
SO OV  (if OE=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA rB OE 1 0 0 0 0 1 0 1 0 Rc
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_addx _ addx

Add

se_add ‘ rX,rY

sum32:63   ←  GPR(RX) + GPR(RY)

GPR(RX) ← sum32:63

The sum of the contents of GPR(rX) and the contents of GPR(rY) is placed into GPR(rX).

Special Registers Altered: None

0 5 6 10 11 15

0 0 0 0 0 1 0   0 RY RX

VLE User
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addc addc

Add Carrying

addc rD,rA,rB (OE=0, Rc=0)
addc. rD,rA,rB (OE=0, Rc=1)
addco rD,rA,rB (OE=1, Rc=0)
addco. rD,rA,rB (OE=1, Rc=1)

carry0:63 ← Carry(rA + rB)
sum0:63   ← rA + rB
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32:63 < 0
GT  ← sum32:63 > 0
EQ  ← sum32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum
CA      ← carry32

The sum of the contents of rA and rB is placed into rD.

Other registers altered:

● CA
CR0 (if Rc=1)
SO OV  (if OE=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA rB OE 0 0 0 0 0 1 0 1 0 Rc
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adde adde

Add Extended

adde rD,rA,rB (OE=0, Rc=0)
adde. rD,rA,rB (OE=0, Rc=1)
addeo rD,rA,rB (OE=1, Rc=0)
addeo. rD,rA,rB (OE=1, Rc=1)

if E=0 then Cin ← CA 
carry0:63 ← Carry(rA + rB + Cin)
sum0:63   ←       rA + rB + Cin
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32:63 < 0
GT  ← sum32:63 > 0
EQ  ← sum32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum
CA      ← carry32

For adde[o][.], the sum of the contents of rA, the contents of rB, and CA is placed into rD.

Other registers altered:

● CA
CR0 (if Rc=1)
SO OV  (if OE=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA rB OE 0 1 0 0 0 1 0 1 0 Rc
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addi addi

Add immediate [shifted]

addi rD,rA,SIMM (S=0)
addis rD,rA,SIMM (S=1)

         

if rA=0 then a ← 640 else a ← rA
if s=0  then b ← EXTS(SIMM)
if s=1  then b ← EXTS(SIMM || 160)
rD ← a + b

If addi and rA=0, the sign-extended value of the SIMM field is placed into rD.

If addi and rA≠0, the sum of the contents of rA and the sign-extended value of field SIMM is 
placed into rD.

If addis and rA=0, the sign-extended value of the SIMM field, concatenated with 16 zeros, is 
placed into rD.

If addis and rA≠0, the sum of the contents of rA and the sign-extended value of the SIMM 
field concatenated with 16 zeros, is placed into rD.

Other registers altered: None

Book E User

0 4 5 6 10 11 15 16 31

0 0 1 1 1 S rD rA SIMM
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_addix _addix

Add [2 operand] Immediate [Shifted] [and Record]

e_add16i rD,rA,SI

a ← GPR(RA)
b ← EXTS(SI)
GPR(RD) ← a + b

The sum of the contents of GPR(rA) and the sign-extended value of field SI is placed into 
GPR(rD).

Special Registers Altered: None

e_add2i. rA,SI

SI ← SI0:4  || SI5:15 
sum32:63   ←       GPR(RA) + EXTS(SI)
   LT   ← sum32:63 < 0
   GT   ← sum32:63 > 0
   EQ   ← sum32:63 = 0
   CR0  ← LT || GT || EQ || SO
GPR(RA) ← sum32:63

The sum of the contents of GPR(rA) and the sign-extended value of SI is placed into 
GPR(rA).

Special Registers Altered: CR0

e_add2is rA,SI

SI ← SI0:4 || SI5:15 
sum32:63   ←   GPR(RD) + (SI || 160)
GPR(RA) ← sum32:63

The sum of the contents of GPR(rA) and the value of SI concatenated with 16 zeros is 
placed into GPR(rAarav2006).

Special Registers Altered: None 

e_addi rD,rA,SCI8 (Rc = 0)
e_addi. rD,rA,SCI8 (Rc = 1)

VLE User

0 5 6 10 11 15 16 31

0 0 0 1 1 1 RD RA SI

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 SI0:4 RA 1   0 0 0 1 SI5:15

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 SI0:4 RA 1   0 0 1 0 SI5:15

0 5 6 10 11 15 16 20 21 22 23 24 31

0 0 0 1 1 0 RD RA 1 0 0 0 Rc F SCL UI8
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imm ← SCI8(F,SCL,UI8)
sum32:63   ←       GPR(RA) + imm
if Rc=1 then do
   LT   ← sum32:63 < 0
   GT   ← sum32:63 > 0
   EQ   ← sum32:63 = 0
   CR0  ← LT || GT || EQ || SO
GPR(RD) ← sum32:63

The sum of the contents of GPR(rA) and the value of SCI8 is placed into GPR(rD).

Special Registers Altered: CR0 (if Rc = 1)

se_addi rX,OIMM 

GPR(RX) ← GPR(RX) + (270 || OFFSET(OIM5))

The sum of the contents of GPR(rX) and the zero-extended offset value of OIM5 (a final 
value in the range 1–32), is placed into GPR(rX). 

Special Registers Altered: None

0 5 6 7 11 12 15

0 0 1 0 0 0 0 OIM5(1)

1. OIMM = OIM5 +1

RX
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addic addic

Add immediate carrying [and record]

addic rD,rA,SIMM (Rc=0)
addic. rD,rA,SIMM (Rc=1)

carry0:63 ← Carry(rA + EXTS(SIMM))
sum0:63   ←       rA + EXTS(SIMM)
if Rc=1 then do
   LT   ← sum32:63 < 0
   GT   ← sum32:63 > 0
   EQ   ← sum32:63 = 0
   CR0  ← LT || GT || EQ || SO
rD ← rA+EXTS(SIMM)
CA      ← carry32

The sum of the contents of rA and the sign-extended value of the SIMM field is placed into 
rD.

Other registers altered:

● CA
CR0 (if Rc=1)

Book E User

0 4 5 6 10 11 15 16 31

0 0 1 1 0 Rc rD rA SIMM
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_addicx _addicx

Add Immediate Carrying [and Record]

e_addic rD,rA,SCI8 (Rc = 0)
e_addic. rD,rA,SCI8 (Rc = 1)

imm ← SCI8(F,SCL,UI8)
carry32:63 ← Carry(GPR(RA) + imm)
sum32:63   ←       GPR(RA) + imm
if Rc=1 then do
   LT   ← sum32:63 < 0
   GT   ← sum32:63 > 0
   EQ   ← sum32:63 = 0
   CR0  ← LT || GT || EQ || SO
GPR(RD) ← sum32:63
CA      ← carry32

The sum of the contents of GPR(rA) and the value of SCI8 is placed into GPR(rD).

Special Registers Altered: CA, CR0 (if Rc=1)

VLE User

0 5 6 10 11 15 16 19 20 21 22 23 24 31

0 0 0 1 1 0 RD RA 1 0 0 1 Rc F SCL UI8
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addme addme

Add to minus one extended

addme rD,rA (OE=0, Rc=0)
addme. rD,rA (OE=0, Rc=1)
addmeo rD,rA (OE=1, Rc=0)
addmeo. rD,rA (OE=1, Rc=1)

if E=0 then Cin ← CA 
carry0:63 ← Carry(rA + Cin + 0xFFFF_FFFF_FFFF_FFFF)
sum0:63   ←       rA + Cin + 0xFFFF_FFFF_FFFF_FFFF
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32:63 < 0
GT  ← sum32:63 > 0
EQ  ← sum32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum
CA      ← carry32

For addme[o][.], the sum of the contents of rA, CA, and 641 is placed into rD.

Other registers altered:

● CA
CR0 (if Rc=1)
SO OV  (if OE=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA /// OE 0 1 1 1 0 1 0 1 0 Rc
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addze addze

Add to zero extended

addze rD,rA (OE=0, Rc=0)
addze. rD,rA (OE=0, Rc=1)
addzeo rD,rA (OE=1, Rc=0)
addzeo. rD,rA (OE=1, Rc=1)

if E=0 then Cin ← CA 
carry0:63 ← Carry(rA + Cin)
sum0:63   ←       rA + Cin
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32:63 < 0
GT  ← sum32:63 > 0
EQ  ← sum32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum
CA      ← carry32

For addze[o][.], the sum of the contents of rA and CA is placed into rD.

Other registers altered:

● CA
CR0 (if Rc=1)
SO OV  (if OE=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA /// OE 0 1 1 0 0 1 0 1 0 Rc
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and and

AND [Immediate [Shifted] | with Complement]

and rA,rS,rB (Rc=0)
and. rA,rS,rB (Rc=1)

andi. rA,rS,UIMM (S=0, Rc=1)
andis. rA,rS,UIMM (S=1, Rc=1)

andc rA,rS,rB (Rc=0)
andc. rA,rS,rB (Rc=1)

if ‘andi.’   then b ← 480 || UIMM
if ‘andis.’  then b ← 320 || UIMM || 160
if ‘and[.]’  then b ← rB
if ‘andc[.]’ then b ← ¬rB
result0:63 ← rS & b
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

rA ← result

For andi., the contents of rS are ANDed with 480 || UIMM.

For andis., the contents of rS are ANDed with 320 || UIMM || 160.

For and[.], the contents of rS are ANDed with the contents of rB.

For andc[.], the contents of rS are ANDed with the one’s complement of the contents of rB.

The result is placed into rA.

Other registers altered: CR0 (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 1 0 0 Rc

0 4 5 6 10 11 15 16 31

0 1 1 1 0 S rS rA UIMM

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 0 0 0 0 1 1 1 1 0 0 Rc
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_andx _andx

AND [2 operand] [Immediate | with Complement] [and Record]

se_and rX,rY (Rc = 0)
se_and. rX,rY (Rc = 1)

e_and2i. rD,UI

e_and2is. rD,UI

e_andi rA,rS,SCI8 (Rc = 0)
e_andi. rA,rS,SCI8 (Rc = 1)

se_andi rX,UI5

se_andc rX,rY

if ‘e_andi[.]’ then b ← SCI8(F,SCL,UI8)
if ‘se_andi’ then b ← UI5
if ‘se_and[.]’ then b ← GPR(RY)
if ‘se_andc’    then b ← ¬GPR(RY)
if ‘e_and2i.’ then b ← 160 || UI0:4 || UI5:15
if ‘e_and2is.’ then b ← UI0:4 || UI5:15 || 160
result32:63 ← GPR(RS or RD or RX) & b
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

if ‘se_and[ci]’ then GPR(RX) ← result32:63 else GPR(RA or RD) ← result32:63

For e_andi[.], the contents of GPR(rS) are ANDed with the value of SCI8.

For e_and2i., the contents of GPR(rD) are ANDed with 160 || UI.

For e_and2is., the contents of GPR(rD) are ANDed with UI || 160.

For se_andi, the contents of GPR(rX) are ANDed with the value of UI5.

For se_and[.], the contents of GPR(rX) are ANDed with the contents of GPR(rY).

0 5 6 7 8 11 12 15

0 1 0 0 0 1 1 Rc RY RX

VLE User

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 RD UI0:4 1 1 0 0 1 UI5:15

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 RD UI0:4 1 1 1 0 1 UI5:15

0 5 6 10 11 15 16 20 21 22 23 24 31

0 0 0 1 1 0 RS RA 1 1 0 0 Rc F SCL UI8

0 5 6 7 11 12 15

0 0 1 0 1 1 1 UI5 RX

0 5 6 7 8 11 12 15

0 1 0 0 0 1 0 1 RY RX
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For se_andc, the contents of GPR(rX) are ANDed with the one’s complement of the 
contents of GPR(rY).

The result is placed into GPR(rA) or GPR(rX) (se_and[ic][.])

Special Registers Altered: CR0 (if Rc = 1)
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b b

Branch [and Link] [Absolute]

b LI (AA=0, LK=0)
ba LI (AA=1, LK=0)
bl LI (AA=0, LK=1)
bla LI (AA=1, LK=1)

if AA=1 then a ← 640 else a ← CIA
if E=0  then NIA ← 320 || (a + EXTS(LI||0b00))32:63
if LK=1 then LR ← CIA + 4

The branch target effective address (BTEA) is calculated as follows:

● For 32-bit implementations, BTEA is bits 32–63 of the sum of the current instruction 
address (CIA), or 32 zeros if AA=1, and the sign-extended value of the LI instruction 
field concatenated with 0b00

BTEA is the address of the next instruction to be executed.

If LK=1, the sum CIA+4 is placed into the LR.

Other registers altered: LR (if LK=1)

Book E User

0 5 6 29 30 31

0 1 0 0 1 0 LI AA LK
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_bx _bx

Branch [and Link]

e_b BD24 (LK = 0)
e_bl BD24 (LK = 1)

a ← CIA
NIA ← (a + EXTS(BD24||0b0))32:63
if LK=1 then LR ← CIA + 4

Let the BTEA be calculated as follows:

● For e_b[l], let BTEA be the sum of the CIA and the sign-extended value of the BD24 
instruction field concatenated with 0b0.

The BTEA is the address of the next instruction to be executed.

If LK = 1, the sum CIA+4 is placed into the LR.

Special Registers Altered: LR (if LK = 1)

se_b BD8 (LK = 0)
se_bl BD8 (LK = 1)

a ← CIA
NIA ← (a + EXTS(BD8||0b0))32:63
if LK=1 then LR ← CIA + 2

Let the BTEA be calculated as follows:

● For se_b[l], let BTEA be the sum of the CIA and the sign-extended value of the BD8 
instruction field concatenated with 0b0.

The BTEA is the address of the next instruction to be executed.

If LK = 1, the sum CIA+2 is placed into the LR.

Special Registers Altered: LR (if LK = 1)

VLE User

0 5 6 7 30 31

0 1 1 1 1 0 0 BD24 LK

0 5 6 7 8 15

1 1 1 0 1 0 0 LK BD8
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bc bc

Branch conditional [and link] [absolute]

bc BO,BI,BD (AA=0, LK=0)
bca BO,BI,BD (AA=1, LK=0)
bcl BO,BI,BD (AA=0, LK=1)
bcla BO,BI,BD (AA=1, LK=1)

if ¬BO2 then CTR32:63 ← CTR32:63 : 1
ctr_ok  ← BO2 | ((CTR32:63 ≠ 0) ⊕ BO3)
cond_ok ← BO0 | (CRBI+32 ≡ BO1)
if ctr_ok & cond_ok then
   if AA=1 then a ← 640 else a ← CIA
   if E=0 then NIA ← 320 || (a + EXTS(BD||0b00))32:63
else           NIA ← CIA + 4
if LK=1 then LR ← CIA + 4

The branch target effective address (BTEA) is calculated as follows:

● For 32-bit implementations, BTEA is bits 32–63 of the sum of the current instruction 
address (CIA), or 32 zeros if AA=1, and the sign-extended value of the LI instruction 
field concatenated with 0b00

The BO instruction field specifies any conditions that must be met for the branch to be taken, 
as defined in Conditional branch control on page 167.” The sum BI+32 specifies the CR bit 
to be used.

The BI field specifies the CR bit used as the condition of the branch, as shown in Table 200.

         

Book E User

0 5 6 10 11 15 16 29 30 31

0 1 0 0 0 0 BO BI BD AA LK
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If the branch conditions are met, the BTEA is the address of the next instruction to be executed.
If LK=1, the sum CIA + 4 is placed into the LR.
Other registers altered:

● CTR(if BO2=0) 
LR(if LK=1)

Table 200. BI operand settings for CR fields

 CRn Bits  CR Bits BI Description

CR0[0] 32 00000 Negative (LT)—Set when the result is negative.

CR0[1] 33 00001 Positive (GT)—Set when the result is positive (and not zero).

CR0[2] 34 00010 Zero (EQ)—Set when the result is zero.

CR0[3] 35 00011 Summary overflow (SO). Copy of XER[SO] at the instruction’s 
completion.

CR1[0] 36 00100 Copy of FPSCR[FX] at the instruction’s completion.

CR1[1] 37 00101 Copy of FPSCR[FEX] at the instruction’s completion.

CR1[2] 38 00110 Copy of FPSCR[VX] at the instruction’s completion.

CR1[3] 39 00111 Copy of FPSCR[OX] at the instruction’s completion.

CRn[0] 40
44

48

52

56
60

01000
01100

10000

10100

11000
11100

Less than or floating-point less than (LT, FL).
For integer compare instructions:
rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned 
comparison). 

For floating-point compare instructions:frA < frB.

CRn[1] 41
45

49

53
57

61

01001
01101

10001

10101
11001

11101

Greater than or floating-point greater than (GT, FG).
For integer compare instructions:
rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned 
comparison). 

For floating-point compare instructions:frA > frB.

CRn[2] 42

46

50
54

58

62

01010

01110

10010
10110

11010

11110

Equal or floating-point equal (EQ, FE).

For integer compare instructions: rA = SIMM, UIMM, or rB. 

For floating-point compare instructions: frA = frB.

CRn[3] 43

47
51

55

59
63

01011

01111
10011

10111

11011
11111

Summary overflow or floating-point unordered (SO, FU).

For integer compare instructions, this is a copy of XER[SO] at the 
completion of the instruction. 

For floating-point compare instructions, one or both of frA and frB is a 
NaN.



RM0004 Instruction set

 368/1176

_bcx _bcx

Branch Conditional [and Link]

e_bc BO32,BI32,BD15 (LK = 0)
e_bcl BO32,BI32,BD15 (LK = 1)

if BO320 then CTR32:63 ← CTR32:63 – 1
ctr_ok  ← ¬BO320 | ((CTR32:63 ≠ 0) ⊕ BO321)
cond_ok ← BO320 | (CRBI32+32 ≡ BO321)
if ctr_ok & cond_ok then
               NIA ← (CIA + EXTS(BD15 || 0b0))32:63
else           NIA ← CIA + 4
if LK=1 then LR ← CIA + 4

Let the BTEA be calculated as follows:

● For e_bc[l], let BTEA be the sum of the CIA and the sign-extended value of the BD15 
instruction field concatenated with 0b0.

BO32 specifies any conditions that must be met for the branch to be taken, as defined in 
Chapter 12.2.2: Branch instructions on page 864.” The sum BI32+32 specifies the CR bit. 
Only CR[32–47] may be specified.

If the branch conditions are met, the BTEA is the address of the next instruction to be 
executed.

If LK = 1, the sum CIA + 4 is placed into the LR.

Special Registers Altered: CTR (if BO320 = 1) 
LR (if LK = 1)

se_bc BO16,BI16,BD8

cond_ok ← (CRBI16+32 ≡ BO16)
if cond_ok then
               NIA ← (CIA + EXTS(BD8 || 0b0))32:63
else           NIA ← CIA + 2

Let the BTEA be calculated as follows:

● For se_bc, BTEA is the sum of the CIA and the sign-extended value of the BD8 
instruction field concatenated with 0b0.

BO16 specifies any conditions that must be met for the branch to be taken, as defined in 
Chapter 12.2.2: Branch instructions.” The sum BI16+32 specifies CR bit; only CR[32–35] 
may be specified.

If the branch conditions are met, the BTEA is the address of the next instruction to be 
executed.

Special Registers Altered: None

VLE User

0 5 6 9 10 11 12 15 16 30 31

0 1 1 1 1 0 1   0   0   0 BO32 BI32 BD15 LK

0 4 5 6 7 8 15

1 1 1 0 0 BO16 BI16 BD8
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bcctr bcctr

Branch conditional to count register [and link]

bcctr BO,BI (LK=0)
bcctrl BO,BI (LK=1)

cond_ok ← BO0 | (CRBI+32 ≡ BO1)
if  cond_ok & E=0 then NIA ← 320 || CTR32:61 || 0b00
if ¬cond_ok       then NIA ← CIA + 4
if LK=1 then LR ← CIA + 4

The branch target effective address (BTEA) is calculated as follows:

● For bcctr[l], BTEA is the contents of CTR[32–61] concatenated with 0b00.
BO specifies conditions that must be met for the branch to be taken. BI+32 specifies the CR bit to be 
used; see Table 201.

         

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 0 0 1 1 BO BI /// 1 0 0 0 0 1 0 0 0 0 LK
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If the condition is met, the BTEA is the address of the next instruction to be executed.

If LK=1, the sum CIA + 4 is placed into the LR.

If the decrement and test CTR option is specified (BO[2]=0), the instruction form is invalid. 

Other registers altered: LR (if LK=1)

Table 201. BI operand settings for CR fields

 CRn Bits  CR Bits BI Description

CR0[0] 32 00000 Negative (LT)—Set when the result is negative.

CR0[1] 33 00001 Positive (GT)—Set when the result is positive (and not zero).

CR0[2] 34 00010 Zero (EQ)—Set when the result is zero.

CR0[3] 35 00011
Summary overflow (SO). Copy of XER[SO] at the instruction’s 
completion.

CR1[0] 36 00100 Copy of FPSCR[FX] at the instruction’s completion.

CR1[1] 37 00101 Copy of FPSCR[FEX] at the instruction’s completion.

CR1[2] 38 00110 Copy of FPSCR[VX] at the instruction’s completion.

CR1[3] 39 00111 Copy of FPSCR[OX] at the instruction’s completion.

CRn[0]

40
44

48

52

56
60

01000
01100

10000

10100

11000
11100

Less than or floating-point less than (LT, FL).

For integer compare instructions:
rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned 
comparison). 

For floating-point compare instructions:frA < frB.

CRn[1]

41
45

49

53
57

61

01001
01101

10001

10101
11001

11101

Greater than or floating-point greater than (GT, FG).

For integer compare instructions:
rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned 
comparison). 
For floating-point compare instructions: frA > frB.

CRn[2]

42

46

50
54

58

62

01010

01110

10010
10110

11010

11110

Equal or floating-point equal (EQ, FE).

For integer compare instructions: rA = SIMM, UIMM, or rB. 

For floating-point compare instructions: frA = frB.

CRn[3]

43

47
51

55

59
63

01011

01111
10011

10111

11011
11111

Summary overflow or floating-point unordered (SO, FU).
For integer compare instructions, this is a copy of XER[SO] at the 
completion of the instruction. 
For floating-point compare instructions, one or both of frA and frB is a 
NaN.
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bclr bclr

Branch conditional to link register [and link]

bclr BO,BI (LK=0)
bclrl BO,BI (LK=1)

if ¬BO2 then CTR32:63 ← CTR32:63 - 1
ctr_ok  ← BO2 | ((CTR32:63 ≠ 0) ⊕ BO3)
cond_ok ← BO0 | (CRBI+32 ≡ BO1)
if   ctr_ok & cond_ok & E=0 then NIA ← 320 || LR32:61 || 0b00
if ¬(ctr_ok & cond_ok)      then NIA ← CIA + 4
if LK=1 then LR ← CIA + 4

The branch target effective address (BTEA) is calculated as follows:

● For bclr[l], BTEA is the contents of LR[32–61] concatenated with 0b00.
The BO field specifies any conditions that must be met for the branch to be taken, as defined in 
Conditional branch control on page 167.” The sum BI+32 specifies the CR bit to be used.
The BI field specifies the CR bit used as the condition of the branch, as shown in Table 202.

         

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 0 0 1 1 BO BI /// 0 0 0 0 0 1 0 0 0 0 LK
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If the condition is met, the BTEA is the address of the next instruction to be executed.
If LK=1, the sum CIA + 4 is placed into the LR.
Other registers altered:

● CTR (if BO2=0) 
LR  (if LK=1)

Table 202. BI operand settings for CR fields

 CRn Bits  CR Bits BI Description

CR0[0] 32 00000 Negative (LT)—Set when the result is negative.

CR0[1] 33 00001 Positive (GT)—Set when the result is positive (and not zero).

CR0[2] 34 00010 Zero (EQ)—Set when the result is zero.

CR0[3] 35 00011
Summary overflow (SO). Copy of XER[SO] at the instruction’s 
completion.

CR1[0] 36 00100 Copy of FPSCR[FX] at the instruction’s completion.

CR1[1] 37 00101 Copy of FPSCR[FEX] at the instruction’s completion.

CR1[2] 38 00110 Copy of FPSCR[VX] at the instruction’s completion.

CR1[3] 39 00111 Copy of FPSCR[OX] at the instruction’s completion.

CRn[0]

40
44

48

52

56
60

01000
01100

10000

10100

11000
11100

Less than or floating-point less than (LT, FL).

For integer compare instructions:
rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned 
comparison). 

For floating-point compare instructions: frA < frB.

CRn[1]

41
45

49

53
57

61

01001
01101

10001

10101
11001

11101

Greater than or floating-point greater than (GT, FG).

For integer compare instructions:
rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned 
comparison). 
For floating-point compare instructions: frA > frB.

CRn[2]

42

46

50
54

58

62

01010

01110

10010
10110

11010

11110

Equal or floating-point equal (EQ, FE).

For integer compare instructions: rA = SIMM, UIMM, or rB. 

For floating-point compare instructions: frA = frB.

CRn[3]

43

47
51

55

59
63

01011

01111
10011

10111

11011
11111

Summary overflow or floating-point unordered (SO, FU).
For integer compare instructions, this is a copy of XER[SO] at the 
completion of the instruction. 
For floating-point compare instructions, one or both of frA and frB is a 
NaN.
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_bclri _bclri

Bit Clear Immediate

se_bclri rX,UI5

a ← UI5
b ← a1 || 0 ||  31-a1
result32:63 ← GPR(RX) & b
GPR(RX) ← result32:63

For se_bclri, the bit of GPR(rX) specified by the value of UI5 is cleared and all other bits in 
GPR(rX) remain unaffected.

Special Registers Altered: None

0 5 6 7 11 12 15

0 1 1 0 0 0 0 UI5 RX

VLE User
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_bctrx _bctrx

Branch to Count Register [and Link]

se_bctr (LK = 0)
se_bctrl (LK = 1)

NIA ← CTR32:62 || 0b0
if LK=1 then LR ← CIA + 2

Let the BTEA be calculated as follows:

● For se_bctr[l], let BTEA be bits 32–62 of the contents of the CTR concatenated with 
0b0.

The BTEA is the address of the next instruction to be executed.

If LK = 1, the sum CIA + 2 is placed into the LR.

Special Registers Altered: LR (if LK = 1)

0 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 LK

VLE User
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_bgeni _bgeni

Bit Generate Immediate

se_bgeni rX,UI5

a ← UI5
b ← a0 || 1 ||  31-a0
GPR(RX) ← b

For se_bgeni, a constant value consisting of a single ‘1’ bit surrounded by ‘0’s is generated 
and the value is placed into GPR(rX). The position of the ‘1’ bit is specified by the UI5 field.

Special Registers Altered: None

0 5 6 7 11 12 15

0 1 1 0 0 0 1 UI5 RX

VLE User
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_blrx _blrx

Branch to Link Register [and Link]

se_blr (LK = 0)
se_blrl (LK = 1)

NIA ← LR32:62 || 0b0
if LK=1 then LR ← CIA + 2

Let the BTEA be calculated as follows:

● For se_blr[l], let BTEA be bits 32–62 of the contents of the LR concatenated with 0b0.

The BTEA is the address of the next instruction to be executed.

If LK = 1, the sum CIA + 2 is placed into the LR.

Special Registers Altered: LR (if LK = 1)

0 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 LK

VLE User
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_bmaski _bmaski

Bit Mask Generate Immediate

se_bmaski rX,UI5

a ← UI5
if a = 0 then b ← 321   else    b ← 32-a0 ||  a1
GPR(RX) ← b

For se_bmaski, a constant value consisting of a mask of low-order ’1’ bits that is zero-
extended to 32 bits is generated, and the value is placed into GPR(rX). The number of low-
order  ’1’ bits is specified by the UI5 field. If UI5 is 0b00000, a value of all ’1’s is generated

Special Registers Altered: None

0 5 6 7 11 12 15

0 0 1 0 1 1 0 UI5 RX

VLE User
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brinc brinc

Bit reversed increment

brinc rD,rA,rB

n ← MASKBITS // Imp dependent # of mask bits
mask ← rB64-n:63 // Least sig. n bits of 
register
a ← rA64-n:63
d ← bitreverse(1 + bitreverse(a | (¬ mask)))
rD ← rA0:63-n || (d & mask) 

brinc provides a way for software to access FFT data in a bit-reversed manner. rA contains 
the index into a buffer that contains data on which FFT is to be performed. rB contains a 
mask that allows the index to be updated with bit-reversed addressing. Typically this 
instruction precedes a load with index instruction; for example,

brinc r2, r3, r4
lhax r8, r5, r2

rB contains a bit-mask that is based on the number of points in an FFT. To access a buffer 
containing n byte sized data that is to be accessed with bit-reversed addressing, the mask 
has log2n 1s in the least significant bit positions and 0s in the remaining most significant bit 
positions. If, however, the data size is a multiple of a half word or a word, the mask is 
constructed so that the 1s are shifted left by log2 (size of the data) and 0s are placed in the 
least significant bit positions. Table 203 shows example values of masks for different data 
sizes and number of data. 

          

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 1 1 1 1

Table 203. Data samples and sizes

Number of 
data 

samples

Data size

Byte Half word Word Double word

8 000...00000111 000...00001110 000...000011100 000...0000111000

16 000...00001111 000...00011110 000...000111100 000...0001111000

32 000...00011111 000...00111110 000...001111100 000...0011111000

64 000...00111111 000...01111110 000...011111100 000...0111111000
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_bseti _bseti

Bit Set Immediate

se_bseti rX,UI5

a ← UI5
b ← a0 || 1 ||  31-a0
result32:63 ← GPR(RX) | b
GPR(RX) ← result32:63

For se_bseti, the bit of GPR(rX) specified by the value of UI5 is set, and all other bits in 
GPR(rX) remain unaffected.

Special Registers Altered: None

0 5 6 7 11 12 15

0 1 1 0 0 1 0 UI5 RX

VLE User
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_btsti _btsti

Bit Test Immediate

se_btsti rX,UI5

a ← UI5
b ← a0 || 1 ||  31-a0
c ← GPR(RX) & b
if c = 320 then d ← 0b001 else d ← 0b010
CR0:3 ← d || XERSO

For se_btsti, the bit of GPR(rX) specified by the value of UI5 is tested for equality to ’1’. The 
result of the test is recorded in the CR. EQ is set if the tested bit is clear, LT is cleared, and 
GT is set to the inverse value of EQ.

Special Registers Altered: CR[0–3]

0 5 6 7 11 12 15

0 1 1 0 0 1 1 UI5 RX

VLE User
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cmp cmp

Compare [immediate]

cmp crD,L,rA,rB

cmpi crD,L,rA,SIMM

if L=0 then a ← EXTS(rA32:63)
else        a ← rA
if ‘cmpi’      then b ← EXTS(SIMM)
if ‘cmp’ & L=0 then b ← EXTS(rB32:63)
if ‘cmp’ & L=1 then b ← rB
if a < b then c ← 0b100
if a > b then c ← 0b010
if a = b then c ← 0b001
CR4×crD+32:4×crD+35 ← c || XERSO

If cmp and L=0, the contents of rA[32–63] are compared with the contents of rB[32–63], 
treating the operands as signed integers. 

If cmpi and L=0, the contents of rA[32–63] are compared with the sign-extended value of 
the SIMM field, treating the operands as signed integers. 

The result of the comparison is placed into CR field crD.

Other registers altered: CR field crD

Book E User

0 5 6 8 9 10 11 15 16 20 21 30 31

0 1 1 1 1 1 crD / L rA rB 0 0 0 0 0 0 0 0 0 0 /

0 5 6 8 9 10 11 15 16 31

0 0 1 0 1 1 crD / L rA SIMM
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_cmp cmp

Compare [Immediate]

e_cmp16i rA,SI

e_cmpi crD32,rA,SCI8

a ← GPR(RA)32:63
if ‘e_cmpi’  then b ← SCI8(F,SCL,UI8)
if ‘e_cmp16i’  then b ← EXTS(SI0:4 || SI5:15)
if a < b then c ← 0b100
if a > b then c ← 0b010
if a = b then c ← 0b001
if ‘e_cmpi’     then CR4×CRD32+32:4×CRD32+35 ← c || XERSO // only CR0-CR3
if ‘e_cmp16i’     then CR32:35 ← c || XERSO // only CR0

If e_cmpi, GPR(rA) contents are compared with the value of SCI8, treating operands as 
signed integers. 

If e_cmp16i, GPR(rA) contents are compared with the sign-extended value of the SI field, 
treating operands as signed integers. 

The result of the comparison is placed into CR field crD (crD32). For e_cmpi, only CR0–
CR3 may be specified. For e_cmp16i, only CR0 may be specified.

Special Registers Altered: CR field crD (crD32) (CR0 for e_cmp16i)

se_cmp rX,rY

se_cmpi rX,UI5

a ← GPR(RX)32:63
if ‘se_cmpi’  then b ← 270 || UI5
if ‘se_cmp’   then b ← GPR(RY)32:63
if a < b then c ← 0b100
if a > b then c ← 0b010
if a = b then c ← 0b001
CR0:3 ← c || XERSO

If se_cmp, the contents of GPR(rX) are compared with the contents of GPR(rY), treating 
the operands as signed integers. The result of the comparison is placed into CR field 0.

If se_cmpi, the contents of GPR(rX) are compared with the value of the zero-extended UI5 
field, treating the operands as signed integers. The result of the comparison is placed into 
CR field 0.

Special Registers Altered: CR[0–3]

VLE User

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 SI0:4 RA 1   0 0 1 1 SI5:15

0 5 6 8 9 10 11 15 16 20 21 22 23 24 31

0 0 0 1 1 0 0  0 0 CRD32 RA 1 0 1 0 1 F SCL UI8

0 5 6 7 8 11 12 15

0 0 0 0 1 1 0 0 RY RX

0 5 6 7 11 12 15

0 0 1 0 1 0 1 UI5 RX
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_cmph _cmph

Compare Halfword [Immediate]

e_cmph crD,rA,rB

a ← EXTS(GPR(RA)48:63)
b ← EXTS(GPR(RB)48:63)
if a < b then c ← 0b100
if a > b then c ← 0b010
if a = b then c ← 0b001
CR4×CRD+32:4×CRD+35 ← c || XERSO

For e_cmph, the contents of the low-order 16 bits of GPR(rA) and GPR(rB) are compared, 
treating the operands as signed integers. The result of the comparison is placed into CR 
field CRD.

Special Registers Altered: CR field CRD

se_cmph rX,rY

a ← EXTS(GPR(RX)48:63)
b ← EXTS(GPR(RY)48:63)
if a < b then c ← 0b100
if a > b then c ← 0b010
if a = b then c ← 0b001
CR0:3 ← c || XERSO

For se_cmph, the contents of the low-order 16 bits of GPR(rX) and GPR(rY) are compared, 
treating the operands as signed integers. The result of the comparison is placed into CR 
field 0.

Special Registers Altered: CR[0–3]

e_cmph16i rA,SI

a ← EXTS(GPR(RA)48:63)
b ← EXTS(SI0:4 || SI5:15)
if a < b then c ← 0b100
if a > b then c ← 0b010
if a = b then c ← 0b001
CR32:35 ← c || XERSO // only CR0

The contents of the lower 16-bits of GPR(rA) are sign-extended and compared with the 
sign-extended value of the SI field, treating the operands as signed integers. 

The result of the comparison is placed into CR0.

Special Registers Altered: CR0

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRD / RA RB 0 0 0 0 0 0 1 1 1 0 /

0 5 6 7 8 11 12 15

0 0 0 0 1 1 1 0 RY RX

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 SI0:4 RA 1   0 1 1 0 SI5:15
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_cmphl _cmphl

Compare Halfword Logical [Immediate]

e_cmphl crD,rA,rB

a ← EXTZ(GPR(RA)48:63)
b ← EXTZ(GPR(RB)48:63)
if a < b then c ← 0b100
if a > b then c ← 0b010
if a = b then c ← 0b001
CR4×CRD+32:4×CRD+35 ← c || XERSO

For e_cmphl, the contents of the low-order 16 bits of GPR(rA) and GPR(rB) are compared, 
treating the operands as unsigned integers. The result of the comparison is placed into CR 
field CRD.

Special Registers Altered: CR field CRD

se_cmphl rX,rY

a ← GPR(RX)48:63
b ← GPR(RY)48:63
if a < b then c ← 0b100
if a > b then c ← 0b010
if a = b then c ← 0b001
CR0:3 ← c || XERSO

For se_cmphl, the contents of the low-order 16 bits of GPR(rX) and GPR(rY) are 
compared, treating the operands as unsigned integers. The result of the comparison is 
placed into CR field 0.

Special Registers Altered: CR[0–3]

e_cmphl16i rA,UI

a ← 160 || GPR(RA)48:63)
b ← 160 || UI0:4 || UI5:15
if a < b then c ← 0b100
if a > b then c ← 0b010
if a = b then c ← 0b001
CR32:35 ← c || XERSO // only CR0

The contents of the lower 16-bits of GPR(rA) are zero-extended and compared with the 
zero-extended value of the UI field, treating the operands as unsigned integers. 

The result of the comparison is placed into CR0.

Special Registers Altered: CR0

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRD / RA RB 0 0 0 0 1 0 1 1 1 0 /

0 5 6 7 8 11 12 15

0 0 0 0 1 1 1 1 RY RX

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 UI0:4 RA 1   0 1 1 1 UI5:15
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cmpl cmpl

Compare logical [immediate]

cmpl crD,L,rA,rB

cmpli crD,L,rA,UIMM

if L=0 then a ← 320 || rA32:63
else        a ← rA
if ‘cmpli’      then b ← 480 || UIMM
if ‘cmpl’ & L=0 then b ← 320 || rB32:63
if ‘cmpl’ & L=1 then b ← rB
if a <u b then c ← 0b100
if a >u b then c ← 0b010
if a = b then c ← 0b001
CR4×crD+32:4×crD+35 ← c || XERSO

If cmpl and L=0, the contents of rA[32–63] are compared with the contents of rB[32–63], 
treating the operands as unsigned integers. 

If cmpli and L=0, the contents of rA[32–63] are compared with the zero-extended value of 
the UIMM field, treating the operands as unsigned integers. 

The result of the comparison is placed into CR field crD.

Other registers altered: CR field crD

Book E User

0 5 6 8 9 10 11 15 16 20 21 31

0 1 1 1 1 1 crD / L rA rB 0 0 0 0 1 0 0 0 0 0 /

0 5 6 8 9 10 11 15 16 31

0 0 1 0 1 0 crD / L rA UIMM
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_cmpl _cmpl

Compare Logical [Immediate]

e_cmpl16i rA,UI

e_cmpli crD32,rA,SCI8

a ← GPR(RA)32:63
if ‘e_cmpli’ then b ← SCI8(F,SCL,UI8)
if ‘e_cmpl16i’ then b ← 160 || UI0:4 || UI5:15
if a <u b then c ← 0b100
if a >u b then c ← 0b010
if a = b then c ← 0b001
if ‘e_cmpli’     then CR4×CRD32+32:4×CRD32+35 ← c || XERSO // only CR0-CR3
if ‘e_cmp16i’     then CR32:35 ← c || XERSO // only CR0

If e_cmpi, the contents of bits 32–63 of GPR(rA) are compared with the value of SCI8, 
treating the operands as unsigned integers. 

L must be 0 for 32-bit implementations

If e_cmpl16i, the contents of GPR(rA) are compared with the zero-extended value of the UI 
field, treating the operands as unsigned integers. 

The result of the comparison is placed into CR field CRD (CRD32). For e_cmpli, only CR0–
CR3 may be specified. For e_cmpl16i, only CR0 may be specified.

Special Registers Altered: CR field CRD (CRD32) (CR0 for e_cmpl16i)

se_cmpl rX,rY

se_cmpli rX,OIMM

a ← GPR(RX)32:63
if ‘se_cmpli’  then b ← 270 || OFFSET(OIM5)
if ‘se_cmpl’   then b ← GPR(RY)32:63
if a <u b then c ← 0b100
if a >u b then c ← 0b010
if a = b then c ← 0b001
CR0:3 ← c || XERSO

If se_cmpl, the contents of GPR(rX) are compared with the contents of GPR(rY), treating 
the operands as unsigned integers. The result of the comparison is placed into CR field 0.

VLE User

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 UI0:4 RA 1   0 1 0 1 UI5:15

0 5 6 8 9 10 11 15 16 20 21 22 23 24 31

0 0 0 1 1 0 0  0 1 CRD32 RA 1 0 1 0 1 F SCL UI8

0 5 6 7 8 11 12 15

0 0 0 0 1 1 0 1 RY RX

0 5 6 7 11 12 15

0 0 1 0 0 0 1 OIM5(1)

1. OIMM = OIM5 +1

RX
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If se_cmpli, the contents of GPR(rX) are compared with the value of the zero-extended 
offset value of the OIM5 field (a final value in the range 1–32), treating the operands as 
unsigned integers. The result of the comparison is placed into CR field 0.

Special Registers Altered: CR[0–3]
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cntlzw cntlzw

Count leading zeros (word)

cntlzw rA,rS (Z=0, Rc=0)

cntlzw. rS (Z=0, Rc=1)

if ‘cntlzd’ then n ← 0 else n ← 32
i ← 0
do while n < 64
   if rSn = 1 then leave
   n ← n + 1
   i ← i + 1
rA ← i
if Rc=1 then do
   GT  ← i > 0
   EQ  ← i = 0
   CR0 ← 0b0 || GT || EQ || SO

For cntlzw[.], a count of the number of consecutive zero bits starting at rS[32] is placed into 
rA. This number ranges from 0 to 32, inclusive. If Rc=1, CR field 0 is set to reflect the result.

Other registers altered: CR0 (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 24 25 26 30 31

0 1 1 1 1 1 rS rA /// 0 0 0 0 Z 1 1 0 1 0 Rc
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crand crand

Condition register AND

crand crbD,crbA,crbB

CRcrbD+32 ← CRcrbA+32 & CRcrbB+32

The content of bit crbA+32 of CR is ANDed with the content of bit crbB+32 of CR, and the 
result is placed into bit crbD+32 of CR.

Other registers altered: CR

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 /



RM0004 Instruction set

 390/1176

_crand _crand

Condition Register AND

e_crand crbD,crbA,crbB

CRBT+32 ← CRBA+32 & CRBB+32

The content of bit CRBA+32 of the CR is ANDed with the content of bit CRBB+32 of the CR, 
and the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

Condition Register AND with Complement

e_crandc crbD,crbA,crbB

CRBT+32 ← CRBA+32 & ¬CRBB+32

The content of bit CRBA+32 of the CR is ANDed with the one’s complement of the content 
of bit CRBB+32 of the CR, and the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

CR Equivalent

e_creqv crbD,crbA,crbB

CRBT+32 ← CRBA+32 ≡ CRBB+32

The content of bit CRBA+32 of the CR is XORed with the content of bit CRBB+32 of the CR, 
and the one’s complement of result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 1 0 0 0 0 0 0 0 1 /

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 0 1 0 0 0 0 0 0 1 /

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 1 0 0 1 0 0 0 0 1 /
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crandc crandc

Condition register AND with complement

crandc crbD,crbA,crbB

CRcrbD+32 ← CRcrbA+32 & ¬CRcrbB+32

The content of bit crbA+32 of CR is ANDed with the one’s complement of the content of bit 
crbB+32 of CR, and the result is placed into bit crbD+32 of CR.

Other registers altered: CR

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 /
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creqv creqv

Condition register equivalent

creqv crbD,crbA,crbB

CRcrbD+32 ← CRcrbA+32 ≡ CRcrbB+32

The content of bit crbA + 32 of CR is XORed with the content of bit crbB + 32 of CR, and 
the one’s complement of result is placed into bit crbD+32 of CR.

Other registers altered: CR

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 /



Instruction set RM0004

393/1176  

crnand crnand

Condition register NAND

crnand crbD,crbA,crbB

CRcrbD+32 ← ¬(CRcrbA+32 & CRcrbB+32)

The content of bit crbA+32 of CR is ANDed with the content of bit crbB+32 of CR, and the 
one’s complement of the result is placed into bit crbD+32 of CR.

Other registers altered: CR

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 /
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_crnand _crnand

Condition Register NAND

e_crnand crbD,crbA,crbB

CRBT+32 ← ¬(CRBA+32 & CRBB+32)

The content of bit CRBA+32 of the CR is ANDed with the content of bit CRBB+32 of the CR, 
and the one’s complement of the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 0 1 1 1 0 0 0 0 1 /
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crnor crnor

Condition register NOR

crnor crbD,crbA,crbB

CRcrbD+32 ← ¬(CRcrbA+32 | CRcrbB+32)

The content of bit crbA+32 of CR is ORed with the content of bit crbB+32 of CR, and the 
one’s complement of the result is placed into bit crbD+32 of CR.

Other registers altered: CR

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 /
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_crnor _crnor

Condition Register NOR

e_crnor crbD,crbA,crbB

CRBT+32 ← ¬(CRBA+32 | CRBB+32)

The content of bit CRBA+32 of the CR is ORed with the content of bit CRBB+32 of the CR, 
and the one’s complement of the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 0 0 0 1 0 0 0 0 1 /
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cror cror

Condition register OR

cror crbD,crbA,crbB

CRcrbD+32 ← CRcrbA+32 | CRcrbB+32

The content of bit crbA+32 of CR is ORed with the content of bit crbB+32 of CR, and the 
result is placed into bit crbD+32 of CR.

Other registers altered: CR

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 /
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_cror _cror

Condition Register OR

e_cror crbD,crbA,crbB

CRBT+32 ← CRBA+32 | CRBB+32

The content of bit CRBA+32 of the CR is ORed with the content of bit CRBB+32 of the CR, 
and the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 1 1 1 0 0 0 0 0 1 /
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crorc crorc

Condition register OR with complement

crorc crbD,crbA,crbB

CRcrbD+32 ← CRcrbA+32 | ¬CRcrbB+32

The content of bit crbA+32 of CR is ORed with the one’s complement of the content of bit 
crbB+32 of CR, and the result is placed into bit crbD+32 of CR.

Other registers altered: CR

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 /
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_crorc _crorc

Condition Register OR with Complement

e_crorc crbD,crbA,crbB

CRBT+32 ← CRBA+32 | ¬CRBB+32

The content of bit CRBA+32 of the CR is ORed with the one’s complement of the content of 
bit CRBB+32 of the CR, and the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 1 1 0 1 0 0 0 0 1 /
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crxor crxor

Condition register XOR

crxor crbD,crbA,crbB

CRcrbD+32 ← CRcrbA+32 ⊕ CRcrbB+32

The content of bit crbA+32 of CR is XORed with the content of bit crbB+32 of CR, and the 
result is placed into bit crbD+32 of CR.

Other registers altered: CR

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 /
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_crxor _crxor

Condition Register XOR

e_crxor crbD,crbA,crbB

CRcrbD+32 ← CRBA+32 ⊕ CRBB+32

The content of bit CRBA+32 of the CR is XORed with the content of bit CRBB+32 of the CR, 
and the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 0 1 1 0 0 0 0 0 1 /
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dcba dcba

Data cache block allocate

dcba rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
AllocateDataCacheBlock(EA)

EA calculation: Addressing ModeEA for rA=0EA for rA≠0
320 || rB32:63

320 || (rA+rB)32:63

dcba is a hint that performance would likely improve if the block containing the byte 
addressed by EA is established in the data cache without fetching the block from main 
memory, because the program is likely to soon store into a portion of the block and the 
contents of the rest of the block are not meaningful to the program. If the hint is honored, the 
contents of the block are undefined when the instruction completes. The hint is ignored if the 
block is caching-inhibited.

If the block containing the byte addressed by EA is in memory that is memory-coherence 
required and the block exists in a data cache of any other processors, it is kept coherent in 
those caches.

This instruction is treated as a storeexcept that an interrupt is not taken for a translation or 
protection violation.

This instruction may establish a block in the data cache without verifying that the associated 
real address is valid. This can cause a delayed machine check interrupt.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 /// rA rB 1 0 1 1 1 1 0 1 1 0 /
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dcbf dcbf

Data cache block flush

dcbf rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
FlushDataCacheBlock( EA )

EA calculation: Addressing ModeEA for rA=0EA for rA≠0
320 || rB32:63

320 || (rA+rB)32:63

If the block containing the byte addressed by EA is in memory that is memory-coherence 
required, a block containing the byte addressed by EA is in the data cache of any processor, 
and any locations in the block are considered to be modified there, then those locations are 
written to main memory. Additional locations in the block may also be written to main 
memory. The block is invalidated in the data caches of all processors.

If the block containing the byte addressed by EA is in memory that is not memory-coherence 
required, a block containing the byte addressed by EA is in the data cache of this processor 
and any locations in the block are considered to be modified there, then those locations are 
written to main memory. Additional locations in the block may also be written to main 
memory. The block is invalidated in the data cache of this processor.

On some implementations, HID1[ABE] must be set to allow management of external L2 
caches (for implementations with L2 caches) as well as other L1 caches in the system.

The function of this instruction is independent of whether the block containing the byte 
addressed by EA is in memory that is write-through required or caching-inhibited.

This instruction is treated as a load. See Cache management instructions on page 216.”

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 /// rA rB 0 0 0 1 0 1 0 1 1 0 /
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dcbi dcbi

Data cache block invalidate 

dcbi rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
InvalidateDataCacheBlock( EA )
EA calculation: Addressing ModeEA for rA=0EA for rA≠0

320 || rB32:63
320 || (rA+rB)32:63

If the block containing the byte addressed by EA is in is coherence-required memory and 
any block containing the addressed byte is any processors’ data cache is invalidated in 
those caches. On some implementations, before the block is invalidated, if any locations in 
the block are considered to be modified in any such data cache, those locations are written 
to main memory and additional locations in the block may be written to main memory.

If the block containing the byte addressed by EA is not coherence-required memory and a 
block containing the byte addressed by EA is in the data cache of this processor, then the 
block is invalidated in that data cache. On some implementations, before the block is 
invalidated, any locations in the block considered modified in that data cache are written to 
main memory; additional locations in the block may be written to main memory.

dcbi is treated as a store on implementations that invalidate a block without first writing to 
main memory all locations in the block that are considered to be modified in the data cache, 
except that the invalidation is not ordered by mbar. On other implementations this 
instruction is treated as a load.

Additional information about this instruction is as follows.

● The data cache block size for dcbi is the same as for dcbf.

● If a processor holds a reservation and some other processor executes a dcbi to the 
same reservation granule, whether the reservation is lost is undefined.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 /// rA rB 0 1 1 1 0 1 0 1 1 0 /
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dcblc dcblc

Data cache block lock clear

dcblc CT,rA,rB Form: X
 

if rA = 0 then a ← 640 else a ← GPR(rA)
if Mode32 then EA ← 320 || (a + GPR(rB))32:63
if Mode64 then EA ← a + GPR(rB)
DataCacheBlockClearLock(CT, EA)
EA calculation: EA for rA=0EA for rA≠0

320 || GPR(rB)32:63
320 || (GPR(rA)+GPR(rB))32:63

The data cache specified by CT has the cache line corresponding to EA unlocked allowing 
the line to participate in the normal replacement policy.

Cache lock clear instructions remove locks previously set by cache lock set instructions.

User-level cache instructions on page 180,” lists supported CT values. An implementation 
may use other CT values to enable software to target specific, implementation-dependent 
portions of its cache hierarchy or structure.

The instruction is treated as a load with respect to translation and memory protection and 
can cause DSI and DTLB error interrupts accordingly.

An unable-to-unlock condition is said to occur any of the following conditions exist:

● The target address is marked cache-inhibited, or the storage attributes of the address 
uses a coherency protocol that does not support locking.

● The target cache is disabled or not present.

● The CT field of the instructions contains a value not supported by the implementation.

● The target address is not in the cache or is present in the cache but is not locked.

If an unable-to-unlock condition occurs, no cache operation is performed.

EIS Specifics

Clearing and then setting L1CSR0[CLFR] allows system software to clear all L1 data cache 
locking bits without knowing the addresses of the lines locked.

Cache locking APU User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CT rA rB 0 1 1 0 0 0 0 1 1 0 /
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dcbst dcbst

Data Cache Block Store 

dcbst rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
StoreDataCacheBlock( EA )
EA calculation: Addressing ModeEA for rA=0EA for rA≠0

320 || rB32:63
320 || (rA+rB)32:63

If the block containing the byte addressed by EA is in memory that is memory-coherence 
required and a block containing the byte addressed by EA is in the data cache of any 
processor, and any locations in the block are considered to be modified there, those 
locations are written to main memory. Additional locations in the block may be written to 
main memory. The block ceases to be considered to be modified in that data cache.

If the block containing the byte addressed by EA is in memory that is not memory-coherence 
required and a block containing the byte addressed by EA is in the data cache of this 
processor and any locations in the block are considered to be modified there, those 
locations are written to main memory. Additional locations in the block may be written to 
main memory. The block ceases to be considered to be modified in that cache.

The function of this instruction is independent of whether the block containing the byte 
addressed by EA is in memory that is write-through required or caching-inhibited.

This instruction is treated as a load. 

On some implementations, HID1[ABE] must be set to allow management of external L2 
caches (for implementations with L2 caches) as well as other L1 caches in the system.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 /// rA rB 0 0 0 0 1 1 0 1 1 0 /
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dcbt dcbt

Data cache block touch 

dcbt CT,rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
PrefetchDataCacheBlock( CT, EA )
EA calculation: Addressing ModeEA for rA=0EA for rA≠0

320 || rB32:63
320 || (rA+rB)32:63

User-level cache instructions on page 180,” lists supported CT values. An implementation 
may use other CT values to enable software to target specific, implementation-dependent 
portions of its cache hierarchy or structure.

Implementations should perform no operation when CT specifies a value not supported by 
the implementation.

The hint is ignored if the block is caching-inhibited.

This instruction is treated as a load except that an interrupt is not taken for a translation or 
protection violation.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CT rA rB 0 1 0 0 0 1 0 1 1 0 /
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dcbtls dcbtls

Data cache block touch and lock set 

dcbtls CT,rA,rB Form: X
 

if rA = 0 then a ← 640 else a ← GPR(rA)
if Mode32 then EA ← 320 || (a + GPR(rB))32:63
if Mode64 then EA ← a + GPR(rB)
PrefetchDataCacheBlockLockSet(CT, EA)

EA calculation: EA for rA=0EA for rA≠0
320 || GPR(rB)32:63

320 || (GPR(rA)+GPR(rB))32:63

The data cache specified by CT has the cache line corresponding to EA loaded and locked 
into the cache. If the line already exists in the cache, it is locked without being refetched.

Cache touch and lock set instructions let software lock cache lines into the cache to provide 
lower latency for critical cache accesses and more deterministic behavior. Locked lines do 
not participate in the normal replacement policy when a line must be victimized for 
replacement.

User-level cache instructions on page 180,” lists supported CT values. An implementation 
may use other CT values to enable software to target specific, implementation-dependent 
portions of its cache hierarchy or structure.

The instruction is treated as a load with respect to translation and memory protection and 
can cause DSI and DTLB error interrupts accordingly.

An unable to lock condition is said to occur any of the following conditions exist:

● The target address is marked cache-inhibited, or the storage attributes of the address 
uses a coherency protocol that does not support locking.

● The target cache is disabled or not present.

● The CT field of the instructions contains a value not supported by the implementation.

If an unable to lock condition occurs, no cache operation is performed and LICSR0[DCUL] is 
set appropriately.

Overlocking is said to exist is all available ways for a given cache index are already locked. If 
overlocking occurs for dcbtls and if the lock was targeted for the primary cache (CT = 0), 
the requested line is not locked into the cache. When overlock occurs, L1CSR1[DCLO] is 
set. If L1CSR1[DCLOA] is set, the requested line is locked into the cache and 
implementation dependent line currently locked in the cache is evicted.

The results of overlocking and unable to lock conditions for caches other than the primary 
cache and secondary cache are defined as part of the architecture for the specific cache 
hierarchy designated by CT.

Other registers altered:

● L1CSR0[DCUL] if unable to lock occurs

● L1CSR0[DCLO] (L2CSR[L2CLO]) if lock overflow occurs

Cache locking APU User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CT rA rB 0 0 1 0 1 0 0 1 1 0 /
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dcbtst dcbtst

Data cache block touch for store 

dcbtst CT,rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
PrefetchForstoreDataCacheBlock( CT, EA )
EA calculation: Addressing ModeEA for rA=0EA for rA≠0

320 || rB32:63
320 || (rA+rB)32:63

If CT=0, this instruction is a hint that performance would likely be improved if the block 
containing the byte addressed by EA is fetched into the data cache, because the program 
will probably soon store into the addressed byte.

User-level cache instructions on page 180,” lists supported CT values. An implementation 
may use other CT values to enable software to target specific, implementation-dependent 
portions of its cache hierarchy or structure.

Implementations should perform no operation when CT specifies a value not supported by 
the implementation.

The hint is ignored if the block is caching-inhibited.

This instruction is treated as a load , except that an interrupt is not taken for a translation or 
protection violation.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CT rA rB 0 0 1 1 1 1 0 1 1 0 /
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dcbtstls dcbtstls

Data cache block touch for store and lock set

dcbtstls CT,rA,rB Form: X
 

if rA = 0 then a ← 640 else a ← GPR(rA)
if Mode32 then EA ← 320 || (a + GPR(rB))32:63
if Mode64 then EA ← a + GPR(rB)
PrefetchDataCacheBlockLockSet(CT, EA)
EA calculation: EA for rA=0EA for rA≠0

320 || GPR(rB)32:63
320 || (GPR(rA)+GPR(rB))32:63

The data cache specified by CT has the cache line corresponding to EA loaded and locked 
into the cache. If the line already exists in the cache, it is locked without refetching from 
memory. 

Cache touch and lock set instructions allow software to lock lines into the cache to shorten 
latency for critical cache accesses and more deterministic behavior. Lines locked in the 
cache do not participate in the normal replacement policy when a line must be victimized for 
replacement.

User-level cache instructions on page 180,” lists supported CT values. An implementation 
may use other CT values to enable software to target specific, implementation-dependent 
portions of its cache hierarchy or structure.

Table 114 describes how this instruction is treated with respect to translation and memory 
protection.

For unable-to-lock conditions, described in Unable-to-lock conditions on page 849,” no 
cache operation is performed and LICSR0[DCUL] is set.

Overlocking occurs when all available ways for a given cache index are already locked. If an 
overlocking condition occurs for a dcbtstls instruction and if the lock was targeted for the 
primary cache or secondary cache (CT = 0 or CT = 2), the requested line is not locked into 
the cache. When overlock occurs, L1CSR1[DCLO] (L2CSR[L2CLO] for CT = 2) is set. If 
L1CSR1[DCLOA] is set (or L2CSR[L2CLOA] for CT = 2), the requested line is locked into 
the cache and implementation dependent line currently locked in the cache is evicted. If 
system software wants to precisely determine if an overlock event has occurred in the L1 
data cache, it must perform the following code sequence:

dcbtstls
msync
mfspr (L1CSR0)
(check L1CSR0[DCUL] bit for data cache index unable-to-lock condition)
(check L1CSR0[DCLO] bit for data cache index overlock condition)

Results of overlocking and unable-to-lock conditions for caches other than the primary and 
secondary cache are defined as part of the architecture for the cache hierarchy designated 
by CT.

Other registers altered:

● L1CSR0[DCUL] if unable to lock occurs

● L1CSR0[DCLO] (L2CSR[L2CLO]) if lock overflow occurs

Cache locking APU User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CT rA rB 0 0 1 0 0 0 0 1 1 0 /
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EIS specifics: 

Clearing and then setting L1CSR0[CLFR] allows system software to clear all data cache 
locking bits without knowing the addresses of the lines locked.
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dcbz dcbz

Data cache block set to zero 

dcbz rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
ZeroDataCacheBlock( EA )
EA calculation: Addressing ModeEA for rA=0EA for rA≠0

320 || rB32:63
320 || (rA+rB)32:63

If the block containing the addressed byte is in the data cache, all bytes of the block are 
cleared.

If the block containing the byte addressed by EA is not in the data cache and is in memory 
that is not caching-inhibited, the block is established in the data cache without fetching the 
block from main memory, and all bytes of the block are cleared.

If the block containing the byte addressed by EA is not in the data cache and is in storage 
that is not caching inhibited and cannot be established in the cache, then one of the 
following occurs:

● All bytes of the area of main storage that corresponds to the addressed block are set to 
zero

● An alignment interrupt is taken

If the block containing the byte addressed by EA is in storage that is caching inhibited or 
write through required, one of the following occurs: 

● All bytes of the area of main storage that corresponds to the addressed block are set to 
zero 

● An alignment interrupt is taken. 

If the block containing the byte addressed by EA is in memory-coherence required memory 
and the block exists in any other processors’ data cache, it is kept coherent in those caches.

dcbz may establish a block in the data cache without verifying that the associated real 
address is valid. This can cause a delayed machine check interrupt.

dcbz is treated as a store. 

● On some implementations, HID1[ABE] must be set to allow management of external L2 
caches (for implementations with L2 caches) as well as other L1 caches in the system.

● dcbz may cause a cache-locking exception on some implementations. See the user 
documentation.

Other registers altered: None

Programming note: If the block containing the byte addressed by EA is in memory that is 
caching-inhibited or write-through required, the alignment interrupt handler should clear all 
bytes of the area of main memory that corresponds to the addressed block.

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 /// rA rB 1 1 1 1 1 1 0 1 1 0 /
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divw divw

Divide word

divw rD,rA,rB (OE=0, Rc=0)
divw. rD,rA,rB (OE=0, Rc=1)
divwo rD,rA,rB (OE=1, Rc=0)
divwo. rD,rA,rB (OE=1, Rc=1)

dividend0:31 ← rA32:63
divisor0:31  ← rB32:63
quotient0:31 ← dividend ÷ divisor
if OE=1 then do
   OV ← ( (rA32:63=-231) & (rB32:63=-1) ) | (rB32:63=0)
   SO ← SO | OV
if Rc=1 then do

LT  ← quotient < 0
GT  ← quotient > 0
EQ  ← quotient = 0
CR0 ← LT || GT || EQ || SO

rD32:63 ← quotient
rD0:31  ← undefined

The 32-bit quotient of the contents of rA[32–63] divided by the contents of rB[32–63] is 
placed into rD[32–63]. rD[0–31] are undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as signed integers. The quotient is the 
unique signed integer that satisfies the following:

dividend = (quotient × divisor) + r

Here, 0 ≤ r < |divisor| if the dividend is nonnegative and –|divisor| < r ≤ 0 if it is negative.

If any of the following divisions is attempted, the contents of rD are undefined as are (if 
Rc=1) the contents of the CR0[LT,GT,EQ]. In these cases, if OE=1, OV is set. 

0x8000_0000 ÷ –1
<anything> ÷ 0

Other registers altered:

● CR0 (if Rc=1)
SO OV (if OE=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA rB OE 1 1 1 1 0 1 0 1 1 Rc
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divwu divwu

Divide word unsigned

divwu rD,rA,rB (OE=0, Rc=0)
divwu. rD,rA,rB (OE=0, Rc=1)
divwuo rD,rA,rB (OE=1, Rc=0)
divwuo. rD,rA,rB (OE=1, Rc=1)

dividend0:31 ← rA32:63
divisor0:31 ← rB32:63
quotient0:31 ← dividend ÷ divisor
if OE=1 then do
   OV ← (rB32:63=0)
   SO ← SO | OV
if Rc=1 then do

LT  ← quotient < 0
GT  ← quotient > 0
EQ  ← quotient = 0
CR0 ← LT || GT || EQ || SO

rD32:63 ← quotient
rD0:31  ← undefined

The 32-bit quotient of the contents of rA[32–63] divided by the contents of rB[32–63] is 
placed into rD[32–63]. rD[0–31] are undefined. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as unsigned integers, except that if Rc=1 the 
first three bits of CR field 0 are set by signed comparison of the result to zero. The quotient 
is the unique unsigned integer that satisfies the following: 

dividend = (quotient × divisor) + r

Here, 0 ≤ r < divisor.

If an attempt is made to perform the following division, the contents of rD are undefined as 
are (if Rc=1) the contents of the LT, GT, and EQ bits of CR0. In this case, if OE=1 OV is set.

<anything> ÷ 0

Other registers altered:

● CR0 (if Rc=1)

● SO OV (if OE=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA rB OE 1 1 1 0 0 1 0 1 1 Rc
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efdabs efdabs

Floating-point double-precision absolute value

efdabs  rD,rA

rD0:63 ← 0b0 || rA1:63 

The sign bit of rA is set to 0 and the result is placed into rD.

Exceptions:

Exception detection for embedded floating-point absolute value operations is 
implementation dependent. An implementation may choose to not detect exceptions and 
carry out the sign bit operation. If the implementation does not detect exceptions, or if 
exception detection is disabled, the computation can be carried out in one of two ways, as a 
sign bit operation ignoring the rest of the contents of the source register, or by examining the 
input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: If rA 
is Infinity, Denorm, or NaN, SPEFSCR[FINV] is set, and FG and FX are cleared. If floating-
point invalid input exceptions are enabled, an interrupt is taken and the destination register 
is not updated.

Scalar DPFP APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0
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efdadd efdadd

Floating-point double-precision add

efdadd rD,rA,rB

rD0:63 ← rA0:63 +dp rB0:63

rA is added to rB and the result is stored in rD. If rA is NaN or infinity, the result is either 
pmax (asign==0), or nmax (asign==1). Otherwise, If rB is NaN or infinity, the result is either 
pmax (bsign==0), or nmax (bsign==1). Otherwise, if an overflow occurs, pmax or nmax (as 
appropriate) is stored in rD. If an underflow occurs, +0 (for rounding modes RN, RZ, RP) or -
0 (for rounding mode RM) is stored in rD.

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCR[FINV] is set. If 
SPEFSCR[FINVE] is set, an interrupt is taken, and the destination register is not updated. 
Otherwise, if an overflow occurs, SPEFSCR[FOVF] is set, or if an underflow occurs, 
SPEFSCR[FUNF] is set. If either underflow or overflow exceptions are enabled and the 
corresponding bit is set, an interrupt is taken. If any of these interrupts are taken, the 
destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are 
disabled, and no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point 
inexact exception is enabled, an interrupt is taken using the floating-point round interrupt 
vector. In this case, the destination register is updated with the truncated result, the FG and 
FX bits are properly updated to allow rounding to be performed in the interrupt handler.

FG and FX are cleared if an overflow, underflow, or invalid operation/input error is signaled, 
regardless of enabled exceptions.

Scalar DPFP APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 0
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efdcfs efdcfs

Floating-point double-precision convert from single-precision 

efdcfs rD,rB

FP32format f;
FP64format result;
f ← rB32:63

if (fexp = 0) & (ffrac = 0)) then
result ← fsign || 630 // signed zero value

else if Isa32NaNorInfinity(f) | Isa32Denorm(f) then
SPEFSCRFINV ← 1
result ← fsign || 0b11111111110 || 521 // max value

else if Isa32Denorm(f) then
SPEFSCRFINV ← 1
result ← fsign || 630

else
resultsign ← fsign
resultexp ← fexp - 127 + 1023
resultfrac ← ffrac || 290

rD0:63 = result

The single-precision floating-point value in the low element of rB is converted to a double-
precision floating-point value and the result is placed into rD. The rounding mode is not used 
since this conversion is always exact.

Exceptions:

If the low element of rB is Infinity, Denorm, or NaN, SPEFSCR[FINV] is set. If 
SPEFSCR[FINVE] is set, an interrupt is taken, and the destination register is not updated.

FG and FX are always cleared.

Note: Architecture Note: This instruction is optional if neither the embedded scalar single-
precision floating-point APU or the embedded vector single-precision floating-point APU are 
implemented.
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efdcfsf efdcfsf

Convert floating-point double-precision from signed fraction 

efdcfsf rD,rB

rD0:63 ← CnvtI32ToFP64(rB32:63, SIGN, F)

The signed fractional low element in rB is converted to a double-precision floating-point 
value using the current rounding mode and the result is placed into rD.

Exceptions:

None.
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 420/1176

efdcfsi efdcfsi 

Convert floating-point double-precision from signed integer 

efdcfsi rD,rB

rD0:63 ← CnvtSI32ToFP64(rB32:63, SIGN, I)

The signed integer low element in rB is converted to a double-precision floating-point value 
using the current rounding mode and the result is placed into rD.

Exceptions:

None.
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efdcfsid efdcfsid 

Convert floating-point double-precision from signed integer doubleword

efdcfsid rD,rB

rD0:63 ← CnvtI64ToFP64(rB0:63, SIGN)

The signed integer doubleword in rB is converted to a double-precision floating-point value 
using the current rounding mode and the result is placed into rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is 
not exact. If the floating-point inexact exception is enabled, an interrupt is taken using the 
floating-point round interrupt vector. In this case, the destination register is updated with the 
truncated result, the FG and FX bits are properly updated to allow rounding to be performed 
in the interrupt handler.

This instruction may only be implemented for 64-bit implementations.
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 422/1176

efdcfuf efdcfuf

Convert floating-point double-precision from unsigned fraction

efdcfuf rD,rB

rD0:63 ← CnvtI32ToFP64(rB32:63, UNSIGN, F)

The unsigned fractional low element in rB is converted to a double-precision floating-point 
value using the current rounding mode and the result is placed into rD.

Exceptions:

None.
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423/1176  

efdcfui efdcfui 

Convert floating-point double-precision from unsigned integer 

efdcfui rD,rB

rD0:63 ← CnvtSI32ToFP64(rB32:63, UNSIGN, I)

The unsigned integer low element in rB is converted to a double-precision floating-point 
value using the current rounding mode and the result is placed into rD.

Exceptions:

None.
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efdcfuid efdcfuid 

Convert floating-point double-precision from unsigned integer doubleword

efdcfuid rD,rB

rD0:63 ← CnvtI64ToFP64(rB0:63, UNSIGN)

The unsigned integer doubleword in rB is converted to a double-precision floating-point 
value using the current rounding mode and the result is placed into rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is 
not exact. If the floating-point inexact exception is enabled, an interrupt is taken using the 
floating-point round interrupt vector. In this case, the destination register is updated with the 
truncated result, the FG and FX bits are properly updated to allow rounding to be performed 
in the interrupt handler.

This instruction may only be implemented for 64-bit implementations.
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efdcmpeq efdcmpeq

Floating-point double-precision compare equal

efdcmpeq crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is equal to rB, the bit in the crfD is set, otherwise it is 
cleared. Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCR[FINV] is set, and the 
FGH FXH, FG and FX bits are cleared. If floating-point invalid input exceptions are enabled, 
an interrupt is taken and the condition register is not updated. Otherwise, the comparison 
proceeds after treating NaNs, Infinities, and Denorms as normalized numbers, using their 
values of ‘e’ and ‘f’ directly.
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efdcmpgt efdcmpgt

Floating-point double-precision compare greater than

efdcmpgt crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is greater than rB, the bit in the crfD is set, otherwise it is 
cleared. Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCR[FINV] is set, and the 
FGH FXH, FG and FX bits are cleared. If floating-point invalid input exceptions are enabled, 
an interrupt is taken and the condition register is not updated. Otherwise, the comparison 
proceeds after treating NaNs, Infinities, and Denorms as normalized numbers, using their 
values of ‘e’ and ‘f’ directly.

Scalar DPFP APU User

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 rA rB 0 1 0 1 1 1 0 1 1 0 0



Instruction set RM0004

427/1176  

efdcmplt efdcmplt

Floating-point double-precision compare less than

efdcmplt crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is less than rB, the bit in the crfD is set, otherwise it is 
cleared. Comparison ignores the sign of 0 (+0 = -0).

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCR[FINV] is set, and the 
FGH FXH, FG and FX bits are cleared. If floating-point invalid input exceptions are enabled, 
an interrupt is taken and the condition register is not updated. Otherwise, the comparison 
proceeds after treating NaNs, Infinities, and Denorms as normalized numbers, using their 
values of ‘e’ and ‘f’ directly.
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efdctsf efdctsf

Convert floating-point double-precision to signed fraction 

efdctsf rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, SIGN, ROUND, F)

The double-precision floating-point value in rB is converted to a signed fraction using the 
current rounding mode and the result is saturated if it cannot be represented in a 32-bit 
fraction. NaNs are converted as though they were zero. 

Exceptions:

If the contents of rB are Infinity, Denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] 
is set, and the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, 
and the destination register is not updated.

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is 
not exact. If the floating-point inexact exception is enabled, an interrupt is taken using the 
floating-point round interrupt vector. In this case, the destination register is updated with the 
truncated result, the FG and FX bits are properly updated to allow rounding to be performed 
in the interrupt handler.
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efdctsi efdctsi 

Convert floating-point double-precision to signed integer 

efdctsi rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, SIGN, ROUND, I)

The double-precision floating-point value in rB is converted to a signed integer using the 
current rounding mode and the result is saturated if it cannot be represented in a 32-bit 
integer. NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are Infinity, Denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] 
is set, and the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, 
the destination register is not updated, and no other status bits are set. 

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is 
not exact. If the floating-point inexact exception is enabled, an interrupt is taken using the 
floating-point round interrupt vector. In this case, the destination register is updated with the 
truncated result, the FG and FX bits are properly updated to allow rounding to be performed 
in the interrupt handler.
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efdctsidz efdctsidz 

Convert floating-point double-precision to signed integer doubleword with round 
toward zero

efdctsidz rD,rB

rD0:63 ← CnvtFP64ToI64Sat(rB0:63, SIGN, TRUNC)

The double-precision floating-point value in rB is converted to a signed integer doubleword 
using the rounding mode Round toward Zero and the result is saturated if it cannot be 
represented in a 64-bit integer. NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are Infinity, Denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] 
is set, and the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, 
the destination register is not updated, and no other status bits are set. 

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is 
not exact. If the floating-point inexact exception is enabled, an interrupt is taken using the 
floating-point round interrupt vector. In this case, the destination register is updated with the 
truncated result, the FG and FX bits are properly updated to allow rounding to be performed 
in the interrupt handler.

This instruction may only be implemented for 64-bit implementations.
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efdctsiz efdctsiz 

Convert floating-point double-precision to signed integer with round toward zero

efdctsiz rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, SIGN, TRUNC, I

The double-precision floating-point value in rB is converted to a signed integer using the 
rounding mode Round toward Zero and the result is saturated if it cannot be represented in 
a 32-bit integer. NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are Infinity, Denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] 
is set, and the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, 
the destination register is not updated, and no other status bits are set. 

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is 
not exact. If the floating-point inexact exception is enabled, an interrupt is taken using the 
floating-point round interrupt vector. In this case, the destination register is updated with the 
truncated result, the FG and FX bits are properly updated to allow rounding to be performed 
in the interrupt handler.
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efdctuf efdctuf

Convert floating-point double-precision to unsigned fraction 

efdctuf rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, UNSIGN, ROUND, F)

The double-precision floating-point value in rB is converted to an unsigned fraction using 
the current rounding mode and the result is saturated if it cannot be represented in a 32-bit 
unsigned fraction. NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are Infinity, Denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] 
is set, and the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, 
and the destination register is not updated.

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is 
not exact. If the floating-point inexact exception is enabled, an interrupt is taken using the 
Floating-Point Round Interrupt vector. In this case, the destination register is updated with 
the truncated result, the FG and FX bits are properly updated to allow rounding to be 
performed in the interrupt handler.
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efdctui efdctui 

Convert floating-point double-precision to unsigned integer 

efdctui rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, UNSIGN, ROUND, I

The double-precision floating-point value in rB is converted to an unsigned integer using the 
current rounding mode and the result is saturated if it cannot be represented in a 32-bit 
integer. NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are Infinity, Denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] 
is set, and the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, 
and the destination register is not updated. 

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is 
not exact. If the floating-point inexact exception is enabled, an interrupt is taken using the 
floating-point round interrupt vector. In this case, the destination register is updated with the 
truncated result, the FG and FX bits are properly updated to allow rounding to be performed 
in the interrupt handler.
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efdctuidz efdctuidz 

Convert floating-point double-precision to unsigned integer doubleword with round 
toward zero

efdctuidz rD,rB

rD0:63 ← CnvtFP64ToI64Sat(rB0:63, UNSIGN, TRUNC)

The double-precision floating-point value in rB is converted to an unsigned integer 
doubleword using the rounding mode Round toward Zero and the result is saturated if it 
cannot be represented in a 64-bit integer. NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are Infinity, Denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] 
is set, and the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, 
and the destination register is not updated. 

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is 
not exact. If the floating-point inexact exception is enabled, an interrupt is taken using the 
floating-point round interrupt vector. In this case, the destination register is updated with the 
truncated result, the FG and FX bits are properly updated to allow rounding to be performed 
in the interrupt handler.

This instruction may only be implemented for 64-bit implementations.
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efdctuiz efdctuiz 

Convert floating-point double-precision to unsigned integer with round toward zero

efdctuiz rD,rB

rD32:63 ← CnvtFP64ToI32Sat(rB0:63, UNSIGN, TRUNC, I)

The double-precision floating-point value in rB is converted to an unsigned integer using the 
rounding mode Round toward Zero and the result is saturated if it cannot be represented in 
a 32-bit integer. NaNs are converted as though they were zero.

Exceptions:

If the contents of rB are Infinity, Denorm, or NaN, or if an overflow occurs, SPEFSCR[FINV] 
is set, and the FG, and FX bits are cleared. If SPEFSCR[FINVE] is set, an interrupt is taken, 
and the destination register is not updated. 

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversion is 
not exact. If the floating-point inexact exception is enabled, an interrupt is taken using the 
floating-point round interrupt vector. In this case, the destination register is updated with the 
truncated result, the FG and FX bits are properly updated to allow rounding to be performed 
in the interrupt handler.
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efddiv efddiv

Floating-point double-precision divide

efddiv rD,rA,rB

rD0:63 ← rA0:63 ÷dp rB0:63

rA is divided by rB and the result is stored in rD. If rB is a NaN or infinity, the result is a 
properly signed zero. Otherwise, if rB is a zero (or a denormalized number optionally 
transformed to zero by the implementation), or if rA is either NaN or infinity, the result is 
either pmax (asign==bsign), or nmax (asign!=bsign). Otherwise, if an overflow occurs, pmax 
or nmax (as appropriate) is stored in rD. If an underflow occurs, +0 or -0 (as appropriate) is 
stored in rD.

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, or if both rA and rB are +/-0, 
SPEFSCR[FINV] is set. If SPEFSCR[FINVE] is set, an interrupt is taken, and the destination 
register is not updated. Otherwise, if the content of rB is +/-0 and the content of rA is a finite 
normalized non-zero number, SPEFSCR[FDBZ] is set. If floating-point divide by zero 
Exceptions are enabled, an interrupt is then taken. Otherwise, if an overflow occurs, 
SPEFSCR[FOVF] is set, or if an underflow occurs, SPEFSCR[FUNF] is set. If either 
underflow or overflow exceptions are enabled and the corresponding bit is set, an interrupt is 
taken. If any of these interrupts are taken, the destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are 
disabled, and no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point 
inexact exception is enabled, an interrupt is taken using the floating-point round interrupt 
vector. In this case, the destination register is updated with the truncated result, the FG and 
FX bits are properly updated to allow rounding to be performed in the interrupt handler.

FG and FX are cleared if an overflow, underflow, divide by zero, or invalid operation/input 
error is signaled, regardless of enabled exceptions.
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efdmul efdmul

Floating-point double-precision multiply

efdmul rD,rA,rB

rD0:63 ← rA0:63 ×dp rB0:63

rA is multiplied by rB and the result is stored in rD. If rA or rB are zero (or a denormalized 
number optionally transformed to zero by the implementation), the result is a properly 
signed zero. Otherwise, if rA or rB are either NaN or infinity, the result is either pmax 
(asign==bsign), or nmax (asign!=bsign). Otherwise, if an overflow occurs, pmax or nmax (as 
appropriate) is stored in rD. If an underflow occurs, +0 or -0 (as appropriate) is stored in rD. 

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCR[FINV] is set. If 
SPEFSCR[FINVE] is set, an interrupt is taken, and the destination register is not updated. 
Otherwise, if an overflow occurs, SPEFSCR[FOVF] is set, or if an underflow occurs, 
SPEFSCR[FUNF] is set. If either underflow or overflow exceptions are enabled and the 
corresponding bit is set, an interrupt is taken. If any of these interrupts are taken, the 
destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are 
disabled, and no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point 
inexact exception is enabled, an interrupt is taken using the floating-point round interrupt 
vector. In this case, the destination register is updated with the truncated result, the FG and 
FX bits are properly updated to allow rounding to be performed in the interrupt handler.

FG and FX are cleared if an overflow, underflow, or invalid operation/input error is signaled, 
regardless of enabled exceptions.
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efdnabs efdnabs

Floating-point double-precision negative absolute value

efdnabs rD,rA

rD0:63 ← 0b1 || rA1:63

The sign bit of rA is set to 1 and the result is placed into rD.

Exceptions:

Exception detection for embedded floating-point absolute value operations is 
implementation dependent. An implementation may choose to not detect exceptions and 
carry out the sign bit operation. If the implementation does not detect exceptions, or if 
exception detection is disabled, the computation can be carried out in one of two ways, as a 
sign bit operation ignoring the rest of the contents of the source register, or by examining the 
input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: If rA 
is Infinity, Denorm, or NaN, SPEFSCR[FINV] is set, and FG and FX are cleared. If floating-
point invalid input exceptions are enabled, an interrupt is taken and the destination register 
is not updated.
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efdneg efdneg

Floating-point double-precision negate

efdneg rD,rA

rD0:63 ← ¬rA0 || rA1:63

The sign bit of rA is complemented and the result is placed into rD.

Exceptions:

Exception detection for embedded floating-point absolute value operations is 
implementation dependent. An implementation may choose to not detect exceptions and 
carry out the sign bit operation. If the implementation does not detect exceptions, or if 
exception detection is disabled, the computation can be carried out in one of two ways, as a 
sign bit operation ignoring the rest of the contents of the source register, or by examining the 
input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: If rA 
is Infinity, Denorm, or NaN, SPEFSCR[FINV] is set, and FG and FX are cleared. If floating-
point invalid input exceptions are enabled, an interrupt is taken and the destination register 
is not updated.
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efdsub efdsub

Floating-point double-precision subtract

efdsub rD,rA,rB

rD0:63 ← rA0:63 -dp rB0:63

rB is subtracted from rA and the result is stored in rD. If rA is NaN or infinity, the result is 
either pmax (asign==0), or nmax (asign==1). Otherwise, If rB is NaN or infinity, the result is 
either nmax (bsign==0), or pmax (bsign==1). Otherwise, if an overflow occurs, pmax or nmax 
(as appropriate) is stored in rD. If an underflow occurs, +0 (for rounding modes RN, RZ, RP) 
or -0 (for rounding mode RM) is stored in rD. 

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, SPEFSCR[FINV] is set. If 
SPEFSCR[FINVE] is set, an interrupt is taken, and the destination register is not updated. 
Otherwise, if an overflow occurs, SPEFSCR[FOVF] is set, or if an underflow occurs, 
SPEFSCR[FUNF] is set. If either underflow or overflow exceptions are enabled and the 
corresponding bit is set, an interrupt is taken. If any of these interrupts are taken, the 
destination register is not updated.

If the result of this instruction is inexact or if an overflow occurs but overflow exceptions are 
disabled, and no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point 
inexact exception is enabled, an interrupt is taken using the floating-point round interrupt 
vector. In this case, the destination register is updated with the truncated result, the FG and 
FX bits are properly updated to allow rounding to be performed in the interrupt handler.

FG and FX are cleared if an overflow, underflow, or invalid operation/input error is signaled, 
regardless of enabled exceptions.
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efdtsteq efdtsteq

Floating-point double-precision test equal

efdtsteq crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is equal to rB, the bit in the crfD is set, otherwise it is 
cleared. Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after treating 
NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ 
directly.

No exceptions are generated during the execution of efdtsteq If strict IEEE 754 compliance 
is required, the program should use efdcmpeq.

Implementation note: In an implementation, the execution of efdtsteq is likely to be faster 
than the execution of efdcmpeq.
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efdtstgt efdtstgt

Floating-point double-precision test greater than

efdtstgt crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is greater than rB, the bit in the crfD is set, otherwise it is 
cleared. Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after treating 
NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ 
directly.

No exceptions are generated during the execution of efdtstgt. If strict IEEE 754 compliance 
is required, the program should use efdcmpgt.

Note: Implementation note: In an implementation, the execution of efdtstgt is likely to be faster 
than the execution of efdcmpgt.
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Instruction set RM0004

443/1176  

efdtstlt efdtstlt

Floating-point double-precision test less than

efdtstlt crfD,rA,rB

al ← rA0:63
bl ← rB0:63
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

rA is compared against rB. If rA is less than rB, the bit in the crfD is set, otherwise it is 
cleared. Comparison ignores the sign of 0 (+0 = -0). The comparison proceeds after treating 
NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and ‘f’ 
directly. 

No exceptions are generated during the execution of efdtstlt. If strict IEEE 754 compliance 
is required, the program should use efdcmplt.

Implementation note: In an implementation, the execution of efdtstlt is likely to be faster 
than the execution of efdcmplt.
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RM0004 Instruction set

 444/1176

efsabs efsabs

Floating-Point Absolute Value

efsabs rD,rA

rD32:63 ← 0b0 || rA33:63

The sign bit of rA is cleared and the result is placed into rD.

It is implementation dependent if invalid values for rA (NaN, Denorm, Infinity) are detected 
and exceptions are taken. 
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Instruction set RM0004

445/1176  

efsadd efsadd

Floating-Point Add

efsadd rD,rA,rB

rD32:63 ← rA32:63 +sp rB32:63

The single-precision floating-point value of rA is added to rB and the result is stored in rD.

If an overflow condition is detected or the contents of rA or rB are NaN or Infinity, the result 
is an appropriately signed maximum floating-point value.

If an underflow condition is detected, the result is an appropriately signed floating-point 0.

The following status bits are set in the SPEFSCR:

● FINV if the contents of rA or rB are +infinity, –infinity, denorm, or NaN

● FOFV if an overflow occurs

● FUNF if an underflow occurs

● FINXS, FG, FX if the result is inexact or overflow occurred and overflow exceptions are 
disabled
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 446/1176

efscfsf efscfsf

Convert Floating-Point from Signed Fraction 

efscfsf rD,rB

rD32:63 ← CnvtI32ToFP32Sat(rB32:63, SIGN, LOWER, F)

The signed fractional value in rB is converted to the nearest single-precision floating-point 
value using the current rounding mode and placed into rD.

The following status bits are set in the SPEFSCR:

● FINXS, FG, FX if the result is inexact
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447/1176  

efscfsi efscfsi 

Convert Floating-Point from Signed Integer 

efscfsi rD,rB

rD32:63 ← CnvtSI32ToFP32Sat(rB32:63, SIGN, LOWER, I)

The signed integer value in rB is converted to the nearest single-precision floating-point 
value using the current rounding mode and placed into rD.

The following status bits are set in the SPEFSCR:

● FINXS, FG, FX if the result is inexact
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 448/1176

efscfuf efscfuf

Convert Floating-Point from Unsigned Fraction 

efscfuf rD,rB

rD32:63 ← CnvtI32ToFP32Sat(rB32:63, UNSIGN, LOWER, F)

The unsigned fractional value in rB is converted to the nearest single-precision floating-point 
value using the current rounding mode and placed into rD.

The following status bits are set in the SPEFSCR:

● FINXS, FG, FX if the result is inexact
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Instruction set RM0004

449/1176  

efscfui efscfui 

Convert Floating-Point from Unsigned Integer 

efscfui rD,rB

rD32:63 ← CnvtI32ToFP32Sat(rB32:63, UNSIGN, LOWER, I)

The unsigned integer value in rB is converted to the nearest single-precision floating-point 
value using the current rounding mode and placed into rD.

The following status bits are set in the SPEFSCR:

● FINXS, FG, FX if the result is inexact
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RM0004 Instruction set

 450/1176

efscmpeq efscmpeq

Floating-Point Compare Equal

efscmpeq  crD,rA,rB

al ← rA32:63
bl ← rB32:63
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

The value in rA is compared against rB. If rA equals rB, the crD bit is set, otherwise it is 
cleared. Comparison ignores the sign of 0 (+0 = –0).

If either operand contains a NaN, infinity, or a denorm and floating-point invalid exceptions 
are enabled in the SPEFSCR, the exception is taken. If the exception is not enabled, the 
comparison treats NaNs, infinities, and denorms as normalized numbers.

The following status bits are set in SPEFSCR:

● FINV if the contents of rA or rB are +infinity, –infinity, denorm or NaN
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Instruction set RM0004

451/1176  

efscmpgt efscmpgt

Floating-Point Compare Greater Than

efscmpgt crD,rA,rB

al ← rA32:63
bl ← rB32:63
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

The value in rA is compared against rB. If rA is greater than rB, the bit in the crD is set, 
otherwise it is cleared. Comparison ignores the sign of 0 (+0 = –0).

If either operand contains a NaN, infinity, or a denorm and floating-point invalid exceptions 
are enabled in the SPEFSCR, the exception is taken. If the exception is not enabled, the 
comparison treats NaNs, infinities, and denorms as normalized numbers.

The following status bits are set in SPEFSCR:

● FINV if the contents of rA or rB are +infinity, –infinity, denorm or NaN
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RM0004 Instruction set

 452/1176

efscmplt efscmplt

Floating-Point Compare Less Than

efscmplt crD,rA,rB

al ← rA32:63
bl ← rB32:63
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

The value in rA is compared against rB. If rA is less than rB, the bit in the crD is set, 
otherwise it is cleared. Comparison ignores the sign of 0 (+0 = –0).

If either operand contains a NaN, infinity, or a denorm and floating-point invalid exceptions 
are enabled in the SPEFSCR, the exception is taken. If the exception is not enabled, the 
comparison treats NaNs, infinities, and denorms as normalized numbers.

The following status bits are set in SPEFSCR:

● FINV if the contents of rA or rB are +infinity, –infinity, denorm or NaN
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Instruction set RM0004

453/1176  

efsctsf efsctsf

Convert Floating-Point to Signed Fraction 

efsctsf rD,rB

rD32:63 ← CnvtFP32ToISat(rB32:63, SIGN, LOWER, ROUND, F)

The single-precision floating-point value in rB is converted to a signed fraction using the 
current rounding mode. The result saturates if it cannot be represented in a 32-bit fraction. 
NaNs are converted to 0.

The following status bits are set in the SPEFSCR:

● FINV if the contents of rB are +infinity., –infinity, denorm, or NaN, or rB cannot be 
represented in the target format

● FINXS, FG, FX if the result is inexact
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RM0004 Instruction set

 454/1176

efsctsi efsctsi 

Convert Floating-Point to Signed Integer 

efsctsi rD,rB

rD32:63 ← CnvtFP32ToISat(rB32:63, SIGN, LOWER, ROUND, I)

The single-precision floating-point value in rB is converted to a signed integer using the 
current rounding mode. The result saturates if it cannot be represented in a 32-bit integer. 
NaNs are converted to 0.

The following status bits are set in the SPEFSCR:

● FINV if the contents of rB are +infinity, –infinity, denorm, or NaN, or rB cannot be 
represented in the target format

● FINXS, FG, FX if the result is inexact
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Instruction set RM0004

455/1176  

efsctsiz efsctsiz 

Convert Floating-Point to Signed Integer with Round toward Zero

efsctsiz rD,rB

rD32–63 ← CnvtFP32ToISat(rB32:63, SIGN, LOWER, TRUNC, I)

The single-precision floating-point value in rB is converted to a signed integer using the 
rounding mode Round towards Zero. The result saturates if it cannot be represented in a 32-
bit integer. NaNs are converted to 0. 
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 456/1176

efsctuf efsctuf

Convert Floating-Point to Unsigned Fraction 

efsctuf rD,rB

rD32:63 ← CnvtFP32ToISat(rB32:63, UNSIGN, LOWER, ROUND, F)

The single-precision floating-point value in rB is converted to an unsigned fraction using the 
current rounding mode. The result saturates if it cannot be represented in a 32-bit unsigned 
fraction. NaNs are converted to 0.

The following status bits are set in the SPEFSCR:

● FINV if the contents of rB are +infinity, –infinity, denorm, or NaN, or rB cannot be 
represented in the target format

● FINXS, FG, FX if the result is inexact
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Instruction set RM0004

457/1176  

efsctui efsctui 

Convert Floating-Point to Unsigned Integer 

efsctui rD,rB

rD32:63 ← CnvtFP32ToISat(rB32:63, UNSIGN, LOWER, ROUND, I)

The single-precision floating-point value in rB is converted to an unsigned integer using the 
current rounding mode. The result saturates if it cannot be represented in a 32-bit unsigned 
integer. NaNs are converted to 0.

The following status bits are set in the SPEFSCR:

● FINV if the contents of rB are +infinity, –infinity, denorm, or NaN, or rB cannot be 
represented in the target format

● FINXS, FG, FX if the result is inexact
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 458/1176

efsctuiz efsctuiz 

Convert Floating-Point to Unsigned Integer with Round toward Zero

efsctuiz rD,rB

rD32:63 ← CnvtFP32ToISat(rB32:63, UNSIGN, LOWER, TRUNC, I)

The single-precision floating-point value in rB is converted to an unsigned integer using the 
rounding mode Round toward Zero. The result saturates if it cannot be represented in a 32-
bit unsigned integer. NaNs are converted to 0.

The following status bits are set in the SPEFSCR:

● FINV if the contents of rB are +infinity, –infinity, denorm, or NaN, or rB cannot be 
represented in the target format

● FINXS, FG, FX if the result is inexact
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Instruction set RM0004

459/1176  

efsdiv efsdiv

Floating-Point Divide

efsdiv rD,rA,rB

rD32:63 ← rA32:63 ÷sp rB32:63

The single-precision floating-point value in rA is divided by rB and the result is stored in rD.

If an overflow is detected, or rB is a denorm (or 0 value), or rA is a NaN or Infinity and rB is 
a normalized number, the result is an appropriately signed maximum floating-point value.

If an underflow is detected or rB is a NaN or Infinity, the result is an appropriately signed 
floating-point 0.

The following status bits are set in the SPEFSCR:

● FINV if the contents of rA or rB are +infinity, –infinity, denorm, or NaN

● FOFV if an overflow occurs

● FUNV if an underflow occurs

● FDBZS, FDBZ if a divide by zero occurs

● FINXS, FG, FX if the result is inexact or overflow occurred and overflow exceptions are 
disabled
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 460/1176

efsmul efsmul

Floating-Point Multiply

efsmul rD,rA,rB

rD32:63 ← rA32:63 ×sp rB32:63

The single-precision floating-point value in rA is multiplied by rB and the result is stored in 
rD.

If an overflow is detected the result is an appropriately signed maximum floating-point value.

If one of rA or rB is a NaN or an Infinity and the other is not a denorm or zero, the result is an 
appropriately signed maximum floating-point value.

If an underflow is detected, or rA or rB is a denorm, the result is an appropriately signed 
floating-point 0.

The following status bits are set in the SPEFSCR:

● FINV if the contents of rA or rB are +infinity, –infinity, denorm, or NaN

● FOFV if an overflow occurs

● FUNV if an underflow occurs

● FINXS, FG, FX if the result is inexact or overflow occurred and overflow exceptions are 
disabled
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Instruction set RM0004

461/1176  

efsnabs efsnabs

Floating-Point Negative Absolute Value

efsnabs rD,rA

rD32:63 ← 0b1 || rA33:63

The sign bit of rA is set and the result is stored in rD. It is implementation dependent if 
invalid values for rA (NaN, Denorm, Infinity) are detected and exceptions are taken.
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 462/1176

efsneg efsneg

Floating-Point Negate

efsneg rD,rA

rD32:63 ← ¬rA32 || rA33:63

The sign bit of rA is complemented and the result is stored in rD. It is implementation 
dependent if invalid values for rA (NaN, Denorm, Infinity) are detected and exceptions are 
taken.
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Instruction set RM0004

463/1176  

efssub efssub

Floating-Point Subtract

efssub  rD,rA,rB

rD32:63 ← rA32:63 -sp rB32:63

The single-precision floating-point value in rB is subtracted from that in rA and the result is 
stored in rD.

If an overflow condition is detected or the contents of rA or rB are NaN or Infinity, the result 
is an appropriately signed maximum floating-point value.

If an underflow condition is detected, the result is an appropriately signed floating-point 0.

The following status bits are set in the SPEFSCR:

● FINV if the contents of rA or rB are +infinity, –infinity, denorm, or NaN

● FOFV if an overflow occurs

● FUNF if an underflow occurs

● FINXS, FG, FX if the result is inexact or overflow occurred and overflow exceptions are 
disabled
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 464/1176

efststeq efststeq

Floating-Point Test Equal

efststeq crD,rA,rB

al ← rA32:63
bl ← rB32:63
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

The value in rA is compared against rB. If rA equals rB, the bit in crD is set, otherwise it is 
cleared. Comparison ignores the sign of 0 (+0 = –0). The comparison treats NaNs, infinities, 
and denorms as normalized numbers.

No exceptions are taken during execution of efststeq. If strict IEEE 754 compliance is 
required, the program should use efscmpeq.
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Instruction set RM0004

465/1176  

efststgt efststgt

Floating-Point Test Greater Than

efststgt crD,rA,rB

al ← rA32:63
bl ← rB32:63
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

If rA is greater than rB, the bit in crD is set, otherwise it is cleared. Comparison ignores the 
sign of 0 (+0 = –0). The comparison treats NaNs, infinities, and denorms as normalized 
numbers.

No exceptions are taken during the execution of efststgt. If strict IEEE 754 compliance is 
required, the program should use efscmpgt.
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 466/1176

efststlt efststlt

Floating-Point Test Less Than

efststlt crD,rA,rB

al ← rA32:63
bl ← rB32:63
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← undefined || cl || undefined || undefined

If rA is less than rB, the bit in the crD is set, otherwise it is cleared. Comparison ignores the 
sign of 0 (+0 = –0). The comparison treats NaNs, infinities, and denorms as normalized 
numbers.

No exceptions are taken during the execution of efststlt. If strict IEEE 754 compliance is 
required, the program should use efscmplt.
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467/1176  

eqv eqv

Equivalent

eqv rA,rS,rB (Rc=0)
eqv. rA,rS,rB (Rc=1)

result0:63 ← rS ≡ rB
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

rA ← result

The contents of rS are XORed with the contents of rB and the one’s complement of the 
result is placed into rA.

Other registers altered:

● CR0 (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 0 1 0 0 0 1 1 1 0 0 Rc



RM0004 Instruction set

 468/1176

evabs evabs

Vector absolute value

evabs rD,rA

rD0:31 ← ABS(rA0:31)
rD32:63 ← ABS(rA32:63)

The absolute value of each element of rA is placed in the corresponding elements of rD. An 
absolute value of 0x8000_0000 (most negative number) returns 0x8000_0000. No overflow 
is detected.

Figure 24. Vector absolute value (evabs)
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Instruction set RM0004

469/1176  

evaddiw evaddiw

Vector add immediate word

evaddiw rD,rB,UIMM

rD0:31 ← rB0:31 + EXTZ(UIMM ) // Modulo sum
rD32:63 ← rB32:63 + EXTZ(UIMM) // Modulo sum

UIMM is zero-extended and added to both the high and low elements of rB and the results 
are placed in rD. Note that the same value is added to both elements of the register. UIMM 
is 5 bits.

Figure 25. Vector add immediate word (evaddiw)
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 470/1176

evaddsmiaaw evaddsmiaaw

Vector add signed, modulo, integer to accumulator word

evaddsmiaaw rD,rA

rD0:31 ← ACC0:31 + rA0:31
rD32:63 ← ACC32:63 + rA32:63

ACC0:63 ← rD0:63

Each word element in rA is added to the corresponding element in the accumulator and the 
results are placed in rD and into the accumulator.

Other registers altered: ACC

Figure 26. Vector add signed, modulo, integer to accumulator word (evaddsmiaaw)
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471/1176  

evaddssiaaw evaddssiaaw

Vector add signed, saturate, integer to accumulator word

evaddssiaaw rD,rA

// high
temp0:63 ← EXTS(ACC0:31) + EXTS(rA0:31)
ovh ← temp31 ⊕ temp32
rD0:31 ← SATURATE(ovh, temp31, 0x80000000, 0x7fffffff, temp32:63)

// low
temp0:63 ← EXTS(ACC32:63) + EXTS(rA32:63)
ovl ← temp31 ⊕ temp32
rD32:63 ← SATURATE(ovl, temp31, 0x80000000, 0x7fffffff, temp32:63)

ACC0:63 ← rD0:63

SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

Each signed integer word element in rA is sign-extended and added to the corresponding 
sign-extended element in the accumulator, saturating if overflow or underflow occurs, and 
the results are placed in rD and the accumulator. Any overflow or underflow is recorded in 
the SPEFSCR overflow and summary overflow bits.

Other registers altered: SPEFSCR ACC

Figure 27. Vector add signed, saturate, integer to accumulator word (evaddssiaaw)
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 472/1176

evaddumiaaw evaddumiaaw

Vector add unsigned, modulo, integer to accumulator word

evaddumiaaw rD,rA

rD0:31 ← ACC0:31 + rA0:31
rD32:63 ← ACC32:63 + rA32:63

ACC0:63 ← rD0:63

Each unsigned integer word element in rA is added to the corresponding element in the 
accumulator and the results are placed in rD and the accumulator.

Other registers altered: ACC

Figure 28. Vector add unsigned, modulo, integer to accumulator word 
(evaddumiaaw)
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473/1176  

evaddusiaaw evaddusiaaw

Vector add unsigned, saturate, integer to accumulator word

evaddusiaaw rD,rA

// high
temp0:63 ← EXTZ(ACC0:31) + EXTZ(rA0:31)
ovh ← temp31
rD0:31 ← SATURATE(ovh, temp31, 0xffffffff, 0xffffffff, temp32:63)

// low
temp0:63 ← EXTZ(ACC32:63) + EXTZ(rA32:63)
ovl ← temp31
rD32:63 ← SATURATE(ovl, temp31, 0xffffffff, 0xffffffff, temp32:63)

ACC0:63 ← rD0:63

SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

Each unsigned integer word element in rA is zero-extended and added to the corresponding 
zero-extended element in the accumulator, saturating if overflow occurs, and the results are 
placed in rD and the accumulator. Any overflow is recorded in the SPEFSCR overflow and 
summary overflow bits.

Other registers altered: SPEFSCR ACC

Figure 29. Vector add unsigned, saturate, integer to accumulator word 
(evaddusiaaw)
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evaddw  evaddw

Vector add word

evaddw rD,rA,rB

rD0:31 ← rA0:31 + rB0:31 // Modulo sum
rD32:63 ← rA32:63 + rB32:63 // Modulo sum

The corresponding elements of rA and rB are added and the results are placed in rD. The 
sum is a modulo sum.

Figure 30. Vector add word (evaddw)
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evand evand

Vector AND

evand rD,rA,rB

rD0:31 ← rA0:31 & rB0:31 // Bitwise AND
rD32:63 ← rA32:63 & rB32:63 // Bitwise AND

The corresponding elements of rA and rB are ANDed bitwise and the results are placed in 
the corresponding element of rD.

Figure 31. Vector AND (evand)
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evandc evandc

Vector AND with complement

evandc rD,rA,rB

rD0:31 ← rA0:31 & (¬rB0:31) // Bitwise ANDC
rD32:63 ← rA32:63 & (¬rB32:63) // Bitwise ANDC

The word elements of rA and are ANDed bitwise with the complement of the corresponding 
elements of rB. The results are placed in the corresponding element of rD.

Figure 32. Vector AND with complement (evandc) 
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evcmpeq evcmpeq

Vector compare equal
evcmpeq crD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah = bh) then ch ← 1
else ch ← 0
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

The most significant bit in crD is set if the high-order element of rA is equal to the high-order 
element of rB; it is cleared otherwise. The next bit in crD is set if the low-order element of rA 
is equal to the low-order element of rB and cleared otherwise. The last two bits of crD are 
set to the OR and AND of the result of the compare of the high and low elements. 

Figure 33. Vector Compare Equal (evcmpeq)
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evcmpgts evcmpgts

Vector compare greater than signed

evcmpgts crD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah > bh) then ch ← 1
else ch ← 0
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

The most significant bit in crD is set if the high-order element of rA is greater than the high-
order element of rB; it is cleared otherwise. The next bit in crD is set if the low-order element 
of rA is greater than the low-order element of rB and cleared otherwise. The last two bits of 
crD are set to the OR and AND of the result of the compare of the high and low elements.

Figure 34. Vector compare greater than signed (evcmpgts)
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evcmpgtu evcmpgtu

Vector compare greater than unsigned

evcmpgtu crD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah >U bh) then ch ← 1
else ch ← 0
if (al >U bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

The most significant bit in crD is set if the high-order element of rA is greater than the high-
order element of rB; it is cleared otherwise. The next bit in crD is set if the low-order element 
of rA is greater than the low-order element of rB and cleared otherwise. The last two bits of 
crD are set to the OR and AND of the result of the compare of the high and low elements.

Figure 35. Vector compare greater than unsigned (evcmpgtu)
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evcmplts evcmplts

Vector compare less than signed

evcmplts crD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah < bh) then ch ← 1
else ch ← 0
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

The most significant bit in crD is set if the high-order element of rA is less than the high-
order element of rB; it is cleared otherwise. The next bit in crD is set if the low-order element 
of rA is less than the low-order element of rB and cleared otherwise. The last two bits of crD 
are set to the OR and AND of the result of the compare of the high and low elements.

Figure 36. Vector compare less than signed (evcmplts)
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evcmpltu evcmpltu

Vector compare less than unsigned

evcmpltu crD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah <U bh) then ch ← 1
else ch ← 0
if (al <U bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

The most significant bit in crD is set if the high-order element of rA is less than the high-
order element of rB; it is cleared otherwise. The next bit in crD is set if the low-order element 
of rA is less than the low-order element of rB and cleared otherwise. The last two bits of crD 
are set to the OR and AND of the result of the compare of the high and low elements.

Figure 37. Vector compare less than unsigned (evcmpltu)
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evcntlsw evcntlsw

Vector count leading signed bits word 

evcntlsw rD,rA

The leading sign bits in each element of rA are counted, and the respective count is placed 
into each element of rD.

evcntlzw is used for unsigned operands; evcntlsw is used for signed operands.

Figure 38. Vector count leading signed bits word (evcntlsw)
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evcntlzw evcntlzw

Vector count leading zeros word 

evcntlzw rD,rA

The leading zero bits in each element of rA are counted, and the respective count is placed 
into each element of rD.

Figure 39. Vector count leading zeros word (evcntlzw)
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evdivws evdivws

Vector divide word signed

evdivws rD,rA,rB

dividendh ← rA0:31
dividendl ← rA32:63
divisorh ← rB0:31
divisorl ← rB32:63
rD0:31 ← dividendh ÷  divisorh
rD32:63 ← dividendl ÷  divisorl
ovh ← 0
ovl ← 0
if ((dividendh < 0) & (divisorh = 0)) then

rD0:31 ← 0x80000000
ovh ← 1

else if ((dividendh >= 0) & (divisorh = 0)) then
rD0:31 ← 0x7FFFFFFF
ovh ← 1

else if ((dividendh = 0x80000000) & (divisorh = 0xFFFF_FFFF)) then
rD0:31 ← 0x7FFFFFFF
ovh ← 1

if ((dividendl < 0) & (divisorl = 0)) then
rD32:63 ← 0x80000000
ovl ← 1

else if ((dividendl >= 0) & (divisorl = 0)) then
rD32:63 ← 0x7FFFFFFF
ovl ← 1

else if ((dividendl = 0x80000000) & (divisorl = 0xFFFF_FFFF)) then
rD32:63 ← 0x7FFFFFFF
ovl ← 1

SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The two dividends are the two elements of the contents of rA. The two divisors are the two 
elements of the contents of rB. The resulting two 32-bit quotients on each element are 
placed into rD. The remainders are not supplied. The operands and quotients are 
interpreted as signed integers. If overflow, underflow, or divide by zero occurs, the overflow 
and summary overflow SPEFSCR bits are set. Note that any overflow indication is always 
set as a side effect of this instruction. No form is defined that disables the setting of the 
overflow bits. In case of overflow, a saturated value is delivered into the destination register.

SPE APU User

0 5 6 10 11 15 16 20 21 31
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Figure 40. Vector divide word signed (evdivws)
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evdivwu evdivwu

Vector divide word unsigned

evdivwu rD,rA,rB

dividendh ← rA0:31
dividendl ← rA32:63
divisorh ← rB0:31
divisorl ← rB32:63
rD0:31 ← dividendh ÷  divisorh
rD32:63 ← dividendl ÷  divisorl
ovh ← 0
ovl ← 0
if (divisorh = 0) then

rD0:31 = 0xFFFFFFFF
ovh ← 1

if (divisorl = 0) then
rD32:63 ← 0xFFFFFFFF
ovl ← 1

SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The two dividends are the two elements of the contents of rA. The two divisors are the two 
elements of the contents of rB. Two 32-bit quotients are formed as a result of the division on 
each of the high and low elements and the quotients are placed into rD. Remainders are not 
supplied. Operands and quotients are interpreted as unsigned integers. If a divide by zero 
occurs, the overflow and summary overflow SPEFSCR bits are set. Note that any overflow 
indication is always set as a side effect of this instruction. No form is defined that disables 
the setting of the overflow bits. In case of overflow, a saturated value is delivered into the 
destination register.

Figure 41. Vector divide word unsigned (evdivwu)

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 0 1 1 0 0 0 1 1 1

0 31 32 63

rA (dividends)

rB (divisors)

rA/rB rA/rB

rD



Instruction set RM0004

487/1176  

eveqv eveqv

Vector equivalent

eveqv rD,rA,rB

rD0:31 ← rA0:31 ≡ rB0:31 // Bitwise XNOR
rD32:63 ← rA32:63 ≡ rB32:63 // Bitwise XNOR

The corresponding elements of rA & rB are XNORed bitwise, & the results are placed in rD.

Figure 42. Vector equivalent (eveqv)
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evextsb evextsb

Vector extend sign byte 

evextsb rD,rA

rD0:31 ← EXTS(rA24:31)
rD32:63 ← EXTS(rA56:63)

The signs of the byte in each of the elements in rA are extended, and the results are placed 
in rD.

Figure 43. Vector extend sign byte (evextsb)
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evextsh evextsh

Vector extend sign half word

evextsh rD,rA

rD0:31 ← EXTS(rA16:31)
rD32:63 ← EXTS(rA48:63)

The signs of the half words in each of the elements in rA are extended, and the results are 
placed in rD.

Figure 44. Vector extend sign half word (evextsh)
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evfsabs evfsabs

Vector floating-point single-precision absolute value

evfsabs rD,rA

rD0:31 ← 0b0 || rA1:31
rD32:63 ← 0b0 || rA33:63

The sign bit of each element in rA is set to 0 and the results are placed into rD.

Exceptions:

Exception detection for embedded floating-point absolute value operations is 
implementation dependent. An implementation may choose to not detect exceptions and 
carry out the computation. If the implementation does not detect exceptions, or if exception 
detection is disabled, the computation can be carried out in one of two ways, as a sign bit 
operation ignoring the rest of the contents of the source register, or by examining the input 
and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: if 
the contents of either element of rA are Infinity, Denorm, or NaN, SPEFSCR[FINV,FINVH] 
are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If floating-
point invalid input exceptions are enabled, an interrupt is taken and the destination register 
is not updated. 
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evfsadd evfsadd

Vector floating-point single-precision add

evfsadd rD,rA,rB

rD0:31 ← rA0:31 +sp rB0:31
rD32:63 ← rA32:63 +sp rB32:63

Each single-precision floating-point element of rA is added to the corresponding element of 
rB and the results are stored in rD. If an element of rA is NaN or infinity, the corresponding 
result is either pmax (asign==0), or nmax (asign==1). Otherwise, if an element of rB is NaN 
or infinity, the corresponding result is either pmax (bsign==0), or nmax (bsign==1). 
Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in the 
corresponding element of rD. If an underflow occurs, +0 (for rounding modes RN, RZ, RP) 
or –0 (for rounding mode RM) is stored in the corresponding element of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are 
cleared appropriately. If SPEFSCR[FINVE] is set, an interrupt is taken and the destination 
register is not updated. Otherwise, if an overflow occurs, SPEFSCR[FOVF,FOVFH] are set 
appropriately, or if an underflow occurs, SPEFSCR[FUNF,FUNFH] are set appropriately. If 
either underflow or overflow exceptions are enabled and a corresponding status bit is set, an 
interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are 
disabled, and no other interrupt is taken, or underflows but underflow exceptions are 
disabled, and no other interrupt is taken, SPEFSCR[FINXS,FINXSH] is set. If the floating-
point inexact exception is enabled, an interrupt is taken using the floating-point round 
interrupt vector. In this case, the destination register is updated with the truncated result(s). 
The FG and FX bits are properly updated to allow rounding to be performed in the interrupt 
handler. 

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an 
invalid operation/input error is signaled for the low (high) element (regardless of FINVE).
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evfscfsf evfscfsf

Vector convert floating-point single-precision from signed fraction 
evfscfsf rD,rB

rD0:31 ← CnvtI32ToFP32Sat(rB0:31, SIGN, UPPER, F)

rD32:63 ← CnvtI32ToFP32Sat(rB32:63, SIGN, LOWER, F)

Each signed fractional element of rB is converted to a single-precision floating-point value 
using the current rounding mode and the results are placed into the corresponding elements 
of rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversions 
are not exact. If the floating-point inexact exception is enabled, an interrupt is taken using 
the floating-point round interrupt vector. In this case, the destination register is updated with 
the truncated result(s). The FGH, FXH, FG and FX bits are properly updated to allow 
rounding to be performed in the interrupt handler.
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evfscfsi evfscfsi 

Vector convert floating-point single-precision from signed integer 

evfscfsi rD,rB

rD0:31 ← CnvtSI32ToFP32Sat(rB0:31, SIGN, UPPER, I)
rD32:63 ← CnvtSI32ToFP32Sat(rB32:63, SIGN, LOWER, I)

Each signed integer element of rB is converted to the nearest single-precision floating-point 
value using the current rounding mode and the results are placed into the corresponding 
element of rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversions 
are not exact. If the floating-point inexact exception is enabled, an interrupt is taken using 
the floating-point round interrupt vector. In this case, the destination register is updated with 
the truncated result(s). The FGH, FXH, FG and FX bits are properly updated to allow 
rounding to be performed in the interrupt handler.
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evfscfuf evfscfuf

Vector convert floating-point single-precision from unsigned fraction 

evfscfuf rD,rB

rD0:31 ← CnvtI32ToFP32Sat(rB0:31, UNSIGN, UPPER, F)

rD32:63 ← CnvtI32ToFP32Sat(rB32:63, UNSIGN, LOWER, F)

Each unsigned fractional element of rB is converted to a single-precision floating-point value 
using the current rounding mode and the results are placed into the corresponding elements 
of rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversions 
are not exact. If the floating-point inexact exception is enabled, an interrupt is taken using 
the floating-point round interrupt vector. In this case, the destination register is updated with 
the truncated result(s). The FGH, FXH, FG and FX bits are properly updated to allow 
rounding to be performed in the interrupt handler.
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evfscfui evfscfui 

Vector convert floating-point single-precision from unsigned integer 

evfscfui rD,rB

rD0:31 ← CnvtI32ToFP32Sat(rB031, UNSIGN, UPPER, I)

rD32:63 ← CnvtI32ToFP32Sat(rB32:63, UNSIGN, LOWER, I)

Each unsigned integer element of rB is converted to the nearest single-precision floating-
point value using the current rounding mode and the results are placed into the 
corresponding elements of rD.

Exceptions:

This instruction can signal an inexact status and set SPEFSCR[FINXS] if the conversions 
are not exact. If the floating-point inexact exception is enabled, an interrupt is taken using 
the floating-point round interrupt vector. In this case, the destination register is updated with 
the truncated result(s). The FGH, FXH, FG and FX bits are properly updated to allow 
rounding to be performed in the interrupt handler.
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evfscmpeq evfscmpeq

Vector floating-point single-precision compare equal

evfscmpeq  crfD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah = bh) then ch ← 1
else ch ← 0
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA equals rB, 
the crfD bit is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = –0).

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are 
cleared appropriately. If floating-point invalid input exceptions are enabled, an interrupt is 
taken, and the condition register is not updated. Otherwise, the comparison proceeds after 
treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ and 
‘f’ directly.
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evfscmpgt evfscmpgt

Vector floating-point single-precision compare greater than

evfscmpgt crfD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah > bh) then ch ← 1
else ch ← 0
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA is greater 
than rB, the bit in the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 
(+0 = –0).

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are 
cleared appropriately. If floating-point invalid input exceptions are enabled then an interrupt 
is taken, and the condition register is not updated. Otherwise, the comparison proceeds 
after treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ 
and ‘f’ directly.
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evfscmplt evfscmplt

Vector floating-point single-precision compare less than

evfscmplt crfD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah < bh) then ch ← 1
else ch ← 0
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA is less than 
rB, the bit in the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = –
0).

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are 
cleared appropriately. If floating-point invalid input exceptions are enabled then an interrupt 
is taken, and the condition register is not updated. Otherwise, the comparison proceeds 
after treating NaNs, Infinities, and Denorms as normalized numbers, using their values of ‘e’ 
and ‘f’ directly.

Vector SPFP APU User

0 5 6 8 9 10 11 15 16 20 21 31

0 0 0 1 0 0 crfD 0 0 rA rB 0 1 0 1 0 0 0 1 1 0 1



Instruction set RM0004

499/1176  

evfsctsf evfsctsf

Vector convert floating-point single-precision to signed fraction 

evfsctsf rD,rB

rD0:31 ← CnvtFP32ToISat(rB0:31, SIGN, UPPER, ROUND, F)
rD32:63 ← CnvtFP32ToISat(rB32:63, SIGN, LOWER, ROUND, F)

Each single-precision floating-point element in rB is converted to a signed fraction using the 
current rounding mode and the result is saturated if it cannot be represented in a 32-bit 
signed fraction. NaNs are converted as though they were zero.

Exceptions:

If either element of rB is Infinity, Denorm, or NaN, or if an overflow occurs, 
SPEFSCR[FINV,FINVH] are set appropriately and SPEFSCR[FGH,FXH,FG,FX] are cleared 
appropriately. If SPEFSCR[FINVE] is set, an interrupt is taken, the destination register is not 
updated, and no other status bits are set. 

If either result element of this instruction is inexact and no other interrupt is taken, 
SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an interrupt is 
taken using the floating-point round interrupt vector. In this case, the destination register is 
updated with the truncated result. The FGH, FXH, FG and FX bits are properly updated to 
allow rounding to be performed in the interrupt handler. 

Vector SPFP APU User
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0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 0 0 1 0 1 1 1



RM0004 Instruction set

 500/1176

evfsctsi evfsctsi 

Vector convert floating-point single-precision to signed integer 

evfsctsi rD,rB

rD0:31 ← CnvtFP32ToISat(rB0:31, SIGN, UPPER, ROUND, I)

rD32:63 ← CnvtFP32ToISat(rB32:63, SIGN, LOWER, ROUND, I)

Each single-precision floating-point element in rB is converted to a signed integer using the 
current rounding mode and the result is saturated if it cannot be represented in a 32-bit 
integer. NaNs are converted as though they were zero.

Exceptions:

If the contents of either element of rB are Infinity, Denorm, or NaN, or if an overflow occurs 
on conversion, SPEFSCR[FINV,FINVH] are set appropriately, and 
SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If SPEFSCR[FINVE] is set, an 
interrupt is taken, the destination register is not updated, and no other status bits are set. 

If either result element of this instruction is inexact and no other interrupt is taken, 
SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an interrupt is 
taken using the floating-point round interrupt vector. In this case, the destination register is 
updated with the truncated result. The FGH, FXH, FG and FX bits are properly updated to 
allow rounding to be performed in the interrupt handler.

Vector SPFP APU User
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Instruction set RM0004

501/1176  

evfsctsiz evfsctsiz 

Vector convert floating-point single-precision to signed integer 
with round toward zero

evfsctsiz rD,rB

rD0:31 ← CnvtFP32ToISat(rB0:31, SIGN, UPPER, TRUNC, I)
rD32:63 ← CnvtFP32ToISat(rB32:63, SIGN, LOWER, TRUNC, I)

Each single-precision floating-point element in rB is converted to a signed integer using the 
rounding mode Round toward Zero and the result is saturated if it cannot be represented in 
a 32-bit integer. NaNs are converted as though they were zero.

Exceptions:

If either element of rB is Infinity, Denorm, or NaN, or if an overflow occurs, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are 
cleared appropriately. If SPEFSCR[FINVE] is set, an interrupt is taken, the destination 
register is not updated, and no other status bits are set. 

If either result element of this instruction is inexact and no other interrupt is taken, 
SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an interrupt is 
taken using the floating-point round interrupt vector. In this case, the destination register is 
updated with the truncated result. The FGH, FXH, FG and FX bits are properly updated to 
allow rounding to be performed in the interrupt handler.

Vector SPFP APU User
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RM0004 Instruction set

 502/1176

evfsctuf evfsctuf

Vector convert floating-point single-precision to unsigned fraction 

evfsctuf rD,rB

rD0:31 ← CnvtFP32ToISat(rB0:31, UNSIGN, UPPER, ROUND, F)
rD32:63 ← CnvtFP32ToISat(rB32:63, UNSIGN, LOWER, ROUND, F)

Each single-precision floating-point element in rB is converted to an unsigned fraction using 
the current rounding mode and the result is saturated if it cannot be represented in a 32-bit 
fraction. NaNs are converted as though they were zero.

Exceptions:

If either element of rB is Infinity, Denorm, or NaN, or if an overflow occurs, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are 
cleared appropriately. If SPEFSCR[FINVE] is set, an interrupt is taken, the destination 
register is not updated, and no other status bits are set. 

If either result element of this instruction is inexact and no other interrupt is taken, 
SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an interrupt is 
taken using the floating-point round interrupt vector. In this case, the destination register is 
updated with the truncated result. The FGH, FXH, FG and FX bits are properly updated to 
allow rounding to be performed in the interrupt handler.
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Instruction set RM0004

503/1176  

evfsctui evfsctui 

Vector convert floating-point single-precision to unsigned integer 

evfsctui rD,rB

rD0:31 ← CnvtFP32ToISat(rB0:31, UNSIGN, UPPER, ROUND, I)
rD32:63 ← CnvtFP32ToISat(rB32:63, UNSIGN, LOWER, ROUND, I)

Each single-precision floating-point element in rB is converted to an unsigned integer using 
the current rounding mode and the result is saturated if it cannot be represented in a 32-bit 
integer. NaNs are converted as though they were zero.

Exceptions:

If either element of rB is Infinity, Denorm, or NaN, or if an overflow occurs, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are 
cleared appropriately. If SPEFSCR[FINVE] is set, an interrupt is taken, the destination 
register is not updated, and no other status bits are set. 

If either result element of this instruction is inexact and no other interrupt is taken, 
SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an interrupt is 
taken using the floating-point round interrupt vector. In this case, the destination register is 
updated with the truncated result. The FGH, FXH, FG and FX bits are properly updated to 
allow rounding to be performed in the interrupt handler.
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RM0004 Instruction set

 504/1176

evfsctuiz evfsctuiz 

Vector convert floating-point single-precision to unsigned integer with round toward 
zero

evfsctuiz rD,rB

rD0:31 ← CnvtFP32ToISat(rB0:31, UNSIGN, UPPER, TRUNC, I)
rD32:63 ← CnvtFP32ToISat(rB32:63, UNSIGN, LOWER, TRUNC, I)

Each single-precision floating-point element in rB is converted to an unsigned integer using 
the rounding mode Round toward Zero and the result is saturated if it cannot be represented 
in a 32-bit integer. NaNs are converted as though they were zero.

Exceptions:

If either element of rB is Infinity, Denorm, or NaN, or if an overflow occurs, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are 
cleared appropriately. If SPEFSCR[FINVE] is set, an interrupt is taken, the destination 
register is not updated, and no other status bits are set. 

If either result element of this instruction is inexact and no other interrupt is taken, 
SPEFSCR[FINXS] is set. If the floating-point inexact exception is enabled, an interrupt is 
taken using the floating-point round interrupt vector. In this case, the destination register is 
updated with the truncated result. The FGH, FXH, FG and FX bits are properly updated to 
allow rounding to be performed in the interrupt handler.
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Instruction set RM0004

505/1176  

evfsdiv evfsdiv

Vector floating-point single-precision divide

evfsdiv rD,rA,rB

rD0:31 ← rA0:31 ÷sp rB0:31
rD32:63 ← rA32:63 ÷sp rB32:63

Each single-precision floating-point element of rA is divided by the corresponding element 
of rB and the result is stored in rD. If an element of rB is a NaN or infinity, the corresponding 
result is a properly signed zero. Otherwise, if an element of rB is a zero (or a denormalized 
number optionally transformed to zero by the implementation), or if an element of rA is 
either NaN or infinity, the corresponding result is either pmax (asign==bsign), or nmax 
(asign!=bsign). Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in 
the corresponding element of rD. If an underflow occurs, +0 or –0 (as appropriate) is stored 
in the corresponding element of rD. 

Exceptions:

If the contents of rA or rB are Infinity, Denorm, or NaN, or if both rA and rB are ±0, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are 
cleared appropriately. If SPEFSCR[FINVE] is set, an interrupt is taken and the destination 
register is not updated. Otherwise, if the content of rB is ±0 and the content of rA is a finite 
normalized non-zero number, SPEFSCR[FDBZ,FDBZH] are set appropriately. If floating-
point divide-by-zero exceptions are enabled, an interrupt is then taken. Otherwise, if an 
overflow occurs, SPEFSCR[FOVF,FOVFH] are set appropriately, or if an underflow occurs, 
SPEFSCR[FUNF,FUNFH] are set appropriately. If either underflow or overflow exceptions 
are enabled and a corresponding bit is set, an interrupt is taken. If any of these interrupts 
are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are 
disabled, and no other interrupt is taken, or underflows but underflow exceptions are 
disabled, and no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point 
inexact exception is enabled, an interrupt is taken using the floating-point round interrupt 
vector. In this case, the destination register is updated with the truncated result(s). The FG 
and FX bits are properly updated to allow rounding to be performed in the interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an 
invalid operation/input error is signaled for the low (high) element (regardless of FINVE).
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RM0004 Instruction set

 506/1176

evfsmul evfsmul

Vector floating-point single-precision multiply

evfsmul rD,rA,rB

rD0:31 ← rA0:31 ×sp rB0:31
rD32:63 ← rA32:63 ×sp rB32:63

Each single-precision floating-point element of rA is multiplied with the corresponding 
element of rB and the result is stored in rD. If an element of rA or rB are either zero (or a 
denormalized number optionally transformed to zero by the implementation), the 
corresponding result is a properly signed zero. Otherwise, if an element of rA or rB are 
either NaN or infinity, the corresponding result is either pmax (asign==bsign), or nmax 
(asign!=bsign). Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in 
the corresponding element of rD. If an underflow occurs, +0 or –0 (as appropriate) is stored 
in the corresponding element of rD.

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are 
cleared appropriately. If SPEFSCR[FINVE] is set, an interrupt is taken and the destination 
register is not updated. Otherwise, if an overflow occurs, SPEFSCR[FOVF,FOVFH] are set 
appropriately, or if an underflow occurs, SPEFSCR[FUNF,FUNFH] are set appropriately. If 
either underflow or overflow exceptions are enabled and a corresponding status bit is set, an 
interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are 
disabled, and no other interrupt is taken, or underflows but underflow exceptions are 
disabled, and no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point 
inexact exception is enabled, an interrupt is taken using the floating-point round interrupt 
vector. In this case, the destination register is updated with the truncated result(s). The FG 
and FX bits are properly updated to allow rounding to be performed in the interrupt handler.

FG and FX (FGH and FXH) are cleared if an overflow or underflow exception is taken, or if 
an invalid operation/input error is signaled for the low (high) element (regardless of FINVE).
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Instruction set RM0004

507/1176  

evfsnabs evfsnabs

Vector floating-point single-precision negative absolute value

evfsnabs rD,rA

rD0:31 ← 0b1 || rA1:31
rD32:63 ← 0b1 || rA33:63

The sign bit of each element in rA is set to 1 and the results are placed into rD.

Exceptions:

Exception detection for embedded floating-point absolute value operations is 
implementation dependent. An implementation may choose to not detect exceptions and 
carry out the sign bit operation. If the implementation does not detect exceptions, or if 
exception detection is disabled, the computation can be carried out in one of two ways, as a 
sign bit operation ignoring the rest of the contents of the source register, or by examining the 
input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: if 
the contents of either element of rA are Infinity, Denorm, or NaN, SPEFSCR[FINV,FINVH] 
are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If floating-
point invalid input exceptions are enabled then an interrupt is taken, and the destination 
register is not updated. 
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RM0004 Instruction set

 508/1176

evfsneg evfsneg

Vector floating-point single-precision negate

evfsneg rD,rA

rD0:31 ← ¬rA0 || rA1:31
rD32:63 ← ¬rA32 || rA33:63

The sign bit of each element in rA is complemented and the results are placed into rD.

Exceptions:

Exception detection for embedded floating-point absolute value operations is 
implementation dependent. An implementation may choose to not detect exceptions and 
carry out the sign bit operation. If the implementation does not detect exceptions, or if 
exception detection is disabled, the computation can be carried out in one of two ways, as a 
sign bit operation ignoring the rest of the contents of the source register, or by examining the 
input and appropriately saturating the input prior to performing the operation.

If an implementation chooses to handle exceptions, the exception is handled as follows: if 
the contents of either element of rA are Infinity, Denorm, or NaN, SPEFSCR[FINV,FINVH] 
are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are cleared appropriately. If floating-
point invalid input exceptions are enabled then an interrupt is taken, and the destination 
register is not updated. 
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Instruction set RM0004

509/1176  

evfssub evfssub

Vector floating-point single-precision subtract

evfssub rD,rA,rB

rD0:31 ← rA0:31 -sp rB0:31
rD32:63 ← rA32:63 -sp rB32:63

Each single-precision floating-point element of rB is subtracted from the corresponding 
element of rA and the results are stored in rD. If an element of rA is NaN or infinity, the 
corresponding result is either pmax (asign==0), or nmax (asign==1). Otherwise, if an 
element of rB is NaN or infinity, the corresponding result is either nmax (bsign==0), or pmax 
(bsign==1). Otherwise, if an overflow occurs, pmax or nmax (as appropriate) is stored in the 
corresponding element of rD. If an underflow occurs, +0 (for rounding modes RN, RZ, RP) 
or –0 (for rounding mode RM) is stored in the corresponding element of rD. 

Exceptions:

If the contents of either element of rA or rB are Infinity, Denorm, or NaN, 
SPEFSCR[FINV,FINVH] are set appropriately, and SPEFSCR[FGH,FXH,FG,FX] are 
cleared appropriately. If SPEFSCR[FINVE] is set, an interrupt is taken and the destination 
register is not updated. Otherwise, if an overflow occurs, SPEFSCR[FOVF,FOVFH] are set 
appropriately, or if an underflow occurs, SPEFSCR[FUNF,FUNFH] are set appropriately. If 
either underflow or overflow exceptions are enabled and a corresponding status bit is set, an 
interrupt is taken. If any of these interrupts are taken, the destination register is not updated.

If either result element of this instruction is inexact, or overflows but overflow exceptions are 
disabled, and no other interrupt is taken, or underflows but underflow exceptions are 
disabled, and no other interrupt is taken, SPEFSCR[FINXS] is set. If the floating-point 
inexact exception is enabled, an interrupt is taken using the floating-point round interrupt 
vector. In this case, the destination register is updated with the truncated result(s). The FG 
and FX bits are properly updated to allow rounding to be performed in the interrupt handler. 

FG and FX (FGH and FXH) are cleared if an overflow or underflow interrupt is taken, or if an 
invalid operation/input error is signaled for the low (high) element (regardless of FINVE).
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RM0004 Instruction set

 510/1176

evfststeq evfststeq

Vector floating-point single-precision test equal

evfststeq  crfD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah = bh) then ch ← 1
else ch ← 0
if (al = bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA equals rB, 
the bit in crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = –0). The 
comparison proceeds after treating NaNs, Infinities, and Denorms as normalized numbers, 
using their values of ‘e’ and ‘f’ directly.

No exceptions are taken during the execution of evfststeq. If strict IEEE 754 compliance is 
required, the program should use evfscmpeq.

Implementation note: In an implementation, the execution of evfststeq is likely to be faster 
than the execution of evfscmpeq.
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Instruction set RM0004

511/1176  

evfststgt evfststgt

Vector floating-point single-precision test greater than

evfststgt crfD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah > bh) then ch ← 1
else ch ← 0
if (al > bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared against the corresponding element of rB. If rA is greater 
than rB, the bit in crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 
(+0 = –0). The comparison proceeds after treating NaNs, Infinities, and Denorms as 
normalized numbers, using their values of ‘e’ and ‘f’ directly.

No exceptions are taken during the execution of evfststgt. If strict IEEE 754 compliance is 
required, the program should use evfscmpgt.

Implementation note: In an implementation, the execution of evfststgt is likely to be faster 
than the execution of evfscmpgt.
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RM0004 Instruction set

 512/1176

evfststlt evfststlt

Vector floating-point single-precision test less than

evfststlt crfD,rA,rB

ah ← rA0:31
al ← rA32:63
bh ← rB0:31
bl ← rB32:63
if (ah < bh) then ch ← 1
else ch ← 0
if (al < bl) then cl ← 1
else cl ← 0
CR4*crD:4*crD+3 ← ch || cl || (ch | cl) || (ch & cl)

Each element of rA is compared with the corresponding element of rB. If rA is less than rB, 
the bit in the crfD is set, otherwise it is cleared. Comparison ignores the sign of 0 (+0 = –0). 
The comparison proceeds after treating NaNs, Infinities, and Denorms as normalized 
numbers, using their values of ‘e’ and ‘f’ directly.

No exceptions are taken during the execution of evfststlt. If strict IEEE 754 compliance is 
required, the program should use evfscmplt.

Implementation note: In an implementation, the execution of evfststlt is likely to be faster 
than the execution of evfscmplt.
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Instruction set RM0004

513/1176  

evldd evldd

Vector load double word into double word

evldd rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*8)
rD ← MEM(EA, 8)

The double word addressed by EA is loaded from memory and placed in rD.

Figure 45 shows how bytes are loaded into rD as determined by the endian mode.

Figure 45. evldd results in big- and little-endian modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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 514/1176

evlddx evlddx

Vector load double word into double word indexed 

evlddx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← MEM(EA, 8)

The double word addressed by EA is loaded from memory and placed in rD.

Figure 46 shows how bytes are loaded into rD as determined by the endian mode.

Figure 46. evlddx results in big- and little-endian modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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Instruction set RM0004

515/1176  

evldh evldh

Vector load double into four half words 

evldh rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*8)
rD0:15 ← MEM(EA, 2)
rD16:31 ← MEM(EA+2,2)
rD32:47 ← MEM(EA+4,2)
rD48:63 ← MEM(EA+6,2)

The double word addressed by EA is loaded from memory and placed in rD.

The figure below shows how bytes are loaded into rD as determined by the endian mode.
evldh Results in Big- and Little-Endian Modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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 516/1176

evldhx evldhx

Vector Load Double into Four Half Words Indexed

evldhx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:15 ← MEM(EA, 2)
rD16:31 ← MEM(EA+2,2)
rD32:47 ← MEM(EA+4,2)
rD48:63 ← MEM(EA+6,2)

The double word addressed by EA is loaded from memory and placed in rD.

Figure 47 shows how bytes are loaded into rD as determined by the endian mode.

Figure 47. evldhx results in big- and little-endian modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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517/1176  

evldw evldw

Vector load double into two words

evldw rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*8)
rD0:31 ← MEM(EA, 4)
rD32:63 ← MEM(EA+4, 4)

The double word addressed by EA is loaded from memory and placed in rD.

Figure 48 shows how bytes are loaded into rD as determined by the endian mode.

Figure 48. evldw results in big- and little-endian modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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RM0004 Instruction set

 518/1176

evldwx evldwx

Vector load double into two words indexed 

evldwx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:31 ← MEM(EA, 4)
rD32:63 ← MEM(EA+4, 4)

The double word addressed by EA is loaded from memory and placed in rD.

Figure 49 shows how bytes are loaded into rD as determined by the endian mode.

Figure 49. evldwx results in big- and little-endian modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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Instruction set RM0004

519/1176  

evlhhesplat evlhhesplat

Vector load half word into half words even and splat

evlhhesplat rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*2)
rD0:15 ← MEM(EA,2)
rD16:31 ← 0x0000
rD32:47 ← MEM(EA,2)
rD48:63 ← 0x0000

The half word addressed by EA is loaded from memory and placed in the even half words of 
each element of rD.

Figure 50 shows how bytes are loaded into rD as determined by the endian mode.

Figure 50. evlhhesplat results in big- and little-endian modes

Implementation note: If the EA is not half-word aligned, an alignment exception occurs.
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RM0004 Instruction set

 520/1176

evlhhesplatx evlhhesplatx

Vector load half word into half words even and splat indexed

evlhhesplatx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:15 ← MEM(EA,2)
rD16:31 ← 0x0000
rD32:47 ← MEM(EA,2)
rD48:63 ← 0x0000

The half word addressed by EA is loaded from memory and placed in the even half words of 
each element of rD.

Figure 51 shows how bytes are loaded into rD as determined by the endian mode.

Figure 51. evlhhesplatx results in big- and little-endian modes

Implementation note: If the EA is not half-word aligned, an alignment exception occurs.
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Instruction set RM0004

521/1176  

evlhhossplat evlhhossplat

Vector load half word into half word odd signed and splat

evlhhossplat rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*2)
rD0:31 ← EXTS(MEM(EA,2))
rD32:63 ← EXTS(MEM(EA,2))

The half word addressed by EA is loaded from memory and placed in the odd half words 
sign extended in each element of rD.

Figure 52 shows how bytes are loaded into rD as determined by the endian mode.

Figure 52. evlhhossplat results in big- and little-endian modes

In big-endian memory, the msb of a is sign extended. In little-endian memory, the msb of b is 
sign extended.

Implementation note: If the EA is not half-word aligned, an alignment exception occurs.
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RM0004 Instruction set

 522/1176

evlhhossplatx evlhhossplatx

Vector load half word into half word odd signed and splat indexed

evlhhossplatx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:31 ← EXTS(MEM(EA,2))
rD32:63 ← EXTS(MEM(EA,2))

The half word addressed by EA is loaded from memory and placed in the odd half words 
sign extended in each element of rD.

Figure 53 shows how bytes are loaded into rD as determined by the endian mode.

Figure 53. evlhhossplatx results in big- and little-endian modes

In big-endian memory, the msb of a is sign extended. In little-endian memory, the msb of b is 
sign extended.

Implementation note: If the EA is not half-word aligned, an alignment exception occurs.

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 0 1 1 1 0

0 1

a b

a b S S bS S a

b a S S aS S b

Memory

GPR in big endian

GPR in little endian

Byte address

S = sign

S = sign



Instruction set RM0004

523/1176  

evlhhousplat evlhhousplat

Vector load half word into half word odd unsigned and splat

evlhhousplat rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*2)
rD0:15 ← 0x0000
rD16:31 ← MEM(EA,2)
rD32:47 ← 0x0000
rD48:63 ← MEM(EA,2)

The half word addressed by EA is loaded from memory and placed in the odd half words 
zero extended in each element of rD.

Figure 54 shows how bytes are loaded into rD as determined by the endian mode.

Figure 54. evlhhousplat results in big- and little-endian modes

Implementation note: If the EA is not half-word aligned, an alignment exception occurs.
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 524/1176

evlhhousplatx evlhhousplatx

Vector load half word into half word odd unsigned and splat indexed

evlhhousplatx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:15 ← 0x0000
rD16:31 ← MEM(EA,2)
rD32:47 ← 0x0000
rD48:63 ← MEM(EA,2)

The half word addressed by EA is loaded from memory and placed in the odd half words 
zero extended in each element of rD.

Figure 55 shows how bytes are loaded into rD as determined by the endian mode.

Figure 55. evlhhousplatx results in big- and little-endian modes

Implementation note: If the EA is not half-word aligned, an alignment exception occurs.
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Instruction set RM0004

525/1176  

evlwhe evlwhe

Vector load word into two half words even

evlwhe rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
rD0:15 ← MEM(EA,2)
rD16:31 ← 0x0000
rD32:47 ← MEM(EA+2,2)
rD48:63 ← 0x0000

The word addressed by EA is loaded from memory and placed in the even half words in 
each element of rD.

Figure 56 shows how bytes are loaded into rD as determined by the endian mode.

Figure 56. evlwhe results in big- and little-endian modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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RM0004 Instruction set

 526/1176

evlwhex evlwhex

Vector load word into two half words even indexed

evlwhex rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:15 ← MEM(EA,2)
rD16:31 ← 0x0000
rD32:47 ← MEM(EA+2,2)
rD48:63 ← 0x0000

The word addressed by EA is loaded from memory and placed in the even half words in 
each element of rD.

Figure 57 shows how bytes are loaded into rD as determined by the endian mode.

Figure 57. evlwhex results in big- and little-endian modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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Instruction set RM0004

527/1176  

evlwhos evlwhos

Vector load word into two half words odd signed (with sign extension)

evlwhos rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
rD0:31 ← EXTS(MEM(EA,2))
rD32:63 ← EXTS(MEM(EA+2,2))

The word addressed by EA is loaded from memory and placed in the odd half words sign 
extended in each element of rD.

Figure 58 shows how bytes are loaded into rD as determined by the endian mode.

Figure 58. evlwhos results in big- and little-endian modes

In big-endian memory, the most significant bits of a and c are sign extended. In little-endian 
memory, the most significant bits of b and d are sign extended.

Implementation note: If the EA is not word aligned, an alignment exception occurs.

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA UIMM(1) 0 1 1 0 0 0 1 0 1 1 1

1. d = UIMM * 4

c d

0 1 2 3

a b

a b S S dS S c

b a S S cS S d

Memory

GPR in big endian

GPR in little endian

Byte address

S = sign

S = sign



RM0004 Instruction set

 528/1176

evlwhosx evlwhosx

Vector load word into two half words odd signed indexed (with sign extension)

evlwhosx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:31 ← EXTS(MEM(EA,2))
rD32:63 ← EXTS(MEM(EA+2,2))

The word addressed by EA is loaded from memory and placed in the odd half words sign 
extended in each element of rD.

Figure 59 shows how bytes are loaded into rD as determined by the endian mode.

Figure 59. evlwhosx results in big- and little-endian modes

In big-endian memory, the most significant bits of a and c are sign extended. In little-endian 
memory, the most significant bits of b and d are sign extended.

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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Instruction set RM0004

529/1176  

evlwhou evlwhou

Vector load word into two half words odd unsigned (zero-extended)

evlwhou rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
rD0:15 ← 0x0000
rD16:31 ← MEM(EA,2)
rD32:47 ← 0x0000
rD48:63 ← MEM(EA+2,2)

The word addressed by EA is loaded from memory and placed in the odd half words zero 
extended in each element of rD.

Figure 60 shows how bytes are loaded into rD as determined by the endian mode.

Figure 60. evlwhou results in big- and little-endian modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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RM0004 Instruction set

 530/1176

evlwhoux evlwhoux

Vector load word into two half words odd unsigned indexed (zero-extended)

evlwhoux rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:15 ← 0x0000
rD16:31 ← MEM(EA,2)
rD32:47 ← 0x0000
rD48:63 ← MEM(EA+2,2)

The word addressed by EA is loaded from memory and placed in the odd half words zero 
extended in each element of rD.

Figure 61 shows how bytes are loaded into rD as determined by the endian mode.

Figure 61. evlwhoux results in big- and little-endian modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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Instruction set RM0004

531/1176  

evlwhsplat evlwhsplat

Vector load word into two half words and splat

evlwhsplat rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
rD0:15 ← MEM(EA,2)
rD16:31 ← MEM(EA,2)
rD32:47 ← MEM(EA+2,2)
rD48:63 ← MEM(EA+2,2)

The word addressed by EA is loaded from memory and placed in both the even and odd half 
words in each element of rD.

Figure 62 shows how bytes are loaded into rD as determined by the endian mode.

Figure 62. evlwhsplat results in big- and little-endian modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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RM0004 Instruction set

 532/1176

evlwhsplatx evlwhsplatx

Vector load word into two half words and splat indexed

evlwhsplatx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:15 ← MEM(EA,2)
rD16:31 ← MEM(EA,2)
rD32:47 ← MEM(EA+2,2)
rD48:63 ← MEM(EA+2,2)

The word addressed by EA is loaded from memory and placed in both the even and odd half 
words in each element of rD.

Figure 63 shows how bytes are loaded into rD as determined by the endian mode.

Figure 63. evlwhsplatx results in big- and little-endian modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 1 1 0 0

c d

0 1 2 3

a b

a b c d da b c

b a d c cb a d

Memory

GPR in big endian

GPR in little endian

Byte address



Instruction set RM0004

533/1176  

evlwwsplat evlwwsplat

Vector load word into word and splat

evlwwsplat rD,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
rD0:31 ← MEM(EA,4)
rD32:63 ← MEM(EA,4)

The word addressed by EA is loaded from memory and placed in both elements of rD.

Figure 64 shows how bytes are loaded into rD as determined by the endian mode.

Figure 64. evlwwsplat results in big- and little-endian modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.
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RM0004 Instruction set

 534/1176

evlwwsplatx evlwwsplatx

Vector load word into word and splat indexed

evlwwsplatx rD,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
rD0:31 ← MEM(EA,4)
rD32:63 ← MEM(EA,4)

The word addressed by EA is loaded from memory and placed in both elements of rD.

Figure 65 shows how bytes are loaded into rD as determined by the endian mode.

Figure 65. evlwwsplatx results in big- and little-endian modes

Implementation note: If the EA is not word aligned, an alignment exception occurs.

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 1 0 0 0 1 1 0 0 0

c d

0 1 2 3

a b

c d a b da b c

b a d c ad c b

Memory

GPR in big endian

GPR in little endian

Byte address



Instruction set RM0004

535/1176  

evmergehi evmergehi

Vector merge high

evmergehi rD,rA,rB

rD0:31 ← rA0:31
rD32:63 ← rB0:31

The high-order elements of rA and rB are merged and placed into rD, as shown in 
Figure 66. 

Figure 66. High order element merging (evmergehi)
 

Note: A vector splat high can be performed by specifying the same register in rA and rB.
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RM0004 Instruction set

 536/1176

evmergehilo evmergehilo

Vector merge high/low

evmergehilo rD,rA,rB

rD0:31 ← rA0:31
rD32:63 ← rB32:63

The high-order element of rA and the low-order element of rB are merged and placed into 
rD, as shown in Figure 67.

Figure 67. High order element merging (evmergehilo)

Application note: With appropriate specification of rA and rB, evmergehi, evmergelo, 
evmergehilo, and evmergelohi provide a full 32-bit permute of two source operands.
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Instruction set RM0004

537/1176  

evmergelo  evmergelo

Vector merge low

evmergelo rD,rA,rB

rD0:31 ← rA32:63
rD32:63 ← rB32:63

The low-order elements of rA and rB are merged and placed in rD, as shown in Figure 68. 

Figure 68. Low order element merging (evmergelo)
 

Note: A vector splat low can be performed by specifying the same register in rA and rB.
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RM0004 Instruction set

 538/1176

evmergelohi  evmergelohi

Vector merge low/high

evmergelohi rD,rA,rB

rD0:31 ← rA32:63
rD32:63 ← rB0:31

The low-order element of rA and the high-order element of rB are merged and placed into 
rD, as shown in Figure 69.

Figure 69. Low order element merging (evmergelohi)

Note: A vector swap can be performed by specifying the same register in rA and rB.
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Instruction set RM0004

539/1176  

evmhegsmfaa evmhegsmfaa

Vector multiply half words, even, guarded, signed, modulo, fractional and accumulate

evmhegsmfaa rD,rA,rB 

temp0:31 ← rA32:47 ×sf rB32:47
temp0:63 ← EXTS(temp0:31) 
rD0:63 ← ACC0:63 + temp0:63 

// update accumulator
ACC0:63 ← rD0:63

The corresponding low even-numbered, half-word signed fractional elements in rA and rB 
are multiplied. The product is added to the contents of the 64-bit accumulator and the result 
is placed into rD and the accumulator.

Note: This is a modulo sum. There is no overflow check and no saturation is performed. Any 
overflow of the 64-bit sum is not recorded into the SPEFSCR. 

Figure 70. evmhegsmfaa (even form)
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RM0004 Instruction set

 540/1176

evmhegsmfan evmhegsmfan

Vector multiply half words, even, guarded, signed, modulo, fractional and accumulate 
negative

evmhegsmfan rD,rA,rB 

temp0:31 ← rA32:47 ×sf rB32:47
temp0:63 ← EXTS(temp0:31)
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low even-numbered, half-word signed fractional elements in rA and rB 
are multiplied. The product is subtracted from the contents of the 64-bit accumulator and the 
result is placed into rD and the accumulator.

Note: This is a modulo difference. There is no overflow check and no saturation is performed. Any 
overflow of the 64-bit difference is not recorded into the SPEFSCR. 

Figure 71. evmhegsmfan (even form)
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Instruction set RM0004

541/1176  

evmhegsmiaa evmhegsmiaa

Vector multiply half words, even, guarded, signed, modulo, integer and accumulate

evmhegsmiaa rD,rA,rB 

temp0:31 ← rA32:47 ×si rB32:47
temp0:63 ← EXTS(temp0:31)
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low even-numbered half-word signed integer elements in rA and rB are 
multiplied. The intermediate product is sign-extended and added to the contents of the 64-
bit accumulator, and the resulting sum is placed into rD and into the accumulator.

Note: This is a modulo sum. There is no overflow check and no saturation is performed. Any 
overflow of the 64-bit sum is not recorded into the SPEFSCR. 

Figure 72. evmhegsmiaa (even form)
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 542/1176

evmhegsmian evmhegsmian

Vector multiply half words, even, guarded, signed, modulo, integer and accumulate 
negative

evmhegsmian rD,rA,rB 

temp0:31 ← rA32:47 ×si rB32:47
temp0:63 ← EXTS(temp0:31)
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low even-numbered half-word signed integer elements in rA and rB are 
multiplied. The intermediate product is sign-extended and subtracted from the contents of 
the 64-bit accumulator, and the result is placed into rD and into the accumulator.

Note: This is a modulo difference. There is no check for overflow and no saturation is 
performed. Any overflow of the 64-bit difference is not recorded into the SPEFSCR.

Figure 73. evmhegsmian (even form)
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Instruction set RM0004

543/1176  

evmhegumiaa evmhegumiaa

Vector multiply half words, even, guarded, unsigned, modulo, integer and accumulate

evmhegumiaa rD,rA,rB 

temp0:31 ← rA32:47 ×ui rB32:47
temp0:63 ← EXTZ(temp0:31)
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low even-numbered half-word unsigned integer elements in rA and rB 
are multiplied. The intermediate product is zero-extended and added to the contents of the 
64-bit accumulator. The resulting sum is placed into rD and into the accumulator.

Note: This is a modulo sum. There is no overflow check and no saturation is performed. Any 
overflow of the 64-bit sum is not recorded into the SPEFSCR. 

Figure 74. evmhegumiaa (even form)
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RM0004 Instruction set

 544/1176

evmhegumian evmhegumian

Vector multiply half words, even, guarded, unsigned, modulo, integer and accumulate 
negative

evmhegumian rD,rA,rB 

temp0:31 ← rA32:47 ×ui rB32:47
temp0:63 ← EXTZ(temp0:31)
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low even-numbered unsigned integer elements in rA and rB are 
multiplied. The intermediate product is zero-extended and subtracted from the contents of 
the 64-bit accumulator. The result is placed into rD and into the accumulator.

Note: This is a modulo difference. There is no check for overflow and no saturation is 
performed. Any overflow of the 64-bit difference is not recorded into the SPEFSCR. 

Figure 75. evmhegumian (even form)
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Instruction set RM0004

545/1176  

evmhesmf evmhesmf

Vector multiply half words, even, signed, modulo, fractional (to accumulator)

evmhesmf rD,rA,rB (A = 0)
evmhesmfa rD,rA,rB (A = 1)

// high
rD0:31 ← (rA0:15 ×sf rB0:15) 

// low
rD32:63← (rA32:47 ×sf rB32:47) 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding even-numbered half-word signed fractional elements in rA and rB are 
multiplied then placed into the corresponding words of rD. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 76. Even multiply of two signed modulo fractional elements (to 
accumulator) (evmhesmf)
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RM0004 Instruction set

 546/1176

evmhesmfaaw evmhesmfaaw

Vector multiply half words, even, signed, modulo, fractional and accumulate into 
words

evmhesmfaaw rD,rA,rB 

// high
temp0:31 ← (rA0:15 ×sf rB0:15) 
rD0:31 ← ACC0:31 + temp0:31 

// low
temp0:31 ← (rA32:47 ×sf rB32:47) 
rD32:63 ← ACC32:63 + temp0:31 

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding even-numbered half-word 
signed fractional elements in rA and rB are multiplied. The 32 bits of each intermediate 
product are added to the contents of the accumulator words to form intermediate sums, 
which are placed into the corresponding rD words and into the accumulator.

Other registers altered: ACC

Figure 77. Even form of vector half-word multiply (evmhesmfaaw)
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Instruction set RM0004

547/1176  

evmhesmfanw evmhesmfanw

Vector multiply half words, even, signed, modulo, fractional and accumulate negative 
into words

evmhesmfanw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×sf rB0:15 
rD0:31 ← ACC0:31 - temp0:31

// low
temp0:31 ← rA32:47 ×sf rB32:47 
rD32:63← ACC32:63 - temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding even-numbered half-word 
signed fractional elements in rA and rB are multiplied. The 32-bit intermediate products are 
subtracted from the contents of the accumulator words to form intermediate differences, 
which are placed into the corresponding rD words and into the accumulator. 

Other registers altered: ACC

Figure 78. Even form of vector half-word multiply (evmhesmfanw)
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RM0004 Instruction set

 548/1176

evmhesmi evmhesmi

Vector multiply half words, even, signed, modulo, integer (to accumulator)

evmhesmi rD,rA,rB (A = 0)
evmhesmia rD,rA,rB (A = 1)

// high
rD0:31 ← rA0:15 ×si rB0:15 

// low
rD32:63 ← rA32:47 ×si rB32:47 

// update accumulator
if A = 1, then ACC0:63 ← rD0:63

The corresponding even-numbered half-word signed integer elements in rA and rB are 
multiplied. The two 32-bit products are placed into the corresponding words of rD. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 79. Even form for vector multiply (to accumulator) (evmhesmi)
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Instruction set RM0004

549/1176  

evmhesmiaaw evmhesmiaaw

Vector multiply half words, even, signed, modulo, integer and accumulate into words

evmhesmiaaw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×si rB0:15 
rD0:31 ← ACC0:31 + temp0:31

// low
temp0:31 ← rA32:47 ×si rB32:47 
rD32:63 ← ACC32:63 + temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding even-numbered half-word 
signed integer elements in rA and rB are multiplied. Each intermediate 32-bit product is 
added to the contents of the accumulator words to form intermediate sums, which are 
placed into the corresponding rD words and into the accumulator. 

Other registers altered: ACC

Figure 80. Even form of vector half-word multiply (evmhesmiaaw)
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RM0004 Instruction set

 550/1176

evmhesmianw evmhesmianw

Vector multiply half words, even, signed, modulo, integer and accumulate negative 
into words

evmhesmianw rD,rA,rB 

// high
temp00:31 ←rA0:15 ×si rB0:15 
rD0:31 ← ACC0:31 - temp00:31

// low
temp10:31 ← rA32:47 ×si rB32:47 
rD32:63 ← ACC32:63 - temp10:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding even-numbered half-word 
signed integer elements in rA and rB are multiplied. Each intermediate 32-bit product is 
subtracted from the contents of the accumulator words to form intermediate differences, 
which are placed into the corresponding rD words and into the accumulator. 

Other registers altered: ACC

Figure 81. Even form of vector half-word multiply (evmhesmianw)
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Instruction set RM0004

551/1176  

evmhessf evmhessf

Vector multiply half words, even, signed, saturate, fractional (to accumulator)

evmhessf rD,rA,rB (A = 0)
evmhessfa rD,rA,rB (A = 1)

// high
temp0:31 ← rA0:15 ×sf rB0:15 
if (rA0:15 = 0x8000) & (rB0:15 = 0x8000) then

rD0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
rD0:31 ← temp0:31
movh ← 0

// low
temp0:31 ← rA32:47 ×sf rB32:47 
if (rA32:47 = 0x8000) & (rB32:47 = 0x8000) then

rD32:63 ← 0x7FFF_FFFF //saturate
movl ← 1

else
rD32:63 ← temp0:31
movl ← 0

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | movh
SPEFSCRSOV ← SPEFSCRSOV | movl

The corresponding even-numbered half-word signed fractional elements in rA and rB are 
multiplied. The 32 bits of each product are placed into the corresponding words of rD. If both 
inputs are –1.0, the result saturates to the largest positive signed fraction and the overflow 
and summary overflow bits are recorded in the SPEFSCR. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: SPEFSCR 
ACC (If A = 1)

SPE APU User
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RM0004 Instruction set

 552/1176

Figure 82. Even multiply of two signed saturate fractional elements  (to 
accumulator) (evmhessf)
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Instruction set RM0004

553/1176  

evmhessfaaw evmhessfaaw

Vector multiply half words, even, signed, saturate, fractional and accumulate into 
words

evmhessfaaw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×sf rB0:15 
if (rA0:15 = 0x8000) & (rB0:15 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
movh ← 0

temp0:63 ← EXTS(ACC0:31) + EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:31 ← rA32:47 ×sf rB32:47 
if (rA32:47 = 0x8000) & (rB32:47 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movl ← 1

else
movl ← 0

temp0:63 ← EXTS(ACC32:63) + EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh | movh
SPEFSCRSOV ← SPEFSCRSOV | ovl| movl

The corresponding even-numbered half-word signed fractional elements in rA and rB are 
multiplied producing a 32-bit product. If both inputs are –1.0, the result saturates to 
0x7FFF_FFFF. Each 32-bit product is then added to the corresponding word in the 
accumulator, saturating if overflow or underflow occurs, and the result is placed in rD and 
the accumulator.

If there is an overflow or underflow from either the multiply or the addition, the overflow and 
summary overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

SPE APU User
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RM0004 Instruction set

 554/1176

Figure 83. Even form of vector half-word multiply (evmhessfaaw)
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Instruction set RM0004

555/1176  

evmhessfanw evmhessfanw

Vector multiply half words, even, signed, saturate, fractional and accumulate negative 
into words

evmhessfanw rD,rA,rB 

++The corresponding even-numbered half-word signed fractional elements in rA and rB are 
multiplied producing a 32-bit product. If both inputs are –1.0, the result saturates to 
0x7FFF_FFFF. Each 32-bit product is then subtracted from the corresponding word in the 
accumulator, saturating if overflow or underflow occurs, and the result is placed in rD and 
the accumulator.

If there is an overflow or underflow from either the multiply or the addition, the overflow and 
summary overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

Figure 84. Even form of vector half-word multiply (evmhessfanw)
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RM0004 Instruction set

 556/1176

evmhessiaaw evmhessiaaw

Vector multiply half words, even, signed, saturate, integer and accumulate into words

evmhessiaaw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×si rB0:15 
temp0:63 ← EXTS(ACC0:31) + EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:31 ← rA32:47 ×si rB32:47 
temp0:63 ← EXTS(ACC32:63) + EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The corresponding even-numbered half-word signed integer elements in rA and rB are 
multiplied producing a 32-bit product. Each 32-bit product is then added to the 
corresponding word in the accumulator, saturating if overflow occurs, and the result is 
placed in rD and the accumulator.

If there is an overflow or underflow from either the multiply or the addition, the overflow and 
summary overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

SPE APU User
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Instruction set RM0004

557/1176  

Figure 85. Even form of vector half-word multiply (evmhessiaaw)
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RM0004 Instruction set

 558/1176

evmhessianw evmhessianw

Vector multiply half words, even, signed, saturate, integer and accumulate negative 
into words

evmhessianw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×si rB0:15 
temp0:63 ← EXTS(ACC0:31) - EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:31 ← rA32:47 ×si rB32:47 
temp0:63 ← EXTS(ACC32:63) - EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The corresponding even-numbered half-word signed integer elements in rA and rB are 
multiplied producing a 32-bit product. Each 32-bit product is then subtracted from the 
corresponding word in the accumulator, saturating if overflow occurs, and the result is 
placed in rD and the accumulator.

If there is an overflow or underflow from either the multiply or the addition, the overflow and 
summary overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

SPE APU User
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Instruction set RM0004

559/1176  

Figure 86. Even form of vector half-word multiply (evmhessianw)
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RM0004 Instruction set

 560/1176

evmheumi evmheumi

Vector multiply half words, even, unsigned, modulo, integer (to accumulator)

evmheumi rD,rA,rB (A = 0)
evmheumia rD,rA,rB (A = 1)

// high
rD0:31 ← rA0:15 ×ui rB0:15 

// low
rD32:63 ← rA32:47 ×ui rB32:47 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding even-numbered half-word unsigned integer elements in rA and rB are 
multiplied. The two 32-bit products are placed into the corresponding words of rD. 

If A = 1, the result in rD is also placed into the accumulator.

Figure 87. Vector multiply half words, even, unsigned, modulo, integer (to 
accumulator) (evmheumi)
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Instruction set RM0004

561/1176  

evmheumiaaw evmheumiaaw

Vector multiply half words, even, unsigned, modulo, integer and accumulate into 
words

evmheumiaaw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×ui rB0:15
rD0:31 ← ACC0:31 + temp0:31

// low
temp0:31 ← rA32:47 ×ui rB32:47
rD32:63 ← ACC32:63 + temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding even-numbered half-word 
unsigned integer elements in rA and rB are multiplied. Each intermediate product is added 
to the contents of the corresponding accumulator words and the sums are placed into the 
corresponding rD and accumulator words. 

Other registers altered: ACC

Figure 88. Even form of vector half-word multiply (evmheumiaaw)
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RM0004 Instruction set

 562/1176

evmheumianw evmheumianw

Vector multiply half words, even, unsigned, modulo, integer and accumulate negative 
into words

evmheumianw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×ui rB0:15
rD0:31 ← ACC0:31 - temp0:31

// low
temp0:31 ← rA32:47 ×ui rB32:47
rD32:63 ← ACC32:63 - temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding even-numbered half-word 
unsigned integer elements in rA and rB are multiplied. Each intermediate product is 
subtracted from the contents of the corresponding accumulator words. The differences are 
placed into the corresponding rD and accumulator words. 

Other registers altered: ACC

Figure 89. Even form of vector half-word multiply (evmheumianw)
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Instruction set RM0004

563/1176  

evmheusiaaw evmheusiaaw

Vector multiply half words, even, unsigned, saturate, integer and accumulate into 
words

evmheusiaaw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×ui rB0:15 
temp0:63 ← EXTZ(ACC0:31) + EXTZ(temp0:31)
ovh ← temp31
rD0:31 ← SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63) 

//low
temp0:31 ← rA32:47 ×ui rB32:47 
temp0:63 ← EXTZ(ACC32:63) + EXTZ(temp0:31)
ovl ← temp31
rD32:63 ← SATURATE(ovl, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63)

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

For each word element in the accumulator, corresponding even-numbered half-word 
unsigned integer elements in rA and rB are multiplied producing a 32-bit product. Each 32-
bit product is then added to the corresponding word in the accumulator, saturating if 
overflow occurs, and the result is placed in rD and the accumulator.

If the addition causes overflow, the overflow and summary overflow bits are recorded in the 
SPEFSCR.

Other registers altered: SPEFSCR ACC

SPE APU User
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RM0004 Instruction set

 564/1176

Figure 90. Even form of vector half-word multiply (evmheusiaaw)
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Instruction set RM0004

565/1176  

evmheusianw evmheusianw

Vector multiply half words, even, unsigned, saturate, integer and accumulate 
negative into words

evmheusianw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×ui rB0:15 
temp0:63 ← EXTZ(ACC0:31) - EXTZ(temp0:31)
ovh ← temp31
rD0:31 ← SATURATE(ovh, 0, 0x0000_0000, 0x0000_0000, temp32:63) 

//low
temp0:31 ← rA32:47 ×ui rB32:47 
temp0:63 ← EXTZ(ACC32:63) - EXTZ(temp0:31)
ovl ← temp31
rD32:63 ← SATURATE(ovl, 0, 0x0000_0000, 0x0000_0000, temp32:63)

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

For each word element in the accumulator, corresponding even-numbered half-word 
unsigned integer elements in rA and rB are multiplied producing a 32-bit product. Each 32-
bit product is then subtracted from the corresponding word in the accumulator, saturating if 
underflow occurs, and the result is placed in rD and the accumulator.

If there is an underflow from the subtraction, the overflow and summary overflow bits are 
recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

SPE APU User
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RM0004 Instruction set

 566/1176

Figure 91. Even form of vector half-word multiply (evmheusianw)
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Instruction set RM0004

567/1176  

evmhogsmfaa evmhogsmfaa

Vector multiply half words, odd, guarded, signed, modulo, fractional and accumulate

evmhogsmfaa rD,rA,rB 

temp0:31 ← rA48:63 ×sf rB48:63
temp0:63 ← EXTS(temp0:31) 
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low odd-numbered half-word signed fractional elements in rA and rB are 
multiplied. The intermediate product is sign-extended to 64 bits then added to the contents 
of the 64-bit accumulator, and the result is placed into rD and into the accumulator.

Note: This is a modulo sum. There is no check for overflow and no saturation is performed. 
An overflow from the 64-bit sum, if one occurs, is not recorded into the SPEFSCR. 

Figure 92. evmhogsmfaa (odd form)
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RM0004 Instruction set

 568/1176

evmhogsmfan evmhogsmfan

Vector multiply half words, odd, guarded, signed, modulo, fractional and accumulate 
negative

evmhogsmfan rD,rA,rB 

temp0:31 ← rA48:63 ×sf rB48:63
temp0:63 ← EXTS(temp0:31)
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low odd-numbered half-word signed fractional elements in rA and rB are 
multiplied. The intermediate product is sign-extended to 64 bits then subtracted from the 
contents of the 64-bit accumulator, and the result is placed into rD and into the accumulator.

Note: This is a modulo difference. There is no check for overflow and no saturation is performed. 
Any overflow of the 64-bit difference is not recorded into the SPEFSCR. 

Figure 93. evmhogsmfan (odd form)
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Instruction set RM0004

569/1176  

evmhogsmiaa evmhogsmiaa

Vector multiply half words, odd, guarded, signed, modulo, integer, and accumulate

evmhogsmiaa rD,rA,rB 

temp0:31 ← rA48:63 ×si rB48:63
temp0:63 ← EXTS(temp0:31)
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low odd-numbered half-word signed integer elements in rA and rB are 
multiplied. The intermediate product is sign-extended to 64 bits then added to the contents 
of the 64-bit accumulator, and the result is placed into rD and into the accumulator.

Note: This is a modulo sum. There is no check for overflow and no saturation is performed. An 
overflow from the 64-bit sum, if one occurs, is not recorded into the SPEFSCR. 

Figure 94. evmhogsmiaa (odd form)
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RM0004 Instruction set

 570/1176

evmhogsmian evmhogsmian

Vector multiply half words, odd, guarded, signed, modulo, integer and accumulate 
negative

evmhogsmian rD,rA,rB 

temp0:31 ← rA48:63 ×si rB48:63
temp0:63 ← EXTS(temp0:31)
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low odd-numbered half-word signed integer elements in rA and rB are 
multiplied. The intermediate product is sign-extended to 64 bits then subtracted from the 
contents of the 64-bit accumulator, and the result is placed into rD and into the accumulator.

Note: This is a modulo difference. There is no check for overflow and no saturation is 
performed. Any overflow of the 64-bit difference is not recorded into the SPEFSCR. 

Figure 95. evmhogsmian (odd form)
 

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 1 0 1 0 1 1 0 1

47 480 31 32 63

Intermediate product

Accumulator

rB

X

–

rD and Accumulator

rA

ssss_ssss_ssss_ssss...ssss



Instruction set RM0004

571/1176  

evmhogumiaa evmhogumiaa

Vector multiply half words, odd, guarded, unsigned, modulo, integer and accumulate

evmhogumiaa rD,rA,rB 

temp0:31 ← rA48:63 ×ui rB48:63
temp0:63 ← EXTZ(temp0:31)
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low odd-numbered half-word unsigned integer elements in rA and rB are 
multiplied. The intermediate product is zero-extended to 64 bits then added to the contents 
of the 64-bit accumulator, and the result is placed into rD and into the accumulator.

Note: This is a modulo sum. There is no check for overflow and no saturation is performed. 
An overflow from the 64-bit sum, if one occurs, is not recorded into the SPEFSCR. 

Figure 96. evmhogumiaa (odd form)
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RM0004 Instruction set

 572/1176

evmhogumian evmhogumian

Vector multiply half words, odd, guarded, unsigned, modulo, integer and accumulate 
negative

evmhogumian rD,rA,rB 

temp0:31 ← rA48:63 ×ui rB48:63
temp0:63 ← EXTZ(temp0:31)
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low odd-numbered half-word unsigned integer elements in rA and rB are 
multiplied. The intermediate product is zero-extended to 64 bits then subtracted from the 
contents of the 64-bit accumulator, and the result is placed into rD and into the accumulator.

Note: This is a modulo difference. There is no check for overflow and no saturation is 
performed. Any overflow of the 64-bit difference is not recorded into the SPEFSCR. 

Figure 97. evmhogumian (odd form)
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Instruction set RM0004

573/1176  

evmhosmf evmhosmf

Vector multiply half words, odd, signed, modulo, fractional (to accumulator)

evmhosmf rD,rA,rB (A = 0)
evmhosmfa rD,rA,rB (A = 1)

// high
rD0:31 ← (rA16:31 ×sf rB16:31) 

// low
rD32:63 ← (rA48:63 ×sf rB48:63) 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding odd-numbered, half-word signed fractional elements in rA and rB are 
multiplied. Each product is placed into the corresponding words of rD. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 98. Vector multiply half words, odd, signed, modulo, fractional (to 
accumulator) (evmhosmf)
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RM0004 Instruction set

 574/1176

evmhosmfaaw evmhosmfaaw

Vector multiply half words, odd, signed, modulo, fractional and accumulate into 
words

evmhosmfaaw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×sf rB16:31 
rD0:31 ← ACC0:31 + temp0:31

// low
temp0:31 ← rA48:63 ×sf rB48:63 
rD32:63 ← ACC32:63 + temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding odd-numbered half-word 
signed fractional elements in rA and rB are multiplied. The 32 bits of each intermediate 
product is added to the contents of the corresponding accumulator word and the results are 
placed into the corresponding rD words and into the accumulator

Other registers altered: ACC

Figure 99. Odd form of vector half-word multiply (evmhosmfaaw)
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Instruction set RM0004

575/1176  

evmhosmfanw evmhosmfanw

Vector multiply half words, odd, signed, modulo, fractional and accumulate negative 
into words

evmhosmfanw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×sf rB16:31 
rD0:31 ← ACC0:31 - temp0:31

// low
temp0:31 ← rA48:63 ×sf rB48:63 
rD32:63 ← ACC32:63 - temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding odd-numbered half-word 
signed fractional elements in rA and rB are multiplied. The 32 bits of each intermediate 
product is subtracted from the contents of the corresponding accumulator word and the 
results are placed into the corresponding rD words and into the accumulator.

Other registers altered: ACC

Figure 100. Odd form of vector half-word multiply (evmhosmfanw)
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RM0004 Instruction set

 576/1176

evmhosmi evmhosmi

Vector multiply half words, odd, signed, modulo, integer (to accumulator) 

evmhosmi rD,rA,rB (A = 0)
evmhosmia rD,rA,rB (A = 1)

// high
rD0:31 ← rA16:31 ×si rB16:31 

// low
rD32:63 ← rA48:63 ×si rB48:63 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding odd-numbered half-word signed integer elements in rA and rB are 
multiplied. The two 32-bit products are placed into the corresponding words of rD. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 101. Vector multiply half words, odd, signed, modulo, integer (to 
accumulator) (evmhosmi)
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Instruction set RM0004

577/1176  

evmhosmiaaw evmhosmiaaw

Vector multiply half words, odd, signed, modulo, integer and accumulate into words

evmhosmiaaw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×si rB16:31 
rD0:31 ← ACC0:31 + temp0:31

// low
temp0:31 ← rA48:63 ×si rB48:63 
rD32:63 ← ACC32:63 + temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding odd-numbered half-word 
signed integer elements in rA and rB are multiplied. Each intermediate 32-bit product is 
added to the contents of the corresponding accumulator word and the results are placed 
into the corresponding rD words and into the accumulator.

Other registers altered: ACC

Figure 102. Odd form of vector half-word multiply (evmhosmiaaw)
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RM0004 Instruction set

 578/1176

evmhosmianw evmhosmianw

Vector multiply half words, odd, signed, modulo, integer and accumulate negative 
into words

evmhosmianw rD,rA,rB 

// high
temp0:31 ←rA16:31 ×si rB16:31 
rD0:31 ← ACC0:31 - temp0:31

// low
temp0:31 ← rA48:63 ×si rB48:63 
rD32:63 ← ACC32:63 - temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding odd-numbered half-word 
signed integer elements in rA and rB are multiplied. Each intermediate 32-bit product is 
subtracted from the contents of the corresponding accumulator word and the results are 
placed into the corresponding rD words and into the accumulator.

Other registers altered: ACC

Figure 103. Odd form of vector half-word multiply (evmhosmianw)
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Instruction set RM0004

579/1176  

evmhossf  evmhossf

Vector multiply half words, odd, signed, saturate, fractional (to accumulator)

evmhossf rD,rA,rB (A = 0)
evmhossfa rD,rA,rB (A = 1)

// high
temp0:31 ← rA16:31 ×sf rB16:31 
if (rA16:31 = 0x8000) & (rB16:31 = 0x8000) then

rD0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
rD0:31 ← temp0:31
movh ← 0

// low
temp0:31 ← rA48:63 ×sf rB48:63 
if (rA48:63 = 0x8000) & (rB48:63 = 0x8000) then

rD32:63 ← 0x7FFF_FFFF //saturate
movl ← 1

else
rD32:63 ← temp0:31
movl ← 0

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | movh
SPEFSCRSOV ← SPEFSCRSOV | movl

The corresponding odd-numbered half-word signed fractional elements in rA and rB are 
multiplied. The 32 bits of each product are placed into the corresponding words of rD. If both 
inputs are –1.0, the result saturates to the largest positive signed fraction and the overflow 
and summary overflow bits are recorded in the SPEFSCR. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: SPEFSCR 
ACC (If A = 1)

SPE APU User

0 5 6 10 11 15 16 20 21 25 26 27 31

0 0 0 1 0 0 rD rA rB 1 0 0 0 0 A 0 0 1 1 1



RM0004 Instruction set

 580/1176

Figure 104. Vector multiply half words, odd, signed, saturate, fractional (to 
accumulator) (evmhossf)
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Instruction set RM0004

581/1176  

evmhossfaaw evmhossfaaw

Vector multiply half words, odd, signed, saturate, fractional and accumulate into 
words

evmhossfaaw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×sf rB16:31 
if (rA16:31 = 0x8000) & (rB16:31 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
movh ← 0

temp0:63 ← EXTS(ACC0:31) + EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:31 ← rA48:63 ×sf rB48:63 
if (rA48:63 = 0x8000) & (rB48:63 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movl ← 1

else
movl ← 0

temp0:63 ← EXTS(ACC32:63) + EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh | movh
SPEFSCRSOV ← SPEFSCRSOV | ovl| movl

The corresponding odd-numbered half-word signed fractional elements in rA and rB are 
multiplied producing a 32-bit product. If both inputs are –1.0, the result saturates to 
0x7FFF_FFFF. Each 32-bit product is then added to the corresponding word in the 
accumulator, saturating if overflow or underflow occurs, and the result is placed in rD and 
the accumulator.

If there is an overflow or underflow from either the multiply or the addition, the overflow and 
summary overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 1 1



RM0004 Instruction set

 582/1176

Figure 105. Odd form of vector half-word multiply (evmhossfaaw)
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Instruction set RM0004

583/1176  

evmhossfanw evmhossfanw

Vector multiply half words, odd, signed, saturate, fractional and accumulate negative 
into words

evmhossfanw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×sf rB16:31 
if (rA16:31 = 0x8000) & (rB16:31 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
movh ← 0

temp0:63 ← EXTS(ACC0:31) - EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:31 ← rA48:63 ×sf rB48:63 
if (rA48:63 = 0x8000) & (rB48:63 = 0x8000) then

temp0:31 ← 0x7FFF_FFFF //saturate 
movl ← 1

else
movl ← 0

temp0:63 ← EXTS(ACC32:63) - EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh | movh
SPEFSCRSOV ← SPEFSCRSOV | ovl| movl

The corresponding odd-numbered half-word signed fractional elements in rA and rB are 
multiplied producing a 32-bit product. If both inputs are –1.0, the result saturates to 
0x7FFF_FFFF. Each 32-bit product is then subtracted from the corresponding word in the 
accumulator, saturating if overflow or underflow occurs, and the result is placed in rD and 
the accumulator.

If there is an overflow or underflow from either the multiply or the subtraction, the overflow 
and summary overflow bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 1 1



RM0004 Instruction set

 584/1176

Figure 106. odd Form of Vector Half-Word Multiply (evmhossfanw)
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Instruction set RM0004

585/1176  

evmhossiaaw evmhossiaaw

Vector multiply half words, odd, signed, saturate, integer and accumulate into words

evmhossiaaw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×si rB16:31 
temp0:63 ← EXTS(ACC0:31) + EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:31 ← rA48:63 ×si rB48:63
temp0:63 ← EXTS(ACC32:63) + EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The corresponding odd-numbered half-word signed integer elements in rA and rB are 
multiplied producing a 32-bit product. Each 32-bit product is then added to the 
corresponding word in the accumulator, saturating if overflow occurs, and the result is 
placed in rD and the accumulator.

If there is an overflow or underflow from the addition, the overflow and summary overflow 
bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 0 1



RM0004 Instruction set

 586/1176

Figure 107. Odd form of vector half-word multiply (evmhossiaaw)
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Instruction set RM0004

587/1176  

evmhossianw evmhossianw

Vector multiply half words, odd, signed, saturate, integer and accumulate negative 
into words

evmhossianw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×si rB16:31 
temp0:63 ← EXTS(ACC0:31) - EXTS(temp0:31)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:31 ← rA48:63 ×si rB48:63
temp0:63 ← EXTS(ACC32:63) - EXTS(temp0:31)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The corresponding odd-numbered half-word signed integer elements in rA and rB are 
multiplied producing a 32-bit product. Each 32-bit product is then subtracted from the 
corresponding word in the accumulator, saturating if overflow occurs, and the result is 
placed in rD and the accumulator.

If there is an overflow or underflow from the subtraction, the overflow and summary overflow 
bits are recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 0 1



RM0004 Instruction set

 588/1176

Figure 108. Odd form of vector half-word multiply (evmhossianw)
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Instruction set RM0004

589/1176  

evmhoumi evmhoumi

Vector multiply half words, odd, unsigned, modulo, integer (to accumulator)

evmhoumi rD,rA,rB (A = 0)
evmhoumia rD,rA,rB (A = 1)

// high
rD0:31 ← rA16:31 ×ui rB16:31 

// low
rD32:63 ← rA48:63 ×ui rB48:63 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding odd-numbered half-word unsigned integer elements in rA and rB are 
multiplied. The two 32-bit products are placed into the corresponding words of rD. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 109. Vector multiply half words, odd, unsigned, modulo, integer (to 
accumulator) (evmhoumi)
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RM0004 Instruction set

 590/1176

evmhoumiaaw evmhoumiaaw

Vector multiply half words, odd, unsigned, modulo, integer and accumulate into 
words

evmhoumiaaw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×ui rB16:31
rD0:31 ← ACC0:31 + temp0:31

// low
temp0:31 ← rA48:63 ×ui rB48:63
rD32:63 ← ACC32:63 + temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding odd-numbered half-word 
unsigned integer elements in rA and rB are multiplied. Each intermediate product is added 
to the contents of the corresponding accumulator word. The sums are placed into the 
corresponding rD and accumulator words. 

Other registers altered: ACC

Figure 110. Odd form of vector half-word multiply (evmhoumiaaw)
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15 16 47 480 31 32 63
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Accumulator

rB

X X

+ +

rD and Accumulator

rA
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evmhoumianw evmhoumianw

Vector multiply half words, odd, unsigned, modulo, integer and accumulate negative 
into words

evmhoumianw rD,rA,rB 

// high
temp0:31 ← rA0:15 ×ui rB0:15
rD0:31 ← ACC0:31 - temp0:31
/
/ low
temp0:31 ← rA32:47 ×ui rB32:47
rD32:63 ← ACC32:63 - temp0:31

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding odd-numbered half-word 
unsigned integer elements in rA and rB are multiplied. Each intermediate product is 
subtracted from the contents of the corresponding accumulator word. The results are placed 
into the corresponding rD and accumulator words. 

Other registers altered: ACC

Figure 111. Odd form of vector half-word multiply (evmhoumianw)

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 1 1 0 0

15 16 47 480 31 32 63
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X X

––

rD and Accumulator
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evmhousiaaw evmhousiaaw

Vector multiply half words, odd, unsigned, saturate, integer and accumulate into 
words

evmhousiaaw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×ui rB16:31 
temp0:63 ← EXTZ(ACC0:31) + EXTZ(temp0:31)
ovh ← temp31
rD0:31 ← SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63) 

//low
temp0:31 ← rA48:63 ×ui rB48:63 
temp0:63 ← EXTZ(ACC32:63) + EXTZ(temp0:31)
ovl ← temp31
rD32:63 ← SATURATE(ovl, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63)

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

For each word element in the accumulator, corresponding odd-numbered half-word 
unsigned integer elements in rA and rB are multiplied producing a 32-bit product. Each 32-
bit product is then added to the corresponding word in the accumulator, saturating if 
overflow occurs, and the result is placed in rD and the accumulator.

If the addition causes overflow, the overflow and summary overflow bits are recorded in the 
SPEFSCR.

Other registers altered: SPEFSCR ACC

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 0 0 0 0 0 1 0 0
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Figure 112. Odd form of vector half-word multiply (evmhousiaaw)

15 16 47 480 31 32 63
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evmhousianw evmhousianw

Vector multiply half words, odd, unsigned, saturate, integer and accumulate negative 
into words

evmhousianw rD,rA,rB 

// high
temp0:31 ← rA16:31 ×ui rB16:31 
temp0:63 ← EXTZ(ACC0:31) - EXTZ(temp0:31)
ovh ← temp31
rD0:31 ← SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63) 

//low
temp0:31 ← rA48:63 ×ui rB48:63 
temp0:63 ← EXTZ(ACC32:63) - EXTZ(temp0:31)
ovl ← temp31
rD32:63 ← SATURATE(ovl, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63)

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

For each word element in the accumulator, corresponding odd-numbered half-word 
unsigned integer elements in rA and rB are multiplied producing a 32-bit product. Each 32-
bit product is then subtracted from the corresponding word in the accumulator, saturating if 
overflow occurs, and the result is placed in rD and the accumulator.

If subtraction causes overflow, the overflow and summary overflow bits are recorded in the 
SPEFSCR.

Other registers altered: SPEFSCR ACC

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 1 0 0 0 0 1 0 0
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Figure 113. Odd form of vector half-word multiply (evmhousianw)
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evmra evmra

Initialize accumulator

evmra rD,rA

ACC0:63 ← rA0:63
rD0:63 ← rA0:63

The contents of rA are written into the accumulator and copied into rD. This is the method 
for initializing the accumulator.

Other registers altered: ACC

Figure 114. Initialize accumulator (evmra)

SPE APU User
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evmwhsmf evmwhsmf

Vector multiply word high signed, modulo, fractional (to accumulator)

evmwhsmf rD,rA,rB (A = 0)
evmwhsmfa rD,rA,rB (A = 1)

// high
temp0:63 ← rA0:31 ×sf rB0:31 
rD0:31 ← temp0:31

// low
temp0:63 ← rA32:63 ×sf rB32:63
rD32:63 ← temp0:31 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding word signed fractional elements in rA and rB are multiplied and bits 0–
31 of the two products are placed into the two corresponding words of rD. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (if A =1)

Figure 115. Vector multiply word high signed, modulo, fractional (to accumulator) 
(evmwhsmf)

 

SPE APU User

0 5 6 10 11 15 16 20 21 25 26 27 31
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X

if evmshdmfa)
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evmwhsmi evmwhsmi

Vector multiply word high signed, modulo, integer (to accumulator)

evmwhsmi rD,rA,rB (A = 0)
evmwhsmia rD,rA,rB (A = 1)

// high
temp0:63 ← rA0:31 ×si rB0:31
rD0:31 ← temp0:31

// low
temp0:63 ← rA32:63 ×si rB32:63
rD32:63 ← temp0:31

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding word signed integer elements in rA and rB are multiplied. Bits 0–31 of 
the two 64-bit products are placed into the two corresponding words of rD. 

If A = 1,The result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 116. Vector multiply word high signed, modulo, integer (to accumulator) 
(evmwhsm)

 

SPE APU User
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evmwhssf evmwhssf

Vector multiply word high signed, saturate, fractional (to accumulator)

evmwhssf rD,rA,rB (A = 0)
evmwhssfa rD,rA,rB (A = 1)

// high
temp0:63 ← rA0:31 ×sf rB0:31 
if (rA0:31 = 0x8000_0000) & (rB0:31 = 0x8000_0000) then

rD0:31 ← 0x7FFF_FFFF //saturate 
movh ← 1

else
rD0:31 ← temp0:31
movh ← 0

// low
temp0:63 ← rA32:63 ×sf rB32:63 
if (rA32:63 = 0x8000_0000) & (rB32:63 = 0x8000_0000) then

rD32:63 ← 0x7FFF_FFFF //saturate
movl ← 1

else
rD32:63 ← temp0:31
movl ← 0

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← movh
SPEFSCROV ← movl
SPEFSCRSOVH ← SPEFSCRSOVH | movh
SPEFSCRSOV ← SPEFSCRSOV | movl

The corresponding word signed fractional elements in rA and rB are multiplied. Bits 0–31 of 
each product are placed into the corresponding words of rD. If both inputs are –1.0, the 
result saturates to the largest positive signed fraction and the overflow and summary 
overflow bits are recorded in the SPEFSCR. 

Other registers altered: SPEFSCR ACC (If A = 1)

SPE APU User

0 5 6 10 11 15 16 20 21 25 26 27 31

0 0 0 1 0 0 rD rA rB 1 0 0 0 1 A 0 0 1 1 1
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Figure 117. Vector multiply word high signed, saturate, fractional (to accumulator) 
(evmwhssf)
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evmwhumi evmwhumi

Vector multiply word high unsigned, modulo, integer (to accumulator)

evmwhumi rD,rA,rB (A = 0)
evmwhumia rD,rA,rB (A = 1)

// high
temp0:63 ← rA0:31 ×ui rB0:31
rD0:31 ← temp0:31

// low
temp0:63 ← rA32:63 ×ui rB32:63
rD32:63 ← temp0:31

// update accumulator
if A = 1, ACC0:63 ← rD0:63

The corresponding word unsigned integer elements in rA and rB are multiplied. Bits 0–31 of 
the two products are placed into the two corresponding words of rD. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 118. Vector multiply word high unsigned, modulo, integer (to accumulator) 
(evmwhumi)

 

SPE APU User
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evmwlsmiaaw evmwlsmiaaw

Vector multiply word low signed, modulo, integer and accumulate in words

evmwlsmiaaw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×si rB0:31
rD0:31 ← ACC0:31 + temp32:63

// low
temp0:63 ← rA32:63 ×si rB32:63
rD32:63 ← ACC32:63 + temp32:63

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding word signed integer elements 
in rA and rB are multiplied. The least significant 32 bits of each intermediate product is 
added to the contents of the corresponding accumulator words, and the result is placed into 
rD and the accumulator.

Other registers altered: ACC

Figure 119. Vector multiply word low signed, modulo, integer & accumulate in words 
(evmwlsmiaaw)

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 1 0 0 1

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

++

rD and Accumulator



Instruction set RM0004

603/1176  

evmwlsmianw evmwlsmianw

Vector multiply word low signed, modulo, integer and accumulate negative in words

evmwlsmianw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×si rB0:31
rD0:31 ← ACC0:31 - temp32:63

// low
temp0:63 ← rA32:63 ×si rB32:63
rD32:63 ← ACC32:63 - temp32:63

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding word elements in rA and rB 
are multiplied. The least significant 32 bits of each intermediate product is subtracted from 
the contents of the corresponding accumulator words and the result is placed in rD and the 
accumulator. 

Other registers altered: ACC

Figure 120. Vector multiply word low signed, modulo, integer and accumulate 
negative in words (evmwlsmianw)
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evmwlssiaaw evmwlssiaaw

Vector multiply word low signed, saturate, integer and accumulate in words

evmwlssiaaw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×si rB0:31 
temp0:63 ← EXTS(ACC0:31) + EXTS(temp32:63)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:63 ← rA32:63 ×si rB32:63 
temp0:63 ← EXTS(ACC32:63) + EXTS(temp32:63)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The corresponding word signed integer elements in rA and rB are multiplied producing a 64-
bit product. The 32 lsbs of each product is added to the corresponding word in the ACC, 
saturating if overflow or underflow occurs; the result is placed in rD and the accumulator.

If there is overflow or underflow from the addition, overflow and summary overflow bits are 
recorded in the SPEFSCR.

Other registers altered: SPEFSCR ACC

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 0 0 0 1
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Figure 121. Vector multiply word low signed, saturate, integer & accumulate in words 
(evmwlssiaaw)
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evmwlssianw evmwlssianw

Vector multiply word low signed, saturate, integer and accumulate negative in words

evmwlssianw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×si rB0:31 
temp0:63 ← EXTS(ACC0:31) - EXTS(temp32:63)
ovh ← (temp31 ⊕ temp32)
rD0:31 ← SATURATE(ovh, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// low
temp0:63 ← rA32:63 ×si rB32:63 
temp0:63 ← EXTS(ACC32:63) - EXTS(temp32:63)
ovl ← (temp31 ⊕ temp32)
rD32:63 ← SATURATE(ovl, temp31, 0x8000_0000, 0x7FFF_FFFF, temp32:63) 

// update accumulator
ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

The corresponding word signed integer elements in rA and rB are multiplied producing a 64-
bit product. The 32 lsbs of each product are subtracted from the corresponding ACC word, 
saturating if overflow or underflow occurs, and the result is placed in rD and the ACC.

If addition causes overflow or underflow, overflow and summary overflow SPEFSCR bits are 
recorded. 

Other registers altered: SPEFSCR ACC

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 0 0 0 1
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Figure 122. Vector multiply word low signed, saturate, integer & accumulate negative 
in words (evmwlssianw)
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evmwlumi evmwlumi

Vector multiply word low unsigned, modulo, integer

evmwlumi rD,rA,rB (A = 0)

evmwlumia rD,rA,rB (A = 1) 

// high
temp0:63 ← rA0:31 ×ui rB0:31
rD0:31 ← temp32:63

// low
temp0:63 ← rA32:63 ×ui rB32:63
rD32:63 ← temp32:63

// update accumulator
If A = 1 then ACC0:63 ← rD0:63

The corresponding word unsigned integer elements in rA and rB are multiplied. The least 
significant 32 bits of each product are placed into the two corresponding words of rD. 

Note: The least significant 32 bits of the product are independent of whether the word 
elements in rA and rB are treated as signed or unsigned 32-bit integers.

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Note that evmwlumi and evmwlumia can be used for signed or unsigned integers.

Figure 123. Vector multiply word low unsigned, modulo, integer (evmwlumi)

SPE APU User
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evmwlumiaaw evmwlumiaaw

Vector multiply word low unsigned, modulo, integer and accumulate in words

evmwlumiaaw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×ui rB0:31
rD0:31 ← ACC0:31 + temp32:63

// low
temp0:63 ← rA32:63 ×ui rB32:63
rD32:63 ← ACC32:63 + temp32:63

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding word unsigned integer 
elements in rA and rB are multiplied. The least significant 32 bits of each product are added 
to the contents of the corresponding accumulator word and the result is placed into rD and 
the accumulator. 

Other registers altered: ACC

Figure 124. Vector multiply word low unsigned, modulo, integer & accumulate in 
words (evmwlumiaaw)

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 1 0 0 0

0 31 32 63

Intermediate product

rB

X

Accumulator

rA

X

++

rD and Accumulator



RM0004 Instruction set

 610/1176

evmwlumianw evmwlumianw

Vector multiply word low unsigned, modulo, integer and accumulate negative in 
words

evmwlumianw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×ui rB0:31
rD0:31 ← ACC0:31 - temp32:63

// low
temp0:63 ← rA32:63 ×ui rB32:63
rD32:63 ← ACC32:63 - temp32:63

// update accumulator
ACC0:63 ← rD0:63

For each word element in the accumulator, the corresponding word unsigned integer 
elements in rA and rB are multiplied. The least significant 32 bits of each product are 
subtracted from the contents of the corresponding accumulator word and the result is placed 
into rD and the accumulator.

Other registers altered: ACC

Figure 125. Vector multiply word low unsigned, modulo, integer & accumulate 
negative in words (evmwlumianw)
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evmwlusiaaw evmwlusiaaw

Vector multiply word low unsigned, saturate, integer and accumulate in words

evmwlusiaaw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×ui rB0:31 
temp0:63 ← EXTZ(ACC0:31) + EXTZ(temp32:63)
ovh ← temp31
rD0:31 ← SATURATE(ovh, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63) 

//low
temp0:63 ← rA32:63 ×ui rB32:63 
temp0:63 ← EXTZ(ACC32:63) + EXTZ(temp32:63)
ovl ← temp31
rD32:63 ← SATURATE(ovl, 0, 0xFFFF_FFFF, 0xFFFF_FFFF, temp32:63)

// update accumulator
ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

For each word element in the ACC, corresponding word unsigned integer elements in rA 
and rB are multiplied, producing a 64-bit product. The 32 lsbs of each product are added to 
the corresponding ACC word, saturating if overflow occurs; the result is placed in rD and the 
ACC.

If the addition causes overflow, the overflow and summary overflow bits are recorded in the 
SPEFSCR. 

Other registers altered: SPEFSCR ACC

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 0 1 0 0 0 0 0 0



RM0004 Instruction set

 612/1176

Figure 126. Vector multiply word low unsigned, saturate, integer & accumulate in 
words (evmwlusiaaw)
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evmwlusianw evmwlusianw

Vector multiply word low unsigned, saturate, integer and accumulate negative in 
words

evmwlusianw rD,rA,rB 

// high
temp0:63 ← rA0:31 ×ui rB0:31 
temp0:63 ← EXTZ(ACC0:31) - EXTZ(temp32:63)
ovh ← temp31
rD0:31 ← SATURATE(ovh, 0, 0x0000_0000, 0x0000_0000, temp32:63) 

//low
temp0:63 ← rA32:63 ×ui rB32:63 
temp0:63 ← EXTZ(ACC32:63) - EXTZ(temp32:63)
ovl ← temp31
rD32:63 ← SATURATE(ovl, 0, 0x0000_0000, 0x0000_0000, temp32:63)
// update accumulator
ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

For each ACC word element, corresponding word elements in rA and rB are multiplied 
producing a 64-bit product. The 32 lsbs of each product are subtracted from corresponding 
ACC words, saturating if underflow occurs; the result is placed in rD and the ACC.

If there is an underflow from the subtraction, the overflow and summary overflow bits are 
recorded in the SPEFSCR. 

Other registers altered: SPEFSCR ACC

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 1 0 1 1 1 0 0 0 0 0 0
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Figure 127. Vector multiply word low unsigned, saturate, integer & accumulate 
negative in words (evmwlusianw)
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evmwsmf evmwsmf

Vector multiply word signed, modulo, fractional (to accumulator)

evmwsmf rD,rA,rB (A = 0)

evmwsmfa rD,rA,rB (A = 1)

rD0:63 ← rA32:63 ×sf rB32:63 

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The corresponding low word signed fractional elements in rA and rB are multiplied. The 
product is placed into rD.

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 128. Vector multiply word signed, modulo, fractional (to accumulator) 
(evmwsmf)
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evmwsmfaa evmwsmfaa

Vector multiply word signed, modulo, fractional and accumulate

evmwsmfaa rD,rA,rB 

temp0:63 ← rA32:63 ×sf rB32:63
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low word signed fractional elements in rA and rB are multiplied. The 
intermediate product is added to the contents of the 64-bit accumulator and the result is 
placed in rD and the accumulator.

Other registers altered: ACC

Figure 129. Vector multiply word signed, modulo, fractional & accumulate 
(evmwsmfaa)
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evmwsmfan evmwsmfan

Vector multiply word signed, modulo, fractional and accumulate negative

evmwsmfan rD,rA,rB 

temp0:63 ← rA32:63 ×sf rB32:63
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The corresponding low word signed fractional elements in rA and rB are multiplied. The 
intermediate product is subtracted from the contents of the accumulator and the result is 
placed in rD and the accumulator.

Other registers altered: ACC

Figure 130. Vector multiply word signed, modulo, fractional & accumulate negative 
(evmwsmfan)
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RM0004 Instruction set

 618/1176

evmwsmi evmwsmi

Vector multiply word signed, modulo, integer (to accumulator)

evmwsmi rD,rA,rB (A = 0)

evmwsmia rD,rA,rB (A = 1)

rD0:63 ← rA32:63 ×si rB32:63

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The low word signed integer elements in rA and rB are multiplied. The product is placed into 
rD. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 131. Vector multiply word signed, modulo, integer (to accumulator) (evmwsmi)
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Instruction set RM0004

619/1176  

evmwsmiaa evmwsmiaa

Vector multiply word signed, modulo, integer and accumulate

evmwsmiaa rD,rA,rB 

temp0:63 ← rA32:63 ×si rB32:63
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The low word signed integer elements in rA and rB are multiplied. The intermediate product 
is added to the contents of the 64-bit accumulator and the result is placed into rD and the 
accumulator.

Other registers altered: ACC

Figure 132. Vector multiply word signed, modulo, integer & accumulate (evmwsmiaa)
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RM0004 Instruction set

 620/1176

evmwsmian evmwsmian

Vector multiply word signed, modulo, integer and accumulate negative

evmwsmian rD,rA,rB 

temp0:63 ← rA32:63 ×si rB32:63
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The low word signed integer elements in rA and rB are multiplied. The intermediate product 
is subtracted from the contents of the 64-bit accumulator and the result is placed into rD and 
the accumulator.

Other registers altered: ACC

Figure 133. Vector multiply word signed, modulo, integer & accumulate negative 
(evmwsmian)
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Instruction set RM0004

621/1176  

evmwssf evmwssf

Vector multiply word signed, saturate, fractional (to accumulator)

evmwssf rD,rA,rB (A = 0)

evmwssfa rD,rA,rB (A = 1)

temp0:63 ← rA32:63 ×sf rB32:63 
if (rA32:63 = 0x8000_0000) & (rB32:63 = 0x8000_0000) then

rD0:63 ← 0x7FFF_FFFF_FFFF_FFFF //saturate
mov ← 1

else
rD0:63 ← temp0:63
mov ← 0

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

// update SPEFSCR
SPEFSCROVH ← 0
SPEFSCROV ← mov
SPEFSCRSOV ← SPEFSCRSOV | mov

The low word signed fractional elements in rA and rB are multiplied. The 64 bit product is 
placed into rD. If both inputs are –1.0, the result saturates to the largest positive signed 
fraction and the overflow and summary overflow bits are recorded in the SPEFSCR.

The architecture specifies that if the final result cannot be represented in 64 bits, 
SPEFSCR[OV] should be set (along with the SOV bit, if it is not already set). 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: SPEFSCR ACC (If A = 1)

Figure 134. Vector multiply word signed, saturate, fractional (to accumulator) 
(evmwssf)

SPE APU User

0 5 6 10 11 15 16 20 21 25 26 27 31

0 0 0 1 0 0 rD rA rB 1 0 0 0 1 A 1 0 0 1 1

0 31 32 63

rD (and accumulator

rB

X

rA

 if evmwssfa)



RM0004 Instruction set

 622/1176

evmwssfaa evmwssfaa

Vector multiply word signed, saturate, fractional and accumulate

evmwssfaa rD,rA,rB 

temp0:63 ← rA32:63 ×sf rB32:63 
if (rA32:63 = 0x8000_0000) & (rB32:63 = 0x8000_0000) then

temp0:63 ← 0x7FFF_FFFF_FFFF_FFFF //saturate 
mov ← 1

else
mov ← 0

temp0:64 ← EXTS(ACC0:63) + EXTS(temp0:63)
ov ← (temp0 ⊕ temp1)
rD0:63 ← temp1:64 ) 
// update accumulator
ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← 0
SPEFSCROV ← mov
SPEFSCRSOV ← SPEFSCRSOV | ov | mov

The low word signed fractional elements in rA and rB are multiplied producing a 64-bit 
product. If both inputs are –1.0, the product saturates to the largest positive signed fraction. 
The 64-bit product is added to the ACC and the result is placed in rD and the ACC.

If there is an overflow from either the multiply or the addition, the SPEFSCR overflow and 
summary overflow bits are recorded. 

Note: There is no saturation on the addition with the accumulator.

Other registers altered: SPEFSCR ACC

Figure 135. Vector multiply word signed, saturate, fractional, & accumulate 
(evmwssfaa)
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Instruction set RM0004

623/1176  

evmwssfan evmwssfan

Vector multiply word signed, saturate, fractional and accumulate negative

evmwssfan rD,rA,rB 

temp0:63 ← rA32:63 ×sf rB32:63 
if (rA32:63 = 0x8000_0000) & (rB32:63 = 0x8000_0000) then

temp0:63 ← 0x7FFF_FFFF_FFFF_FFFF //saturate 
mov ← 1

else
mov ← 0

temp0:64 ← EXTS(ACC0:63) - EXTS(temp0:63)
ov ← (temp0 ⊕ temp1)
rD0:63 ← temp1:64 ) 
// update accumulator
ACC0:63 ← rD0:63
// update SPEFSCR
SPEFSCROVH ← 0
SPEFSCROV ← mov
SPEFSCRSOV ← SPEFSCRSOV | ov | mov

The low word signed fractional elements in rA and rB are multiplied producing a 64-bit 
product. If both inputs are –1.0, the product saturates to the largest positive signed fraction. 
The 64-bit product is subtracted from the ACC and the result is placed in rD and the ACC.

If there is an overflow from either the multiply or the addition, the SPEFSCR overflow and 
summary overflow bits are recorded. 

Note: There is no saturation on the subtraction with the accumulator.

Other registers altered: SPEFSCR ACC
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RM0004 Instruction set

 624/1176

Figure 136. Vector multiply word signed, saturate, fractional & accumulate negative 
(evmwssfan)
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Instruction set RM0004

625/1176  

evmwumi evmwumi

Vector multiply word unsigned, modulo, integer (to accumulator)

evmwumi rD,rA,rB (A = 0)
evmwumia rD,rA,rB (A = 1)

rD0:63 ← rA32:63 ×ui rB32:63

// update accumulator
if A = 1 then ACC0:63 ← rD0:63

The low word unsigned integer elements in rA and rB are multiplied to form a 64-bit product 
that is placed into rD. 

If A = 1, the result in rD is also placed into the accumulator.

Other registers altered: ACC (If A = 1)

Figure 137. Vector multiply word unsigned, modulo, integer (to accumulator) 
(evmwumi)
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RM0004 Instruction set

 626/1176

evmwumiaa evmwumiaa

Vector multiply word unsigned, modulo, integer and accumulate

evmwumiaa rD,rA,rB 

temp0:63 ← rA32:63 ×ui rB32:63
rD0:63 ← ACC0:63 + temp0:63

// update accumulator
ACC0:63 ← rD0:63

The low word unsigned integer elements in rA and rB are multiplied. The intermediate 
product is added to the contents of the 64-bit accumulator, and the resulting value is placed 
into the accumulator and into rD.

Other registers altered: ACC

Figure 138. Vector multiply word unsigned, modulo, integer & accumulate 
(evmwumiaa)
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Instruction set RM0004

627/1176  

evmwumian evmwumian

Vector multiply word unsigned, modulo, integer and accumulate negative

evmwumian rD,rA,rB 

temp0:63 ← rA32:63 ×ui rB32:63
rD0:63 ← ACC0:63 - temp0:63

// update accumulator
ACC0:63 ← rD0:63

The low word unsigned integer elements in rA and rB are multiplied. The intermediate 
product is subtracted from the contents of the 64-bit accumulator, and the resulting value is 
placed into the accumulator and into rD.

Other registers altered: ACC

Figure 139. Vector multiply word unsigned, modulo, integer & accumulate negative 
(evmwumian)
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RM0004 Instruction set

 628/1176

evnand evnand

Vector NAND

evnand rD,rA,rB

rD0:31 ← ¬(rA0:31 & rB0:31) // Bitwise NAND
rD32:63 ← ¬(rA32:63 & rB32:63) // Bitwise NAND

Corresponding word elements of rA and rB are bitwise NANDed. The result is placed in the 
corresponding element of rD.

Figure 140. Vector NAND (evnand)

SPE APU User

0 5 6 10 11 15 16 20 21 31

0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 1 1 1 1 0

0 31 32 63

rA

rB

NAND NAND

rD



Instruction set RM0004

629/1176  

evneg evneg

Vector negate

evneg rD,rA

rD0:31 ← NEG(rA0:31)
rD32:63 ← NEG(rA32:63)

The negative of each element of rA is placed in rD. The negative of 0x8000_0000 (most 
negative number) returns 0x8000_0000. No overflow is detected.

Figure 141. Vector negate (evneg)
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RM0004 Instruction set

 630/1176

evnor evnor

Vector NOR

evnor rD,rA,rB

rD0:31 ← ¬(rA0:31 | rB0:31) // Bitwise NOR
rD32:63 ← ¬(rA32:63 | rB32:63) // Bitwise NOR

Each element of rA and rB is bitwise NORed. The result is placed in the corresponding 
element of rD.

Note: Use evnand or evnor for evnot.

Figure 142. Vector NOR (evnor)
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Instruction set RM0004

631/1176  

evor evor

Vector OR

evor rD,rA,rB

rD0:31 ← rA0:31 | rB0:31 //Bitwise OR
rD32:63 ← rA32:63 | rB32:63 // Bitwise OR

Each element of rA and rB is bitwise ORed. The result is placed in the corresponding 
element of rD.

Figure 143. Vector OR (evor)
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RM0004 Instruction set

 632/1176

evorc evorc

Vector OR with complement

evorc rD,rA,rB

rD0:31 ← rA0:31 | (¬rB0:31) // Bitwise ORC
rD32:63 ← rA32:63 | (¬rB32:63) // Bitwise ORC

Each element of rA is bitwise ORed with the complement of rB. The result is placed in the 
corresponding element of rD.

Figure 144. Vector OR with complement (evorc)
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Instruction set RM0004

633/1176  

evrlw evrlw

Vector rotate left word

evrlw rD,rA,rB

nh ← rB27:31
nl ← rB59:63
rD0:31 ← ROTL(rA0:31, nh)
rD32:63 ← ROTL(rA32:63, nl)

Each of the high and low elements of rA is rotated left by an amount specified in rB. The 
result is placed into rD. Rotate values for each element of rA are found in bit positions 
rB[27–31] and rB[59–63].

Figure 145. Vector rotate left word (evrlw)
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RM0004 Instruction set

 634/1176

evrlwi evrlwi

Vector rotate left word immediate

evrlwi rD,rA,UIMM

n ← UIMM
rD0:31 ← ROTL(rA0:31, n)
rD32:63 ← ROTL(rA32:63, n)

Both the high and low elements of rA are rotated left by an amount specified by a 5-bit 
immediate value.

Figure 146. Vector rotate left word immediate (evrlwi)
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Instruction set RM0004

635/1176  

evrndw evrndw

Vector round word 

evrndw rD,rA

rD0:31 ← (rA0:31+0x00008000) & 0xFFFF0000 // Modulo sum
rD32:63 ← (rA32:63+0x00008000) & 0xFFFF0000 // Modulo sum

The 32-bit elements of rA are rounded into 16 bits. The result is placed into rD. The resulting 
16 bits are placed in the most significant 16 bits of each element of rD, zeroing out the low 
order 16 bits of each element.

Figure 147. Vector round word (evrndw)
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RM0004 Instruction set

 636/1176

evsel evsel

Vector select

evsel rD,rA,rB,crS

ch ← CRcrS*4
cl ← CRcrS*4+1
if (ch = 1) then rD0:31 ← rA0:31
else rD0:31 ← rB0:31
if (cl = 1) then rD32:63 ← rA32:63
else rD32:63 ← rB32:63

If the most significant bit in the crS field of CR is set, the high-order element of rA is placed 
in the high-order element of rD; otherwise, the high-order element of rB is placed into the 
high-order element of rD. If the next most significant bit in the crS field of CR is set, the low-
order element of rA is placed in the low-order element of rD, otherwise, the low-order 
element of rB is placed into the low-order element of rD. This is shown in Figure 148. 

Figure 148. Vector select (evsel)
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Instruction set RM0004

637/1176  

evslw evslw

Vector shift left word

evslw rD,rA,rB

nh ← rB26:31
nl ← rB58:63
rD0:31 ← SL(rA0:31, nh)
rD32:63 ← SL(rA32:63, nl)

Each of the high and low elements of rA are shifted left by an amount specified in rB. The 
result is placed into rD. The separate shift amounts for each element are specified by 6 bits 
in rB that lie in bit positions 26–31 and 58–63.

Shift amounts from 32 to 63 give a zero result.

Figure 149. Vector shift left word (evslw)
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RM0004 Instruction set

 638/1176

evslwi evslwi

Vector shift left word immediate

evslwi rD,rA,UIMM

n ← UIMM
rD0:31 ← SL(rA0:31, n)
rD32:63 ← SL(rA32:63, n)

Both high and low elements of rA are shifted left by the 5-bit UIMM value and the results are 
placed in rD. 

Figure 150. Vector shift left word immediate (evslwi)
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Instruction set RM0004

639/1176  

evsplatfi evsplatfi

Vector splat fractional immediate

evsplatfi rD,SIMM

rD0:31 ← SIMM || 270
rD32:63 ← SIMM || 270

The 5-bit immediate value is padded with trailing zeros and placed in both elements of rD, 
as shown in Figure 151. The SIMM ends up in bit positions rD[0–4] and rD[32–36]. 

Figure 151. Vector splat fractional immediate (evsplatfi)
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RM0004 Instruction set

 640/1176

evsplati evsplati

Vector splat immediate

evsplati rD,SIMM

rD0:31 ← EXTS(SIMM)
rD32:63 ← EXTS(SIMM)

The 5-bit immediate value is sign extended and placed in both elements of rD, as shown in 
Figure 152.

Figure 152. evsplati sign extend
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Instruction set RM0004

641/1176  

evsrwis evsrwis

Vector shift right word immediate signed

evsrwis rD,rA,UIMM

n ← UIMM
rD0:31 ← EXTS(rA0:31-n)
rD32:63 ← EXTS(rA32:63-n)

Both high and low elements of rA are shifted right by the 5-bit UIMM value. Bits in the most 
significant positions vacated by the shift are filled with a copy of the sign bit.

Figure 153. Vector shift right word immediate signed (evsrwis)
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RM0004 Instruction set

 642/1176

evsrwiu evsrwiu

Vector shift right word immediate unsigned

evsrwiu rD,rA,UIMM

n ← UIMM
rD0:31 ← EXTZ(rA0:31-n)
rD32:63 ← EXTZ(rA32:63-n)

Both high and low elements of rA are shifted right by the 5-bit UIMM value; 0 bits are shifted 
in to the most significant position. Bits in the most significant positions vacated by the shift 
are filled with a zero bit.

Figure 154. Vector shift right word immediate unsigned (evsrwiu)
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Instruction set RM0004

643/1176  

evsrws evsrws

Vector shift right word signed

evsrws rD,rA,rB

nh ← rB26:31
nl ← rB58:63
rD0:31 ← EXTS(rA0:31-nh)
rD32:63 ← EXTS(rA32:63-nl)

Both the high and low elements of rA are shifted right by an amount specified in rB. The 
result is placed into rD. The separate shift amounts for each element are specified by 6 bits 
in rB that lie in bit positions 26–31 and 58–63. The sign bits are shifted in to the most 
significant position.

Shift amounts from 32 to 63 give a result of 32 sign bits.

Figure 155. Vector shift right word signed (evsrws)
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RM0004 Instruction set

 644/1176

evsrwu evsrwu

Vector shift right word unsigned

evsrwu rD,rA,rB

nh ← rB26:31
nl ← rB58:63
rD0:31 ← EXTZ(rA0:31-nh)
rD32:63 ← EXTZ(rA32:63-nl)

Both the high and low elements of rA are shifted right by an amount specified in rB. The 
result is placed into rD. The separate shift amounts for each element are specified by 6 bits 
in rB that lie in bit positions 26–31 and 58–63. Zero bits are shifted in to the most significant 
position. 

Shift amounts from 32 to 63 give a zero result.

Figure 156. Vector shift right word unsigned (evsrwu)
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Instruction set RM0004

645/1176  

evstdd evstdd

Vector store double of double

evstdd rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*8)
MEM(EA,8) ← RS0:63

The contents of rS are stored as a double word in storage addressed by EA.

Figure 157 shows how bytes are stored in memory as determined by the endian mode.

Figure 157. evstdd results in big- and little-endian modes

Implementation note: If the EA is not double-word aligned, an alignment exception occurs.
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RM0004 Instruction set

 646/1176

evstddx evstddx

Vector store double of double indexed

evstddx rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,8) ← RS0:63

The contents of rS are stored as a double word in storage addressed by EA.

Figure 158 shows how bytes are stored in memory as determined by the endian mode.

Figure 158. evstddx Results in big- and little-endian modes
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Instruction set RM0004

647/1176  

evstdh evstdh

Vector store double of four half words

evstdh rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*8)
MEM(EA,2) ← RS0:15
MEM(EA+2,2) ← RS16:31
MEM(EA+4,2) ← RS32:47
MEM(EA+6,2) ← RS48:63

The contents of rS are stored as four half words in storage addressed by EA.

Figure 159 shows how bytes are stored in memory as determined by the endian mode.

Figure 159. evstdh Results in big- and little-endian modes

Note: Implementation note: 
If the EA is not double-word aligned, an alignment exception occurs.
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RM0004 Instruction set

 648/1176

evstdhx evstdhx

Vector store double of four half words indexed

evstdhx rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,2) ← RS0:15
MEM(EA+2,2) ← RS16:31
MEM(EA+4,2) ← RS32:47
MEM(EA+6,2) ← RS48:63

The contents of rS are stored as four half words in storage addressed by EA.

Figure 160 shows how bytes are stored in memory as determined by the endian mode.

Figure 160. evstdhx Results in big- and little-endian modes

Note: Implementation: 
If the EA is not double-word aligned, an alignment exception occurs.
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Instruction set RM0004

649/1176  

evstdw evstdw

Vector store double of two words

evstdw rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*8)
MEM(EA,4) ← RS0:31
MEM(EA+4,4) ← RS32:63

The contents of rS are stored as two words in storage addressed by EA.

Figure 161 shows how bytes are stored in memory as determined by the endian mode.

Figure 161. evstdw results in big- and little-endian modes

Note: Implementation:
If the EA is not double-word aligned, an alignment exception occurs.
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 650/1176

evstdwx evstdwx

Vector store double of two words indexed

evstdwx rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,4) ← RS0:31
MEM(EA+4,4) ← RS32:63

The contents of rS are stored as two words in storage addressed by EA.

Figure 162 shows how bytes are stored in memory as determined by the endian mode.

Figure 162. evstdwx Results in big- and little-endian modes

Note: Implementation: 
If the EA is not double-word aligned, an alignment exception occurs.
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Instruction set RM0004

651/1176  

evstwhe evstwhe

Vector store word of two half words from even

evstwhe rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
MEM(EA,2) ← RS0:15
MEM(EA+2,2) ← RS32:47

The even half words from each element of rS are stored as two half words in storage 
addressed by EA.

Figure 163 shows how bytes are stored in memory as determined by the endian mode.

Figure 163. evstwhe Results in big- and little-endian modes

Note: Implementation:
If the EA is not word aligned, an alignment exception occurs.
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 652/1176

evstwhex evstwhex

Vector store word of two half words from even indexed

evstwhex rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,2) ← RS0:15
MEM(EA+2,2) ← RS32:47

The even half words from each element of rS are stored as two half words in storage 
addressed by EA.

Figure 164 shows how bytes are stored in memory as determined by the endian mode.

Figure 164. evstwhex Results in big- and little-endian modes

Note: Implementation: 
If the EA is not word aligned, an alignment exception occurs.
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Instruction set RM0004

653/1176  

evstwho evstwho

Vector store word of two half words from odd

evstwho rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
MEM(EA,2) ← RS16:31
MEM(EA+2,2) ← RS48:63

The odd half words from each element of rS are stored as two half words in storage 
addressed by EA.

Figure 165. evstwho Results in big- and little-endian modes
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 654/1176

evstwhox evstwhox

Vector store word of two half words from odd indexed

evstwhox rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,2) ← RS16:31
MEM(EA+2,2) ← RS48:63

The odd half words from each element of rS are stored as two half words in storage 
addressed by EA.

Figure 166 shows how bytes are stored in memory as determined by the endian mode.

Figure 166. evstwhox Results in big- and little-endian modes

Note: Implementation: 
If the EA is not word aligned, an alignment exception occurs.
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Instruction set RM0004

655/1176  

evstwwe evstwwe

Vector store word of word from even

evstwwe rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
MEM(EA,4) ← RS0:31

The even word of rS is stored in storage addressed by EA.

Figure 167 shows how bytes are stored in memory as determined by the endian mode.

Figure 167. evstwwe Results in big- and little-endian modes

Note: Implementation note: 
If the EA is not word aligned, an alignment exception occurs.
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 656/1176

evstwwex evstwwex

Vector store word of word from even indexed

evstwwex rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,4) ← RS0:31

The even word of rS is stored in storage addressed by EA.

Figure 168 shows how bytes are stored in memory as determined by the endian mode.

Figure 168. evstwwex Results in big- and little-endian modes

Note: Implementation: 
If the EA is not word aligned, an alignment exception occurs.
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Instruction set RM0004

657/1176  

evstwwo evstwwo

Vector store word of word from odd

evstwwo rS,d(rA)

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + EXTZ(UIMM*4)
MEM(EA,4) ← rS32:63

The odd word of rS is stored in storage addressed by EA.

Figure 169 shows how bytes are stored in memory as determined by the endian mode.

Figure 169. evstwwo Results in big- and little-endian modes

Note: Implementation note: 
If the EA is not word aligned, an alignment exception occurs.
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 658/1176

evstwwox evstwwox

Vector store word of word from odd indexed

evstwwox rS,rA,rB

if (rA = 0) then b ← 0
else b ← (rA)
EA ← b + (rB)
MEM(EA,4) ← rS32:63

The odd word of rS is stored in storage addressed by EA.

Figure 170 shows how bytes are stored in memory as determined by the endian mode.

Figure 170. evstwwox Results in big- and little-endian modes

Note: Implementation note:
If the EA is not word aligned, an alignment exception occurs.
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659/1176  

evsubfsmiaaw evsubfsmiaaw

Vector subtract signed, modulo, integer to accumulator word

evsubfsmiaaw rD,rA

// high
rD0:31 ← ACC0:31 - rA0:31

// low
rD32:63 ← ACC32:63 - rA32:63

// update accumulator
ACC0:63 ← rD0:63

Each word element in rA is subtracted from the corresponding element in the accumulator 
and the difference is placed into the corresponding rD word and into the accumulator.

Other registers altered: ACC

Figure 171. Vector subtract signed, modulo, integer to accumulator word 
(evsubfsmiaaw)
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 660/1176

evsubfssiaaw evsubfssiaaw

Vector subtract signed, saturate, integer to accumulator word

evsubfssiaaw rD,rA

// high
temp0:63 ← EXTS(ACC0:31) - EXTS(rA0:31)
ovh ← temp31 ⊕ temp32
rD0:31 ← SATURATE(ovh, temp31, 0x80000000, 0x7fffffff, temp32:63)

// low
temp0:63 ← EXTS(ACC32:63) - EXTS(rA32:63)
ovl ← temp31 ⊕ temp32
rD32:63 ← SATURATE(ovl, temp31, 0x80000000, 0x7fffffff, temp32:63)

// update accumulator
ACC0:63 ← rD0:63

SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

Each signed integer word element in rA is sign-extended and subtracted from the 
corresponding sign-extended element in the accumulator, saturating if overflow occurs, and 
the results are placed in rD and the accumulator. Any overflow is recorded in the SPEFSCR 
overflow and summary overflow bits.

Other registers altered: SPEFSCR ACC

Figure 172. Vector subtract signed, saturate, integer to accumulator word 
(evsubfssiaaw)
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Instruction set RM0004

661/1176  

evsubfumiaaw evsubfumiaaw

Vector subtract unsigned, modulo, integer to accumulator word

evsubfumiaaw rD,rA

// high
rD0:31 ← ACC0:31 - rA0:31

// low
rD32:63 ← ACC32:63 - rA32:63

// update accumulator
ACC0:63 ← rD0:63

Each unsigned integer word element in rA is subtracted from the corresponding element in 
the accumulator and the results are placed in rD and into the accumulator.

Other registers altered: ACC

Figure 173. Vector subtract unsigned, modulo, integer to accumulator word 
(evsubfumiaaw)
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 662/1176

evsubfusiaaw evsubfusiaaw

Vector subtract unsigned, saturate, integer to accumulator word

evsubfusiaaw rD,rA

// high
temp0:63 ← EXTZ(ACC0:31) - EXTZ(rA0:31)
ovh ← temp31 
rD0:31 ← SATURATE(ovh, temp31, 0x00000000, 0x00000000, temp32:63)

// low
temp0:63 ← EXTS(ACC32:63) - EXTS(rA32:63)
ovl ← temp31 
rD32:63 ← SATURATE(ovl, temp31, 0x00000000, 0x00000000, temp32:63)

// update accumulator
ACC0:63 ← rD0:63

SPEFSCROVH ← ovh
SPEFSCROV ← ovl
SPEFSCRSOVH ← SPEFSCRSOVH | ovh
SPEFSCRSOV ← SPEFSCRSOV | ovl

Each unsigned integer word element in rA is zero-extended and subtracted from the 
corresponding zero-extended element in the accumulator, saturating if underflow occurs, 
and the results are placed in rD and the accumulator. Any underflow is recorded in the 
SPEFSCR overflow and summary overflow bits.

Other registers altered: SPEFSCR ACC

Figure 174. Vector subtract unsigned, saturate, integer to accumulator word 
(evsubfusiaaw)
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Instruction set RM0004

663/1176  

evsubfw evsubfw

Vector subtract from word

evsubfw rD,rA,rB

rD0:31 ← rB0:31 - rA0:31 // Modulo difference
rD32:63 ← rB32:63 - rA32:63 // Modulo difference

Each signed integer element of rA is subtracted from the corresponding element of rB and 
the results are placed into rD. 

Figure 175. Vector subtract from word (evsubfw)
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 664/1176

evsubifw evsubifw 

Vector subtract immediate from word

evsubifw rD,UIMM,rB

rD0:31 ← rB0:31 - EXTZ(UIMM) // Modulo difference
rD32:63 ← rB32:63 - EXTZ(UIMM) // Modulo difference

UIMM is zero-extended and subtracted from both the high and low elements of rB. Note that 
the same value is subtracted from both elements of the register. UIMM is 5 bits.

Figure 176. Vector subtract immediate from word (evsubifw)
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Instruction set RM0004

665/1176  

evxor evxor

Vector XOR

evxor rD,rA,rB

rD0:31 ← rA0:31 ⊕ rB0:31 // Bitwise XOR
rD32:63 ← rA32:63 ⊕ rB32:63 // Bitwise XOR

Each element of rA and rB is exclusive-ORed. The results are placed in rD.

Figure 177. Vector XOR (evxor)
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 666/1176

extsb  extsb

Extend sign (byte | half word)

extsb rA,rS (SZ=0b01, Rc=0)
extsb. rA,rS (SZ=0b01, Rc=1)

extsh rA,rS (SZ=0b00, Rc=0)
extsh. rA,rS (SZ=0b00, Rc=1)

if ‘extsb[.]’ then n ← 56
if ‘extsh[.]’ then n ← 48
if ‘extsw’    then n ← 32
if Rc=1 then do

LT  ← rSn:63 < 0
GT  ← rSn:63 > 0
EQ  ← rSn:63 = 0
CR0 ← LT || GT || EQ || SO

s ← rSn
rA ← ns || rSn:63

For extsb[.], the contents of rS[56–63] are placed into rA[56–63]. Bit rS[56] is copied into 
bits 0–55 of rA. If Rc=1, CR field 0 is set to reflect the result.

For extsh[.], the contents of rS[48–63] are placed into rA[48–63]. rS[48] is copied into rA[0–
47]. If Rc=1, CR field 0 is set to reflect the result.

● Other registers altered:
CR0 (if Rc=1)

Book E User
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Instruction set RM0004

667/1176  

_extsbx _extsbx

Extend Sign (Byte | Halfword)

se_extsb rX

se_extsh rX

if se_extsb then n ← 56
if se_extsh then n ← 48
if ‘extsw’    then n ← 32
if Rc=1 then do

LT  ← GPR(RS)n:63 < 0
GT  ← GPR(RS)n:63 > 0
EQ  ← GPR(RS)n:63 = 0
CR0 ← LT || GT || EQ || SO

s ← GPR(RS or RX)n
GPR(RA or RX) ← n-32s || GPR(RS or RX)n:63

For se_extsb, the contents of bits 56–63 of GPR(rX) are placed into bits 56–63 of GPR(rX). 
Bit 56 of the contents of GPR(rX) is copied into bits 32–55 of GPR(rX).

For se_extsh, the contents of bits 48–63 of GPR(rX) are placed into bits 48–63 of GPR(rX). 
Bit 48 of the contents of GPR(rX) is copied into bits 32–47 of GPR(rX).

Special Registers Altered: CR0 (if Rc=1)

0 5 6 11 12 15

0 0 0 0 0 0 0 0 1 1 0 1 RX

0 5 6 11 12 15

0 0 0 0 0 0 0 0 1 1 1 1 RX
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 668/1176

_extzx _extzx

Extend Zero (Byte | Halfword)

se_extzb rX

se_extzh rX

if ‘se_extzb’  then n ← 56
if ‘se_extzh’  then n ← 48
GPR(RX) ← n-320 || GPR(RX)n:63

For se_extzb, the contents of bits 56–63 of GPR(rX) are placed into bits 56–63 of GPR(rX). 
Bits 32–55 of GPR(rX) are cleared.

For se_extzh, the contents of bits 48–63 of GPR(rX) are placed into bits 48–63 of GPR(rX). 
Bits 32–47 of GPR(rX) are cleared.

Special Registers Altered: None

0 5 6 11 12 15

0 0 0 0 0 0 0 0 1 1 0 0 RX

0 5 6 11 12 15

0 0 0 0 0 0 0 0 1 1 1 0 RX

VLE User



Instruction set RM0004

669/1176  

fabs fabs

Floating absolute value

fabs frD,frB (Rc=0)
fabs. frD,frB (Rc=1)

frD) ← 0b0||frB1:63

The contents of frB with bit 0 cleared are placed into frD.

If MSR[FP]=0, an attempt to execute fabs[.] causes a floating-point unavailable interrupt.

Other registers altered:

● CR1 ← FX || FEX || VX || OX (if Rc=1)

Book E User
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 670/1176

fadd fadd

Floating add [single]

fadd frD,frA,frB (P=1, Rc=0)
fadd. frD,frA,frB (P=1, Rc=1)

fadds frD,frA,frB (P=0, Rc=0)
fadds. frD,frA,frB (P=0, Rc=1)

if P=1 then frD ← frA +dp frB
else frD ← frA +sp frB

The floating-point operand in frA is added to the floating-point operand in frB.

If the msb of the resultant significand is not 1, the result is normalized. The result is rounded 
to the target precision under control of the floating-point rounding control field, FPSCR[RN], 
and placed into frD.

Floating-point addition is based on exponent comparison and addition of the two 
significands. The exponents of the two operands are compared, and the significand 
accompanying the smaller exponent is shifted right, with its exponent increased by one for 
each bit shifted, until the two exponents are equal. The two significands are then added or 
subtracted as appropriate, depending on the signs of the operands, to form an intermediate 
sum. All 53 bits of the significand as well as all three guard bits (G, R, and X) enter into the 
computation.

If a carry occurs, the sum’s significand is shifted right one bit position and the exponent is 
increased by one.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation 
exceptions when FPSCR[VE]=1.

If MSR[FP]=0, an attempt to execute fadd[s][.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPRF FR FI FX OX UX XX VXSNAN VXISI 
CR1 ← FX || FEX || VX || OX (if Rc=1)
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Instruction set RM0004

671/1176  

fcfid fcfid

Floating convert from integer doubleword

fcfid frD,frB

sign ← frB0
exp ← 63
frac0:63 ← frB
If frac0:63 = 0 then go to Zero Operand
If sign = 1 then frac0:63 ← ¬frac0:63 + 1
Do while frac0 = 0 /* do loop 0 times if frB = max negative integer */

frac0:63 ← frac1:63 || 0b0
exp ← exp : 1

End
Round Float( sign, exp, frac0:63, FPSCR[RN] )
If sign = 0 then FPSCR[FPRF] ← ‘+normal number’
If sign = 1 then FPSCR[FPRF] ← ‘:normal number’
frD0 ← sign
frD[1-11] ← exp + 1023   /* exp + bias */
frD[12-63] ← frac1:52
Done

Zero Operand:
FPSCR[FR,FI] ← 0b00
FPSCR[FPRF] ← ‘+zero’
frD ← 0x0000_0000_0000_0000
Done

Round Float( sign, exp, frac0:63, round_mode ):
inc ← 0
lsb ← frac52
gbit ← frac53
rbit ← frac54
xbit ← frac55:63 > 0
If round_mode = 0b00 then

Do /* comparison ignores u bits */
If sign || lsb || gbit || rbit || xbit = 0bu11uu then 

inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then 

inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then 

inc ← 1
End

If round_mode = 0b10 then
Do /* comparison ignores u bits */

If sign || lsb || gbit || rbit || xbit = 0b0u1uu then 
inc ← 1

If sign || lsb || gbit || rbit || xbit = 0b0uu1u then 
inc ← 1

If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then 

Book E User
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 672/1176

inc ← 1
End

If round_mode = 0b11 then
Do /* comparison ignores u bits */

If sign || lsb || gbit || rbit || xbit = 0b1u1uu then 
inc ← 1

If sign || lsb || gbit || rbit || xbit = 0b1uu1u then 
inc ← 1

If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then 
inc ← 1

End
frac0:52 ← frac0:52 + inc
If carry_out = 1 then exp ← exp + 1
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI] 
Return 

The 64-bit signed operand in frB is converted to an infinitely precise floating-point integer. 
The result of the conversion is rounded to double-precision, as specified by FPSCR[RN], 
and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result. FPSCR[FR] is set if the result is 
incremented when rounded. FPSCR[FI] is set if the result is inexact.

If MSR[FP]=0, an attempt to execute fcfid causes a floating-point unavailable interrupt.

Other registers altered: FPRF FR FI FX XX
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fcmpu fcmpu

Floating compare

fcmpu crD,frA,frB (U=0)
fcmpo crD,frA,frB (U=1)

if frA is a NaN or
   frB is a NaN then        c ← 0b0001
else if frA < frB then c ← 0b1000
else if frA > frB then c ← 0b0100
else                             c ← 0b0010
FPCC ← c
CR4×crD:4×crD+3 ← c
if ‘fcmpu’ & (frA is a SNaN or frB is a SNaN) then VXSNAN ← 1
if ‘fcmpo’ then do
   if frA is a SNaN or frB is a SNaN then do
      if VE=0 then VXVC ← 1
   else if frA is a QNaN or frB is a QNaN then VXVC ← 1

The floating-point operand in frA is compared to the floating-point operand in frB. The result 
of the compare is placed into CR field crD and the FPCC.

If either of the operands is a NaN, either quiet or signaling, the CR field crD and the FPCC 
are set to reflect unordered. 

If fcmpu, then if either of the operands is a signaling NaN, VXSNAN is set.

If fcmpo, then do the following:

If either of the operands is a signaling NaN and invalid operation is disabled 
(VE=0), VXVC is set. If neither operand is a signaling NaN but at least one 
operand is a quiet NaN, then VXVC is set.

If MSR[FP]=0, an attempt to execute fcmpo or fcmpu causes a floating-point unavailable 
interrupt.

Other registers altered:

● CR field crD
FPCC FX VXSNAN
VXVC(if fcmpo)
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fctid fctid

Floating convert to integer doubleword

fctid frD,frB (Z=0)
fctidz frD,frB (Z=1)

if ‘fctid[.]’  then round_mode ← FPSCR[RN]
if ‘fctidz[.]’ then round_mode ← 0b01
sign ← frB0 
If frB[1:11] = 2047 and frB[12:63] = 0 then goto Infinity Operand
If frB[1:11] = 2047 and frB12 = 0 then goto SNaN Operand
If frB[1:11] = 2047 and frB12 = 1 then goto QNaN Operand
If frB[1:11] > 1086 then goto Large Operand
If frB[1:11] > 0 then exp ← frB[1:11] : 1023   /* exp : bias */
If frB[1:11] = 0 then exp ← :1022

/* normal; need leading 0 for later complement */
If frB[1:11] > 0 then frac0:64 ← 0b01 || frB[12:63] || 110

/* denormal */
If frB[1:11] = 0 then frac0:64 ← 0b00 || frB[12:63] || 110
gbit || rbit || xbit ← 0b000
Do i=1,63:exp   /* do the loop 0 times if exp = 63 */

frac0:64 || gbit || rbit || xbit ← 0b0 || frac0:64 || gbit || (rbit | 
xbit)

End
Round Integer( sign, frac0:64, gbit, rbit, xbit, round_mode )

/* needed leading 0 for :264 < frB < :263 */
If sign=1 then frac0:64 ← ¬frac0:64 + 1
If frac0:64 > 263:1 then goto Large Operand
If frac0:64 < :263 then goto Large Operand
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
FPSCR[FPRF] ← undefined
frD ← frac1:64
Done

Round Integer( sign,frac0:64, gbit, rbit, xbit, round_mode ):
inc ← 0
If round_mode = 0b00 then /* comparison ignores u bits */

Do
If sign || frac64 || gbit || rbit || xbit = 0bu11uu 

then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0bu011u 

then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0bu01u1 

then inc ← 1
End

If round_mode = 0b10 then /* comparison ignores u bits */
Do

If sign || frac64 || gbit || rbit || xbit = 0b0u1uu 
then inc ← 1
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If sign || frac64 || gbit || rbit || xbit = 0b0uu1u 
then inc ← 1

If sign || frac64 || gbit || rbit || xbit = 0b0uuu1 
then inc ← 1

End
If round_mode = 0b11 then /* comparison ignores u bits */

Do
If sign || frac64 || gbit || rbit || xbit = 0b1u1uu 

then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b1uu1u 

then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b1uuu1 

then inc ← 1
End

frac0:64 ← frac0:64 + inc
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
Return

Infinity Operand:
FPSCR[FR,FI,VXCVI] ← 0b001 
If FPSCR[VE] = 0 then Do 

If sign = 0 then frD ← 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 then frD ← 0x8000_0000_0000_0000
FPSCR[FPRF] ← undefined

End
Done

SNaN Operand:
FPSCR[FR,FI,VXSNAN,VXCVI] ← 0b0011
If FPSCR[VE] = 0 then Do

frD ← 0x8000_0000_0000_0000
FPSCR[FPRF] ← undefined

End
Done

QNaN Operand:
FPSCR[FR,FI,VXCVI] ← 0b001
If FPSCR[VE] = 0 then Do

frD ← 0x8000_0000_0000_0000
FPSCR[FPRF] ← undefined

End
Done 

Large Operand:
FPSCR[FR,FI,VXCVI] ← 0b001
If FPSCR[VE] = 0 then Do

If sign = 0 then frD ← 0x7FFF_FFFF_FFFF_FFFF
If sign = 1 then frD ← 0x8000_0000_0000_0000
FPSCR[FPRF] ← undefined

End
Done

For fctid or fctid., the rounding mode is specified by FPSCR[RN].

For fctidz or fctidz., the rounding mode used is round toward zero.
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The floating-point operand in frB is converted to a 64-bit signed integer, using the rounding 
mode specified by the instruction, and placed into frD.

If the floating-point operand in frB is greater than 263–1, then 0x7FFF_FFFF_FFFF_FFFF is 
placed into frD. If the floating-point operand in frB is less than –263, 
0x8000_0000_0000_0000 is placed into frD.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is 
set if the result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

If MSR[FP]=0, an attempt to execute fctid[z] causes a floating-point unavailable interrupt.

Other registers altered:

● FPRF (undefined) FR FI FX XX VXSNAN VXCVI 
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fctiw fctiw

Floating convert to integer word

fctiw frD,frB (Z=0, Rc=0)
fctiw. frD,frB (Z=0, Rc=1)

fctiwz frD,frB (Z=1, Rc=0)
fctiwz. frD,frB (Z=1, Rc=1)

if ‘fctiw[.]’  then round_mode ← FPSCR[RN]
if ‘fctiwz[.]’ then round_mode ← 0b01
sign ← frB0 
If frB[1:11] = 2047 and frB[12:63] = 0 then goto Infinity Operand
If frB[1:11] = 2047 and frB12 = 0 then goto SNaN Operand
If frB[1:11] = 2047 and frB12 = 1 then goto QNaN Operand
If frB[1:11] > 1086 then goto Large Operand
If frB[1:11] > 0 then exp ← frB[1:11] : 1023   /* exp : bias */
If frB[1:11] = 0 then exp ← :1022

/* normal; need leading 0 for later complement */
If frB[1:11] > 0 then frac0:64 ← 0b01 || frB[12:63] || 110

/* denormal */
If frB[1:11] = 0 then frac0:64 ← 0b00 || frB[12:63] || 110
gbit || rbit || xbit ← 0b000
Do i=1,63:exp   /* do the loop 0 times if exp = 63 */

frac0:64 || gbit || rbit || xbit ← 0b0 || frac0:64 || gbit || (rbit | 
xbit)

End
Round Integer( sign, frac0:64, gbit, rbit, xbit, round_mode )

/* needed leading 0 for :264 < frB < :263 */
If sign=1 then frac0:64 ← ¬frac0:64 + 1
If frac0:64 > 231:1 then goto Large Operand
If frac0:64 < :231 then goto Large Operand
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
frD ← 0xuuuu_uuuu || frac33:64 /* u is undefined hex digit */
FPSCR[FPRF] ← undefined
Done

Round Integer( sign, frac0:64, gbit, rbit, xbit, round_mode ):
inc ← 0
If round_mode = 0b00 then /* comparison ignores u bits */

Do
If sign || frac64 || gbit || rbit || xbit = 0bu11uu 

then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0bu011u 

then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0bu01u1 

then inc ← 1
End

If round_mode = 0b10 then /* comparison ignores u bits */
Do
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If sign || frac64 || gbit || rbit || xbit = 0b0u1uu 
then inc ← 1

If sign || frac64 || gbit || rbit || xbit = 0b0uu1u 
then inc ← 1

If sign || frac64 || gbit || rbit || xbit = 0b0uuu1 
then inc ← 1

End
If round_mode = 0b11 then /* comparison ignores u bits */

Do
If sign || frac64 || gbit || rbit || xbit = 0b1u1uu 

then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b1uu1u 

then inc ← 1
If sign || frac64 || gbit || rbit || xbit = 0b1uuu1 

then inc ← 1
End

frac0:64 ← frac0:64 + inc
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
Return

Infinity Operand: 
FPSCR[FR,FI,VXCVI] ← 0b001 
If FPSCR[VE] = 0 then Do /* u is undefined hex digit */

If sign = 0 then frD ← 0xuuuu_uuuu_7FFF_FFFF 
If sign = 1 then frD ← 0xuuuu_uuuu_8000_0000
FPSCR[FPRF] ← undefined

End
Done

SNaN Operand: 
FPSCR[FR,FI,VXSNAN,VXCVI] ← 0b0011
If FPSCR[VE] = 0 then Do    /* u is undefined hex digit */

frD ← 0xuuuu_uuuu_8000_0000
FPSCR[FPRF] ← undefined

End
Done

QNaN Operand: 
FPSCR[FR,FI,VXCVI] ← 0b001
If FPSCR[VE] = 0 then Do /* u is undefined hex digit */

frD ← 0xuuuu_uuuu_8000_0000
FPSCR[FPRF] ← undefined

End
Done 

Large Operand:
FPSCR[FR,FI,VXCVI] ← 0b001
If FPSCR[VE] = 0 then Do /* u is undefined hex digit */

If sign = 0 then frD ← 0xuuuu_uuuu_7FFF_FFFF
If sign = 1 then frD ← 0xuuuu_uuuu_8000_0000
FPSCR[FPRF] ← undefined

End
Done

For fctiw or fctiw., the rounding mode is specified by FPSCR[RN].
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For fctiwz or fctiwz., the rounding mode used is round toward zero.

The floating-point operand in frB is converted to a 32-bit signed integer, using the rounding 
mode specified by the instruction, and placed into frD[32–63]; frD[0–31] are undefined.

If the operand in frB is greater than 231–1, then frD[32–63] are set to 0x7FFF_FFFF. If the 
operand in frB is less than –231, then frD[32–63] are set to 0x8000_0000.

Except for enabled invalid operation exceptions, FPSCR[FPRF] is undefined. FPSCR[FR] is 
set if the result is incremented when rounded. FPSCR[FI] is set if the result is inexact.

If MSR[FP]=0, an attempt to execute fctiw[z][.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPRF (undefined) FR FI FX XX VXSNAN VXCVI 
CR1 ← FX || FEX || VX || OX (if Rc=1)
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fdiv fdiv

Floating divide [single]

fdiv frD,frA,frB (P=1, Rc=0)
fdiv. frD,frA,frB (P=1, Rc=1)

fdivs frD,frA,frB (P=0, Rc=0)
fdivs. frD,frA,frB (P=0, Rc=1)

if P=1 then frD ← frA ÷dp frB
else        frD ← frA ÷sp frB

The floating-point operand in frA is divided by the floating-point operand in frB. The 
remainder is not supplied as a result.

If the msb of the resultant significand is not 1, the result is normalized. The result is rounded 
to the target precision under control of the floating-point rounding control field, FPSCR[RN], 
and placed into frD.

Floating-point division is based on exponent subtraction and division of the significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation 
exceptions when FPSCR[VE]=1 and zero divide exceptions when FPSCR[ZE]=1.

If MSR[FP]=0, an attempt to execute fdiv[s][.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPRF FR FI FX OX UX ZX XX VXSNAN VXIDI VXZDZ
CR1 ← FX || FEX || VX || OX (if Rc=1)
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fmadd fmadd

Floating multiply-add [single]

fmadd frD,frA,frC,frB (P=1, Rc=0)
fmadd. frD,frA,frC,frB (P=1, Rc=1)

fmadds frD,frA,frC,frB (P=0, Rc=0)
fmadds. frD,frA,frC,frB (P=0, Rc=1)

if P=1 then frD ← [frA ×fp frC] +dp frB
else        frD ← [frA ×fp frC] +sp frB

The floating-point operand in frA is multiplied by the floating-point operand in frC. The 
floating-point operand in frB is added to this intermediate result.

If the msb of the resultant significand is not 1, the result is normalized. The result is rounded 
to the target precision under control of the floating-point rounding control field, FPSCR[RN], 
and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation 
exceptions when FPSCR[VE]=1.

If MSR[FP]=0, an attempt to execute fmadd[s][.] causes a floating-point unavailable 
interrupt.

Other registers altered:

● FPRF FR FI FX OX UX XX VXSNAN VXISI VXIMZ
CR1 ← FX || FEX || VX || OX (if Rc=1)
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fmr fmr

Floating move register

fmr frD,frB (Rc=0)
fmr. frD,frB (Rc=1)

frD ← frB

The contents of frB are placed into frD.

If MSR[FP]=0, an attempt to execute fmr[.] causes a floating-point unavailable interrupt.

Other registers altered:

● CR1 ← FX || FEX || VX || OX (if Rc=1)
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fmsub fmsub

Floating multiply-subtract [single]

fmsub frD,frA,frC,frB (P=1, Rc=0)
fmsub. frD,frA,frC,frB (P=1, Rc=1)

fmsubs frD,frA,frC,frB (P=0, Rc=0)
fmsubs. frD,frA,frC,frB (P=0, Rc=1)

if P=1 then frD ← [frA ×fp frC] -dp frB
else        frD ← [frA ×fp frC] -sp frB

The floating-point operand in frA is multiplied by the floating-point operand in frC. The 
floating-point operand in frB is subtracted from this intermediate result.

If the msb of the resultant significand is not 1, the result is normalized. The result is rounded 
to the target precision under control of the floating-point rounding control field, FPSCR[RN], 
and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation 
exceptions when FPSCR[VE]=1.

If MSR[FP]=0, an attempt to execute fmsub[s][.] causes a floating-point unavailable 
interrupt.

Other registers altered:

● FPRF FR FI FX OX UX XX VXSNAN VXISI VXIMZ
CR1 ← FX || FEX || VX || OX (if Rc=1)
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fmul fmul

Floating multiply [single]

fmul frD,frA,frC (P=1, Rc=0)
fmul. frD,frA,frC (P=1, Rc=1)

fmuls frD,frA,frC (P=0, Rc=0)
fmuls. frD,frA,frC (P=0, Rc=1)

if P=1 then frD ← frA ×dp frC
else        frD ← frA ×sp frC

The floating-point operand in frA is multiplied by the floating-point operand in frC.

If the msb of the resultant significand is not 1, the result is normalized. The result is rounded 
to the target precision under control of the floating-point rounding control field, FPSCR[RN], 
and placed into frD.

Floating-point multiplication is based on exponent addition and multiplication of the 
significands.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation 
exceptions when FPSCR[VE]=1.

If MSR[FP]=0, an attempt to execute fmul[s][.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPRF FR FI FX OX UX XX VXSNAN VXIMZ 
CR1 ← FX || FEX || VX || OX (if Rc=1)
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fnabs fnabs

Floating negative absolute value

fnabs frD,frB (Rc=0)
fnabs. frD,frB (Rc=1)

frD ← 0b1||frB1:63

The contents of frB with bit 0 set are placed into frD.

If MSR[FP]=0, an attempt to execute fnabs[.] causes a floating-point unavailable interrupt.

Other registers altered:

● CR1 ← FX || FEX || VX || OX (if Rc=1)
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fneg fneg

Floating negate

fneg frD,frB (Rc=0)
fneg. frD,frB (Rc=1)

frD ← ¬frB0||frB1:63

The contents of frB with bit 0 inverted are placed into frD.

If MSR[FP]=0, an attempt to execute fneg[.] causes a floating-point unavailable interrupt.

Other registers altered:

● CR1 ← FX || FEX || VX || OX (if Rc=1)
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fnmadd fnmadd

Floating negative multiply-add [single]

fnmadd frD,frA,frC,frB (P=1, Rc=0)
fnmadd. frD,frA,frC,frB (P=1, Rc=1)

fnmadds frD,frA,frC,frB (P=0, Rc=0)
fnmadds. frD,frA,frC,frB (P=0, Rc=1)

if P=1 then frD ← -([frA ×fp frC] +dp frB)
else        frD ← -([frA ×fp frC] +sp frB)

The floating-point operand in frA is multiplied by the floating-point operand in frC. The 
floating-point operand in frB is added to this intermediate result.

If the msb of the resultant significand is not 1, the result is normalized. The result is rounded 
to the target precision under control of the floating-point rounding control field, FPSCR[RN], 
then negated and placed into frD.

This instruction produces the same result as would be obtained by using the Floating 
Multiply-Add instruction and then negating the result, with the following exceptions.

● QNaNs propagate with no effect on their sign bit.

● QNaNs that are generated as the result of a disabled invalid operation exception have a 
sign bit of 0.

● SNaNs that are converted to QNaNs as the result of a disabled invalid operation 
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation 
exceptions when FPSCR[VE]=1.

An attempt to execute fnmadd[s][.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPRF FR FI FX OX UX XX  VXSNAN VXISI VXIMZ
CR1 ← FX || FEX || VX || OX (if Rc=1)
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fnmsub fnmsub

Floating negative multiply-subtract [single]

fnmsub frD,frA,frC,frB (P=1, Rc=0)
fnmsub. frD,frA,frC,frB (P=1, Rc=1)

fnmsubs frD,frA,frC,frB (P=0, Rc=0)
fnmsubs. frD,frA,frC,frB (P=0, Rc=1)

if P=1 then frD ← -([frA ×fp frC] :dp frB)
else        frD ← -([frA ×fp frC] :sp frB)

The floating-point operand in frA is multiplied by the floating-point operand in frC. The 
floating-point operand in frB is subtracted from this intermediate result.

If the msb of the resultant significand is not 1, the result is normalized. The result is rounded 
to the target precision under control of the floating-point rounding control field, FPSCR[RN], 
then negated and placed into frD.

This instruction produces the same result as would be obtained by using the Floating 
Multiply-Subtract instruction and then negating the result, with the following exceptions.

● QNaNs propagate with no effect on their sign bit.

● QNaNs that are generated as the result of a disabled invalid operation exception have a 
sign bit of 0.

● SNaNs that are converted to QNaNs as the result of a disabled invalid operation 
exception retain the sign bit of the SNaN.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation 
exceptions when FPSCR[VE]=1.

An attempt to execute fnmsub[s][.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPRF FR FI FX OX UX XX  VXSNAN VXISI VXIMZ
CR1 ← FX || FEX || VX || OX (if Rc=1)
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fres fres

Floating reciprocal estimate single

fres frD,frB (Rc=0)
fres. frD,frB (Rc=1)

frD ← FPReciprocalEstimate( frB )

A single-precision estimate of the reciprocal of the floating-point operand in frB is placed 
into frD. The estimate placed into frD is correct to a precision of one part in 256 of the 
reciprocal of (frB), that is,

         

In this example, x is the initial value in frB. Note that the value placed into frD may vary 
between implementations, and between different executions on the same implementation.

Operation with various special values of the operand is summarized in Table 204.

         

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation 
exceptions when FPSCR[VE]=1 and zero divide exceptions when FPSCR[ZE]=1.

If MSR[FP]=0, an attempt to execute fres[.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPRF FR (undefined) FI (undefined)
FX OX UX ZX VXSNAN
CR1 ← FX || FEX || VX || OX (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 25 26 30 31

1 1 1 0 1 1 frD /// frB /// 1 1 0 0 0 Rc

Table 204. Operations with special values

Operand Result Exception 

–∞ –0 None 

–0 –∞ (No result if FPSCR[ZE] = 1) ZX 

+0 +∞ (No result if FPSCR[ZE] = 1) ZX 

+∞ +0 None 

SNaN QNaN (No result if FPSCR[VE] = 1.) VXSNAN 

QNaN QNaN None

estimate - 1
x
---

1
x
---

-------------------------------
1

256
----------≤
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frsp frsp

Floating round to single-precision

frsp frD,frB (Rc=0)
frsp. frD,frB (Rc=1)

If frB[1:11] < 897 and frB1:63 > 0 then Do
If FPSCR[UE] = 0 then goto Disabled Exponent Underflow
If FPSCR[UE] = 1 then goto Enabled Exponent Underflow

If frB[1:11] > 1150 and frB[1:11] < 2047 then Do
If FPSCR[OE] = 0 then goto Disabled Exponent Overflow
If FPSCR[OE] = 1 then goto Enabled Exponent Overflow

If frB[1:11] > 896 and frB[1:11] < 1151 then goto Normal Operand
If frB1:63 = 0 then goto Zero Operand
If frB[1:11] = 2047 then Do

If frB[12:63] = 0 then goto Infinity Operand
If frB12 = 1 then goto QNaN Operand
If frB12 = 0 and frB[13:63] > 0 then goto SNaN Operand

Disabled Exponent Underflow:
sign ← frB0
If frB[1:11] = 0 then Do

exp ← :1022
frac0:52 ← 0b0 || frB[12:63]

If frB[1:11] > 0 then Do
exp ← frB[1:11] : 1023
fr ← 0b1 || frB[12:63]

Denormalize operand:
G || R || X ← 0b000
Do while exp < :126

exp ← exp + 1
frac0:52 || G || R || X ← 0b0 || frac0:52 || G || (R | 

X)
FPSCR[UX] ← (frac24:52 || G || R || X) > 0
Round Single(sign,exp,frac0:52,G,R,X)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
If frac0:52 = 0 then Do

frD0 ← sign
frD1:63 ← 0
If sign = 0 then FPSCR[FPRF] ← ‘+zero’
If sign = 1 then FPSCR[FPRF] ← ‘:zero’

If frac0:52 > 0 then Do
If frac0 = 1 then Do

If sign = 0 then FPSCR[FPRF] ← ‘+normal 
number’

If sign = 1 then FPSCR[FPRF] ← ‘:normal 
number’

If frac0 = 0 then Do
If sign = 0 then FPSCR[FPRF] ← 

Book E User

0 5 6 10 11 15 16 20 21 30 31

1 1 1 1 1 1 frD /// frB 0 0 0 0 0 0 1 1 0 0 Rc
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‘+denormalized number’
If sign = 1 then FPSCR[FPRF] ← 

‘:denormalized number’
Normalize operand:

Do while frac0 = 0
exp ← exp:1
frac0:52 ← frac1:52 || 0b0

frD0 ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac1:52

Done
Enabled exponent underflow:

FPSCR[UX] ← 1
sign ← frB0
If frB[1:11] = 0 then Do

exp ← :1022
frac0:52 ← 0b0 || frB[12:63]

If frB[1:11] > 0 then Do
exp ← frB[1:11] : 1023
frac0:52 ← 0b1 || frB[12:63]

Normalize operand:
Do while frac0 = 0

exp ← exp : 1
frac0:52 ← frac1:52 || 0b0

Round Single(sign,exp,frac0:52,0,0,0)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
exp ← exp + 192
frD0 ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac1:52
If sign = 0 then FPSCR[FPRF] ← ‘+normal number’
If sign = 1 then FPSCR[FPRF] ← ‘:normal number’
Done

Disabled exponent overflow
FPSCR[OX] ← 1
If FPSCR[RN] = 0b00 then Do               /* Round to Nearest 

*/
If frB0 = 0 then frD ← 

0x7FF0_0000_0000_0000
If frB0 = 1 then frD ← 

0xFFF0_0000_0000_0000
If frB0 = 0 then FPSCR[FPRF] ← ‘+infinity’
If frB0 = 1 then FPSCR[FPRF] ← ‘:infinity’

If FPSCR[RN] = 0b01 then Do                /* Round toward 
Zero */

If frB0 = 0 then frD ← 
0x47EF_FFFF_E000_0000

If frB0 = 1 then frD ← 
0xC7EF_FFFF_E000_0000

If frB0 = 0 then FPSCR[FPRF] ← ‘+normal 
number’

If frB0 = 1 then FPSCR[FPRF] ← ‘:normal 
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number’
If FPSCR[RN] = 0b10 then Do                /* Round toward 

+Infinity */
If frB0 = 0 then frD ← 

0x7FF0_0000_0000_0000
If frB0 = 1 then frD ← 

0xC7EF_FFFF_E000_0000
If frB0 = 0 then FPSCR[FPRF] ← ‘+infinity’
If frB0 = 1 then FPSCR[FPRF] ← ‘:normal 

number’
If FPSCR[RN] = 0b11 then Do                /* Round toward 

:Infinity */
If frB0 = 0 then frD ← 

0x47EF_FFFF_E000_0000
If frB0 = 1 then frD ← 

0xFFF0_0000_0000_0000
If frB0 = 0 then FPSCR[FPRF] ← ‘+normal 

number’
If frB0 = 1 then FPSCR[FPRF] ← ‘:infinity’

FPSCR[FR] ← undefined
FPSCR[FI] ← 1
FPSCR[XX] ← 1
Done

Enabled Exponent Overflow:
sign ← frB0
exp ← frB[1:11] : 1023
frac0:52 ← 0b1 || frB[12:63]
Round Single(sign,exp,frac0:52,0,0,0)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]

Enabled Overflow:
FPSCR[OX] ← 1
exp ← exp : 192
frD0 ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac1:52
If sign = 0 then FPSCR[FPRF] ← ‘+normal number’
If sign = 1 then FPSCR[FPRF] ← ‘:normal number’
Done

Zero Operand:
frD ← frB
If frB0 = 0 then FPSCR[FPRF] ← ‘+zero’
If frB0 = 1 then FPSCR[FPRF] ← ‘:zero’
FPSCR[FR,FI] ← 0b00
Done

Infinity Operand:
frD ← frB 
If frB0 = 0 then FPSCR[FPRF] ← ‘+infinity’ 
If frB0 = 1 then FPSCR[FPRF] ← ‘:infinity’ 
FPSCR[FR,FI] ← 0b00 
Done

QNaN Operand:
frD ← frB0:34 || 290
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FPSCR[FPRF] ← ‘QNaN’
FPSCR[FR,FI] ← 0b00
Done

SNaN Operand:
FPSCR[VXSNAN] ← 1
If FPSCR[VE] = 0 then Do

frD[0:11] ← frB[0:11]
frD12 ← 1
frD[13:63] ← frB[13:34] || 290
FPSCR[FPRF] ← ‘QNaN’

FPSCR[FR,FI] ← 0b00
Done

Normal Operand:
sign ← frB0
exp ← frB[1:11] : 1023
frac0:52 ← 0b1 || frB[12:63]
Round Single(sign,exp,frac0:52,0,0,0)
FPSCR[XX] ← FPSCR[XX] | FPSCR[FI]
If exp > 127 and FPSCR[OE] = 0 then go to Disabled 

Exponent Overflow
If exp > 127 and FPSCR[OE] = 1 then go to Enabled 

Overflow
frD0 ← sign
frD[1-11] ← exp + 1023
frD[12-63] ← frac1:52
If sign = 0 then FPSCR[FPRF] ← ‘+normal number’
If sign = 1 then FPSCR[FPRF] ← ‘:normal number’
Done

Round Single(sign,exp,frac0:52,G,R,X):
inc ← 0
lsb ← frac23
gbit ← frac24
rbit ← frac25
xbit ← (frac26:52||G||R||X)≠0
If FPSCR[RN] = 0b00 then Do /* comparison ignores u 

bits */
If sign || lsb || gbit || rbit || xbit = 0bu11uu then 

inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu011u then 

inc ← 1
If sign || lsb || gbit || rbit || xbit = 0bu01u1 then 

inc ← 1
If FPSCR[RN] = 0b10 then Do /* comparison ignores u 

bits */
If sign || lsb || gbit || rbit || xbit = 0b0u1uu then 

inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uu1u then 

inc ← 1
If sign || lsb || gbit || rbit || xbit = 0b0uuu1 then 

inc ← 1
If FPSCR[RN] = 0b11 then Do /* comparison ignores u 

bits */
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If sign || lsb || gbit || rbit || xbit = 0b1u1uu then 
inc ← 1

If sign || lsb || gbit || rbit || xbit = 0b1uu1u then 
inc ← 1

If sign || lsb || gbit || rbit || xbit = 0b1uuu1 then 
inc ← 1

frac0:23 ← frac0:23 + inc
If carry_out = 1 then Do

frac0:23 ← 0b1 || frac0:22
exp ← exp + 1

frac24:52 ← 290
FPSCR[FR] ← inc
FPSCR[FI] ← gbit | rbit | xbit
Return

The floating-point operand in frB is rounded to single-precision, using the rounding mode 
specified by FPSCR[RN], and placed into frD.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation 
exceptions when FPSCR[VE]=1.

If MSR[FP]=0, an attempt to execute frsp[.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPRF FR FI FX OX UX XX VXSNAN 
CR1 ← FX || FEX || VX || OX (if Rc=1)
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frsqrte frsqrte

Floating reciprocal square root estimate

frsqrte frD,frB (Rc=0)
frsqrte. frD,frB (Rc=1)

frD ← FPReciprocalSquareRootEstimate( frB )

A double-precision estimate of the reciprocal of the square root of the floating-point operand 
in frB is placed into frD. The estimate is correct to a precision of one part in 32 of the 
reciprocal of the square root of (frB), that is,

         

         

Here, x is the initial value in frB. Note that the value placed into frD may vary between 
implementations, and between different executions on the same implementation.

Operation with various special values of the operand is summarized in Table 205

         .

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation 
exceptions when FPSCR[VE]=1 and zero divide exceptions when FPSCR[ZE]=1.

If MSR[FP]=0, attempting to execute frsqrte[.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPRF FR (undefined) FI (undefined)
FX ZX VXSNAN VXSQRT
CR1 ← FX || FEX || VX || OX (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 25 26 30 31

1 1 1 1 1 1 frD /// frB /// 1 1 0 1 0 Rc

Table 205. Operations with special values

Operand Result Exception 

–∞ QNaN (No result if FPSCR[VE] = 1.) VXSQRT 

< 0 QNaN (No result if FPSCR[VE] = 1.) VXSQRT 

–0 –∞ (No result if FPSCR[ZE] = 1.) ZX 

+0 +∞ (No result if FPSCR[ZE] = 1.) ZX 

+∞ +0 None 

SNaN QNaN (No result if FPSCR[VE] = 1.) VXSNAN 

QNaN QNaN None

estimate - 1

x
-------⎝ ⎠

⎛ ⎞

1

x
-------

-----------------------------------------
1
32
------≤
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fsel fsel

Floating select

fsel frD,frA,frC,frB (Rc=0)
fsel. frD,frA,frC,frB (Rc=1)

if frA ≥ 0.0 then frD ← frC
else                   frD ← frB

The floating-point operand in frA is compared to the value zero. If the operand is greater 
than or equal to zero, frD is set to the contents of frC. If the operand is less than zero or is a 
NaN, frD is set to the contents of frB. The comparison ignores the sign of zero (that is, +0 
and –0 are regarded as equal).

If MSR[FP]=0, an attempt to execute fsel[.] causes a floating-point unavailable interrupt.

Other registers altered: 

● CR1 ← FX || FEX || VX || OX (if Rc=1)

Note: Programming: Examples of uses of this instruction can be found in the appendix

Warning: Care must be taken in using fsel if IEEE compatibility is 
required, or if the values being tested can be NaNs or 
infinities

Book E User

0 5 6 10 11 15 16 20 21 25 26 30 31

1 1 1 1 1 1 frD frA frB frC 1 0 1 1 1 Rc
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fsqrt fsqrt

Floating square root [single]

fsqrt frD,frB (P=1, Rc=0)
fsqrt. frD,frB (P=1, Rc=1)

fsqrts frD,frB (P=0, Rc=0)
fsqrts. frD,frB (P=0, Rc=1)

if P=1 then frD ← FPSquareRootDouble( frB )
else        frD ← FPSquareRootSingle( frB )

The square root of the floating-point operand in frB is placed into frD.

If the msb of the resultant significand is not 1, the result is normalized. The result is rounded 
to the target precision under control of the floating-point rounding control field, FPSCR[RN], 
and placed into frD.

Operation with various special values of the operand is summarized in Table 206

         .

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation 
exceptions when FPSCR[VE]=1.

If MSR[FP]=0, an attempt to execute fsqrt[s][.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPRF FR FI FX XX VXSNAN VXSQRT
CR1 ← FX || FEX || VX || OX (if Rc=1)

Book E User

0 2 3 4 5 6 10 11 15 16 20 21 25 26 30 31

1 1 1 P 1 1 frD /// frB /// 1 0 1 1 0 Rc

Table 206. Operations with special values

Operand Result Exception

–∞ QNaN (No result if FPSCR[VE] = 1) VXSQRT

< 0 QNaN (No result if FPSCR[VE] = 1) VXSQRT

–0 –0 None

+∞ +∞ None

SNaN QNaN(No result if FPSCR[VE] = 1)\ VXSNAN

QNaN QNaN None
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fsub fsub

Floating subtract [single]

fsub frD,frA,frB (P=1, Rc=0)
fsub. frD,frA,frB (P=1, Rc=1)

fsubs frD,frA,frB (P=0, Rc=0)
fsubs. frD,frA,frB (P=0, Rc=1)

if P=1 then frD ← frA -dp frB
else        frD ← frA -sp frB

The floating-point operand in frB is subtracted from the floating-point operand in frA.

If the msb of the resultant significand is not 1, the result is normalized. The result is rounded 
to the target precision under control of the floating-point rounding control field, FPSCR[RN]. 
and placed into frD.

The execution of the Floating Subtract instruction is identical to that of Floating Add, except 
that the contents of frB participate in the operation with the sign bit (bit 0) inverted.

FPSCR[FPRF] is set to the class and sign of the result, except for invalid operation 
exceptions when FPSCR[VE]=1.

If MSR[FP]=0, an attempt to execute fsub[s][.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPRF FR FI FX OX UX XX VXSNAN VXISI 
CR1 ← FX || FEX || VX || OX (if Rc=1)

Book E User

0 2 3 4 5 6 10 11 15 16 20 21 25 26 30 31

1 1 1 P 1 1 frD frA frB /// 1 0 1 0 0 Rc
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icbi icbi

Instruction cache block invalidate

icbi rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
InvalidateInstructionCacheBlock( EA )

EA calculation: Addressing ModeEA for rA=0EA for rA≠0
320 || rB32:63

320 || (rA+rB)32:63

If the block containing the byte addressed by EA is in memory that is memory-coherence 
required and a block containing the byte addressed by EA is in the instruction cache of any 
processors, the block is invalidated in those instruction caches, so that subsequent 
references cause the block to be fetched from main memory.

If the block containing the byte addressed by EA is in memory that is not memory-coherence 
required and a block containing the byte addressed by EA is in the instruction cache of this 
processor, the block is invalidated in that instruction cache, so that subsequent references 
cause the block to be fetched from main memory.

The function of this instruction is independent of whether the block containing the byte 
addressed by EA is in memory that is write-through required or caching-inhibited.

This instruction is treated as a load. 

icbi may cause a cache-locking exception on some implementations. See the 
implementation documentation.

On some implementations, HID1[ABE] must be set to allow management of external L2 
caches (for implementations with L2 caches) as well as other L1 caches in the system.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 /// rA rB 1 1 1 1 0 1 0 1 1 0 /
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icblc icblc

Instruction cache block lock clear

icblc  CT,rA,rB Form: X
 

if rA = 0 then a ← 640 else a ← GPR(rA)
if Mode32 then EA ← 320 || (a + GPR(rB))32:63
if Mode64 then EA ← a + GPR(rB)
InstructionCacheBlockClearLock(CT, EA)

EA calculation: EA for rA=0EA for rA≠0 
320 || GPR(rB)32:63

320 || (GPR(rA)+GPR(rB))32:63

The instruction cache specified by CT has the cache line corresponding to EA unlocked 
allowing the line to participate in the normal replacement policy.

Cache lock clear instructions remove locks previously set by cache lock set instructions.

User-level cache instructions on page 180, lists supported CT values. An implementation 
may use other CT values to enable software to target specific, implementation-dependent 
portions of its cache hierarchy or structure.

The icbtlc instruction requires read (R) or execute (X) permissions with respect to 
translation and memory protection and can cause DSI and DTLB error interrupts 
accordingly.

An unable-to-unlock condition is said to occur any of the following conditions exist:

● The target address is marked cache-inhibited, or the storage attributes of the address 
uses a coherency protocol that does not support locking.

● The target cache is disabled or not present.

● The CT field of the instructions contains a value not supported by the implementation.

● The target address is not in the cache or is present in the cache but is not locked.

If an unable-to-unlock condition occurs, no cache operation is performed.

EIS specifics

Setting L1CSR1[ICLFI] allows system software to clear all L1 instruction cache locking bits 
without knowing the addresses of the lines locked.

Cache locking APU User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CT rA rB 0 0 1 1 1 0 0 1 1 0 /
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icbt icbt

Instruction cache block touch 

icbt CT,rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
PrefetchInstructionCacheBlock( CT, EA )

EA calculation: Addressing ModeEA for rA=0EA for rA≠0
320 || rB32:63

320 || (rA+rB)32:63

This instruction is a hint that performance would likely be improved if the block containing 
the byte addressed by EA is fetched into the instruction cache, because the program will 
probably soon execute code from the addressed location.

User-level cache instructions on page 180,” lists supported CT values. An implementation 
may use other CT values to enable software to target specific, implementation-dependent 
portions of its cache hierarchy or structure.

Implementations should perform no operation when CT specifies a value not supported by 
the implementation. 

The hint is ignored if the block is caching-inhibited.

This instruction treated as a load (see the discussion of cache and MMU operation in the 
user’s manual), except that an interrupt is not taken for a translation or protection violation.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 30 31
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icbtls icbtls

Instruction cache block touch and lock set

icbtls  CT,rA,rB Form: X
 

if rA = 0 then a ← 640 else a ← GPR(rA)
if Mode32 then EA ← 320 || (a + GPR(rB))32:63
if Mode64 then EA ← a + GPR(rB)
PrefetchInstructionCacheBlockLockSet(CT, EA)
EA calculation: EA for rA=0EA for rA≠0

320 || GPR(rB)32:63
320 || (GPR(rA)+GPR(rB))32:63

The instruction cache specified by CT has the line corresponding to EA loaded and locked. 
If the line exists in the cache, it is locked without refetching from memory.

Cache touch and lock set instructions allow software to lock lines into the cache to shorten 
latency for critical cache accesses and more deterministic behavior. Lines locked in the 
cache do not participate in the normal replacement policy when a line must be victimized for 
replacement.

User-level cache instructions on page 180,” lists supported CT values. An implementation 
may use other CT values to enable software to target specific, implementation-dependent 
portions of its cache hierarchy or structure.

The icbtls requires read (R) or execute (X) permissions for translation and memory 
protection and can cause DSI and DTLB error interrupts accordingly.

For unable-to-lock conditions, described in Unable-to-lock conditions on page 849,” no 
cache operation is performed and LICSR0[ICUL] is set.

An overlocking condition is said to exist is all the available ways for a given cache index are 
already locked. If an overlocking condition occurs for a icbtls instruction and if the lock was 
targeted for the primary cache or secondary cache (CT = 0 or CT = 2), the requested line is 
not locked into the cache. When an overlock condition occurs, L1CSR1[ICLO] 
(L2CSR[L2CLO] for CT = 2) is set. If L1CSR1[ICLOA] is set (or L2CSR[L2CLOA] for CT = 
2), the requested line is locked into the cache and implementation dependent line currently 
locked in the cache is evicted.

Results of overlocking and unable-to-lock conditions for caches other than the primary and 
secondary cache are defined as part of the architecture for the cache hierarchy designated 
by CT.

If a unified primary cache is implemented and L1CSR1 is not implemented, L1CSR0[DCUL] 
and L1CSR0[DCLO] are updated instead of the corresponding L1CSR1 bits.

Other registers altered:

● L1CSR1[ICUL] if unable to lock occurs

● L1CSRI[ICLO] (L2CSR[L2CLO]) if lock overflow occurs

Cache locking APU User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CT rA rB 0 1 1 1 1 0 0 1 1 0 /
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_illegal _illegal

Illegal

se_illegal

SRR1 ← MSR

SRR0 ← CIA

NIA  ← IVPR32:47 || IVOR648:59 || 0b0000

MSRWE,EE,PR,IS,DS,FP,FE0,FE1 ← 0b0000_0000

se_illegal is used to request an illegal instruction exception. A program interrupt is 
generated. The contents of the MSR are copied into SRR1 and the address of the 
se_illegal instruction is placed into SRR0.

MSR[WE,EE,PR,IS,DS,FP,FE0,FE1] are cleared.

The interrupt causes the next instruction to be fetched from address IVPR[32–
47]||IVOR6[48–59]||0b0000

This instruction is context synchronizing.

Special Registers Altered: SRR0 SRR1 MSR[WE,EE,PR,IS,DS,FP,FE0,FE1]

0 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VLE User
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isel isel

Integer Select 

isel rD, rA, rB, crb

if (rA = 0) then a ← 640 else a ← GPR(rA)
c ← crcrb + 32
if c then rD ← a
else rD ← GPR(rB)

If CR[crb + 32] is set, the contents of rA|0 are copied into rD. If CR[crb + 32] is clear, the 
contents of rB are copied into rD.

Integer Select APU User

0 5 6 10 11 15 16 20 21 25 26 30 31

0 1 1 1 1 1 rD rA rB crb 0 1 1 1 1 0
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isync isync

Instruction synchronize

isync

isync provides an ordering function for the effects of all instructions executed by the 
processor executing the isync instruction. Executing an isync ensures that all instructions 
preceding the isync have completed before isync completes, and that no subsequent 
instructions are initiated until after isync completes. It also causes any prefetched 
instructions to be discarded, with the effect that subsequent instructions are fetched and 
executed in the context established by the instructions preceding isync.

isync may complete before memory accesses associated with instructions preceding isync 
have been performed.

isync is context synchronizing. See Context synchronization on page 144.”

Other registers altered: None

Book E User

0 5 6 20 21 30 31

0 1 0 0 1 1 /// 0 0 1 0 0 1 0 1 1 0 /
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_isync _isync

Instruction Synchronize

se_isync

The se_isync instruction provides an ordering function for the effects of all instructions 
executed by the processor executing the se_isync instruction. Executing an se_isync 
instruction ensures that all instructions preceding the se_isync instruction have completed 
before the se_isync instruction completes, and that no subsequent instructions are initiated 
until after the se_isync instruction completes. It also causes any prefetched instructions to 
be discarded, with the effect that subsequent instructions are fetched and executed in the 
context established by the instructions preceding the se_isync instruction.

The se_isync instruction may complete before memory accesses associated with 
instructions preceding the se_isync instruction have been performed.

This instruction is context synchronizing (see Book E). It has identical semantics to Book E 
isync, just a different encoding.

Special Registers Altered: None

0 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

VLE User



Instruction set RM0004

707/1176  

lbz lbz

Load byte and zero [with update] [indexed] 

lbz rD,D(rA) (D-mode, U=0)
lbzu rD,D(rA) (D-mode, U=1)

lbzx rD,rA,rB (X-mode, U=0)
lbzux rD,rA,rB (X-mode, U=1)

if rA=0 then a ← 640 else a ← rA
if D-mode  then EA ← 320 || (a + EXTS(D))32:63
if X-mode  then EA ← 320 || (a + rB)32:63
rD ← 560 || MEM(EA,1)
if U=1 then rA ← EA

The EA is calculated as follows:

● For lbz and lbzu, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, 
and the sign-extended value of the D field.

● For lbzx and lbzux, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if 
rA=0, and the contents of rB.

The byte in memory addressed by EA is loaded into rD[56–63]; rD[0–55] are cleared.

If U=1 (with update), EA is placed into rA. If U=1 (with update), and rA=0 or rA=rD, the 
instruction form is invalid.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 31

1 0 0 0 1 U rD rA D

0 5 6 10 11 15 16 20 21 24 25 26 30 31

0 1 1 1 1 1 rD rA rB 0 0 0 1 U 1 0 1 1 1 /



RM0004 Instruction set

 708/1176

_lbzx _lbzx

Load Byte and Zero [with Update] [Indexed] 

e_lbz rD,D(rA) (D-mode)

se_lbz rZ,SD4(rX) (SD4-mode)

e_lbzu rD,D8(rA) (D8-mode)

if (RA=0 & !se_lbz) then a ← 320 else a ← GPR(RA or RX)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode   then EA ← (a + EXTS(D8))32:63

if SD4-mode   then EA ← (a + (280 || SD4))32:63

GPR(RD or RZ) ← 240 || MEM(EA,1)

if e_lbzu then GPR(RA) ← EA

Let the EA be calculated as follows:

● For e_lbz and e_lbzu, let EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, 
and the sign-extended value of the D or D8 instruction field.

● For se_lbz, let EA be the sum of the contents of GPR(rX) and the zero-extended value 
of the SD4 instruction field.

The byte in memory addressed by EA is loaded into bits 56–63 of GPR(rD or rZ). Bits 32–55 
of GPR(rD or rZ) are cleared.

If e_lbzu, EA is placed into GPR(rA).

If e_lbzu and rA = 0 or rA = rD, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 31

0 0 1 1 0 0 RD RA D

0 3 4 7 8 11 12 15

1   0   0   0 SD4 RZ RX

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RD RA 0 0 0 0 0 0 0 0 D8



Instruction set RM0004
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lfd lfd

Load floating-point double

lfd frD,D(rA) (D-mode, U=0)
lfdu frD,D(rA) (D-mode, U=1)

lfdx frD,rA,rB (X-mode, U=0)
lfdux frD,rA,rB (X-mode, U=1)

if rA=0 then a ← 640 else a ← rA
if D-mode   then EA ← 320 || (a + EXTS(D))32:63
if X-mode   then EA ← 320 || (a + rB)32:63
frD ← MEM(EA,8)
if U=1 then rA ← EA

The EA is calculated as follows:

● For lfd and lfdu, EA is 32 zeros concatenated with bits 32–63 of the sum of the 
contents of rA, or 64 zeros if rA=0, and the sign-extended value of the D field.

● For lfdx and lfdux, EA is 32 zeros concatenated with bits 32–63 of the sum of the 
contents of rA, or 64 zeros if rA=0, and the contents of rB.

The double word addressed by EA is placed into frD.

If U=1 (with update), EA is placed into register rA.
If U=1 (with update) and rA=0, the instruction form is invalid.

If MSR[FP]=0, an attempt to execute lfd[u][x] causes a floating-point unavailable interrupt.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 31

1 1 0 0 1 U frD rA D

0 5 6 10 11 15 16 20 21 24 25 26 30 31

0 1 1 1 1 1 frD rA rB 1 0 0 1 U 1 0 1 1 1 /



RM0004 Instruction set

 710/1176

lfs lfs

Load floating-point single

lfs frD,D(rA) (D-mode, U=0)
lfsu frD,D(rA) (D-mode, U=1)

lfsx frD,rA,rB (X-mode, U=0)
lfsux frD,rA,rB (X-mode, U=1)

if rA=0 then a ← 640 else a ← rA
if D-mode   then EA ← 320 || (a + EXTS(D))32:63
if X-mode   then EA ← 320 || (a + rB)32:63
frD ← DOUBLE(MEM(EA,4))
if U=1 then rA ← EA

The EA is calculated as follows:

● For lfs and lfsu, EA is 32 zeros concatenated with bits 32–63 of the sum of the 
contents of rA, or 64 zeros if rA=0, and the sign-extended value of the D field.

● For lfsx and lfsux, EA is 32 zeros concatenated with bits 32–63 of the sum of the 
contents of rA, or 64 zeros if rA=0, and the contents of rB.

The word addressed by EA is interpreted as a single-precision operand, converted to 
floating-point double format, and placed into frD.

If U=1 (with update), EA is placed into register rA.
If U=1 (with update) and rA=0, the instruction form is invalid.

If MSR[FP]=0, an attempt to execute lfs[u][x] causes a floating-point unavailable interrupt.

Other registers altered: None

Book E User

0 4 5 6 10 11 15 16 31

1 1 0 0 0 U frD rA D

0 5 6 10 11 15 16 20 21 24 25 26 30 31

0 1 1 1 1 1 frD rA rB 1 0 0 0 U 1 0 1 1 1 /



Instruction set RM0004
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lha lha

Load half word algebraic [with update] [indexed] 

lha rD,D(rA) (D-mode, U=0)
lhau rD,D(rA) (D-mode, U=1)

lhax rD,rA,rB (X-mode, U=0)
lhaux rD,rA,rB (X-mode, U=1)

if rA=0 then a ← 640 else a ← rA
if D-mode  then EA ← 320 || (a + EXTS(D))32:63
if X-mode  then EA ← 320 || (a + rB)32:63
rD ← 320 || EXTS(MEM(EA,2))32:63
if U=1 then rA ← EA

The EA is calculated as follows:

● For lha and lhau, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, 
and the sign-extended value of the D field.

● For lhax and lhaux, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if 
rA=0, and the contents of rB.

The half word addressed by EA is loaded into rD[48–63]. rD[32–47] are filled with a copy of 
bit 0 of the loaded half word. Bits rD[0–31] are cleared.

If U=1 (with update), EA is placed into rA.
If U=1 (with update), and rA=0 or rA=rD, the instruction form is invalid.

Other registers altered: None

Book E User

0 4 5 6 10 11 15 16 31

1 0 1 0 1 U rD rA D

0 5 6 10 11 15 16 20 21 24 25 26 30 31

0 1 1 1 1 1 rD rA rB 0 1 0 1 U 1 0 1 1 1 /



RM0004 Instruction set

 712/1176

_lhax _lhax

Load Halfword Algebraic [with Update] [Indexed]

e_lha rD,D(rA) (D-mode)

e_lhau rD,D8(rA) (D8-mode)

if RA=0 then a ← 320 else a ← GPR(RA)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode then EA ← (a + EXTS(D8))32:63

GPR(RD) ← EXTS(MEM(EA,2))32:63

if e_lhau then GPR(RA) ← EA

Let the EA be calculated as follows:

● For e_lha and e_lhau, let EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, 
and the sign-extended value of the D or D8 instruction field.

The half word in memory addressed by EA is loaded into bits 48–63 of GPR(rD). Bits 32–47 
of GPR(rD) are filled with a copy of bit 0 of the loaded half word.

If e_lhau, EA is placed into GPR(rA).

If e_lhau and rA = 0 or rA = rD, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 31

0 0 1 1 1 0 RD RA D

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RD RA 0 0 0 0 0 0 1 1 D8



Instruction set RM0004
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lhbrx lhbrx

Load half word byte-reverse indexed 

lhbrx rD,rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
data0:15 ← MEM(EA,2)
rD ← 480 || data8:15 || data0:7

The EA is calculated as follows:

● For lhbrx, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, and 
the contents of rB.

Bits 0–7 of the half word addressed by EA are loaded into rD[56–63]. Bits 8–15 of the half 
word addressed by EA are loaded into rD[48–55]; rD[0–47] are cleared.

Other registers altered: None

Programming notes:

● When EA references big-endian memory, these instructions have the effect of loading 
data in little-endian byte order. Likewise, when EA references little-endian memory, 
these instructions have the effect of loading data in big-endian byte order.

● In some implementations, the Load Half Word Byte-Reverse Indexed instructions may 
have greater latency than other load instructions.

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rD rA rB 1 1 0 0 0 1 0 1 1 0 /



RM0004 Instruction set

 714/1176

lhz lhz

Load half word and zero [with update] [indexed] 

lhz rD,D(rA) (D-mode, U=0)
lhzu rD,D(rA) (D-mode, U=1)

lhzx rD,rA,rB (X-mode, U=0)
lhzux rD,rA,rB (X-mode, U=1)

if rA=0 then a ← 640 else a ← rA
if D-mode  then EA ← 320 || (a + EXTS(D))32:63
if X-mode  then EA ← 320 || (a + rB)32:63
rD ← 480 || MEM(EA,2)
if U=1 then rA ← EA

The EA is calculated as follows:

● For lhz and lhzu, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, 
and the sign-extended value of the D field.

● For lhzx and lhzux, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if 
rA=0, and the contents of rB.

The half word addressed by EA is loaded into rD[48–63]; rD[0–47] are cleared.

If U=1 (with update), EA is placed into rA.

If U=1 (with update), and rA=0 or rA=rD, the instruction form is invalid.

Other registers altered: None

Book E User

0 4 5 6 10 11 15 16 31

1 0 1 0 0 U rD rA D

0 5 6 10 11 15 16 20 21 24 25 26 30 31

0 1 1 1 1 1 rD rA rB 0 1 0 0 U 1 0 1 1 1 /



Instruction set RM0004

715/1176  

_lhzx _lhzx

Load Halfword and Zero [with Update] [Indexed]

e_lhz rD,D(rA) (D-mode)

se_lhz rZ,SD4(rX) (SD4-mode)

e_lhzu rD,D8(rA) (D8-mode)

if (RA=0 & !se_lhz) then a ← 320 else a ← GPR(RA or RX)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode   then EA ← (a + EXTS(D8))32:63

if SD4-mode   then EA ← (a + (270 || SD4 || 0))32:63

GPR(RD or RZ) ← 160 || MEM(EA,2)

if e_lhzu then GPR(RA) ← EA

Let the EA be calculated as follows:

● For e_lhz and e_lhzu, let EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, 
and the sign-extended value of the D or D8 instruction field.

● For se_lhz let EA be the sum of the contents of GPR(rX) and the zero-extended value 
of the SD4 instruction field shifted left by 1 bit.

The half word in memory addressed by EA is loaded into bits 48–63 of GPR(rD). Bits 32–47 
of GPR(rD) are cleared.

If e_lhzu, EA is placed into GPR(rA).

If e_lhzu and rA = 0 or rA = rD, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 31

0 1 0 1 1 0 RD RA D

0 3 4 7 8 11 12 15

1   0   1   0 SD4 RZ RX

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RD RA 0 0 0 0 0 0 0 1 D8



RM0004 Instruction set

 716/1176

_lix _lix

Load Immediate [Shifted]

e_li rD,LI20 (LI20-mode)

LI20  ←  LI200:3 || LI204:8 || LI209:19
GPR(RD) ←  EXTS(LI20)

For e_li, the sign-extended LI20 field is placed into GPR(rD). 

Special Registers Altered: None

e_lis rD,UI

UI  ←  UI0:4 || UI5:15
GPR(RD) ←  UI || 160

For e_lis, the UI field is concatenated on the right with 16 0’s and placed into GPR(rD).

Special Registers Altered: None

se_li rX,UI7

GPR(RX) ← 250 || UI7 

For se_li, the zero-extended UI7 field is placed into GPR(rX). 

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 17 20 21 31

0 1 1 1 0 0 RD LI204:8 0 LI200:3 LI209:19

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 RD UI0:4 1 1 1 0 0 UI5:15

0 4 5 11 12 15

0 1 0 0 1 UI7 RX



Instruction set RM0004
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lmw lmw

Load multiple word

lmw rD,D(rA)

if rA=0 then EA ← 320 || EXTS(D)32:63
else         EA ← 320 || (rA+EXTS(D))32:63
r ← rD
do while r ≤ 31

GPR(r) ← 320 || MEM(EA,4)
r  ← r + 1
EA ← 320 || (EA+4)32:63

The EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, and the sign-
extended value of the D instruction field.

Here n=(32–rD). n consecutive words starting at EA are loaded into bits 32–63 of registers 
rD through GPR31. Bits 0–31 of these GPRs are cleared.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results 
are boundedly undefined. If rA is in the range of registers to be loaded, including the case in 
which rA=0, the instruction form is invalid.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 31

1 0 1 1 1 0 rD rA D



RM0004 Instruction set

 718/1176

_lmw _lmw

Load Multiple Word

e_lmw rD,D8(rA)

if RA=0 then EA ← EXTS(D8)32:63

else         EA ← (GPR(RA)+EXTS(D8))32:63

r ← RD

do while r ≤ 31

GPR(r) ← MEM(EA,4)

r  ← r + 1

EA ← (EA+4)32:63

Let the EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, and the sign-extended 
value of the D8 instruction field.

Let n = (32-rD). n consecutive words starting at EA are loaded into bits 32–63 of registers 
GPR(rD) through GPR(31).

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results 
are boundedly undefined. If rA is in the range of registers to be loaded, including the case in 
which rA = 0, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RD RA 0   0   0   0   1   0   0   0 D8



Instruction set RM0004
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lswi lswi

Load string word (immediate | indexed)

lswi rD,rA,NB

lswx rD,rA,rB

if rA=0 then a ← 640 else a ← rA
if ‘lswi’ then EA ← 320 ||  a32:63
if ‘lswx’ then EA ← 320 || (a + rB)32:63
if ‘lswi’ & NB=0 then n ← 32
if ‘lswi’ & NB≠0 then n ← NB
if ‘lswx’        then n ← XER57:63
r ← rD : 1
i ← 32
rD ← undefined
do while n > 0

if i = 32 then
r ← r + 1 (mod 32)
GPR(r) ← 0

GPR(r)i:i+7 ← MEM(EA,1)
i ← i + 8
if i = 64 then i ← 32
EA ← 320 || (EA+1)32:63
n  ← n : 1

The EA is calculated as follows:

● For lswi, EA is 32 zeros concatenated with rA[32–63], or 32 zeros if rA=0.

● For lwsx, EA is 32 zeros concatenated with bits 32–63 of the sum of the contents of rA, 
or 64 zeros if rA=0, and the contents of rB.

If lswi, n = NB if NB ≠ 0, n = 32 if NB=0. If lswx, n=XER[57–63]. n is the number of bytes to 
load. Here nr=CEIL(n÷4): nr is the number of registers to receive data.

If n>0, n consecutive bytes starting at EA are loaded into registers rD through (rD+nr–1). 
Data is loaded into the low-order 4 bytes of each GPR; the high-order 4 bytes are cleared.

Bytes are loaded left to right in each GPR. The sequence wraps to GPR0 if required. If the 4 
LSBs of GPR(rD+nr–1) are partially filled, the unfilled LSBs of that GPR are cleared.

If lswx and n=0, the contents of rD are undefined.

If rA, or rB for lswx, is in the range of registers to be loaded, including where rA=0, an illegal 
instruction type program interrupt is invoked or results are boundedly undefined. If rD=rA, or 
rD=rB for lswx, the instruction form is invalid. Other registers altered: None

Note: Programming: String instructions move data without concern for alignment. They can 
perform short moves between arbitrary locations or long moves between misaligned 
memory fields.

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rD rA NB 1 0 0 1 0 1 0 1 0 1 /

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 0 1 /



RM0004 Instruction set

 720/1176

lwarx lwarx

Load word and reserve indexed 

lwarx rD,rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
RESERVE ← 1
RESERVE_ADDR ← real_addr(EA)
rD ← 320 || MEM(EA,4)

EA is bits 32–63 of the sum of the contents of rA (32 zeros if rA=0), and the contents of rB.

The word addressed by EA is loaded into rD[32–63]; rD[0–31] are cleared.

lwarx creates a reservation for use by a stwcx. instruction. An address computed from the 
EA is associated with the reservation and replaces any previously associated address. See 
Atomic update primitives using lwarx and stwcx. on page 176.”

If EA is not a multiple of 4, an alignment interrupt occurs or results are boundedly undefined. 

Other registers altered: None

Programming notes:

● lwarx, and stwcx. permit programmers to write an instruction sequence that appears 
to perform an atomic update operation on a memory location. This operation depends 
on a single reservation resource in each processor. At most one reservation exists on 
any given processor.

● Because lwarx instructions have implementation dependencies (such as the 
granularity at which reservations are managed), they must be used with care. System 
library programs should use these instructions to implement high-level synchronization 
functions (such as test and set, compare and swap) needed by application programs. 
Application programs should use these library programs, rather than use lwarx directly
The granularity with which reservations are managed is implementation-dependent. 
Therefore the location to be accessed by lwarx should be allocated by a system library 
program. See Atomic update primitives using lwarx and stwcx. on page 176.”

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rD rA rB 0 0 0 0 0 1 0 1 0 0 /



Instruction set RM0004
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lwbrx lwbrx

Load word byte-reverse indexed 

lwbrx rD,rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
data0:31 ← MEM(EA,4)
rD ← 320 || data24:31 || data16:23 || data8:15 || data0:7

The EA is calculated as follows:

● For lwbrx, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, and 
the contents of rB.

Bits 0–7 of the word addressed by EA are loaded into rD[56–63]. Bits 8–15 of the word 
addressed by EA are loaded into rD[48–55]. Bits 16–23 of the word addressed by EA are 
loaded into rD[40–47]. Bits 24–31 of the word addressed by EA are loaded into rD[32–39]. 
Bits rD[0–31] are cleared.

Other registers altered: None

Programming notes: 

● When EA references big-endian memory, these instructions have the effect of loading 
data in little-endian byte order. Likewise, when EA references little-endian memory, 
these instructions have the effect of loading data in big-endian byte order.

● In some implementations, the load word byte-reverse instructions may have greater 
latency than other load instructions.

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 1 0 /



RM0004 Instruction set
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lwz lwz

Load word and zero [with update] [indexed] 

lwz rD,D(rA) (D-mode, U=0)
lwzu rD,D(rA) (D-mode, U=1)

lwzx rD,rA,rB (X-mode, U=0)
lwzux rD,rA,rB (X-mode, U=1)

if rA=0 then a ← 640 else a ← rA
if D-mode  then EA ← 320 || (a + EXTS(D))32:63
if X-mode  then EA ← 320 || (a + rB)32:63
rD ← 320 || MEM(EA,4)
if U=1 then rA ← EA

The EA is calculated as follows:

● For lwz and lwzu, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, 
and the sign-extended value of the D field.

● For lwzx and lwzux, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if 
rA=0, and the contents of rB.

The word addressed by the EA is loaded into rD[32–63]; rD[0–31] are cleared.

If U=1 (with update), EA is placed into rA.

If U=1 (with update), and rA=0 or rA=rD, the instruction form is invalid.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 31

1 0 0 0 0 U rD rA D

0 5 6 10 11 15 16 20 21 24 25 26 30 31

0 1 1 1 1 1 rD rA rB 0 0 0 0 U 1 0 1 1 1 /



Instruction set RM0004
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_lwz _lwz

Load Word and Zero [with Update] [Indexed] 

e_lwz rD,D(rA) (D-mode)

se_lwz rZ,SD4(rX) (SD4-mode)

e_lwzu rD,D8(rA) (D8-mode)

if (RA=0 & !se_lwz) then a ← 320 else a ← GPR(RA or RX)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode   then EA ← (a + EXTS(D8))32:63

if SD4-mode   then EA ← (a + (260 || SD4 || 20))32:63

GPR(RD or RZ) ← MEM(EA,4)

if e_lwzu then GPR(RA) ← EA

Let the EA be calculated as follows:

● For e_lwz and e_lwzu, let EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, 
and the sign-extended value of the D or D8 instruction field.

● For se_lwz let EA be the sum of the contents of GPR(rX) and the zero-extended value 
of the SD4 instruction field shifted left by 2 bits.

The word in memory addressed by the EA is loaded into bits 32–63 of GPR(rD). 

If e_lwzu, EA is placed into GPR(rA).

If e_lwzu and rA = 0 or rA = rD, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 31

0 1 0 1 0 0 RD RA D

0 3 4 7 8 11 12 15

1   1   0   0 SD4 RZ RX

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RD RA 0 0 0 0 0 0 1 0 D8
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mbar mbar

Memory barrier

mbar MO

When MO=0, mbar provides a memory ordering function for all memory access instructions 
executed by the processor executing the mbar instruction. Executing an mbar instruction 
ensures that all data memory accesses caused by instructions preceding the mbar have 
completed before any data memory accesses caused by any instructions after the mbar. 
This order is seen by all mechanisms.

When mbar (MO = 1), as defined by the EIS, mbar functions like eieio as it is defined by the 
Classic PowerPC architecture. It provides ordering for the effects of load and store 
instructions. These instructions consist of two sets, which are ordered separately. Memory 
accesses caused by a dcbz or a dcba are ordered like a store. The two sets follow:

● Caching-inhibited, guarded loads and stores to memory and write-through-required 
stores to memory. mbar (MO=1) controls the order in which accesses are performed in 
main memory. It ensures that all applicable memory accesses caused by instructions 
preceding the mbar have completed with respect to main memory before any 
applicable memory accesses caused by instructions following mbar access main 
memory. It acts like a barrier that flows through the memory queues and to main 
memory, preventing the reordering of memory accesses across the barrier. No ordering 
is performed for dcbz if the instruction causes the system alignment error handler to be 
invoked.
All accesses in this set are ordered as one set; there is not one order for guarded, 
caching-inhibited loads and stores and another for write-through-required stores.

● Stores to memory that are caching-allowed, write-through not required, and memory-
coherency required. mbar (MO=1) controls the order in which accesses are performed 
with respect to coherent memory. It ensures that, with respect to coherent memory, 
applicable stores caused by instructions before the mbar complete before any 
applicable stores caused by instructions after it. 

Except for dcbz and dcba, mbar (MO=1) does not affect the order of cache operations 
(whether caused explicitly by a cache management instruction or implicitly by the cache 
coherency mechanism). Also. mbar does not affect the order of accesses in one set with 
respect to accesses in the other.

mbar (MO=1) may complete before memory accesses caused by instructions preceding it 
have been performed with respect to main memory or coherent memory as appropriate. 
mbar (MO=1) is intended for use in managing shared data structures, in accessing 
memory-mapped I/O, and in preventing load/store combining operations in main memory. 
For the first use, the shared data structure and the lock that protects it must be altered only 
by stores that are in the same set (for both cases described above). For the second use, 
mbar (MO=1) can be thought of as placing a barrier into the stream of memory accesses 
issued by a core, such that any given memory access appears to be on the same side of the 
barrier to both the core and the I/O device.

Because the core performs store operations in order to memory that is designated as both 
caching-inhibited and guarded, mbar (MO=1) is needed for such memory only when loads 
must be ordered with respect to stores or with respect to other loads.

Book E User

0 5 6 10 11 20 21 30 31

0 1 1 1 1 1 MO / / / 1 1 0 1 0 1 0 1 1 0 /



Instruction set RM0004
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Note that mbar (MO=1) does not connect hardware considerations to it such as 
multiprocessor implementations that send an mbar (MO=1) address-only broadcast (useful 
in some designs). For example, if a design has an external buffer that re-orders loads and 
stores for better bus efficiency, mbar (MO=1) broadcasts signals to that buffer that previous 
loads/stores (marked caching-inhibited, guarded, or write-through required) must complete 
before any following loads/stores (marked caching-inhibited, guarded, or write-through 
required).

If MO is not 0 or 1, an implementation may support the mbar instruction ordering a 
particular subset of memory accesses. An implementation may also support multiple, non-
zero values of MO that each specify a different subset of memory accesses that are ordered 
by the mbar instruction. Which subsets of memory accesses are ordered and which values 
of MO specify these subsets is implementation-dependent. See the user’s manual for the 
implementation.

On some implementations, HID1[ABE] must be set to allow management of external L2 
caches (for implementations with L2 caches) as well as other L1 caches in the system.

Other registers altered: None

Programming note: mbar is provided to implement a pipelined memory barrier. The 
following sequence shows one use of mbar in supporting shared data, ensuring the action 
is completed before releasing the lock.

P1 P2
lock . . .
read & write . . .
mbar . . .
free lock . . .
. . . lock
. . . read & write
. . . mbar
. . . free lock
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mcrf mcrf

Move condition register field

mcrf crD,crS

CR4xBF+32:4xBF+35 ← CR4xcrS+32:4xcrS+35

The contents of field crS (bits 4×crS+32–4×crS+35) of CR are copied to field crD (bits 
4×crD+32–4×crD+35) of CR.

Other registers altered: CR

Book E User

0 5 6 8 9 10 11 13 14 20 21 30 31

0 1 0 0 1 1 crD // crS /// 0 0 0 0 0 0 0 0 0 0 /
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_mcrf _mcrf

Move CR Field

e_mcrf crD,crS

CR4xCRD+32:4xCRD+35 ← CR4xCRS+32:4xCRS+35

The contents of field crS (bits 4×CRS+32 through 4×CRS+35) of the CR are copied to field 
crD (bits 4×CRD+32 through 4×CRD+35) of the CR.

Special Registers Altered: CR

VLE User

0 5 6 8 9 10 11 13 14 20 21 30 31

0 1 1 1 1 1 CRD // CRS /// 0 0 0 0 0 1 0 0 0 0 /
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mcrfs mcrfs

Move to condition register from FPSCR

mcrfs crD,crS

CRBF×4:crD×4+3      ← FPSCRcrS×4:crS×4+3
FPSCRcrS×4:crS×4+3 ← 0b0000

The contents of FPSCR[crS] are copied to CR field crD. All exception bits copied are 
cleared in the FPSCR. If the FX bit is copied, it is cleared in the FPSCR.

If MSR[FP]=0, an attempt to execute mcrfs causes a floating-point unavailable interrupt.

Other registers altered:

● CR field crD
FX OX(if crS=0)
UX ZX XX VXSNAN(if crS=1)
VXISI VXIDI VXZDZ VXIMZ(if crS=2)
VXVC(if crS=3)
VXSOFT VXSQRT VXCVI(if crS=5)

Book E User

0 5 6 8 9 10 11 13 14 20 21 30 31

1 1 1 1 1 1 crD // crS /// 0 0 0 1 0 0 0 0 0 0 /
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mcrxr mcrxr

Move to condition register from integer exception register

mcrxr crD

CR4×crD+32:4×crD+35 ← XER32:35
XER32:35 ← 0b0000

The contents of XER[32–35] are copied to CR field crD. XER[32–35] are cleared.

Other registers altered: CR XER[32–35]

Book E User

0 5 6 8 9 20 21 30 31

0 1 1 1 1 1 crD /// 1 0 0 0 0 0 0 0 0 0 /
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mfapidi mfapidi

Move from APID Indirect

mfapidi rD,rA

rD ¨ implementation-dependent value based on rA

The contents of rA are provided to any auxiliary processing extensions that may be present. 
A value, that is implementation-dependent and extension-dependent, is placed in rD.

Other registers altered: None

Programming note: This instruction is provided as a mechanism for software to query the 
presence and configuration of one or more auxiliary processing extensions. See user’s 
manual for the implementation for details on the behavior of this instruction.

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rD rA /// 0 1 0 0 0 1 0 0 1 1 /
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_mfar _mfar

Move from Alternate Register

se_mfar rX,arY

GPR(RX) ← GPR(ARY)

For se_mfar, the contents of GPR(arY) are placed into GPR(rX). arY specifies a GPR in the 
range R8–R23. The encoding 0000 specifies R8, 0001 specifies R9,…, 1111 specifies R23. 

Special Registers Altered: None

0 5 6 7 8 11 12 15

0 0 0 0 0 0 1 1 ARY RX

VLE User
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mfcr mfcr

Move from condition register

mfcr rD

rD ← 320 || CR

The contents of the CR are placed into rD[32–63]. Bits rD[0–31] are cleared.

Other registers altered: None

Book E User

0 5 6 10 11 20 21 30 31

0 1 1 1 1 1 rD /// 0 0 0 0 0 1 0 0 1 1 /
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_mfctr _mfctr

Move From Count Register

se_mfctr rX

GPR(RX) ← CTR

The CTR contents are placed into bits 32–63 of GPR(rX).

Special Registers Altered: None

0 5 6 11 12 15

0 0 0 0 0 0 0   0   1   0   1   0 RX

VLE User
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mfdcr mfdcr

Move from device control register

mfdcr rD,DCRN

rD ← DCREG(DCRN)

DCRN identifies the DCR (see the user’s manual for a list of DCRs supported by the 
implementation). 

The contents of the designated DCR are placed into rD. For 32-bit DCRs, the contents of the 
DCR are placed into rD[32–63]. Bits rD[0–31] are cleared.

Execution of this instruction is restricted to supervisor mode. 

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rD DCRN5–9 DCRN0–4 0 1 0 1 0 0 0 0 1 1 /
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mffs mffs

Move from FPSCR

mffs frD (Rc=0)
mffs. frD (Rc=1)

frD ← FPSCR

The contents of the FPSCR are placed into frD[32–63]; frD[0–31] are undefined.

If MSR[FP]=0, an attempt to execute mffs[.] causes a floating-point unavailable interrupt.

Other registers altered:

● CR1 ← FX || FEX || VX || OX (if Rc=1)

Book E User

0 5 6 10 11 20 21 30 31

1 1 1 1 1 1 frD /// 1 0 0 1 0 0 0 1 1 1 Rc
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_mflr _mflr

Move From Link Register

se_mflr rX

GPR(RX) ← LR

The LR contents are placed into bits 32–63 of GPR(rX).

Special Registers Altered: None

0 5 6 11 12 15

0 0 0 0 0 0 0   0   1   0   0   0 RX

VLE User
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mfmsr mfmsr

Move from machine state register

mfmsr rD

rD ← 320 || MSR

The contents of the MSR are placed into rD[32–63]. Bits rD[0–31] are cleared.

Execution of this instruction is restricted to supervisor mode. 

Other registers altered: None

Book E User

0 5 6 10 11 20 21 30 31

0 1 1 1 1 1 rD /// 0 0 0 1 0 1 0 0 1 1 /
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mfpmr mfpmr 

Move from Performance Monitor Register

mfpmr rD,PMRN  

GPR(rD) ← PMREG(PMRN)

PMRN denotes a performance monitor register. Section 2.16: Performance monitor 
registers (PMRs),” lists supported performance monitor registers.

The contents of the designated performance monitor register are placed into GPR[rD].

When MSR[PR] = 1, specifying a performance monitor register that is not implemented and 
is not privileged (PMRN[5] = 0) results in an illegal instruction exception-type program 
interrupt. When MSR[PR] = 1, specifying a performance monitor register that is privileged 
(PMRN[5] = 1) results in a privileged instruction exception-type program interrupt. When 
MSR[PR] = 0, specifying an unimplemented performance monitor register is boundedly 
undefined.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 31

0 1 1 1 1 1 rD PMRN5–9 PMRN0–4 0 1 0 1 0 0 1 1 1 0 0
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mfspr mfspr

Move from special purpose register

mfspr rD,SPRN

rD ← SPREG(SPRN)

SPRN denotes an SPR (see Chapter 2.18: Book E SPR model on page 130”).

The contents of the designated SPR are placed into rD. For 32-bit SPRs, the contents of the 
SPR are placed into rD[32–63]. Bits rD[0–31] are cleared.

         

Execution of this instruction specifying a defined and privileged SPR (SPRN[5]=1) when 
MSR[PR]=1 results in a privileged instruction exception-type program interrupt.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rD SPRN[5–9] SPRN[0–4] 0 1 0 1 0 1 0 0 1 1 /

Table 207. Effect of SPRN[5] and MSR[PR]

SPRN[5] MSR[PR] SPRN class Result

0 1 Defined
If not implemented, illegal instruction exception

If implemented, as defined in Book E

0 1 Allocated
If not implemented, illegal instruction exception

If implemented, as defined in user’s manual

0 1 Preserved
If not implemented, illegal instruction exception

If implemented, as defined in PowerPC Architecture

0 1 Reserved Illegal instruction exception

1 1 — Privileged exception

— 0 Defined
If not implemented, boundedly undefined
If implemented, as defined in Book E

— 0 Allocated
If not implemented, boundedly undefined
If implemented, as defined in user’s manual

— 0 Preserved
If not implemented, boundedly undefined
If implemented, as defined in PowerPC Architecture

— 0 Reserved Boundedly undefined
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_mr _mr

Move Register

se_mr rX,rY

GPR(RX) ← GPR(RY)

For se_mr, the contents of GPR(rY) are placed into GPR(rX). 

Special Registers Altered: None

0 5 6 7 8 11 12 15

0 0 0 0 0 0 0 1 RY RX

VLE User
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msync msync

Memory synchronize

msync

The msync instruction provides an ordering function for the effects of all instructions 
executed by the processor executing the msync. Executing msync ensures that all 
instructions preceding the msync have completed before msync completes and that no 
subsequent instructions are initiated until after the msync completes. It also creates a 
memory barrier (see Atomic update primitives using lwarx and stwcx. on page 176”), which 
orders the memory accesses associated with these instructions.

The msync may not complete before memory accesses associated with instructions 
preceding msync have been performed.

On some implementations, HID1[ABE] must be set to allow management of external L2 
caches (for implementations with L2 caches) as well as other L1 caches in the system.

msync is execution synchronizing. (See Execution synchronization on page 145.”)

Other registers altered: None

Programming notes:

● msync can be used to ensure that all stores into a data structure, caused by store 
instructions executed in a critical section of a program, are performed with respect to 
another processor before the store that releases the lock is performed with respect to 
that processor.
The functions performed by the msync may take a significant amount of time to 
complete, so indiscriminate use of this instruction may adversely affect performance. 
The Memory Barrier (mbar) instruction may be more appropriate than msync for many 
cases.

● msync replaces the sync instruction; it uses the same opcode as sync such that 
PowerPC applications calling for sync invoke the msync when executed on an Book E 
implementation. The functionality of msync is identical to sync except that msync also 
does not complete until all previous memory accesses complete. mbar is provided in 
the Book E for those occasions when only ordering of memory accesses is required 
without execution synchronization.

Book E User

0 5 6 20 21 30 31

0 1 1 1 1 1 /// 1 0 0 1 0 1 0 1 1 0 /



RM0004 Instruction set

 742/1176

_mtar _mtar

Move to Alternate Register

se_mtar arX,rY

GPR(ARX) ← GPR(RY)

For se_mtar, the contents of GPR(rY) are placed into GPR(arX). arX specifies a GPR in the 
range R8–R23. The encoding 0000 specifies R8, 0001 specifies R9,…, 1111 specifies R23. 

Special Registers Altered: None

0 5 6 7 8 11 12 15

0 0 0 0 0 0 1 0 RY ARX

VLE User
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mtcrf mtcrf

Move to condition register fields

mtcrf CRM,rS

i ← 0
do while i < 8

if CRMi=1 then CR4×i+32:4×i+35 ← rS4×i+32:4×i+35
i ← i+1

The contents of rS[32–63] are placed into the CR under control of the field mask specified 
by CRM. The field mask identifies the 4-bit fields affected. Let i be an integer in the range 0–
7. If CRMi = 1, CR field i (CR bits 4×i+32 through 4×i+35) is set to the contents of the 
corresponding field of rS[32–63].

Other registers altered: CR fields selected by mask

Book E User

0 5 6 10 11 12 19 20 21 30 31

0 1 1 1 1 1 rS / CRM / 0 0 1 0 0 1 0 0 0 0 /
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_mtctr _mtctr

Move To Count Register

se_mtctr rX

CTR ← GPR(RX)

The contents of bits 32–63 of GPR(rX) are placed into the CTR.

Special Registers Altered: CTR

0 5 6 11 12 15

0 0 0 0 0 0 0   0   1   0   1   1 RX

VLE User
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mtdcr mtdcr

Move to device control register

mtdcr DCRN,rS

DCREG(DCRN) ← rS

DCRN identifies the DCR (see user’s manual for a list of DCRs supported by the 
implementation). 

The contents of rS are placed into the designated DCR. For 32-bit DCRs, rS[32–63] are 
placed into the DCR. 

Execution of this instruction is restricted to supervisor mode. 

Other registers altered: See the user’s manual for the implementation

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS DCRN5–9 DCRN0–4 0 1 1 1 0 0 0 0 1 1 /
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mtfsb0 mtfsb0

Move to FPSCR Bit 0

mtfsb0 crbD (Rc=0)
mtfsb0. crbD (Rc=1)

FPSCR[BT]← 0b0

FPSCR[BT] is cleared.

If MSR[FP]=0, an attempt to execute mtfsb0[.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPSCR[BT] 
CR1 ← FX || FEX || VX || OX (if Rc=1)

Programming note: Bits 1 and 2 (FEX and VX) cannot be explicitly reset.

Book E User

0 5 6 10 11 20 21 30 31

1 1 1 1 1 1 crbD /// 0 0 0 1 0 0 0 1 1 0 Rc
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mtfsb1 mtfsb1

Move to FPSCR Bit 1

mtfsb1 crbD (Rc=0)
mtfsb1. crbD (Rc=1)

FPSCR[BT] ← 0b1

FPSCR[BT] is set.

If MSR[FP]=0, an attempt to execute mtfsb1[.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPSClR[BT,FX] 
CR1 ← FX || FEX || VX || OX (if Rc=1)

Programming note: Bits 1 and 2 (FEX and VX) cannot be explicitly set.

Book E User

0 5 6 10 11 20 21 30 31

1 1 1 1 1 1 crbD /// 0 0 0 0 1 0 0 1 1 0 Rc
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mtfsf mtfsf

Move to FPSCR fields

mtfsf FM,frB (Rc=0)
mtfsf. FM,frB (Rc=1)

i ← 0
do while i<8

if FMi=1 then FPSCR4×i:4×i+3 ← frB4×i:4×i+3
i ← i+1

The contents of frB[32–63] are placed into the FPSCR under control of the field mask 
specified by FM. The field mask identifies the 4-bit fields affected. Let i be an integer in the 
range 0–7. If FMi=1, FPSCR field i (FPSCR bits 4×i through 4×i+3) is set to the contents of 
the corresponding field of the low-order 32 bits of frB.

FPSCR[FX] is altered only if FM0 = 1. 

If MSR[FP]=0, an attempt to execute mtfsf[.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPSCR fields selected by mask 
CR1 ← FX || FEX || VX || OX (if Rc=1)

Programming notes:

● Updating fewer than all eight fields of the FPSCR may have substantially poorer 
performance on some implementations than updating all the fields.

● When FPSCR[0–3] is specified, bits 0 (FX) and 3 (OX) are set to the values of (frB)32 
and (frB)35 (that is, even if this instruction causes OX to change from 0 to 1, FX is set 
from (frB)32 and not by the usual rule that FX is set when an exception bit changes 
from 0 to 1). Bits 1 and 2 (FEX and VX) are set according to the usual rule (see 
Table 10: FPSCR field descriptions on page 59) and not from (frB)33–34.

Book E User

0 5 6 7 14 15 16 20 21 30 31

1 1 1 1 1 1 / FM / frB 1 0 1 1 0 0 0 1 1 1 Rc
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mtfsfi mtfsfi

Move to FPSCR field immediate

mtfsfi crD,UIMM (Rc=0)
mtfsfi. crD,UIMM (Rc=1)

FPSCRBF×4:crD×4+3 ← UIMM

The value of the UIMM field is placed into FPSCR[crD].

FPSCR[FX] is altered only if crD = 0.

If MSR[FP]=0, an attempt to execute mtfsfi[.] causes a floating-point unavailable interrupt.

Other registers altered:

● FPSCR[crD] 
CR1 ← FX || FEX || VX || OX (if Rc=1)

Programming note: When FPSCR[0–3] is specified, bits 0 (FX) and 3 (OX) are set to the 
values of U0 and U3 (that is, even if this instruction causes OX to change from 0 to 1, FX is 
set from U0 and not by the usual rule that FX is set when an exception bit changes from 0 to 
1). Bits 1 and 2 (FEX and VX) are set according to the usual rule (see Table 10: FPSCR field 
descriptions on page 59), and not from U1–2.

Book E User

0 5 6 8 9 15 16 19 20 21 30 31

1 1 1 1 1 1 crD /// UIMM / 0 0 1 0 0 0 0 1 1 0 Rc
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_mtlr _mtlr

Move To Link Register

se_mtlr rX

LR ← GPR(RX)

The contents of bits 32–63 of GPR(rX) are placed into the LR.

Special Registers Altered: LR

0 5 6 11 12 15

0 0 0 0 0 0 0   0   1   0   0   1 RX

VLE User
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mtmsr mtmsr

Move to machine state register

mtmsr rS

MSR ← rS32:63

The contents of rS[32–63] are placed into the MSR.

Execution of this instruction is restricted to supervisor mode.

Execution of this instruction is execution synchronizing. See Execution synchronization on 
page 145.”

In addition, changes to the EE or CE bits are effective as soon as the instruction completes. 
Thus if MSR[EE]=0 and an external interrupt is pending, executing an mtmsr that sets 
MSR[EE] causes the external interrupt to be taken before the next instruction is executed, if 
no higher priority exception exists. Likewise, if MSR[CE]=0 and a critical input interrupt is 
pending, executing an mtmsr that sets MSR[CE] causes the critical input interrupt to be 
taken before the next instruction is executed if no higher priority exception exists.

Other registers altered: MSR

Programming note: For a discussion of software synchronization requirements when 
altering certain MSR bits, refer to Chapter 2.18.2: Synchronization requirements for SPRs 
on page 130.”

Book E Supervisor

0 5 6 10 11 20 21 30 31

0 1 1 1 1 1 rS /// 0 0 1 0 0 1 0 0 1 0 /
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mtpmr mtpmr 

Move To Performance Monitor Register

mtpmr PMRN,rS

PMREG(PMRN) ← GPR(RS)

PMRN denotes a performance monitor register. Section 2.16: Performance monitor 
registers (PMRs),” lists supported performance monitor registers).

The contents of GPR[rS] are placed into the designated performance monitor register.

When MSR[PR] = 1, specifying a performance monitor register that is not implemented and 
is not privileged (PMRN[5] = 0) results in an illegal instruction exception-type program 
interrupt. When MSR[PR] = 1, specifying a performance monitor register that is privileged 
(PMRN[5] = 1) results in a privileged instruction exception-type program interrupt. When 
MSR[PR] = 0, specifying a unimplemented performance monitor register is boundedly 
undefined.

Other registers altered: None

Performance Monitor APU User/Supervisor

0 5 6 10 11 15 16 20 21 31

0 1 1 1 1 1 rS PMRN5–9 PMRN0–4 0 1 1 1 0 0 1 1 1 0 0
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mtspr mtspr

Move to special purpose register

mtspr SPRN,rS

SPREG(SPRN) ← rS

SPRN denotes an SPR (see Chapter 2.18: Book E SPR model on page 130,” and the user’s 
manual of the implementation for a list of all SPRs that are implemented).

The contents of rS are placed into the designated SPR. For 32-bit SPRs, the contents of 
rS[32–63] are placed into the SPR.

When MSR[PR]=1, specifying an SPR that is not implemented and is not privileged 
(SPRN[5]=0) results in an illegal instruction exception-type program interrupt. When 
MSR[PR]=1, specifying an SPR that is privileged (SPRN[5]=1) results in a privileged 
instruction exception-type program interrupt. When MSR[PR]=0, specifying an SPR that is 
not implemented is boundedly undefined.

Other registers altered: See Chapter 2.18: Book E SPR model on page 130,” or the user’s 
manual for the implementation.

Programming note: For a discussion of software synchronization requirements when 
altering certain SPRs, please refer to Chapter 2.18.2: Synchronization requirements for 
SPRs on page 130.”

Book E User/Supervisor

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS SPRN[5–9] SPRN[0–4] 0 1 1 1 0 1 0 0 1 1 /
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mulhw mulhw

Multiply high word

mulhw rD,rA,rB (Rc=0)
mulhw. rD,rA,rB (Rc=1)

prod0:63  ← rA32:63 × rB32:63
if Rc=1 then do

LT  ← prod0:31 < 0
GT  ← prod0:31 > 0
EQ  ← prod0:31 = 0
CR0 ← LT || GT || EQ || SO

rD32:63 ← prod0:31 
rD0:31  ← undefined

Bits 0–31 of the 64-bit product of the contents of rA[32–63] and the contents of rB[32–63] 
are placed into rD[32–63]. Bits rD[0–31] are undefined.

Both operands and the product are interpreted as signed integers.

Other registers altered: CR0 (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA rB / 0 0 1 0 0 1 0 1 1 Rc



Instruction set RM0004

755/1176  

mulhwu mulhwu

Multiply high word unsigned

mulhwu rD,rA,rB (Rc=0)
mulhwu. rD,rA,rB (Rc=1)

prod0:63 ← rA32:63 × rB32:63
if Rc=1 then do

LT  ← prod0:31 < 0
GT  ← prod0:31 > 0
EQ  ← prod0:31 = 0
CR0 ← LT || GT || EQ || SO

rD32:63 ← prod0:31
rD0:31 ← undefined

Bits 0–31 of the 64-bit product the contents of rA[32–63] and the contents of rB[32–63] are 
placed into rD[32–63]. Bits rD[0–31] are undefined.

Both operands and the product are interpreted as unsigned integers, except that if Rc=1 the 
first three bits of CR field 0 are set by signed comparison of the result to zero.

Other registers altered: CR0 (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA rB / 0 0 0 0 0 1 0 1 1 Rc



RM0004 Instruction set

 756/1176

mulli mulli

Multiply low immediate

mulli rD,rA,SIMM

prod0:127 ← rA × EXTS(SIMM) 
rD ← prod64:127

Bits 64–127 of the 128-bit product of the contents of rA and the sign-extended value of the 
SIMM field are placed into rD.

Both operands and the product are interpreted as signed integers.

Other registers altered: None

Programming notes:

● For mulli, the low-order 64 bits of the product are independent of whether the operands 
are regarded as signed or unsigned 64-bit integers. 

● For mulli and mullw, bits 32–63 of the product are independent of whether the 
operands are regarded as signed or unsigned 32-bit integers.

Book E User

0 5 6 10 11 15 16 31

0 0 0 1 1 1 rD rA SIMM



Instruction set RM0004

757/1176  

_mullix _mullix

Multiply Low [2 operand] Immediate

e_mulli rD,rA,SCI8

imm ← SCI8(F,SCL,UI8)
prod0:63 ← GPR(RA) × imm 

GPR(RD) ← prod32:63

Bits 32–63 of the 64-bit product of the contents of GPR(rA) and the value of SCI8 are placed 
into GPR(rD).

Both operands and the product are interpreted as signed integers.

Special Registers Altered: None

e_mull2i rA,SI

prod0:63 ← GPR(RA) × EXTS(SI0:4 || SI5:15) 

GPR(RA) ← prod32:63

Bits 32–63 of the 64-bit product of the contents of GPR(rA) and the sign-extended value of 
the SI field are placed into GPR(rA).

Both operands and the product are interpreted as signed integers.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 20 21 22 23 24 31

0 0 0 1 1 0 RD RA 1 0 1 0 0 F SCL UI8

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 SI0:4 RA 1   0 1 0 0 SI5:15



RM0004 Instruction set

 758/1176

mullw mullw

Multiply low word

mullw rD,rA,rB (OE=0, Rc=0)
mullw. rD,rA,rB (OE=0, Rc=1)
mullwo rD,rA,rB (OE=1, Rc=0)
mullwo. rD,rA,rB (OE=1, Rc=1)

prod0:63 ← rA32:63 × rB32:63
if OE=1 then do
   OV ← (prod0:31 ≠ 320) & (prod0:31 ≠ 321)
   SO ← SO | OV
if Rc=1 then do

LT  ← prod32:63 < 0
GT  ← prod32:63 > 0
EQ  ← prod32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← prod0:63

The 64-bit product of the contents of rA[32–63] and the contents of rB[32–63] is placed into 
rD.

If OE=1, OV is set if the product cannot be represented in 32 bits.

Both operands and the product are interpreted as signed integers.

Other registers altered:

● CR0 (if Rc=1)
SO OV (if OE=1)

Programming notes:

● Bits 32–63 of the product are independent of whether the operands are regarded as 
signed or unsigned 32-bit integers.

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA rB OE 0 1 1 1 0 1 0 1 1 Rc



Instruction set RM0004

759/1176  

_mullwx _mullwx

Multiply Low Word

se_mullw rX,rY

prod0:63 ← GPR(RX)32:63 × GPR(RY)32:63

GPR(RX) ← prod32:63

Bits 32–63 of the 64-bit product of the contents of bits 32–63 of GPR(rX) and the contents of 
bits 32–63 of GPR(rY) is placed into GPR(rX).

Special Registers Altered: None

0 5 6 7 8 11 12 15

0 0 0 0 0 1 0 1 RY RX

VLE User



RM0004 Instruction set

 760/1176

nand nand

NAND

nand rA,rS,rB (Rc=0)
nand. rA,rS,rB (Rc=1)

result0:63 ← ¬( rS & rB)
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

rA ← result

The contents of rS are ANDed with the contents of rB and the one’s complement of the 
result is placed into rA.

Other registers altered: CR0 (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 0 1 1 1 0 1 1 1 0 0 Rc



Instruction set RM0004

761/1176  

neg neg

Negate

neg rD,rA (OE=0, Rc=0)
neg. rD,rA (OE=0, Rc=1)
nego rD,rA (OE=1, Rc=0)
nego. rD,rA (OE=1, Rc=1)

carry0:63 ← Carry(¬rA + 1)
sum0:63   ←       ¬rA + 1
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32:63 < 0
GT  ← sum32:63 > 0
EQ  ← sum32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum

The sum of the one’s complement of the contents of rA and 1 is placed into rD.

If rA contains the most negative 64-bit number (0x8000_0000_0000_0000), the result is the 
most negative number. Similarly, if rA[32–63] contain the most negative 32-bit number 
(0x8000_0000), bits 32–63 of the result contain the most negative 32-bit number and, if 
OE=1, OV is set.

Other registers altered:

● CR0 (if Rc=1)
SO OV  (if OE=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA /// OE 0 0 1 1 0 1 0 0 0 Rc



RM0004 Instruction set

 762/1176

_negx _negx

Negate

se_neg rX

result32:63 ← ¬GPR(RX)+ 1

GPR(RX) ← result32:63

The sum of the one’s complement of the contents of GPR(rX) and 1 is placed into GPR(rX).

If bits 32–63 of GPR(rX) contain the most negative 32-bit number (0x8000_0000), bits 32–
63 of the result contain the most negative 32-bit number

Special Registers Altered: None

0 5 6 11 12 15

0 0 0 0 0 0 0 0 0 0 1 1 RX

VLE User



Instruction set RM0004

763/1176  

nor nor

NOR

nor rA,rS,rB (Rc=0)
nor. rA,rS,rB (Rc=1)

result0:63 ← ¬(rS | rB)
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

rA ← result

The contents of rS are ORed with the contents of rB and the one’s complement of the result 
is placed into rA.

Other registers altered: CR0 (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 0 0 0 1 1 1 1 1 0 0 Rc



RM0004 Instruction set

 764/1176

_notx _notx

NOT

se_not rX

result32:63 ← ¬GPR(RX)

GPR(RX) ← result32:63

The contents of GPR(rX) are inverted.

Special Registers Altered: None

0 5 6 11 21 15

0 0 0 0 0 0 0 0 0 0 1 0 RX

VLE User



Instruction set RM0004

765/1176  

or or

OR [Immediate [shifted] | with complement]

or rA,rS,rB (Rc=0)
or. rA,rS,rB (Rc=1)

ori rA,rS,UIMM (S=0, Rc=0)
oris rA,rS,UIMM (S=1, Rc=0)

orc rA,rS,rB (Rc=0)
orc. rA,rS,rB (Rc=1)

if ‘ori’    then b ← 480 || UIMM
if ‘oris’   then b ← 320 || UIMM || 160
if ‘or[.]’  then b ← rB
if ‘orc[.]’ then b ← ¬rB
result0:63 ← rS | b
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

rA ← result

For ori, the contents of rS are ORed with 480 || UIMM.

For oris, the contents of rS are ORed with 320 || UIMM || 160.

For or[.], the contents of rS are ORed with the contents of rB.

For orc[.], the contents of rS are ORed with the one’s complement of the contents of rB.

The result is placed into rA.

The preferred no-op is ori 0,0,0

Other registers altered: CR0 (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 1 1 0 0 Rc

0 5 6 10 11 15 16 31

0 1 1 0 0 S rS rA UIMM

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 0 0 Rc



RM0004 Instruction set

 766/1176

_orx _orx

OR [2 operand] [Immediate | with Complement] [Shifted][and Record]

se_or rX,rY

e_or2i rD,UI

e_or2is rD,UI

e_ori rA,rS,SCI8 (Rc = 0)
e_ori. rA,rS,SCI8 (Rc = 1)

if ‘e_ori[.]’    then b ← SCI8(F,SCL,UI8)

if ‘e_or2i’  then b ← 160 || UI0:4 || UI5:15
if ‘e_or2is’  then b ← UI0:4 || UI5:15 || 160
if ‘se_or’  then b ← GPR(RB)

result0:63 ← GPR(RS or RD or RX) | b

if Rc=1 then do

LT  ← result32:63 < 0

GT  ← result32:63 > 0

EQ  ← result32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RA or RD or RX) ← result

For e_ori[.], the contents of GPR(rS) are ORed with the value of SCI8.

For e_or2i, the contents of GPR(rD) are ORed with 160 || UI.

For e_or2is, the contents of GPR(rD) are ORed with UI || 160.

For se_or, the contents of GPR(rX) are ORed with the contents of GPR(rY).

The result is placed into GPR(rA or rX).

The preferred ‘no-op’ (an instruction that does nothing) is:

     e_ori  0,0,0

Special Registers Altered: CR0 (if Rc = 1)

0 5 6 7 8 11 12 15

0 1 0 0 0 1 0 0 RY RX

VLE User

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 RD UI0:4 1 1 0 0 0 UI5:15

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 RD UI0:4 1 1 0 1 0 UI5:15

0 5 6 10 11 15 16 19 20 21 22 23 24 31

0 0 0 1 1 0 RS RA 1 1 0 1 Rc F SCL UI8



Instruction set RM0004

767/1176  

rfci rfci

Return from critical interrupt

rfci

MSR ← CSRR1
NIA ← CSRR0[0:61] || 0b00

The rfci instruction is used to return from a critical class interrupt, or as a means of 
establishing a new context and synchronizing on that new context simultaneously. 

The contents of CSRR1 are placed into the MSR. If the new MSR value does not enable any 
pending exceptions, then the next instruction is fetched, under control of the new MSR 
value, from the address CSRR0[0–61]||0b00. If the new MSR value enables one or more 
pending exceptions, the interrupt associated with the highest priority pending exception is 
generated; in this case, the value placed into SRR0 or CSRR0 by the interrupt processing 
mechanism is the address of the instruction that would have been executed next had the 
interrupt not occurred (that is, the address in CSRR0 at the time of the execution of the rfci).

Execution of this instruction is restricted to supervisor mode.

Execution of this instruction is context synchronizing. See Context synchronization on 
page 144.”

Other registers altered: MSR

Programming note: In addition to Branch to LR (bclr[l]) and Branch to CTR (bcctr[l]) 
instructions, rfi and rfci allow software to branch to any valid 64-bit address by using the 
respective 64-bit SRR0 and CSRR0.

Book E Supervisor

0 5 6 20 21 30 31

0 1 0 0 1 1 /// 0 0 0 0 1 1 0 0 1 1 /



RM0004 Instruction set

 768/1176

_rfci _rfci

Return From Critical Interrupt

se_rfci

MSR ← CSRR1

NIA ← CSRR00:62 || 0b0

The se_rfci instruction is used to return from a critical class interrupt, or as a means of 
establishing a new context and synchronizing on that new context simultaneously. 

The contents of CSRR1 are placed into the MSR. If the new MSR value does not enable any 
pending exceptions, then the next instruction is fetched, under control of the new MSR 
value, from the address CSRR0[32–62]||0b0. If the new MSR value enables one or more 
pending exceptions, the interrupt associated with the highest priority pending exception is 
generated; in this case the value placed into SRR0 or CSRR0 by the interrupt processing 
mechanism (see Book E) is the address of the instruction that would have been executed 
next had the interrupt not occurred (that is, the address in CSRR0 at the time of the 
execution of the se_rfci).

Execution of this instruction is privileged and restricted to supervisor mode.

Execution of this instruction is context synchronizing.

Special Registers Altered: MSR

0 15

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

VLE Supervisor



Instruction set RM0004

769/1176  

rfdi rfdi

Return from debug interrupt 

rfdi  

if Mode32 then m ← 32
if Mode64 then m ← 0
MSR ← DSRR1
NIA ← m0 || DSRR0m:61 || 0b00
The rfdi instruction is used to return from a debug interrupt, or as a means of 
establishing a new context and synchronizing on that new context simultaneously. 

The contents of DSRR1 are placed into the MSR. If the new MSR value does not enable any 
pending exceptions, then the next instruction is fetched, under control of the new MSR 
value, from the address DSRR0[0–61]||0b00. If the new MSR value enables one or more 
pending exceptions, the interrupt associated with the highest priority pending exception is 
generated; in this case the value placed into SRR0, CSRR0, or DSRR0 by the interrupt 
processing mechanism is the address of the instruction that would have been executed next 
had the interrupt not occurred (that is, the address in DSRR0 at the time of the execution of 
the rfdi).

Execution of this instruction is privileged and restricted to supervisor mode.

Execution of this instruction is context synchronizing.

Other registers altered:

● MSR set as described above.

Debug APU Supervisor

0 5 6 10 11 15 16 20 21 30 31

0 1 0 0 1 1 /// 0 0 0 0 1 0 0 1 1 1 /



RM0004 Instruction set

 770/1176

rfi rfi

Return from interrupt

rfi

MSR ← SRR1
NIA ← SRR0[0:61] || 0b00

The rfi instruction is used to return from a non-critical class interrupt, or as a means of 
simultaneously establishing a new context and synchronizing on that new context.

The contents of SRR1 are placed into the MSR. If the new MSR value does not enable any 
pending exceptions, then the next instruction is fetched, under control of the new MSR 
value, from the address SRR0[0–61]||0b00. If the new MSR value enables one or more 
pending exceptions, the interrupt associated with the highest priority pending exception is 
generated; in this case the value placed into SRR0 or CSRR0 by the interrupt processing 
mechanism is the address of the instruction that would have been executed next had the 
interrupt not occurred (that is, the address in SRR0 at the time of the execution of the rfi).

Execution of this instruction is restricted to supervisor mode.

Execution of this instruction is context synchronizing. See Context synchronization on 
page 144.”

Other registers altered: MSR

Book E Supervisor

0 5 6 20 21 30 31

0 1 0 0 1 1 /// 0 0 0 0 1 1 0 0 1 0 /



Instruction set RM0004

771/1176  

_rfi _rfi

Return From Interrupt

se_rfi

MSR ← SRR1

NIA ← SRR00:62 || 0b0

The se_rfi instruction is used to return from a non-critical class interrupt, or as a means of 
simultaneously establishing a new context and synchronizing on that new context.

The contents of SRR1 are placed into the MSR. If the new MSR value does not enable any 
pending exceptions, then the next instruction is fetched under control of the new MSR value 
from the address SRR0[32–62]||0b0. If the new MSR value enables one or more pending 
exceptions, the interrupt associated with the highest priority pending exception is generated; 
in this case the value placed into SRR0 or CSRR0 by the interrupt processing mechanism 
(see Book E) is the address of the instruction that would have been executed next had the 
interrupt not occurred (that is, the address in SRR0 at the time of the execution of the 
se_rfi).

Execution of this instruction is privileged and restricted to supervisor mode.

Execution of this instruction is context synchronizing.

Special Registers Altered: MSR

0 15

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

VLE Supervisor



RM0004 Instruction set

 772/1176

rfmci rfmci

Return from Machine Check Interrupt

rfmci

MSR ← MCSRR1
NIA ← MCSRR00:61 || 0b00

The rfmci instruction is used to return from a machine check interrupt, or as a means of 
simultaneously establishing a new context and synchronizing on that new context. 

The contents of machine check save/restore register 1 (MCSRR1) are placed into the MSR. 
If the new MSR value does not enable any pending exceptions, the next instruction is 
fetched, under control of the new MSR value from the address MCSRR0[32-61]|| 0b00. If 
the new MSR value enables one or more pending exceptions, the interrupt associated with 
the highest priority pending exception is generated; in this case the value placed into SRR0 
or CSRR0 by the interrupt processing mechanism is the address of the instruction that 
would have been executed next had the interrupt not occurred (that is, the address in 
MCSRR0 at the time of the execution of rfi or rfci).

Execution of this instruction is privileged and context synchronizing.

Special registers altered: MSR

Machine Check APU Supervisor

0 5 6 20 21 30 31

0 1 0 0 1 1 /// 0 0 0 0 1 0 0 1 1 0 0



Instruction set RM0004

773/1176  

_rlw _rlw

Rotate Left Word [Immediate] 

e_rlw rA,rS,rB (Rc = 0)
e_rlw. rA,rS,rB (Rc = 1)

e_rlwi rA,rS,SH (Rc = 0)
e_rlwi. rA,rS,SH (Rc = 1)

if ‘e_rlw[.]’ then n ← GPR(RB)59:63

else               n ← SH

result32:63 ← ROTL32(GPR(RS)32:63,n)

if Rc=1 then do

LT  ← result32:63 < 0

GT  ← result32:63 > 0

EQ  ← result32:63 = 0

CR0 ← LT || GT || EQ || SO
GPR(RA) ← result32:63

If e_rlw[.], let the shift count n be the contents of bits 59–63 of GPR(rB).

If e_rlwi[.], let the shift count n be SH.

The contents of GPR(rS) are rotated32 left n bits. The rotated data is placed into GPR(rA).

Special Registers Altered: CR0 (if Rc = 1)

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 RS RA RB 0 1 0 0 0 1 1 0 0 0 Rc

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 RS RA SH 0 1 0 0 1 1 1 0 0 0 Rc



RM0004 Instruction set

 774/1176

rlwimi rlwimi

Rotate left word immediate then mask insert

rlwimi rA,rS,SH,MB,ME (Rc=0)
rlwimi. rA,rS,SH,MB,ME (Rc=1)

n ← SH
b ← MB+32
e ← ME+32
r ← (rS32:63,n)
m ← MASK(b,e)
result0:63 ← r&m | rA&¬m
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

rA ← result0:63

The shift count n is the value SH.

The contents of rS are rotated32 left n bits. A mask is generated having 1 bits from bit 
MB+32 through bit ME+32 and 0 bits elsewhere. The rotated data is inserted into rA under 
control of the generated mask. (If a mask bit is 1 the associated bit of the rotated data is 
placed into the target register, and if the mask bit is 0 the associated bit in the target register 
remains unchanged.)

Other registers altered: CR0 (if Rc=1)

Programming note: Uses for rlwimi[.]:

● To insert a k-bit field that is left-justified in rS[32–63], into rA[32–63] starting at bit 
position j, by setting SH=64-j, MB=j-32, and ME=(j+k)-33.

● To insert an k-bit field that is right-justified in rS[32–63], into rA[32–63] starting at bit 
position j, by setting SH=64-(j+k), MB=j-32, and ME=(j+k)-33.

Book E User

0 5 6 10 11 15 16 20 21 25 26 30 31

0 1 0 1 0 0 rS rA SH MB ME Rc



Instruction set RM0004

775/1176  

_rlwimi _rlwimi

Rotate Left Word Immediate then Mask Insert

e_rlwimi rA,rS,SH,MB,ME

n ← SH

b ← MB+32

e ← ME+32

r ← ROTL32(GPR(RS)32:63,n)

m ← MASK(b,e)

result32:63 ← r&m | GPR(RA)&¬m

GPR(RA) ← result32:63

Let the shift count n be the value SH.

The contents of GPR(rS) are rotated32 left n bits. A mask is generated having 1 bits from bit 
MB+32 through bit ME+32 and 0 bits elsewhere. The rotated data are inserted into GPR(rA) 
under control of the generated mask (if a mask bit is 1 the associated bit of the rotated data 
is placed into the target register, and if the mask bit is 0 the associated bit in the target 
register remains unchanged).

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 20 21 25 26 30 31

0 1 1 1 0 1 RS RA SH MB ME 0



RM0004 Instruction set

 776/1176

_rlwinm _rlwinm

Rotate Left Word Immediate then AND with Mask

e_rlwinm rA,rS,SH,MB,ME

n ← SH

b ← MB+32

e ← ME+32

r ← ROTL32(GPR(RS)32:63,n)

m ← MASK(b,e)

result32:63 ← r & m

GPR(RA) ← result32:63

Let the shift count n be SH.

The contents of GPR(rS) are rotated32 left n bits. A mask is generated having 1 bits from bit 
MB+32 through bit ME+32 and 0 bits elsewhere. The rotated data are ANDed with the 
generated mask and the result is placed into GPR(rA).

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 20 21 25 26 30 31

0 1 1 1 0 1 RS RA SH MB ME 1



Instruction set RM0004

777/1176  

rlwnm rlwnm

Rotate left word [immediate] then AND with mask

rlwnm rA,rS,rB,MB,ME (Rc=0)
rlwnm. rA,rS,rB,MB,ME (Rc=1)

rlwinm rA,rS,SH,MB,ME (Rc=0)
rlwinm. rA,rS,SH,MB,ME (Rc=1)

if ‘rlwnm[.]’ then n ← rB59:63
else               n ← SH
b ← MB+32
e ← ME+32
r ← (rS32–63,n)
m ← MASK(b,e)
result0:63 ← r & m
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

rA ← result0:63

If rlwnm[.], the shift count, n, is the contents of rB[59–63]. If rlwinm[.], n is SH. The rS 
contents are rotated32 left n bits. The mask has 1s from bit MB+32 through bit ME+32 and 
0s elsewhere. The rotated data is ANDed with the mask and the result is placed into rA.

Other registers altered: CR0 (if Rc=1)

         

Book E User

0 5 6 10 11 15 16 20 21 25 26 30 31

0 1 0 1 1 1 rS rA rB MB ME Rc

0 5 6 10 11 15 16 20 21 25 26 30 31

0 1 0 1 0 1 rS rA SH MB ME Rc

Uses for rlwnm[.] Uses for rlwinm[.]

To extract a k-bit field starting at bit position j in rS[32–63], right-justified into rA[32–63] (clearing the remaining 32–
k bits of rA[32–63])…

…by setting rB[59–63]=j+k-32, MB=32–k, and ME=31. …by setting SH=j+k-32, MB=32–k, and ME=31.

To extract a k-bit field that starts at bit position j in rS[32–63], left-justified into rA[32–63] (clearing the remaining 32–
k bits of rA[32–63])…

…by setting rB[59–63]=j-32, MB=0, and ME=k–1. …by setting SH=j-32, MB=0, and ME=k–1. 

To rotate the contents of bits 32–63 of a register left by k bits…

…setting rB[59–63]=k, MB=0, and ME=31. …setting SH=k, MB=0, and ME=31. 

To rotate the contents of bits 32–63 of a register right by k bits…

…by setting rB[59–63] =32–k, MB=0, and ME=31. …by setting SH=32–k, MB=0, and ME=31. 
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To shift the contents of bits 32–63 of a register right by k 
bits, by setting SH=32–k, MB=k, and ME=31. 

To clear the high-order j bits of the contents of bits 32–63 
of a register and then shift the result left by k bits, by 
setting SH=k, MB=j–k and ME=31–k. 
To clear the low-order k bits of bits 32–63 of a register, 
by setting SH=0, MB=0, and ME=31–k.

For the uses given above, bits rA[0–31] are cleared.

Uses for rlwnm[.] Uses for rlwinm[.]
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sc sc

System call

sc

SRR1 ← MSR
SRR0 ← CIA+4
NIA  ← EVPR[0:47] || IVOR8[48-59] || 0b0000
MSR[WE,EE,PR,IS,DS,FP,FE0,FE1] ← 0b0000_0000

sc is used to request a system service. A system call interrupt is generated. The MSR 
contents are copied into SRR1 and the address of the instruction after the sc instruction is 
placed into SRR0.

MSR[WE,EE,PR,IS,DS,FP,FE0,FE1] are cleared.

The interrupt causes the next instruction to be fetched from the address 
IVPR[0–47]||IVOR8[48-59]||0b0000.

sc is context synchronizing. See Context synchronization on page 144.”

Other registers altered: SRR0 SRR1 MSR[WE,EE,PR,IS,DS,FP,FE0,FE1]

Book E Supervisor

0 5 6 29 30 31

0 1 0 0 0 1 /// 1 /
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slw slw

Shift left word

slw rA,rS,rB (Rc=0)
slw. rA,rS,rB (Rc=1)

n ← rB59:63
r ← ROTL32(rS32:63,n)
if rB58=0 then m ← MASK(32,63-n)
else                m ← 640
result0:63 ← r & m
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

rA ← result0:63

The shift count n is the value specified by the contents of rB[58–63].

The contents of rS[32–63] are shifted left n bits. Bits shifted out of position 32 are lost. Zeros 
are supplied to the vacated positions on the right. The 32-bit result is placed into rA[32–63]. 
Bits rA[0–31] are cleared. 

Shift amounts from 32 to 63 give a zero result.

Other registers altered: CR0 (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 0 0 0 Rc
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_slwx _slwx

Shift Left Word [Immediate] [and Record]

e_slwi rA,rS,SH (Rc = 0)
e_slwi. rA,rS,SH (Rc = 1)

se_slw rX,rY

se_slwi rX,UI5

if ‘e_slwi[.]’ then n ← SH

if se_slw then n ← GPR(RY)58:63
if se_slwi then n ← UI5

r ← ROTL32(GPR(RS or RX)32:63,n)

if n<32 then m ← MASK(32,63-n)

else                m ← 320

result32:63 ← r & m

if Rc=1 then do

LT  ← result32:63 < 0

GT  ← result32:63 > 0

EQ  ← result32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RA or RX) ← result32:63

Let the shift count n be the value specified by the contents of bits 58–63 of GPR(rB or rY), or 
by the value of the SH or UI5 field.

The contents of bits 32–63 of GPR(rS or rX) are shifted left n bits. Bits shifted out of position 
32 are lost. Zeros are supplied to the vacated positions on the right. The 32-bit result is 
placed into bits 32–63 of GPR(rA or rX). 

Shift amounts from 32 to 63 give a zero result.

Special Registers Altered: CR0 (if Rc = 1)

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 RS RA SH 0 0 0 0 1 1 1 0 0 0 Rc

0 5 6 7 8 11 12 15

0 1 0 0 0 0 1 0 RY RX

0 5 6 7 11 12 15

0 1 1 0 1 1 0 UI5 RX
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_sc _sc

System Call

se_sc

SRR1 ← MSR

SRR0 ← CIA+2

NIA  ← IVPR32:47 || IVOR848:59 || 0b0000

MSRWE,EE,PR,IS,DS,FP,FE0,FE1 ← 0b0000_0000

se_sc is used to request a system service. A system call interrupt is generated. The 
contents of the MSR are copied into SRR1 and the address of the instruction after the 
se_sc instruction is placed into SRR0.

MSR[WE,EE,PR,IS,DS,FP,FE0,FE1] are cleared.

The interrupt causes the next instruction to be fetched from the address

IVPR[32–47]||IVOR8[48–59]||0b0000

This instruction is context synchronizing.

Special Registers Altered: SRR0 SRR1 MSR[WE,EE,PR,IS,DS,FP,FE0,FE1]

0 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

VLE User
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sraw sraw

Shift right algebraic word [immediate]

sraw rA,rS,rB (Rc=0)
sraw. rA,rS,rB (Rc=1)

srawi rA,rS,SH (Rc=0)
srawi. rA,rS,SH (Rc=1)

if ‘sraw[.]’ then n ← rB59:63
else              n ← SH
r ← ROTL64(rS[32:63],64-n)
if ‘sraw[.]’ & rB58=1 then m ← 640
else                            m ← MASK(n+32,63)
s ← rS32
result0:63 ← r&m | (64s)&¬m
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

rA ← result0:63
CA      ← s & ((r&¬m)32:63≠0)

If sraw[.], the shift count n is the contents of rB[58–63].

If srawi[.], the shift count n is the value of the SH field.

The contents of rS[32–63] are shifted right n bits. Bits shifted out of position 63 are lost. Bit 
32 of rS is replicated to fill the vacated positions on the left. The 32-bit result is placed into 
rA[32–63]. rS[32] is replicated to fill bits rA[0–31]. 

CA is set if rS[32–63] contain a negative value and any 1 bits are shifted out of bit position 
63; otherwise CA is cleared. 

A shift amount of zero causes rA to receive EXTS(rS[32–63]), and CA to be cleared. For 
sraw[.] shift amounts from 32 to 63 give a result of 64 signed bits, and cause CA to receive 
rS[32] (that is, sign bit of rS[32–63]).

Other registers altered: CA CR0 (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 1 1 0 0 0 1 1 0 0 0 Rc

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA SH 1 1 0 0 1 1 1 0 0 0 Rc
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_srawx _srawx

Shift Right Algebraic Word [Immediate] [and Record]

se_sraw rX,rY

se_srawi rX,UI5

if ‘se_sraw’   then n ← GPR(RY)59:63
if ‘se_srawi’  then n ← UI5

r ← ROTL32(GPR(RS or RX)32:63,32-n)

if ((se_sraw & GPR(RY)58=1) then m ← 320

else     m ← MASK(n+32,63)

s ← GPR(RS or RX)32

result0:63 ← r&m | (32s)&¬m

if Rc=1 then do

LT  ← result32:63 < 0

GT  ← result32:63 > 0

EQ  ← result32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RA or RX) ← result32:63

CA      ← s & ((r&¬m)32:63≠0)

If se_sraw, let the shift count n be the contents of bits 58–63 of GPR(rY).

If se_srawi, let the shift count n be the value of the UI5 field.

The contents of bits 32–63 of GPR(rS or rX) are shifted right n bits. Bits shifted out of 
position 63 are lost. Bit 32 of rS or rX is replicated to fill vacated positions on the left. The 
32-bit result is placed into bits 32–63 of GPR(rA or rX). 

CA is set if bits 32–63 of GPR(rS or rX) contain a negative value and any 1 bits are shifted 
out of bit position 63; otherwise CA is cleared. 

A shift amount of zero causes GPR(rA or rX) to receive EXTS(GPR(rS or rX)32:63), and CA 
to be cleared. For se_sraw, shift amounts from 32 to 63 give a result of 64 sign bits, and 
cause CA to receive bit 32 of the contents of GPR(rS or rX) (that is, sign bit of GPR(rS or 
rX)32:63).

Special Registers Altered: CA
CR0 (if Rc = 1)

0 5 6 7 8 11 12 15

0 1 0 0 0 0 0 1 RY RX

0 5 6 7 11 12 15

0 1 1 0 1 0 1 UI5 RX

VLE User
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srw srw

Shift right word

srw rA,rS,rB (Rc=0)
srw. rA,rS,rB (Rc=1)

n ← rB59–63
r ← ROTL64(rS32–63,64-n)
if rB58=0 then m ← MASK(n+32,63)
else                m ← 640
result0:63 ← r & m
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

rA ← result0:63

The shift count n is the value specified by the contents of rB[58–63].

The contents of rS[32–63] are shifted right n bits. Bits shifted out of position 63 are lost. 
Zeros are supplied to the vacated positions on the left. The 32-bit result is placed into 
rA[32–63]. Bits rA[0–31] are cleared. 

Shift amounts from 32 to 63 give a zero result.

Other registers altered: CR0 (if Rc=1)

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 1 0 0 0 0 1 1 0 0 0 Rc
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_srwx _srwx

Shift Right Word [Immediate] [and Record]

e_srwi rA,rS,SH (Rc = 0)
e_srwi. rA,rS,SH (Rc = 1)

se_srw rX,rY

se_srwi rX,UI5

n ← GPR(RB)59:63

if ‘e_srwi[.]’ then n ← SH
if ‘se_srw’   then n ← GPR(RY)59:63
if ‘se_srwi’ then n ← UI5
r ← ROTL32(GPR(RS or RX)32:63,32-n)

if ((se_srw & GPR(RY)58=1) then m ← 320

else                m ← MASK(n+32,63)

result32:63 ← r & m

if Rc=1 then do

LT  ← result32:63 < 0

GT  ← result32:63 > 0

EQ  ← result32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RA or RX) ← result32:63

If e_srwi, let the shift count n be the value of the SH field.

If se_srw, let the shift count n be the contents of bits 58–63 of GPR(rY).

If se_srwi, let the shift count n be the value of the UI5 field.

The contents of bits 32–63 of GPR(rS or rX) are shifted right n bits. Bits shifted out of 
position 63 are lost. Zeros are supplied to the vacated positions on the left. The 32-bit result 
is placed into bits 32–63 of GPR(rA or rX). 

Shift amounts from 32 to 63 give a zero result.

Special Registers Altered: CR0 (if Rc = 1)

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 RS RA SH 1 0 0 0 1 1 1 0 0 0 Rc

0 5 6 7 8 11 12 15

0 1 0 0 0 0 0 0 RY RX

0 5 6 7 11 12 15

0 1 1 0 1 0 0 UI5 RX



Instruction set RM0004

787/1176  

stb stb

Store byte [with update] [indexed] 

stb rS,D(rA) (D-mode, I=0)
stbu rS,D(rA) (D-mode, I=1)

stbx rS,rA,rB (X-mode, U=0)
stbux rS,rA,rB (X-mode, U=1)

if rA=0 then a ← 640 else a ← rA
if D-mode  then EA ← 320 || (a + EXTS(D))32:63
if X-mode  then EA ← 320 || (a + rB)32:63
MEM(EA,1) ← rS56:63
if U=1 then rA ← EA

The EA is calculated as follows:

● For stb and stbu, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, 
and the sign-extended value of the D field.

● For stbx and stbux, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if 
rA=0, and the contents of rB.

The contents of rS[56–63] are stored into the byte addressed by EA.

If U=1 (with update), EA is placed into rA.

If U=1 (with update) and rA=0, the instruction form is invalid.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 31

1 0 0 1 1 U rS rA D

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 0 0 1 1 U 1 0 1 1 1 /
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_stbx _stbx

Store Byte [with Update] [Indexed] 

e_stb rS,D(rA) (D-mode)

se_stb rZ,SD4(rX) (SD4-mode)

e_stbu rS,D8(rA) (D8-mode)

if (RA=0 & !se_stb) then a ← 320 else a ← GPR(RA or RX)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode   then EA ← (a + EXTS(D8))32:63

if SD4-mode   then EA ← (a + (280 || SD4))32:63

MEM(EA,1) ← GPR(RS or RZ)56:63

if e_stbu then GPR(RA) ← EA

Let the EA be calculated as follows:

● For e_stb and e_stbu, let EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, 
and the sign-extended value of the D or D8 instruction field.

● For se_stb, let EA be the sum of the contents of GPR(rX) and the zero-extended value 
of the SD4 instruction field.

The contents of bits 56–63 of GPR(rS) are stored into the byte in memory addressed by EA.

● If e_stbu, EA is placed into GPR(rA).

● If e_stbu and rA = 0, the instruction form is invalid.

● None

VLE User

0 5 6 10 11 15 16 31

0 0 1 1 0 1 RS RA D

0 3 4 7 8 11 12 15

1   0   0   1 SD4 RZ RX

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RS RA 0 0 0 0 0 1 0 0 D8
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stfd stfd

Store floating-point double [with update] [indexed] 

stfd frS,D(rA) (D-mode, U=0)
stfdu frS,D(rA) (D-mode, U=1)

stfdx frS,rA,rB (X-mode, U=0)
stfdux frS,rA,rB (X-mode, U=1)

if rA=0 then a ← 640 else a ← rA
if D-mode   then EA ← 320 || (a + EXTS(D))32:63
if X-mode   then EA ← 320 || (a + rB)32:63
MEM(EA,8) ← frS
if U=1 then rA ← EA

The EA is calculated as follows:

● For stfd and stfdu, EA is 32 zeros concatenated with bits 32–63 of the sum of the 
contents of rA, or 64 zeros if rA=0, and the sign-extended value of the D instruction 
field.

● For stfdx and stfdux, EA is 32 zeros concatenated with bits 32–63 of the sum of the 
contents of rA, or 64 zeros if rA=0, and the contents of rB.

The contents of frS are stored into the double word addressed by EA.

If U=1 (with update), EA is placed into rA.

If U=1 (with update) and rA=0, the instruction form is invalid.

If MSR[FP]=0, stfd[u][x] causes a floating-point unavailable interrupt.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 31

1 1 0 1 1 U frS rA D

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 frS rA rB 1 0 1 1 U 1 0 1 1 1 /



RM0004 Instruction set

 790/1176

stfiwx stfiwx

Store floating-point as integer word indexed 

stfiwx frS,rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
MEM(EA,4) ← frS[32:63]

The EA is calculated as follows:

● For stfiwx, EA is 32 zeros concatenated with bits 32–63 of the sum of the contents of 
rA, or 64 zeros if rA=0, and the contents of rB.

The contents of frS[32–63] are stored, without conversion, into the word addressed by EA.

If the contents of frS were produced, either directly or indirectly, by a load floating-point 
single instruction, a single-precision arithmetic instruction, or frsp, the value stored is 
undefined. (The contents of frS are produced directly by such an instruction if frS is the 
target register for the instruction. The contents of frS are produced indirectly by such an 
instruction if frS is the final target register of a sequence of one or more floating-point move 
instructions, with the input to the sequence having been produced directly by such an 
instruction.)

If MSR[FP]=0, an attempt to execute stfiwx causes a floating-point unavailable interrupt.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 frS rA rB 1 1 1 1 0 1 0 1 1 1 /
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stfs stfs

Store floating-point single [with update] [indexed] 

stfs frS,D(rA) (D-mode, U=0)
stfsu frS,D(rA) (D-mode, U=1)

stfsx frS,rA,rB (X-mode, U=0)
stfsux frS,rA,rB (X-mode, U=1)

if rA=0 then a ← 640 else a ← rA
if D-mode   then EA ← 320 || (a + EXTS(D))32:63
if X-mode   then EA ← 320 || (a + rB)32:63
MEM(EA,4) ← SINGLE(frS)
if U=1 then rA ← EA

The EA is calculated as follows:

● For stfs and stfsu, EA is 32 zeros concatenated with bits 32–63 of the sum of the 
contents of rA, or 64 zeros if rA=0, and the sign-extended value of the D field.

● For stfsx and stfsux, EA is 32 zeros concatenated with bits 32–63 of the sum of the 
contents of rA, or 64 zeros if rA=0, and the contents of rB.

The contents of frS are converted to single format and stored into the word addressed by 
EA.

If U=1 (with update), EA is placed into rA.

If U=1 (with update) and rA=0, the instruction form is invalid.

If MSR[FP]=0, stfs[u][x] causes a floating-point unavailable interrupt.

Other registers altered: None

Book E User

0 4 5 6 10 11 15 16 31

1 1 0 1 0 U frS rA D

0 5 6 10 11 15 16 20 21 24 25 26 30 31

0 1 1 1 1 1 frS rA rB 1 0 1 0 U 1 0 1 1 1 /
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sth sth

Store half word [with update] [indexed]

sth rS,D(rA) (D-mode, U=0)
sthu rS,D(rA) (D-mode, U=1)

sthx rS,rA,rB (X-mode, U=0)
sthux rS,rA,rB (X-mode, U=1)

if rA=0 then a ← 640 else a ← rA
if D-mode  then EA ← 320 || (a + EXTS(D))32:63
if X-mode  then EA ← 320 || (a + rB)32:63
MEM(EA,2) ← rS48:63
if U=1 then rA ← EA

The EA is calculated as follows:

● For sth and sthu, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, 
and the sign-extended value of the D field.

● For sthx and sthux, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if 
rA=0, and the contents of rB.

The contents of rS[48–63] are stored into the half word addressed by EA.

If U=1 (with update), EA is placed into rA.
If U=1 (with update) and rA=0, the instruction form is invalid.

Other registers altered: None

Book E User

0 4 5 6 10 11 15 16 31

1 0 1 1 0 U rS rA D

0 5 6 10 11 15 16 20 21 24 25 26 30 31

0 1 1 1 1 1 rS rA rB 0 1 1 0 U 1 0 1 1 1 /
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_sthx _sthx

Store Halfword [with Update] [Indexed] 

e_sth rS,D(rA) (D-mode)

se_sth rZ,SD4(rX) (SD4-mode)

e_sthu rS,D8(rA) (D8-mode)

if (RA=0 & !se_sth) then a ← 320 else a ← GPR(RA or RX)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode   then EA ← (a + EXTS(D8))32:63

if SD4-mode   then EA ← (a + (270 || SD4 || 0))32:63

MEM(EA,2) ← GPR(RS or RZ)48:63

if e_sthu then GPR(RA) ← EA

Let the EA be calculated as follows:

● For e_sth and e_sthu, let EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, 
and the sign-extended value of the D or D8 instruction field.

● For se_sth let EA be the sum of the contents of GPR(rX) and the zero-extended value 
of the SD4 instruction field shifted left by 1 bit.

The contents of bits 48–63 of GPR(rS) are stored into the half word in memory addressed 
by EA.

If e_sthu, EA is placed into GPR(rA).

If e_sthu and rA = 0, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 31

0 1 0 1 1 1 RS RA D

0 3 4 7 8 11 12 15

1   0   1   1 SD4 RZ RX

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RS RA 0   0   0   0   0   1   0   1 D8
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sthbrx sthbrx

Store half word byte-reverse 

sthbrx rS,rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
MEM(EA,2) ← rS56:63 || rS48:55

The EA is calculated as follows:

● For sthbrx, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, and 
the contents of rB.

rS[56–63] are stored into bits 0–7 of the half word addressed by EA. Bits 48–55 of rS are 
stored into bits 8–15 of the half word addressed by EA.

Other registers altered: None

Programming note: When EA references big-endian memory, these instructions have the 
effect of storing data in little-endian byte order. Likewise, when EA references little-endian 
memory, these instructions have the effect of storing data in big-endian byte order.

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 1 1 1 0 0 1 0 1 1 0 /
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stmw stmw

Store multiple word

stmw rS,D(rA)

if rA=0 then EA ← 320 || EXTS(D)32:63
else         EA ← 320 || (rA+EXTS(D))32:63
r ← rS
do while r ≤ 31

MEM(EA,4) ← GPR(r)32:63
r  ← r + 1
EA ← 320 || (EA+4)32:63

The EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, and the sign-
extended value of the D instruction field.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results 
are boundedly undefined.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 31

1 0 1 1 1 1 rS rA D
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_stmw _stmw

Store Multiple Word

e_stmw rS,D8(rA) (D8-mode)

if RA=0 then EA ← EXTS(D8)32:63

else         EA ← (GPR(RA)+EXTS(D8))32:63

r ← RS

do while r ≤ 31

MEM(EA,4) ← GPR(r)32:63

r  ← r + 1

EA ← (EA+4)32:63

Let the EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, and the sign-extended 
value of the D8 instruction field.

Let n = (32 - rS). Bits 32–63 of registers GPR(rS) through GPR(31) are stored in n 
consecutive words in memory starting at address EA.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results 
are boundedly undefined.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RS RA 0 0 0 0 1 0 0 1 D8
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stswi stswi

Store string word (immediate | indexed)

stswi rS,rA,NB

stswx rS,rA,rB

if rA=0 then a ← 640 else a ← rA
if ‘stswi’ then EA ← 320 ||  a32:63
if ‘stswx’ then EA ← 320 || (a + rB)32:63
if ‘stswi’ & NB=0 then n ← 32
if ‘stswi’ & NB≠0 then n ← NB
if ‘stswx’        then n ← XER57:63
r ← rS - 1
i ← 32
do while n > 0

if i=32 then r ← r + 1 (mod 32)
MEM(EA,1) ← GPR(r)i:i+7
i ← i + 8
if i = 64 then i ← 32
EA ← 320 || (EA+1)32:63
n  ← n - 1

The EA is calculated as follows:

● For stswi, EA is 32 zeros concatenated with bits 32–63 of the contents of rA, or 32 
zeros if rA=0.

● For stswx, EA is 32 zeros concatenated with bits 32–63 of the sum of the contents of 
rA, or 64 zeros if rA=0, and the contents of rB.

If stswi, let n=NB if NB≠0, n=32 if NB=0. If stswx, let n=XER[57–63]. n is the number of 
bytes to store. Let nr=CEIL(n÷4): nr is the number of registers to supply data.

n consecutive bytes starting at EA are stored from registers rS through GPR(rS+nr–1). Data 
is stored from the low-order 4 bytes of each GPR.

Bytes are stored left to right from each GPR. The register sequence can wrap to GPR0.

If stswx and n=0, no bytes are stored.

Other registers altered: None

Programming note: Store string word and load string word instructions allow movement of 
data between memory and registers without concern for alignment. They can be used for a 
short move between arbitrary locations or long moves between misaligned memory fields.

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA NB 1 0 1 1 0 1 0 1 0 1 /

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 1 0 1 0 0 1 0 1 0 1 /
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stw stw

Store word [with update] [indexed] 

stw rS,D(rA) (D-mode, U=0)
stwu rS,D(rA) (D-mode, U=1)

stwx rS,rA,rB (X-mode, U=0)
stwux rS,rA,rB (X-mode, U=1)

if rA=0 then a ← 640 else a ← rA
if D-mode  then EA ← 320 || (a + EXTS(D))32:63
if X-mode  then EA ← 320 || (a + rB)32:63
MEM(EA,4) ← rS[32:63]
if U=1 then rA ← EA

The EA is calculated as follows:

● For stw and stwu, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if 
rA=0, and the sign-extended value of the D field.

● For stwx and stwux, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if 
rA=0, and the contents of rB.

The contents of rS[32–63] are stored into the word addressed by EA.

If U=1 (with update), EA is placed into rA.

If U=1 (with update) and rA=0, the instruction form is invalid.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 31

1 0 0 1 0 U rS rA D

0 5 6 10 11 15 16 20 21 24 25 26 30 31

0 1 1 1 1 1 rS rA rB 0 0 1 0 U 1 0 1 1 1 /
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_stwx _stwx

Store Word [with Update] [Indexed] 

e_stw rS,D(rA) (D-mode)

se_stw rZ,SD4(rX) (SD4-mode)

e_stwu rS,D8(rA) (D8-mode)

if (RA=0 & !se_stw) then a ← 320 else a ← GPR(RA or RX)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode   then EA ← (a + EXTS(D8))32:63

if SD4-mode   then EA ← (a + (260 || SD4 || 20))32:63

MEM(EA,4) ← GPR(RS or RZ)32:63

Let the EA be calculated as follows:

● For e_stw and e_stwu, let EA be the sum of the contents of GPR(rA), or 32 0s if 
rA = 0, and the sign-extended value of the D or D8 instruction field.

● For se_stw, let EA be the sum of the contents of GPR(rX) and the zero-extended value 
of the SD4 instruction field shifted left by 2 bits.

The contents of bits 32–63 of GPR(rS) are stored into the word in memory addressed by 
EA.

If e_stwu, EA is placed into GPR(rA).

If e_stwu and rA = 0, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 31

0 1 0 1 0 1 RS RA D

0 3 4 7 8 11 12 15

1   1   0   1 SD4 RZ RX

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RS RA 0 0 0 0 0 1 1 0 D8
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stwbrx stwbrx

Store word byte-reverse 

stwbrx rS,rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
MEM(EA,4) ← rS56:63 || rS48:55 || rS40:47 || rS32:39

The EA is calculated as follows:

● For stwbrx, EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, and 
the contents of rB.

Bits 56–63 of rS are stored into bits 0–7 of the word addressed by EA. Bits 48–55 of rS are 
stored into bits 8–15 of the word addressed by EA. Bits 40–47 of rS are stored into bits 16–
23 of the word addressed by EA. Bits 32–39 of rS are stored into bits 24–31 of the word 
addressed by EA.

Other registers altered: None

Programming note: When EA references big-endian memory, these instructions have the 
effect of storing data in little-endian byte order. Likewise, when EA references little-endian 
memory, these instructions have the effect of storing data in big-endian byte order.

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 1 0 1 0 0 1 0 1 1 0 /



Instruction set RM0004

801/1176  

stwcx. stwcx.

Store word conditional indexed 

stwcx. rS,rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
if RESERVE then

if RESERVE_ADDR = real_addr(EA) then
MEM(EA,4) ← rS[32:63]
CR0 ← 0b00 || 0b1 || XERSO

else
u ← undefined 1-bit value
if u then MEM(EA,4) ← rS[32:63]
CR0 ← 0b00 || u || XERSO

RESERVE ← 0
else

CR0 ← 0b00 || 0b0 || XERSO

The EA is calculated as follows:

● For stwcx., EA is bits 32–63 of the sum of the contents of rA, or 64 zeros if rA=0, and 
the contents of rB.

If a reservation exists and the address specified by the stwcx. is the same as that specified 
by the lwarx instruction that established the reservation, the contents of rS[32–63] are 
stored into the word addressed by EA and the reservation is cleared.

If a reservation exists but the address specified by stwcx. is not the same as that specified 
by the load and reserve instruction that established the reservation, the reservation is 
cleared, and it is undefined whether the instruction completes without altering memory.

If a reservation does not exist, the instruction completes without altering memory.

CR field 0 is set to reflect whether the store operation was performed, as follows:

CR0[LT,GT,EQ,SO] = 0b00 || store_performed || XER[SO]

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results 
are boundedly undefined.

Other registers altered: CR0

Programming notes:

● stwcx., in combination with lwarx, permits the programmer to write a sequence of 
instructions that appear to perform an atomic update operation on a memory location. 
This operation depends on a single reservation resource in each processor. At most 
one reservation exists on any given processor: there are not separate reservations for 
words and for double words.

● Because stwcx. instructions have implementation dependencies (such as the 
granularity at which reservations are managed), they must be used with care. The 
operating system should provide system library programs that use these instructions to 
implement the high-level synchronization functions (such as, test and set, and compare 

Book E User

0 5 6 10 11 15 16 20 21 31

0 1 1 1 1 1 rS rA rB 0 0 1 0 0 1 0 1 1 0 1
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and swap) needed by application programs. Application programs should use these 
library programs, rather than use stwcx. directly.

● The granularity with which reservations are managed is implementation-dependent. 
Therefore, the memory to be accessed by stwcx. should be allocated by a system 
library program. Additional information can be found in Atomic update primitives using 
lwarx and stwcx. on page 176.”

● When correctly used, the load and reserve and store conditional instructions can 
provide an atomic update function for a single aligned word (lwarx and stwcx.) of 
memory. In general, correct use requires that lwarx be paired with stwcx. with the 
same address specified by both instructions of the pair. The only exception is that an 
unpaired stwcx. to any (scratch) effective address can be used to clear any reservation 
held by the processor. Examples of correct uses of these instructions to emulate 
primitives such as fetch and add, test and set, and compare and swap can be found in 
Appendix C: Programming examples on page 1143.

A reservation is cleared if any of the following events occur:

– The processor holding the reservation executes another load and reserve 
instruction; this clears the first reservation and establishes a new one.

– The processor holding the reservation executes a store conditional instruction to 
any address.

– Another processor executes any store instruction to the address associated with 
the reservation.

– Any mechanism, other than the processor holding the reservation, stores to the 
address associated with the reservation.

See Atomic update primitives using lwarx and stwcx. on page 176,” for additional 
information.
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_sub _sub

Subtract 

se_sub rX,rY 

sum32:63   ←  GPR(RX) + ¬GPR(RY) + 1

GPR(RX) ← sum32:63

The sum of the contents of GPR(rX), the one’s complement of contents of GPR(rY), and 1 is 
placed into GPR(rX).

Special Registers Altered: None

0 5 6 7 8 11 12 15

0 0 0 0 0 1 1 0 RY RX

VLE User
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subf subf

Subtract from

subf rD,rA,rB (OE=0, Rc=0)
subf. rD,rA,rB (OE=0, Rc=1)
subfo rD,rA,rB (OE=1, Rc=0)
subfo. rD,rA,rB (OE=1, Rc=1)

carry0:63 ← Carry(¬rA + rB + 1)
sum0:63   ←       ¬rA + rB + 1
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32:63 < 0
GT  ← sum32:63 > 0
EQ  ← sum32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum

The sum of the one’s complement of the contents of rA, the contents of rB, and 1 is placed 
into rD.

Other registers altered:

● CR0 (if Rc=1)
SO OV  (if OE=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA rB OE 0 0 0 1 0 1 0 0 0 Rc
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_subfx _subfx

Subtract From

se_subf rX,rY

sum32:63   ←  ¬GPR(RX) + GPR(RY) + 1

GPR(RX) ← sum32:63

The sum of the one’s complement of the contents of GPR(rX), the contents of GPR(rY), and 
1 is placed into GPR(rX).

Special Registers Altered: None

0 5 6 10 11 15

VLE User
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subfc subfc

Subtract from carrying

subfc rD,rA,rB (OE=0, Rc=0)
subfc. rD,rA,rB (OE=0, Rc=1)
subfco rD,rA,rB (OE=1, Rc=0)
subfco. rD,rA,rB (OE=1, Rc=1)

carry0:63 ← Carry(¬rA + rB + 1)
sum0:63   ←       ¬rA + rB + 1
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32:63 < 0
GT  ← sum32:63 > 0
EQ  ← sum32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum
CA      ← carry32

The sum of the one’s complement of the contents of rA, the contents of rB, and 1 is placed 
into rD.

Other registers altered:

● CA
CR0 (if Rc=1)
SO OV  (if OE=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA rB OE 0 0 0 0 0 1 0 0 0 Rc
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subfe subfe

Subtract from extended

subfe rD,rA,rB (OE=0, Rc=0)
subfe. rD,rA,rB (OE=0, Rc=1)
subfeo rD,rA,rB (OE=1, Rc=0)
subfeo. rD,rA,rB (OE=1, Rc=1)

if E=0 then Cin ← CA 
carry0:63 ← Carry(¬rA + rB + Cin)
sum0:63   ←       ¬rA + rB + Cin
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32:63 < 0
GT  ← sum32:63 > 0
EQ  ← sum32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum
CA      ← carry32

For subfe[o][.], the sum of the one’s complement of the contents of rA, the contents of rB, 
and CA is placed into rD.

Other registers altered:

● CA
CR0  (if Rc=1)
SO OV  (if OE=1)

Book E User

0 5 6 10 11 15 16 20 21 22 30 31

0 1 1 1 1 1 rD rA rB OE 0 1 0 0 0 1 0 0 0 Rc
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subfic subfic

Subtract from immediate carrying

subfic rD,rA,SIMM

carry0:63 ← Carry(¬rA + EXTS(SIMM) + 1)
sum0:63   ←       ¬rA + EXTS(SIMM) + 1
rD ← sum
CA      ← carry32

The sum of the one’s complement of the contents of rA, the sign-extended value of the 
SIMM field, and 1 is placed into rD.

Other registers altered: CA 

Book E User

0 5 6 10 11 15 16 31

0 0 1 0 0 0 rD rA SIMM
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_subficx _subficx

Subtract From Immediate Carrying [and Record]

e_subfic rD,rA,SCI8 (Rc = 0)
e_subfic. rD,rA,SCI8 (Rc = 1)

imm ← SCI8(F,SCL,UI8)
carry32:63 ← Carry(¬GPR(RA) + imm + 1)

sum32:63   ←       ¬GPR(RA) + imm + 1

if Rc=1 then do

   LT   ← sum32:63 < 0

   GT   ← sum32:63 > 0

   EQ   ← sum32:63 = 0

   CR0  ← LT || GT || EQ || SO

GPR(RD) ← sum32:63
CA      ← carry32

The sum of the one’s complement of the contents of GPR(rA), the value of SCI8, and 1 is 
placed into GPR(rD).

Special Registers Altered: CA CR0 (if Rc=1)

VLE User

0 5 6 10 11 15 16 20 21 22 23 24 31

0 0 0 1 1 0 RD RA 1 0 1 1 Rc F SCL UI8
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subfme subfme

Subtract from minus one extended

subfme rD,rA (OE=0, Rc=0)
subfme. rD,rA (OE=0, Rc=1)
subfmeo rD,rA (OE=1, Rc=0)
subfmeo. rD,rA (OE=1, Rc=1)

if E=0 then Cin ← CA 
carry0:63 ← Carry(¬rA + Cin + 0xFFFF_FFFF_FFFF_FFFF)
sum0:63   ←       ¬rA + Cin + 0xFFFF_FFFF_FFFF_FFFF
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32:63 < 0
GT  ← sum32:63 > 0
EQ  ← sum32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum
CA      ← carry32

For subfme[o][.], the sum of CA, 641, and the one’s complement of the contents of rA is 
placed into rD.

Other registers altered:

● CA
CR0 (if Rc=1)
SO OV  (if OE=1)

Book E User
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0 1 1 1 1 1 rD rA /// OE 0 1 1 1 0 1 0 0 0 Rc
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subfze subfze

Subtract from zero extended

subfze rD,rA (OE=0, Rc=0)
subfze. rD,rA (OE=0, Rc=1)
subfzeo rD,rA (OE=1, Rc=0)
subfzeo. rD,rA (OE=1, Rc=1)

if E=0 then Cin ← CA 
carry0:63 ← Carry(¬rA + Cin)
sum0:63   ←       ¬rA + Cin
if OE=1 then do

OV   ← carry32 ⊕ carry33
SO   ← SO | (carry32 ⊕ carry33)

if Rc=1 then do
LT  ← sum32:63 < 0
GT  ← sum32:63 > 0
EQ  ← sum32:63 = 0
CR0 ← LT || GT || EQ || SO

rD ← sum
CA      ← carry32

For subfze[o][.], the sum of the one’s complement of the contents of rA and CA is placed 
into rD.

Other registers altered:

● CA
CR0 (if Rc=1)
SO OV  (if OE=1)

Book E User
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0 1 1 1 1 1 rD rA /// OE 0 1 1 0 0 1 0 0 0 Rc
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_subix _subix

Subtract Immediate [and Record]

se_subi rX,OIMM (Rc = 0)

se_subi. rX,OIMM (Rc = 1)

sum32:63   ←  GPR(RX) + ¬(270 || OFFSET(OIM5)) + 1 

if Rc=1 then do

LT  ← sum32:63 < 0

GT  ← sum32:63 > 0

EQ  ← sum32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RX) ← sum32:63

The sum of the contents of GPR(rX), the one’s complement of the zero-extended value of 
the offseted OIM5 field (a final value in the range 1–32), and 1 is placed into GPR(rX).

Special Registers Altered: CR0 (if Rc = 1)

0 5 6 7 11 12 15

0 0 1 0 0 1 Rc OIM5(1)

1. OIMM = OIM5 +1

RX

VLE User
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tlbivax tlbivax

TLB Invalidate virtual address indexed 

tlbivax rA,rB

if rA=0 then a ← 640 else a ← rA
EA ← 320 || (a + rB)32:63
AS        ← implementation-dependent value
ProcessID ← implementation-dependent value
VA        ← AS || ProcessID || EA
InvalidateTLB(VA)

EIS note: Executing tlbivax invalidates any TLB entry that corresponds to a virtual address 
calculated by this instruction if IPROT is not set; this includes invalidating TLB entries on 
other devices as well as on the processor executing tlbivax. Thus an invalidate operation is 
broadcast throughout the coherent domain of the processor executing tlbivax. On some 
implementations, HID1[ABE] must be set to allow management of external L2 caches (for 
implementations with L2 caches) as well as other L1 caches in the system.

EA calculation: Addressing ModeEA for rA=0EA for rA≠0
320 || rB32:63

320 || (rA+rB)32:63

Address space (AS) is defined as implementation-dependent (for example, it could be 
MSR[DS] or a bit from an implementation-dependent SPR). 

ProcessID is implementation-dependent (for example, it could be from the PID or from an 
implementation-dependent SPR). The EIS implements the architected PID and additional 
implementation-specific PIDs. See Section 2.12.1: Process ID registers (PID0–PIDn).”

The virtual address (VA) is the value AS || ProcessID || EA. 

A TLB entry corresponding to VA is made invalid (that is, removed from the TLB). This 
instruction causes the target TLB entry to be invalidated in all processors.

The operation performed by this instruction is ordered by mbar (or msync) with respect to a 
subsequent tlbsync executed by the processor executing tlbivax. Operations caused by 
tlbivax and tlbsync are ordered by mbar as a set of operations independent of the other 
sets that mbar orders.

Other registers altered: None

Programming notes:

● The effects of the invalidation are not guaranteed to be visible to the programming 
model until the completion of a context synchronizing operation. See Context 
synchronization on page 144.”

● Care must be taken not to invalidate TLB entries that contain interrupt vector mappings.

Book E Supervisor

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 /// rA rB 1 1 0 0 0 1 0 0 1 0 /
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tlbre tlbre

TLB Read entry

tlbre

The RTL for the EIS definition of tlbre is as follows:

tlb_entry_id = MAS0(TLBSEL, ESEL | MAS2(EPN)
result = MMU(tlb_entry_id)
MAS0, MAS1, MAS2, MAS3, (and MAS7 if HID0[EN_MAS7_UPDATE] = 1) = result

Bits 6–20 of the encoding are allocated for implementation-dependent use and may be used 
to specify the source TLB entry, the source portion of the source TLB entry, and the target 
resource into which the result is placed. The EIS makes no use of these bits.

The implementation-defined TLB entry is read, and the implementation-defined portion of 
the TLB entry is extracted and placed into an implementation-defined target resource. 

If the instruction specifies a TLB entry that does not exist, the results are undefined.

EIS implementation note: tlbre causes the contents of a single TLB entry to be extracted 
from the MMU and be placed in the corresponding fields of the MMU assist (MAS) registers. 
The entry extracted is specified by the TLBSEL, ESEL and EPN fields of MAS0 and MAS2. 
The contents extracted from the MMU are placed in MAS0–MAS3. 

See the user’s manual for the implementation.

Execution of this instruction is restricted to supervisor mode.

Other registers altered: MAS0, MAS1, MAS2, and MAS3, as defined by the EIS

Book E Supervisor

0 5 6 20 21 30 31

0 1 1 1 1 1 ///(1) 1 1 1 0 1 1 0 0 1 0 /1

1. This field is defined as allocated by the Book E architecture, for possible use in an implementation. These bits are not 
implemented by the EIS. 
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tlbsx tlbsx

TLB Search indexed 

tlbsx rA,rB

if RA!=0 then generate exception
EA = 320 || GPR(RB)32:63
ProcessID = MAS6(SPID)
AS = MAS6(SAS)
VA0 = AS || (MMUCFG[PIDSIZE] + 1)0 || EA
VA1 = AS || ProcessID || EA
if Valid_TLB_matching_entry_exists (VA0) or Valid_TLB_matching_entry_exists 
(VA1)
#

#

MAS0, MAS1, MAS2, MAS3 = result

EA calculation: Addressing ModeEA for rA=0EA for rA≠0
320 || rB32:63

320 || (rA+rB)32:63

Note that rA = 0 is a preferred form for tlbsx and that some ST implementations take an 
illegal instruction exception program interrupt if rA != 0. 

Virtual address 0 (VA0) is the value AS || (MMUCFG[PIDSIZE] + 1)0 || EA
Virtual address 1 (VA1) is the value AS || ProcessID || EA

If the TLB contains an entry corresponding to VA, an implementation-dependent value is 
placed into an implementation-dependent-specified target. Otherwise the contents of the 
implementation-dependent-specified target are left undefined.

Other registers altered: implementation-dependent. See Supervisor-level tlb management 
instructions on page 183.

Book E Supervisor

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 ///(1) rA rB 1 1 1 0 0 1 0 0 1 0 / 1

1. This field is defined as allocated by the Book E architecture, for possible use in an implementation. These bits are not 
implemented by the EIS. 
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tlbsync tlbsync

TLB Synchronize

tlbsync

tlbsync provides an ordering function for the effects of all tlbivax instructions executed by 
the processor executing tlbsync, with respect to the memory barrier created by a 
subsequent msync instruction executed by the same processor. Executing tlbsync ensures 
that all of the following occur.

● All TLB invalidations caused by tlbivax instructions preceding the tlbsync instruction 
will have completed on any other processor before any memory accesses associated 
with data accesses caused by instructions following the msync instruction are 
performed with respect to that processor.

● All memory accesses by other processors for which the address was translated using 
the translations being invalidated, will have been performed with respect to the 
processor executing the msync instruction, to the extent required by the associated 
memory-coherence required attributes, before the mbar or msync instruction’s 
memory barrier is created.

The operation performed by this instruction is ordered by the mbar and msync instructions 
with respect to preceding tlbivax instructions executed by the processor executing the 
tlbsync instruction. The operations caused by tlbivax and tlbsync are ordered by mbar as 
a set of operations that is independent of the other sets that mbar orders.

The tlbsync instruction may complete before operations caused by tlbivax instructions 
preceding the tlbsync instruction have been performed.

Execution of this instruction is restricted to supervisor mode. 

Other registers altered: None

Book E Supervisor

0 5 6 20 21 30 31

0 1 1 1 1 1 /// 1 0 0 0 1 1 0 1 1 0 /
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tlbwe tlbwe

TLB Write entry

tlbwe

Bits 6–20 of the instruction encoding are allocated for implementation-dependent use, and 
may be used to specify the target TLB entry, the target portion of the target TLB entry, and 
the source of the value that is to be written into the TLB. The EIS does not make use of 
these bits.

The contents of the implementation-dependent–specified source are written into the 
implementation-dependent–specified portion of the implementation-dependent–specified 
TLB entry.

If the instruction specifies a TLB entry that does not exist, the results are undefined.

Execution of this instruction may cause other implementation-dependent effects. See the 
user’s manual for the implementation.

Execution of this instruction is restricted to supervisor mode. 

Other registers altered: None

Programming notes:

● The effects of the update are not guaranteed to be visible to the programming model 
until the completion of a context synchronizing operation. See Context synchronization 
on page 144.”

● Care must be taken not to invalidate any TLB entry that contains the mapping for any 
interrupt vector.

Book E Supervisor

0 5 6 20 21 30 31

0 1 1 1 1 1 ///(1) 1 1 1 1 0 1 0 0 1 0 /

1. This field is defined as allocated by the Book E architecture, for possible use in an implementation. These bits are not 
implemented by the EIS. 
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tw tw

Trap word [immediate]

tw TO,rA,rB

twi TO,rA,SIMM

a ← EXTS(rA32:63)
if ‘tw’  then b ← EXTS(rB32:63)
if ‘twi’ then b ← EXTS(SIMM)
if (a <  b) & TO0 then TRAP
if (a >  b) & TO1 then TRAP
if (a =  b) & TO2 then TRAP
if (a <u b) & TO3 then TRAP
if (a >u b) & TO4 then TRAP

For tw, the contents of rA[32–63] are compared with the contents of rB[32–63].

For twi, the contents of rA[32–63] are compared with the sign-extended value of the SIMM 
field.

If any bit in the TO field is set and its corresponding condition is met by the result of the 
comparison, then the system trap handler is invoked.

Other registers altered: None

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 TO rA rB 0 0 0 0 0 0 0 1 0 0 /

0 5 6 10 11 15 16 31

0 0 0 0 1 1 TO rA SIMM
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wrtee wrtee

Write MSR external enable [immediate]

wrtee rS

wrteei E

if ‘wrtee’  then MSR[EE] ← rS48
if ‘wrteei’ then MSR[EE] ← E

For wrtee, rS[48] is placed into MSR[EE].

For wrteei, the value specified in the E field is placed into MSR[EE].

Execution of this instruction is restricted to supervisor mode. 

In addition, changes to MSR[EE] are effective as soon as the instruction completes. Thus if 
MSR[EE]=0 and an external interrupt is pending, executing a wrtee or wrteei that sets 
MSR[EE] causes the external interrupt to be taken before the next instruction is executed, if 
no higher priority exception exists.

Other registers altered: MSR

Programming note: wrtee and wrteei are used to update of MSR[EE] without affecting other 
MSR bits. Typical usage is as follows:

mfmsr Rn #save EE in GPR(Rn)48
wrteei 0 #turn off EE
: : :
: : #code with EE disabled        
: : :
wrtee Rn #restore EE without altering other MSR bits 
that may have changed

Book E Supervisor

0 5 6 10 11 20 21 30 31

0 1 1 1 1 1 rS /// 0 0 1 0 0 0 0 0 1 1 /

0 5 6 15 16 17 20 21 30 31

0 1 1 1 1 1 /// E /// 0 0 1 0 1 0 0 0 1 1 /
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xor xor

XOR [Immediate [shifted]]

xor rA,rS,rB (Rc=0)
xor. rA,rS,rB (Rc=1)

xori rA,rS,UIMM (S=0, Rc=0)
xoris rA,rS,UIMM (S=1, Rc=0)

if ‘xori’   then b ← 480 || UIMM
if ‘xoris’  then b ← 320 || UIMM || 160
if ‘xor[.]’ then b ← rB
result0:63 ← rS ⊕ b
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

rA ← result

For xori, the contents of rS are XORed with 480 || UIMM.

For xoris, the contents of rS are XORed with 320 || UIMM || 160.

For xor[.], the contents of rS are XORed with the contents of rB.

The result is placed into rA.

Other registers altered: CR0 (if Rc=1) 

Book E User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 rS rA rB 0 1 0 0 1 1 1 1 0 0 Rc

0 4 5 6 10 11 15 16 31

0 1 1 0 1 S rS rA UIMM
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_xorx _xorx

XOR [Immediate] [and Record]

e_xori rA,rS,SCI8 (Rc = 0)
e_xori. rA,rS,SCI8 (Rc = 1)

if ‘e_xori[.]’  then b ← SCI8(F,SCL,UI8)

result32:63 ← GPR(RS) ⊕ b

if Rc=1 then do

LT  ← result32:63 < 0

GT  ← result32:63 > 0

EQ  ← result32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RA) ← result

For e_xori[.], the contents of GPR(rS) are XORed with SCI8.

The result is placed into GPR(rA).

Special Registers Altered: CR0 (if Rc = 1)

VLE User

0 5 6 10 11 15 16 19 20 21 22 23 24 31

0 0 0 1 1 0 RS RA 1 1 1 0 Rc F SCL UI8
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Part II: EIS-defined extensions to the Book E architecture

This part describes the extensions defined by the Book E Implementation Standards (EIS). 
It consists of the following:

● Chapter 7: Auxiliary processing units (APUs) on page 823,” describes APUs such as 
the isel instruction, performance monitor, signal processing engine (SPE), locking, and 
machine check APUs.

● Chapter 8: Storage-related APUs on page 848,” describes the following APUs defined 
by the storage architecture:

– Chapter 8.1: Cache line locking APU on page 848”

– Chapter 8.2: Direct cache flush APU on page 850”

– Chapter 8.3: Cache way partitioning APU on page 851” 

● Subsequent chapters describe the VLE extension

– Chapter 9: VLE introduction on page 852”

– Chapter 10: VLE storage addressing on page 759

– Chapter 11: VLE compatibility with the EIS on page 856”

– Chapter 12: VLE instruction classes on page 860”

– Chapter 13: VLE instruction set on page 891”

– Chapter 14: VLE instruction index on page 967”
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7 Auxiliary processing units (APUs)

This chapter describes the APUs defined by the EIS, which are as follows:

● Chapter 7.1: Integer select APU”

● Chapter 7.2: Performance monitor APU”

● Chapter 7.3: Signal processing engine APU (SPE APU)”

● Chapter 7.4: Embedded vector and scalar single-precision floating-point APUs 
(SPFP APUs)”

● Chapter 7.5: Machine check APU”

● Chapter 7.6: Debug APU”

● Chapter 7.7: Alternate time base” 

Note that individual processors may implement APUs that are not defined by the EIS. 
Individual processors may either further extend these APUs or may implement a subset of 
the resources described here. See the documentation for the individual implementation. 

7.1 Integer select APU
Control code, which is characterized by unpredictable short branches, is common in 
embedded applications. When mispredicted, these branches cause long pipeline delays. 
The integer select (isel) APU consists of a single instruction (isel), a conditional register 
move that helps eliminate some of these branches. The isel instruction works as follows:

if crB then
rD = rA

else
rD = rB

The isel instruction allows more efficient implementation of a condition sequence such as 
the one in the following generic example:

int16 global1,…, global37,...;
....
void procedure17(int16 parm) {

if (global1 == 27) {
global37 = parm + 17;

}
else {

global37 = parm - 17;
}

}

7.1.1 Integer select APU programming model

The integer select APU includes only the isel instruction, described in Chapter 6: Instruction 
set on page 330.” It accesses the GPRs and the CR and does not implement additional 
registers or interrupt resources.
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7.1.2 Using isel to Improve conditional branch performance

The Integer Select instruction, isel, can be used to handle short conditional branch 
segments more efficiently. isel has two source registers and one destination register. Under 
the control of a specified condition code bit, it copies one or the other source operand to the 
destination.

Table 208 shows a coding example with and without the isel instruction.

         

The sequence without isel turns conditional branches into a code sequence that sets a 
condition code according to the results of a computation. It uses a conditional branch to 
choose a target sequence, but needs an unconditional branch for the IF clause. The 
conditional branch is often hard to predict, the code sequences are generally small, and the 
resulting throughput is typically low. 

The sequence using isel does the following:

● Sets a condition code according to the results of a comparison

● Has code that executes both the IF and the ELSE segments

● Has a final statement that copies the results of one of the segments to the desired 
destination register

● Works well for small code segments and for unpredictable branches 

● Can reduce code size

7.2 Performance monitor APU
The EIS defines the performance monitor as an APU. Software communication with the 
performance monitor APU is achieved through performance monitor registers (PMRs) rather 
than SPRs. The PMRs are used for enabling conditions that can trigger an APU-defined 
performance monitor interrupt. 

7.2.1 Performance monitor APU programming model

The performance monitor APU provides a set of PMRs for defining, enabling, and counting 
conditions that trigger the performance interrupt. The APU defines instructions for reading 
and writing the PMRs.

Table 208. Recoding with isel

Code sequence without isel Code sequence with isel

cmpi cr3, r17, 27;
bne cr3, NotEqual;
addi r15, r17, 17;
jmp Assign;
NotEqual:

addi r15, r17, -17;
Assign:

stw r15, (rGlobals + g37);

cmpi cr3, r17, 27;
addi r15, r17, 17;
addi r16, r17, -17;
isel r15, r15, r16, cr3.eq
stw r15, (rGlobals + g37);



Auxiliary processing units (APUs) RM0004

825/1176  

Performance monitor APU registers

The performance monitor APU defines IVOR35 (SPR 531) for indicating the address of the 
performance monitor interrupt vector. IVOR35 is described in Interrupt vector offset registers 
(IVORs) on page 83.” 

The APU also defines a set of PMRs that are separate from the SPR resources. However, 
like SPRs and as shown in Table 209 and Table 210, bit 5 indicates whether a register is 
user- or supervisor-accessible. Supervisor-level PMRs in Table 209 are accessed through 
the mtpmr and mfpmr instructions. Attempting to read or write supervisor-level registers 
while in user-mode causes a privilege exception.

         

The user-level PMRs in Table 210 are read-only and are accessed with the mfpmr 
instruction. Attempting to write user-level registers in either supervisor or user mode causes 
an illegal instruction exception.

         

Table 209. Performance monitor registers—supervisor level

Register name Abbreviation PMR number pmr[0–4] pmr[5–9]

Counter 0 PMC0 16 00000 10000

Counter 1 PMC1 17 00000 10001

Counter 2 PMC2 18 00000 10010

Counter 3 PMC3 19 00000 10011

Local control a0 PMLCa0 144 00100 10000

Local control a1 PMLCa1 145 00100 10001

Local control a2 PMLCa2 146 00100 10010

Local control a3 PMLCa3 147 00100 10011

Local control b0 PMLCb0 272 01000 10000

Local control b1 PMLCb1 273 01000 10001

Local control b2 PMLCb2 274 01000 10010

Local control b3 PMLCb3 275 01000 10011

Global control 0 PMGC0 400 01100 10000

Table 210. Performance monitor registers—user level (read-only) 

Register name Abbreviation PMR number pmr[0–4] pmr[5–9]

Counter 0 UPMC0 0 00000 00000

Counter 1 UPMC1 1 00000 00001

Counter 2 UPMC2 2 00000 00010

Counter 3 UPMC3 3 00000 00011

Local control a0 UPMLCa0 128 00100 00000

Local control a1 UPMLCa1 129 00100 00001

Local control a2 UPMLCa2 130 00100 00010

Local control a3 UPMLCa3 131 00100 00011

Local control b0 UPMLCb0 256 01000 00000
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PMRs are fully described in Chapter 2.16 on page 124.”

Performance monitor apu instructions

The APU also defines the instructions in Table 211 to move to and move from these PMRs. 
Full descriptions of these instructions can be found in Chapter 6 on page 330.”

         

Performance monitor APU interrupt model

The performance monitor APU provides a performance monitor interrupt that is triggered by 
an enabled condition or event. 

7.3 Signal processing engine APU (SPE APU)
This section describes the SPE APU programming model, exceptions, and functions.

7.3.1 Overview

This section describes the instruction set architecture of the signal processing engine (SPE) 
APU. The SPE APU is designed to accelerate signal processing applications normally 
suited to DSP operation. This is accomplished using short (two-element) vectors within 64-
bit GPRs and using single instruction multiple data (SIMD) operations to perform the 
requisite computations. SPE also architects an accumulator register to allow for back-to-
back operations without loop unrolling.

Local control b1 UPMLCb1 257 01000 00001

Local control b2 UPMLCb2 258 01000 00010

Local control b3 UPMLCb3 259 01000 00011

Global control 0 UPMGC0 384 01100 00000

Table 211. Performance monitor apu instructions

Name Mnemonic Syntax

Move from Performance Monitor Register mfpmr rD,PMRN

Move to Performance Monitor Register mtpmr PMRN,rS

Table 210. Performance monitor registers—user level (read-only)  (continued)

Register name Abbreviation PMR number pmr[0–4] pmr[5–9]
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7.3.2 Nomenclature and conventions

Several conventions regarding nomenclature are used in this document: 

● The signal processing engine APU is abbreviated as SPE.

● All register bit numbering is 64-bit, with bit 0 being the most significant bit. Registers 
that are only 32-bit define bit 32 as the most significant bit. For both 32- and 64-bit 
registers, bit 63 is the least significant bit.

● Bits 0 to 31 of a 64-bit register are referenced as upper word, even word or high word 
element of the register. Bits 32–63 are referred to as lower word, odd word, or low word 
element of the register. Each half is an element of a 64-bit GPR.

● Bits 0 to 15 and bits 32 to 47 are referenced as even half words. Bits 16 to 31 and bits 
48 to 63 are referenced as odd half words.

● Mnemonics for SPE instructions generally begin with the letters ‘ev’ (embedded 
vector).

7.3.3 Programming model

This section describes SPE registers, instructions, and interrupts. 

General operation

SPE instructions generally take elements from each source register and operate on them 
with the corresponding elements of a second source register (and/or the accumulator) to 
produce results. Results are placed in the destination register and/or the accumulator. 
Instructions that are vector in nature (that is, they produce results of more than one element) 
provide results for each element that are independent of the computation of the other 
elements. These instructions can also be used to perform scalar DSP operations by ignoring 
the results of the upper 32-bit half of the register file.

There are no record forms of SPE instructions. SPE compare instructions store the compare 
result into the condition register (CR). The meaning of the CR bits is now overloaded for 
SPE operations. SPE compare instructions specify a CR field, two source registers, and the 
type of compare: greater than, less than, or, equal. Two bits of the CR field are written with 
the result of the vector compare, one for each element. The remaining two bits reflect the 
ANDing and ORing of the vector compare results.

GPR registers

The SPE APU requires a GPR register file with thirty-two 64-bit registers. For 32-bit 
implementations, PowerPC Book E instructions that normally operate on a 32-bit register file 
access and change only the least significant 32 bits of the GPRs, leaving the most 
significant 32 bits unchanged. For 64-bit implementations, operation of these instructions is 
unchanged, that is, those instructions continue to operate on the 64-bit registers as they 
would if the SPE APU was not implemented. SPE APU instructions view the 64-bit register 
as being composed of a vector of two elements, each of which is 32 bits wide. (Some 
instructions read or write 16-bit elements.) The most significant 32 bits are called the upper 
word, high word or even word. The least significant 32 bits are called the lower word, low 
word or odd word. Unless otherwise specified, SPE instructions write all 64 bits of the 
destination register.

0 31 32 63

GPR Upper word Lower word
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Accumulator register

A partially visible accumulator register (ACC) is provided for the integer/fractional multiply 
accumulate (MAC) forms of instructions. The accumulator is a 64-bit register that holds the 
results of the multiply accumulate forms of SPE fixed-point instructions. The accumulator 
allows the back-to-back execution of dependent MAC instructions, something that is found in 
the inner loops of DSP code such as FIR and FFT filters. The accumulator is partially visible 
to the programmer in the sense that its results do not have to be explicitly read to use them. 
Instead they are always copied into a 64-bit destination GPR, which is specified as part of 
the instruction. Based upon the type of instruction, the accumulator can hold either a single 
64-bit value or a vector of two 32-bit elements.

Signal processing embedded floating-point status
and control register (SPEFSCR)

Status and control for SPE uses the SPEFSCR, described in Chapter 2.14.1: Signal 
processing, embedded floating-point status, control register (SPEFSCR) on page 119.” The 
embedded floating-point APUs also use SPEFSCR. Status and control bits are shared for 
embedded floating-point operations and SPE vector operations. The SPEFSCR is 
implemented as SPR number 512 and is read and written by the mfspr and mtspr 
instructions in both user and supervisor mode. 

SPE exception bit in ESR

ESR[SPE] is defined as the SPE exception bit. This bit is set whenever the processor takes 
an interrupt related to the execution of SPE instructions. (Note that the same bit is used for 
embedded floating-point APU exceptions. Thus, SPE and embedded floating-point 
exceptions are indistinguishable in the ESR.)

SPE available bit in MSR

MSR[SPE] is defined as the SPE available bit. If this bit is not set and software attempts to 
execute an SPE instruction, the SPE APU unavailable interrupt is taken.

Software note: This bit can be used by software to detect when a process uses the upper 
32 bits of a 64-bit register on a 32-bit implementation and thus save them on context switch.

Data formats

The SPE APU provides two different data formats, integer and fractional. Both data formats 
can be treated as signed or unsigned quantities.

Integer format

Integer data format is the same as what is conventionally used in computing.

Unsigned integers consist of 16-, 32-, or 64-bit binary integer values. The largest 
representable value is 2n – 1, where n represents the number of bits in the value. The 
smallest representable value is 0. Computations that produce values larger than 2n – 1 or 
smaller than 0 set OV or OVH in SPEFSCR.

Signed integers consist of 16-, 32-, or 64-bit binary values in two’s-complement form. The 
largest representable value is 2n–1 – 1, where n represents the number of bits in the value. 

0 31 32 63

ACC Upper word Lower word
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The smallest representable value is –2n–1. Computations that produce values larger than 
2n–1 – 1 or smaller than –2n–1 set OV or OVH in SPEFSCR.

Fractional format

Fractional data format is the same that is conventionally used for DSP fractional arithmetic. 
Fractional data is useful for representing data converted from analog devices.

Unsigned fractions consist of 16-, 32-, or 64-bit binary fractional values that range from 0 to 
less than 1. Unsigned fractions place the decimal point immediately to the left of the most 
significant bit. The most significant bit of the value represents the value 2–1, the next most 
significant bit represents the value 2–2, and so on. The largest representable value is 1 – 2–

n, where n represents the number of bits in the value. The smallest representable value is 0. 
Computations that produce values larger than 1 – 2–n or smaller than 0 set OV or OVH in 
SPEFSCR. SPE does not contain explicit instructions that manipulate unsigned fractional 
data. Unsigned integer forms produce the same bit results as unsigned fractional values 
would; therefore, unsigned fractional instruction forms are not defined for SPE.

Signed fractions consist of 16-, 32-, or 64-bit binary fractional values in two’s-complement 
form that range from –1 to less than 1. Signed fractions place the decimal point immediately 
to the right of the most significant bit. The largest representable value is 1 – 2–(n–1), where n 
represents the number of bits in the value. The smallest representable value is –1. 
Computations that produce values larger than 1 – 2–(n–1)or smaller than –1 set OV or OVH 
in the SPEFSCR. Multiplication of two signed fractional values causes the result to be 
shifted left one bit to remove the resultant redundant sign bit in the product. In this case, a 0 
bit is concatenated as the least-significant bit (lsb) of the shifted result.

Computational operations

SPE supports several different computational capabilities. These can be grouped as follows:

● Simple vector instructions. These instructions use the corresponding low- and high-
word elements of the operands to produce a vector result that is placed in the 
destination register, the accumulator, or both. Figure 178 shows how operations are 
typically performed in vector operations.

Figure 178. Two-element vector operations

● Multiply and accumulate instructions. These instructions perform multiply operations, 
add the result to the accumulator and place the result into the destination register and 
the accumulator. These instructions are composed of different multiply forms, data 

0 31 32 63

rA

rB

operation operation

rD
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formats, and data accumulate options. The mnemonics for these instructions indicate 
their various characteristics. These are shown in Table 212.

         

● Load and store instructions. These instructions provide load and store capabilities for 
moving data to and from memory. A variety of forms are provided that position data for 
efficient computation.

● Compare and miscellaneous instructions. These instructions perform miscellaneous 
functions such as field manipulation, bit reversed incrementing, and vector compares.

Table 212. Mnemonic extensions for multiply accumulate instructions

Extension Meaning Comments

Multiply form

he Half word even 16 X 16 → 32

heg Half word even guarded 16 X 16 → 32, 64-bit final accum result

ho Half word odd 16 X 16 → 32

hog Half word odd guarded 16 X 16 → 32, 64-bit final accum result

w Word 32 X 32 → 64

wh Word high 32 X 32 → 32 (high order 32 bits of product)

wl Word low 32 X 32 → 32 (low order 32 bits of product)

Data format

smf Signed modulo fractional Modulo, no saturation or overflow

smi Signed modulo integer Modulo, no saturation or overflow

ssf Signed saturate fractional Saturation on product and accumulate

ssi Signed saturate integer Saturation on product and accumulate

umi Unsigned modulo integer Modulo, no saturation or overflow

usi Unsigned saturate integer Saturation on product and accumulate

Accumulate option

a Place in accumulator Result → accumulator

aa Add to accumulator Accumulator + result → accumulator

aaw Add to accumulator
Accumulator0:31 + result0:31 → accumulator0:31

Accumulator32:63 + result32:63 → 
accumulator32:63

an Add negated to accumulator Accumulator – result → accumulator

anw Add negated to accumulator
Accumulator0:31 – result0:31 → accumulator0:31

Accumulator32:63 – result32:63 → 
accumulator32:63
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SPE exceptions and interrupts

The APU defines the following SPE exceptions:

● SPE/embedded floating-point unavailable exception (causes the SPE/embedded 
floating point unavailable interrupt)

● SPE vector alignment exception (causes the alignment interrupt)

Interrupt vector offset registers (IVORs) IVOR32 (SPE/embedded floating-point unavailable 
interrupt) and IVOR5 (alignment interrupt) are used by the interrupt model. The SPR 
number for IVOR32 is 528; IVOR5 is defined by Book E. These registers are privileged.

SPE/Embedded floating point unavailable exception

The SPE/embedded floating point unavailable exception occurs when execution of an SPE 
instruction (except brinc) is attempted and bit 38 (SPE available, MSR[SPE]) is not set. If 
the SPE/embedded floating point unavailable exception occurs, a SPE/embedded floating 
point unavailable exception interrupt is taken and the processor suppresses execution of the 
instruction causing the exception. SRR0, SRR1, MSR, and ESR are modified as follows:

● SRR0 is set to the EA of the instruction causing the interrupt.

● SRR1 is set to the contents of the MSR at the time of the interrupt.

● MSR bits CE, ME, and DE are unchanged. All other bits are cleared.

● ESR[36] bit is set. All other ESR bits are cleared.

Instruction execution resumes at address IVPR[0–47]||IVOR32[48–59]||0b0000.

Software note: This exception is also used by the embedded floating-point APUs in the 
same manner. It should be used by software to determine if the application is using the 
upper 32 bits of the GPRs and thus is required to save and restore them on a context switch.

SPE vector alignment exception

The SPE vector alignment exception is taken if the EA of any of the following instructions in 
not aligned to a 64-bit boundary: evldd, evlddx, evldw, evldwx, evldh, evldhx, evstdd, 
evstddx, evstdw, evstdwx, evstdh, or evstdhx. When an SPE vector alignment exception 
occurs, an alignment interrupt is taken and the processor suppresses execution of the 
instruction causing the exception. SRR0, SRR1, MSR, ESR, and DEAR are modified as 
follows:

● SRR0 is set to the EA of the instruction causing the interrupt.

● SRR1 is set to the contents of the MSR at the time of the interrupt.

● MSR bits CE, ME, and DE are unchanged. All other bits are cleared.

● ESR[56] bit is set. ESR[ST] is set if the instruction causing the interrupt is a store. All 
other ESR bits are cleared.

● DEAR is updated with the EA used in the load or the store.

Instruction execution resumes at address IVPR[0–47]||IVOR32[48–59]||0b0000.

Interrupt priorities

The following list shows the priority order in which SPE APU and SPFP APU interrupts are 
taken (see Embedded floating-point interrupts on page 837”):
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1. SPE APU unavailable interrupt

2. SPE vector alignment interrupt

3. Embedded floating-point data interrupt

4. Embedded floating-point round interrupt

7.3.4 Instruction definitions

Chapter 6: Instruction set on page 330,” gives complete descriptions of SPE and embedded 
floating-point instructions. Chapter 6.3.1 on page 336,” provides pseudo RTL for saturation 
and bit reversal to more accurately describe those functions that are referenced in the 
instruction pseudo RTL.

7.4 Embedded vector and scalar single-precision floating-point 
APUs (SPFP APUs)
This section describes the instruction set architecture of the embedded floating-point APUs. 
The EIS defines the following APUs:

● Embedded vector single-precision floating-point APU

● Embedded scalar single-precision floating-point APU

● Embedded scalar double-precision floating-point APU

Each of these APUs may be implemented independently of the other. In addition, there is a 
strong relationship with the SPE APU in that each of the embedded floating-point APUs 
shares a common status register with the SPE.

7.4.1 Nomenclature and conventions

Several conventions regarding nomenclature are used in this document: 

● The embedded vector single-precision floating-point APU operations are abbreviated 
as vector floating-point or vector SPFP.

● The embedded scalar single-precision floating-point APU operations are abbreviated 
as scalar SPFP.

● The embedded scalar double-precision floating-point APU operations are abbreviated 
as scalar DPFP.

● Bits 0 to 31 of a 64-bit register are referenced as field 0, upper half, upper word, or 
high-word element of the register. Bits 32–63 are referred to as field 1, lower half, or 
lower-word element of the register. Each half is an element of a 64-bit GPR.

● Mnemonics for vector floating-point instructions generally begin with the letters ‘evf’ 
(embedded vector float).

● Mnemonics for single-precision floating-point instructions generally begin with the 
letters ‘efs’ (embedded floating single).

● References to ‘floating-point’ or ‘embedded SPFP’ refer to both APUs.

7.4.2 Embedded floating-point APUs programming model

The embedded floating-point APUs use the GPRs as source and destination operands; 
however, double precision and vector instruction require 64-bit GPRs as described in 
Embedded floating-point APUs GPR implementations on page 836.” 
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Embedded floating-point instructions

The following sections show opcodes for the three embedded floating-point APUs, as 
follows: 

● Opcodes for embedded vector floating-point instructions on page 833”

● Opcodes for embedded scalar single-precision floating-point instructions on page 833”

● Opcodes for embedded scalar double-precision floating-point instructions on page 834”

Opcodes for embedded vector floating-point instructions

Table 213 lists the embedded vector floating-point opcodes. 

         

Opcodes for embedded scalar single-precision floating-point instructions

Table 214 lists the embedded scalar single-precision floating-point opcodes. 

Table 213. Embedded vector floating-point instruction opcodes

Instruction
Opcode bits

Comments
0–5 6–10 11–15 16–20 21–31

evfsabs 4 rD rA 00000 010 1000 0100

evfsadd 4 rD rA rB 010 1000 0000

evfscfsf 4 rD 00000 rB 010 1001 0011

evfscfsi 4 rD 00000 rB 010 1001 0001

evfscfuf 4 rD 00000 rB 010 1001 0010

evfscfui 4 rD 00000 rB 010 1001 0000

evfscmpeq 4 crfD 00 rA rB 010 1000 1110

evfscmpgt 4 crfD 00 rA rB 010 1000 1100

evfscmplt 4 crfD 00 rA rB 010 1000 1101

evfsctsf 4 rD 00000 rB 010 1001 0111

evfsctsi 4 rD 00000 rB 010 1001 0101

evfsctsiz 4 rD 00000 rB 010 1001 1010

evfsctuf 4 rD 00000 rB 010 1001 0110

evfsctui 4 rD 00000 rB 010 1001 0100

evfsctuiz 4 rD 00000 rB 010 1001 1000

evfsdiv 4 rD rA rB 010 1000 1001

evfsmul 4 rD rA rB 010 1000 1000

evfsnabs 4 rD rA 00000 010 1000 0101

evfsneg 4 rD rA 00000 010 1000 0110

evfssub 4 rD rA rB 010 1000 0001 rA - rB

evfststeq 4 crfD 00 rA rB 010 1001 1110

evfststgt 4 crfD 00 rA rB 010 1001 1100

evfststlt 4 crfD 00 rA rB 010 1001 1101
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Opcodes for embedded scalar double-precision floating-point instructions

Table 215 lists the embedded scalar double-precision floating-point opcodes. 

         

Table 214. Embedded scalar single-precision floating-point instruction opcodes

Instruction
Opcode bits

Comments
0–5 6–10 11–15 16–20 21–31

efsabs 4 rD rA 00000 010 1100 0100

efsadd 4 rD rA rB 010 1100 0000

efscfd 4 rD 00000 rB 010 1100 1111

efscfsf 4 rD 00000 rB 010 1101 0011

efscfsi 4 rD 00000 rB 010 1101 0001

efscfuf 4 rD 00000 rB 010 1101 0010

efscfui 4 rD 00000 rB 010 1101 0000

efscmpeq 4 crfD 00 rA rB 010 1100 1110

efscmpgt 4 crfD 00 rA rB 010 1100 1100

efscmplt 4 crfD 00 rA rB 010 1100 1101

efsctsf 4 rD 00000 rB 010 1101 0111

efsctsi 4 rD 00000 rB 010 1101 0101

efsctsiz 4 rD 00000 rB 010 1101 1010

efsctuf 4 rD 00000 rB 010 1101 0110

efsctui 4 rD 00000 rB 010 1101 0100

efsctuiz 4 rD 00000 rB 010 1101 1000

efsdiv 4 rD rA rB 010 1100 1001

efsmul 4 rD rA rB 010 1100 1000

efsnabs 4 rD rA 00000 010 1100 0101

efsneg 4 rD rA 00000 010 1100 0110

efssub 4 rD rA rB 010 1100 0001 rA - rB

efststeq 4 crfD 00 rA rB 010 1101 1110

efststgt 4 crfD 00 rA rB 010 1101 1100

efststlt 4 crfD 00 rA rB 010 1101 1101

Table 215. Embedded scalar double-precision floating-point instruction opcodes

Instruction
Opcode bits

Comments
0–5 6–10 11–15 16–20 21–31

efdabs 4 rD rA 00000 010 1110 0100

efdadd 4 rD rA rB 010 1110 0000

efdcfs 4 rD 00000 rB 010 1110 1111
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Optional load/store instructions

All embedded floating-point APUs use GPRs to hold and operate on floating-point values. 
The APUs do not architect load and store instructions to move the data to and from memory, 
but instead rely on existing instructions in the architecture to perform this function. In the 
case where either the vector single-precision embedded floating-point APU or the scalar 
double-precision embedded floating-point APU is implemented on a 32-bit implementation, 
the GPRs are required to be 64-bits long. Because a 32-bit implementation contains no load 
or store instructions that operate on 64-bit data, new instructions are required to perform 
these actions. In this case (and for a 64-bit implementation), an implementation may 
implement the following load/store instructions from the SPE APU.

efdcfsf 4 rD 00000 rB 010 1111 0011

efdcfsi 4 rD 00000 rB 010 1111 0001

efdcfsid 4 rD 00000 rB 010 1110 0011 64-bit only

efdcfuf 4 rD 00000 rB 010 1111 0010

efdcfui 4 rD 00000 rB 010 1111 0000

efdcfuid 4 rD 00000 rB 010 1110 0010 64-bit only

efdcmpeq 4 crfD 00 rA rB 010 1110 1110

efdcmpgt 4 crfD 00 rA rB 010 1110 1100

efdcmplt 4 crfD 00 rA rB 010 1110 1101

efdctsf 4 rD 00000 rB 010 1111 0111

efdctsi 4 rD 00000 rB 010 1111 0101

efdctsidz 4 rD 00000 rB 010 1110 1011 64-bit only

efdctsiz 4 rD 00000 rB 010 1111 1010

efdctuf 4 rD 00000 rB 010 1111 0110

efdctui 4 rD 00000 rB 010 1111 0100

efdctuidz 4 rD 00000 rB 010 1110 1010 64-bit only

efdctuiz 4 rD 00000 rB 010 1111 1000

efddiv 4 rD rA rB 010 1110 1001

efdmul 4 rD rA rB 010 1110 1000

efdnabs 4 rD rA 00000 010 1110 0101

efdneg 4 rD rA 00000 010 1110 0110

efdsub 4 rD rA rB 010 1110 0001 rA - rB

efdtsteq 4 crfD 00 rA rB 010 1111 1110

efdtstgt 4 crfD 00 rA rB 010 1111 1100

efdtstlt 4 crfD 00 rA rB 010 1111 1101

Table 215. Embedded scalar double-precision floating-point instruction opcodes 

Instruction
Opcode bits

Comments
0–5 6–10 11–15 16–20 21–31
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For scalar double-precision:

● evldd—Vector load doubleword into doubleword

● evlddx—Vector load doubleword into doubleword indexed

● evstdd—Vector store doubleword of doubleword

● evstddx—Vector store doubleword of doubleword

● evmergehi—Vector merge high

● evmergelo—Vector merge low

For vector single-precision, all of the vector load/store word and doubleword instructions, 
merge instructions, and word forms of splat instructions may be implemented. Because the 
vector single-precision embedded floating-point APU uses a significant set of the SPE 
vector load/store/merge instructions, it is strongly recommended that the SPE APU be 
present when implementing the vector single-precision embedded floating-point APU.

Floating-point conversion models

Each APU contains floating-point conversion to and from integer and fractional type 
instructions. The floating-point to and from non–floating-point conversion model pseudo RTL 
is provided in Chapter 6.3.2: Embedded floating-point conversion models on page 337,” as a 
group of functions that is called from the individual instruction pseudo-RTL descriptions 
included in the instruction descriptions in Chapter 6: Instruction set on page 330.”

Embedded floating-point registers

The embedded floating-point APUs share register resources with the SPE APU, as 
described in the following sections.

Embedded floating-point APUs GPR implementations

Embedded floating-point operations are performed in the GPRs of the processor.

The vector floating-point and double-precision floating-point require a GPR register file with 
thirty-two 64-bit registers. This is consistent with the SPE APU. Thus, these can coexist with 
the SPE APU.

Single-precision floating-point requires a GPR register file with thirty-two 32-bit or 64-bit 
registers. When implemented with a 64-bit register file on a 32-bit implementation, single-
precision floating-point operations only use and modify bits 32–63 of the GPR. In this case, 
bits 0–31 of the GPR are left unchanged by a single-precision floating-point operation. For 
64-bit implementations, bits 0–31 are undefined after a single-precision floating-point 
operation.

Floating-point double-precision instructions operate on the entire 64 bits of the GPRs where 
a floating-point data item consists of 64 bits.

Vector floating-point instructions operate on the entire 64 bits of the GPRs as well, but 
contain two 32-bit data items that are operated on independently of each other in a SIMD 
fashion. The format of both data items is the same as a single-precision floating-point value. 
The data item contained in bits 0–31 is called the ‘high word’. The data item contained in 
bits 32–63 is called the low word

There are no record forms of embedded floating-point instructions. Floating-point compare 
instructions treat NaNs, Infinity and Denorm as normalized numbers for the comparison 
calculation when default results are provided. 
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Signal processing embedded floating-point status and control register (SPEFSCR)

The embedded floating-point APUs use the SPEFSCR, which is described in 
Chapter 2.14.1: Signal processing, embedded floating-point status, control register 
(SPEFSCR) on page 119.” The SPE APU also uses SPEFSCR. Status and control bits are 
shared for vector floating-point operations, single-precision floating-point operations and 
SPE vector operations. The SPEFSCR is implemented as SPR number 512 and is read and 
written by mfspr and mtspr in both user and supervisor mode. Vector floating-point 
instructions affect both the high- and low-element floating-point status flags (bits 34–39 and 
50–55). Scalar SPFP instructions affect only the low-element flags and leave the high 
element flags undefined.

Embedded floating-point exception bit—ESR[SPE]

ESR[SPE] is defined as the embedded floating-point exception bit. This bit is set whenever 
the processor takes an interrupt related to the execution of the embedded floating-point 
instructions. (Note that the same bit is used for SPE APU exceptions. Thus, SPE and 
embedded floating-point interrupts are indistinguishable in the ESR.)

Embedded floating-point interrupts

The following sections describe the embedded floating-point APU interrupts:

● SPE/embedded floating-point unavailable interrupt on page 837”

● Embedded floating-point data interrupt on page 837”

● Embedded floating-point round interrupt on page 838”

SPE/embedded floating-point unavailable interrupt

The SPE/embedded floating-point unavailable interrupt vector is used by the embedded 
scalar double-precision floating-point APU and the embedded vector single-precision 
floating-point APU. It is not used by the embedded scalar single-precision floating-point 
APU. The SPE/embedded floating-point unavailable interrupt occurs when an embedded 
vector floating-point or an embedded scalar double-precision floating-point instruction is 
executed and bit 38 of the MSR is not set. If the SPE/embedded floating-point unavailable 
interrupt occurs, the processor suppresses execution of the instruction causing the 
exception. 

The SRR0, SRR1, MSR, and ESR registers are modified as follows:

● SRR0 is set to the EA of the instruction causing the interrupt.

● SRR1 is set to the contents of the MSR at the time of the interrupt.

● MSR bits CE, ME, and DE are unchanged. All other bits are cleared.

● ESR[24] is set. All other ESR bits are cleared.

Instruction execution resumes at address IVPR[0–47]||IVOR32[48–59]||0b0000.

This interrupt is also used by the SPE APU in the same manner. It should be used by 
software to determine if the application is using the upper 32 bits of the GPRs and thus is 
required to save and restore them on a context switch.

Embedded floating-point data interrupt

The embedded floating-point data interrupt vector is used for enabled floating-point invalid 
operation/input error, underflow, overflow, and divide-by-zero exceptions (collectively called 
floating-point data exceptions). When one of these enabled exceptions occurs, the 
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processor suppresses execution of the instruction causing the exception. The SRR0, SRR1, 
MSR, ESR, and SPEFSCR are modified as follows:

● SRR0 is set to the EA of the instruction causing the interrupt.

● SRR1 is set to the contents of the MSR at the time of the interrupt.

● MSR bits CE, ME and DE are unchanged. All other bits are cleared.

● ESR[SPE] is set. All other ESR bits are cleared.

● One or more SPEFSCR status bits are set to indicate the type of exception. The 
affected bits are FINVH, FINV, FDBZH, FDBZ, FOVFH, FOVF, FUNFH, and FUNF. 
SPEFSCR[FG,FGH, FX, FXH] are cleared.

Instruction execution resumes at address IVPR[0–47]||IVOR32[48–59]||0b0000.

Embedded floating-point round interrupt

The embedded floating-point round interrupt occurs if no other floating-point data interrupt is 
taken and one of the following conditions is met:

● SPEFSCR[FINXE] is set and the unrounded result of an operation is not exact

● SPEFSCR[FINXE] is set, an overflow occurs, and overflow exceptions are disabled 
(FOVF or FOVFH set with FOVFE cleared)

● An underflow occurs and underflow exceptions are disabled (FUNF set with FUNFE 
cleared)

The embedded floating-point round interrupt does not occur if an enabled embedded 
floating-point data interrupt occurs.

If an implementation does not support ±infinity rounding modes and the rounding mode is 
set to be +infinity or –infinity, an embedded floating-point round interrupt occurs after every 
floating-point instruction for which rounding might occur regardless of the value of FINXE 
unless an embedded floating-point data interrupt also occurs and is taken.

When the embedded floating-point round interrupt occurs, the unrounded (truncated) result 
of an inexact high or low element is placed in the target register. If only a single element is 
inexact, the other exact element is updated with the correctly rounded result, and the FG 
and FX bits corresponding to the other exact element are both zero.

The FG and FX bits are provided so that an interrupt handler can round the result as it 
desires. FG (the guard bit) is the value of the bit immediately to the right of the least 
significant bit of the destination format mantissa from the infinitely precise intermediate 
calculation before rounding. FX (the sticky bit) is the value of the OR of all bits to the right of 
the guard bit (FG) of the destination format mantissa from the infinitely precise intermediate 
calculation before rounding.

The SRR0, SRR1, MSR, ESR, and SPEFSCR are modified as follows:

● SRR0 is set to the EA of the instruction following the instruction causing the interrupt.

● SRR1 is set to the contents of the MSR at the time of the interrupt.

● MSR bits CE, ME, and DE are unchanged. All other bits are cleared.

● ESR[SPE] is set. All other ESR bits are cleared.

● SPEFSCR FGH, FG, FXH, and FX are set appropriately. SPEFSCR[FINXS] is set.

Instruction execution resumes at address IVPR[0–47]||IVOR32[48–59]||0b0000.
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Interrupt priorities

The following list shows the priority order in which SPE and embedded floating-point 
interrupts are taken (see Interrupt priorities on page 831”):

1. SPE/embedded floating-point unavailable interrupt

2. SPE vector alignment interrupt

3. Embedded floating-point data interrupt

4. Embedded floating-point round interrupt

An embedded floating-point data interrupt is taken if either element of a vector or scalar 
floating-point operation generates an embedded floating-point data exception. An 
embedded floating-point round interrupt is taken if either element of a vector floating-point 
operation or a scalar floating-point operation generates an embedded floating-point round 
exception and no operation (both element for vector floating-point) generates an embedded 
floating-point data exception. 

7.4.3 Embedded floating-point APU operations

This section describes embedded floating-point APU operational modes, data formats, 
underflow and overflow handling, IEEE 754 compliance, and conversion models. 

Operational modes

All embedded floating-point operations are governed by the setting of the mode bit in 
SPEFSCR. The mode bit defines how floating-point results are computed and how floating-
point exceptions are handled. Mode 0 defines a real-time, default-results-oriented mode that 
saturates results. Other modes are currently not defined.

Floating-point data formats

Single-precision floating-point data elements are 32 bits wide with 1 sign bit (s), 8 bits of 
biased exponent (exp) and 23 bits of fraction. 

In the IEEE-754 specification, floating-point values are represented in a format consisting of 
three explicit fields (sign field, biased exponent field, and fraction field) and an implicit 
hidden bit.

Figure 179. Floating-point data formats
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For single-precision normalized numbers, the biased exponent value, e, lies in the range of 
1 to 254 corresponding to an actual exponent value E in the range –126 to +127. With the 
hidden bit implied to be 1 (for normalized numbers), the value of the number is interpreted 
as follows:

         

         

where E is the unbiased exponent and 1.fraction is the mantissa (or significand) consisting 
of a leading 1 (the hidden bit) and a fractional part (fraction field). For the single-precision 
format, the maximum positive normalized number (pmax) is represented by the encoding 
0x7F7F_FFFF, which is approximately 3.4E+38 (2128), and the minimum positive 
normalized value (pmin) is represented by the encoding 0x0080_0000, which is 
approximately 1.2E–38 (2–126). 

Two specific values of the biased exponent are reserved (0 and 255 for single-precision) for 
encoding special values of +0, –0, +infinity, –infinity, and NaNs. 

Zeros of both positive and negative sign are represented by a biased exponent value (e) of 
zero and a fraction that is zero. 

Infinities of both positive and negative sign are represented by a maximum exponent field 
value (255 for single-precision) and a fraction that is zero.

Denormalized numbers of both positive and negative sign are represented by a biased 
exponent value of 0 and a non-zero fraction. For these numbers, the hidden bit is defined by 
the IEEE 754 standard to be zero. This number type is not directly supported in hardware. 
Instead, either a software interrupt handler is invoked or a default value is defined.

Not-a-Numbers (NaNs) are represented by a maximum exponent field value (255 for single-
precision) and a fraction that is non-zero.

Overflow and underflow

Defining pmax to be the most positive normalized value (farthest from zero), pmin the 
smallest positive normalized value (closest to zero), nmax the most negative normalized 
value (farthest from zero) and nmin the smallest normalized negative value (closest to zero), 
an overflow is said to have occurred if the numerically correct result of an instruction is such 
that r > pmax or r < nmax. Additionally, an implementation may also signal overflow by 
comparing the exponents of the operands. In this case, the hardware examines both 
exponents ignoring the fractional values. If it is determined that the operation to be 
performed may overflow (ignoring the fractional values), an overflow may be said to occur. 
For addition and subtraction this can occur if the larger exponent of both operands is 254. 
For multiplication this can occur if the sum of the exponents of the operands less the bias is 
254. Thus:

single-precision addition:
if Aexp >= 254 | Bexp >= 254 then overflow

double-precision addition:
if Aexp >= 2046 | Bexp >= 2046 then overflow

single-precision multiplication:
if Aexp + Bexp - 127 >= 254 then overflow

double-precision multiplication:
if Aexp + Bexp - 1023 >= 2046 then overflow

1–( )s 2E× 1.fraction( )×
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An underflow is said to have occurred if the numerically correct result of an instruction is 
such that 0<r<pmin or nmin<r<0. In this case, r may be denormalized, or may be smaller 
than the smallest denormalized number. As with overflow detection, an implementation may 
also signal underflow by comparing the exponents of the operands. In this case, the 
hardware examines both exponents regardless of the fractional values. If it is determined 
that the operation to be performed may underflow (ignoring the fractional values), an 
underflow may be said to occur. For division this can occur if the difference of the exponent 
of the A operand less the exponent of the B operand less the bias is 1. Thus:

single-precision division:
if Aexp - Bexp - 127 <= 1 then underflow

double-precision multiplication:
if Aexp - Bexp - 1023 <= 1 then underflow

The embedded floating-point APUs will not produce +Inf, –Inf, NaN, or a Denormalized 
number. If the result of an instruction overflows and floating-point overflow exceptions are 
disabled (SPEFSCR[FOVFE] is cleared), pmax or nmax is generated as the result of that 
instruction depending upon the sign of the result. If the result of an instruction underflows 
and floating-point underflow exceptions are disabled (SPEFSCR[FUNFE] is cleared), +0 or -
0 is generated as the result of that instruction based upon the sign of the result.

IEEE 754 compliance

The embedded floating-point APU implements a floating-point system as defined in 
ANSI/IEEE Standard 754-1985 but may rely on software support in order to conform fully 
with the standard. Thus, whenever an input operand of a floating-point instruction has data 
values that are +infinity, –infinity, denorm, or NaN, or when the result of an operation 
produces an overflow or an underflow, an interrupt may be taken and the interrupt handler is 
responsible for delivering IEEE 754–compliant behavior if desired.

When floating-point invalid input exceptions are disabled (SPEFSCR[FINVE] is cleared), 
default results are provided by the hardware when an infinity, denorm, or NaN input is 
received, or for the operation 0/0. When floating-point underflow exceptions are disabled 
(SPEFSCR[FUNFE] is cleared) and the result of a floating-point operation underflows, a 
signed zero result is produced. The inexact exception is also signaled for this condition. 
When floating-point overflow exceptions are disabled (EFSCR[FOVFE] is cleared) and the 
result of a floating-point operation overflows, a pmax or nmax result is produced. The 
inexact exception is also signaled for this condition. An exception enable flag 
(SPEFSCR[FINXE]) is also provided for generating an interrupt when an inexact result is 
produced, to allow a software handler to conform to the IEEE 754 standard. A divide-by-zero 
exception enable flag (SPEFSCR[FDBZE]) is provided for generating an interrupt when a 
divide-by-zero operation is attempted to allow a software handler to conform to the IEEE 
754 standard. All of these exceptions may be disabled, and the hardware then delivers an 
appropriate default result.

The sign of the result of an addition operation is the sign of the source operand having the 
larger absolute value. If both operands have the same sign, the sign of the result is the same 
as the sign of the operands. This includes subtraction, which is addition with the negation of 
the sign of the second operand. The sign of the result of an addition operation with operands 
of differing signs for which the result is zero is positive except when rounding to –infinity. 
Thus, –0 + –0 = –0 is the only case in which the result is a –0; all other cases that result in a 
zero value give +0 unless the rounding mode is round to –infinity.

Note that when exceptions are disabled and default results computed, operations having 
input values that are denormalized may provide different bit-exact results on different 
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implementations. An implementation may choose to use the denormalized value or a zero 
value for any computation. Thus a computational operation involving a denormalized value 
and a normal value may return different results on other implementations.

Sticky bit handling for exception conditions

The SPEFSCR defines sticky bits for retaining information about exception conditions that 
are detected. These sticky bits (FINXS, FINVS, FDBZS, FUNFS, and FOVFS) can be used 
to help provide IEEE 754 compliance. The sticky bits represent the combined OR of all 
previous status bits produced from any embedded floating-point operation before the last 
time software zeroed the sticky bit. Only software can zero a sticky bit; hardware can only 
set sticky bits.

Not all sticky bits are required to be updated by an implementation. Only the FINXS and 
FDBZS sticky bits are required to be set by hardware. Thus for FINVS, FUNFS and FOVFS, 
software is required to perform sticky bit setting unless software knows that a given 
implementation updates them in hardware. This can be achieved by enabling the 
appropriate exceptions and performing the sticky bit updating in the software interrupt 
handler. If an implementation provides sticky bit handling for any sticky bits other than 
FINXS and FDBZS, it must provide it for all sticky bits.

7.4.4 Implementation options summary

There are several options that may be chosen for a given implementation. This section 
summarizes all the items that are implementation dependent and should be used to help 
decide which implementation dependent features are chosen.

● APUs. Each of the APUs can be implemented independently of one another. The 
vector single-precision floating-point APU should be implemented only if the SPE APU 
is implemented; however, this is not required.

● Both the vector single-precision floating-point APU and the scalar double-precision 
floating-point APU allow the optional implementation of 64-bit load and store 
instructions as well as merge upper and lower instructions from the SPE APU. This 
allows data to be moved in and out of the upper half of a register for 32-bit 
implementations with 64-bit registers.

● Overflow and underflow conditions may be signaled by doing exponent evaluation of 
the operation. If by examining the exponents, an overflow or underflow could occur, the 
implementation may choose to signal an overflow or underflow. It is recommended that 
future implementations do not use this estimation and signal overflow or underflow 
when they actually occur.

● If an operand for a calculation or conversion is denormalized, the implementation may 
choose to use a same-signed zero value in place of the denormalized operand.

● The rounding modes of +Infinity and -Infinity are not required to handled by an 
implementation. If an implementation does not support ±Infinity rounding modes and 
the rounding mode is set to be +Infinity or -Infinity, an embedded floating-point round 
interrupt occurs after every floating-point instruction for which rounding may occur 
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regardless of the value of FINXE unless an embedded floating-point data interrupt also 
occurs and is taken.

● For absolute value, negate, negative absolute value operations, an implementation may 
choose to either simply perform the sign bit operation ignoring exceptions, or to 
compute the operation and handle exceptions and saturation where appropriate.

● The FGH and FXH bits of the SPEFSCR are undefined upon the completion of a scalar 
floating-point operation. An implementation may choose to zero them or leave them 
unchanged.

● An implementation may choose to only implement sticky bit setting by hardware for 
FDBZS and FINXS allowing software to manage the other sticky bits. It is 
recommended that all future implementations implement all sticky bit setting in 
hardware.

● For 64-bit implementations, the upper 32 bits of the destination register are undefined 
when the result of a scalar floating-point operation is a 32-bit result. It is recommended 
that future 64-bit implementations produce 64-bit results for the results of 64-bit 
conversions to integer values.

7.5 Machine check APU
The machine check APU defines features for the machine check interrupt in addition to 
those defined by the PowerPC architecture and the Book E version of the PowerPC 
architecture. The machine check APU includes an enhanced definition of the machine check 
interrupt type similar to the Book E–defined critical interrupt.

7.5.1 Machine check APU programming model

The APU defines dedicated save and restore SPRs, MSRR0 and MSRR1, so a machine 
check interrupt does not affect the CSRR0, CSRR1, or ESR registers as defined by the 
Book E architecture.

The APU also defines a separate Return from Machine Check Interrupt instruction, rfmci, 
that restores context from MSRR0 and MSRR1 when the machine check interrupt handler 
completes.

Machine check APU register model

The machine check APU defines different register for the machine check interrupt resources 
than the Book E definition. These are as follows:

● Machine-check save/restore register 0 (MCSRR0)—SPR 570. Holds the instruction 
where fetching begins after rfmci executes, typically at the end of the machine check 
interrupt handler. See Machine check save/restore register 0 (MCSRR0) on page 87.”

● Machine-check save/restore register 1 (MCSRR1)—SPR 571. Holds the machine state 
copied to the MSR when a machine check interrupt occurs. The MCSRR1 value is 
restored to the MSR when rfmci executes, typically at the end of the machine check 
interrupt handler. See Machine check save/restore register 1 (MCSRR1) on page 87.”

● Machine check syndrome register (MCSR)—SPR 572. MCSR has fields that identify 
causes for a machine check interrupt along with an indication of whether the processor 
can recover from the machine check interrupt. See Machine check syndrome register 
(MCSR) on page 88.”
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Note, however, that the MSR[ME] bit, defined by the original PowerPC architecture, is also 
used in Book E and in the machine check APU to enable the machine check interrupt.

Machine check APU instruction model

The Return from Machine Check Interrupt instruction, rfmci, is context-synchronizing; it 
works its way to the final execute stage, updates architected registers, and redirects 
instruction flow. When rfmci executes, data is restored from MCSRR0 and MCSRR1. The 
rfi and rfci instructions do not affect MCSRR0 and MCSRR1. This instruction is described 
in Chapter 3: Instruction model on page 133.”

Machine check interrupt

The machine check APU is consistent with the machine check exception as defined in 
Book E with the following differences:

● Machine check is no longer a critical interrupt but uses MCSRR0 and MCSRR1 for 
saving the return address and the MSR in case the machine check is recoverable.

● The Return from Machine Check Interrupt instruction (rfmci) is implemented to support 
the return to the address saved in MCSRR0.

● The machine check syndrome register, MCSR, is used (instead of ESR) to log the 
cause of the machine check. 

7.6 Debug APU
This section describes the instruction set architecture of software accessible debug related 
items for Book E Implementations (EIS). 

The debug APU defines an additional interrupt class for debug interrupts. This allows the 
debug features to be used in the software that is providing service for critical class 
interrupts. This is accomplished by providing specific save and restore registers for debug 
interrupts and providing a new return from interrupt instruction (return from debug interrupt).

The debug APU reassigns debug interrupts into its own interrupt class, adding a new set of 
registers used to save the machine context upon the occurrence of a debug interrupt, and 
adds a new instruction, Return From Debug Interrupt (rfdi), to return from a debug interrupt 
and restore the machine state from the new set of registers. This APU redefines PowerPC 
Book E debug interrupt behavior.

An implementation may choose to provide the debug APU and also provide a method to 
disable the debug APU, reverting to using the critical interrupt as defined in Book E. If such 
a capability is provided, HID0[DAPUEN] should be implemented.

7.6.1 Debug APU programming model

The following sections described the debug APU’s extensions to the Book E interrupt, 
register, and interrupt models. 
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7.6.2 Debug APU register model

The debug interrupt defines the following registers:

● Debug save/restore register 0 (DSRR0). When a debug interrupt is taken, DSRR0 is 
set to the current or next instruction address. When rfdi is executed, instruction 
execution continues at the address in DSRR0.

● Debug save/restore register 1 (DSRR1), When a debug interrupt is taken, the contents 
of the MSR are placed into DSRR1. When rfdi is executed, the contents of DSRR1 are 
placed into the MSR. Bits of DSRR1 that correspond to reserved bits in the MSR are 
also reserved.

This instruction is fully described in Chapter 6: Instruction set on page 330.”

The debug APU defines fields in the following Book E–defined registers:

● Debug status register (DBSR). New event fields, described in Table 216, have been 
added to DBSR to record critical interrupt taken events and critical interrupt return 
events.

          

● The debug control register 0 (DBCR0), The debug APU adds event enable bits to 
DBCR0, described in Table 217, to control critical interrupt taken events, and critical 
interrupt return events.

          

Table 216. EIS-defined DBSR field descriptions

Bits Name Description

57 CIRPT

Critical interrupt taken debug event. A critical interrupt taken debug event occurs 
when DBCR0[CIRPT] = 1 and a critical interrupt (any interrupt that uses the critical 
class, that is, uses CSRR0 and CSRR1) occurs.

0No critical interrupt taken debug event has occurred.
1A critical interrupt taken debug event occurred.

58 CRET

Critical interrupt return debug event. A critical interrupt return debug event occurs 
when DBCR0[CRET] = 1 and a return from critical interrupt (an rfci instruction is 
executed) occurs.

0No critical interrupt return debug event has occurred.

1A critical interrupt return debug event occurred.

Table 217. DBCR0 field descriptions

Bits Name Description

57 CIRPT

Critical interrupt taken debug event. A critical interrupt taken debug event occurs 
when DBCR0[CIRPT] = 1 and a critical interrupt (any interrupt that uses the 
critical class, that is, uses CSRR0 and CSRR1) occurs.
0 Critical interrupt taken debug events are disabled.
1 Critical interrupt taken debug events are enabled.

58 CRET

Critical interrupt return debug event. A critical interrupt return debug event 
occurs when DBCR0[CRET] = 1 and a return from critical interrupt (an rfci 
instruction is executed) occurs.
0 Critical interrupt return debug events are disabled.
1 Critical interrupt return debug events are enabled.
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7.6.3 Debug APU instruction model

The debug APU defines the supervisor-level rfdi instruction to restore state after a debug 
interrupt. The contents of DSRR1 are placed into the MSR. If the new MSR value does not 
enable any pending exceptions, then the next instruction is fetched, under control of the new 
MSR value, from the address DSRR0[0–61]||0b00. If the new MSR value enables one or 
more pending exceptions, the interrupt associated with the highest priority pending 
exception is generated; in this case the value placed into SRR0, CSRR0, or DSRR0 by the 
interrupt processing mechanism is the address of the instruction that would have been 
executed next had the interrupt not occurred (that is, the address in DSRR0 at the time of 
the execution of the rfdi). This instruction is fully described in Chapter 6.”

Debug APU interrupt model

A debug interrupt occurs when no higher priority exception exists, a debug exception is 
presented to the interrupt mechanism, and MSR[DE] = 1. The specific cause or causes of 
debug exceptions are unchanged from Book E.

DSRR0, DSRR1, MSR, debug address register, and debug status register are updated as 
follows:

Debug save/restore register 0 (DSRR0) is set to an instruction address. DSRR0 is set to the 
EA of an instruction that was executing or just completed execution when the debug 
exception occurred. DSRR0 is set the same as CSRR0 is defined to be set in Book E on a 
debug interrupt. CSRR0 is not changed as the result of a debug interrupt.

Debug save/restore register 1 (DSRR1) is set to the contents of the MSR at the time of the 
interrupt. CSRR1 is not changed as the result of a debug interrupt.

MSR[CM] is set to the value of MSR[ICM]. MSR[ICM] and MSR[ME] are unchanged and all 
other defined MSR bits are cleared.

The DBSR and the debug control registers (DBCR0–DBCR2) operate as described in 
Book E with the addition of a critical interrupt taken debug event and a critical return debug 
event.

Instruction execution resumes at address IVPR[0–47]||IVOR15[48–59]||0b0000.

7.7 Alternate time base
The alternate time base APU defines a time base counter similar to the time base defined in 
the PowerPC architecture. It is intended to be used for measuring time in implementation 
defined intervals. It differs from the time base defined by the PowerPC architecture in that it 
is not writable and always counts up, wrapping when the 64-bit count overflows.

7.7.1 Programming model

The alternate time base is simply a 64-bit counter that counts up at some implementation 
dependent rate. Although not required, it is recommended that the rate be at the core clock 
frequency or as small a multiple of the frequency as practical by the implementation. 
Consult the user documentation for devices that support this feature. 

The counter can be read by executing an mfspr instruction specifying the ATB (or ATBL) 
register, but cannot be written. In 32-bit mode, reading the ATB (or ATBL) register will place 
the lower 32 bits of the counter into the target register. In 64-bit mode all 64 bits of the 
counter are placed in the target register. A second SPR register ATBU, is defined that 
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accesses only the upper 32 bits of the counter. Thus the upper 32 bits of the counter may be 
read into a register by reading the ATBU register regardless of computation mode.

The alternate time base is analogous to the time base in the PowerPC architecture except 
that it counts at a different frequency and is not writable.

The effect of power savings mode or core frequency changes on counting in the alternate 
time base is implementation dependent. See the user document for details.

Implementation Note: An implementation may choose to directly alias the alternate time 
base to the time base counter if the granularity of time base counting is acceptable.

Registers

The programming model consists of two SPRs, alternate time base lower and upper (ATBL 
and ATBU). 

Alternate time base registers (ATBL and ATBU)

The ATBL and ATBU registers are described in Chapter 2.15: Alternate time base registers 
(ATBL and ATBU) on page 123.” The alternate time base counter (ATB) is formed by 
concatenating the upper and lower alternate time base registers (ATBU and ATBL). ATBL 
(SPR 526) provides read-only access to the 64-bit alternate time base counter, which is 
incremented at an implementation-defined frequency. ATB registers are accessible in both 
user and supervisor mode. 

Like the TB implementation, the ATBL register is an aliased name for ATB. 
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8 Storage-related APUs

This chapter describes the following APUs that are defined as part of the EIS storage 
architecture:

● Chapter 8.1: Cache line locking APU”

● Chapter 8.2: Direct cache flush APU”

● Chapter 8.3: Cache way partitioning APU”

8.1 Cache line locking APU
The cache line locking APU defines instructions and methods for locking frequently used 
instructions and data into their cache lines. Cache locking allows software to mark individual 
cache lines (blocks) as locked, instructing the cache to keep latency-sensitive data available 
for fast access.

Unlike normal cache lines, locked cache lines do not participate in the normal replacement 
policy.

8.1.1 Programming model

This section gives a general description of the instructions defined by the cache line locking 
APU. Full descriptions are provided in Chapter 6: Instruction set on page 330.”

Lock setting and clearing

Lines are locked into the cache by software using a series of touch and lock set instructions. 
The following instructions are provided to lock data items into the data and instruction 
cache:

● dcbtls—Data Cache Block Touch and Lock Set

● dcbtstls—Data Cache Block Touch for Store and Lock Set

● icbtls—Instruction Cache Block Touch and Lock Set

The rA and rB operands to these instructions form a effective address identifying the line to 
be locked. The CT field indicates which cache in the cache hierarchy should be targeted. 
These instructions are similar to the dcbt, dcbtst, and icbt instructions, but locking 
instructions can not execute speculatively and may cause additional exceptions. For unified 
caches, both the instruction lock set and the data lock set target the same cache.

Similarly, lines are unlocked from the cache by software using a series of lock-clear 
instructions. The following instructions are provided to lock instructions into the instruction 
cache:

● dcblc—Data Cache Block Lock Clear

● icblc—Instruction Cache Block Lock Clear

The rA and rB operands to these instructions form an EA identifying the line to be unlocked. 
The CT field indicates which cache in the cache hierarchy should be targeted.

Additionally, software may clear all the locks in the cache. For the primary cache, this is 
accomplished by setting the CLFC (DCLFC, ICLFC) bit in L1CSR0 (L1CSR1).
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Cache lines can also be implicitly unlocked in the following ways:

● A locked line is invalidated if it is targeted by a dcbi, dcbf, or icbi instruction.

● A snoop hit on a locked line that requires the line to be invalidated. This can occur 
because the data the line contains has been modified external to the processor, or 
another processor has explicitly invalidated the line.

● The entire cache containing the locked line is flash invalidated.

An implementation is not required to unlock lines if data is invalidated in the cache. Although 
the data may be invalidated (and thus not in the cache), the line can remain locked and be 
filled from the memory subsystem when the next access occurs. This method of not clearing 
locks when the associated line is invalidated, is called persistent locking. An implementation 
may choose to implement locks as persistent or not persistent; the preferred method is 
persistent.

Error conditions

Setting locks in the cache can fail for several reasons. An address specified with a lock set 
instruction that does not have the proper permission causes a data storage interrupt (DSI). 
Cache locking addresses are always translated as data references, therefore icbtls 
instructions that fail to translate or fail permissions cause DTLB and DSI errors respectively. 
Additionally, cache locking and clearing operations can fail due to restricted user mode 
access. See Cache locking (user mode) exceptions on page 850.”

Overlocking

If no exceptions occur for the execution of an dcbtls, dcbtstls, or icbtls instruction an 
attempt is made to lock the corresponding line in the cache. If all of the available ways are 
already locked in the given cache set, the requested line is not locked. This is considered an 
overlocking situation and if the lock was targeted for the primary cache (CT = 0) then 
L1CSR0[DCLO] (or L1CSR1[ICLO] if icbtls) is set appropriately.  

A processor may optionally allow victimizing a locked line in an overlocking situation. If 
L1CSR0[DCLOA] (L1CSR0[ICLOA] for the primary instruction cache,) is set, an overlocking 
condition causes the replacement of an existing locked line with the requested line. The 
selection of the line to replace in an overlocking situation is implementation dependent. The 
overlocking condition is still said to exist and is appropriatly reflected in the status bits for 
lock overflow. 

An attempt to lock a line that is present and valid in the cache does not cause an overlocking 
condition.

A non–lock-setting cache-line fill or line replacement request to a cache that has all ways 
locked for a given set does not cause a lock to be cleared.

Unable-to-lock conditions

If no exceptions occur and no overlocking condition exists, an attempt to set a lock can fail if 
any of the following is true:

● The target address is marked cache-inhibited or the storage attributes of the address 
uses a coherency protocol that does not support locking.

● The target cache is disabled or not present.

● The CT field specifies a value not supported by the implementation.

● Any other implementation-specific error condition.
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If an unable-to-lock condition occurs, the lock set instruction is treated as a NOP. If the lock 
targeted the data cache (dcbtls, dcbtstls), L1CSR0[DCUL] is set to indicate the unable-to-
lock condition; if the lock targeted the instruction cache (icbtls), L1CSR1[ICUL] is set. 
L1CSR0[DCUL] or L1CSR0[ICUL] is set regardless of the CT value in the lock-setting 
instruction.

Cache locking (user mode) exceptions

Setting and clearing cache locks can be restricted to supervisor mode only access. If set, 
MSR[UCLE] allows cache locking operations to be performed in user mode. If 
MSR[UCLE] = 0 and MSR[PR] = 1 and execution of a cache lock or cache clear instruction 
occurs, a cache locking exception occurs. In this case the processor suppresses execution 
of the instruction causing the exception. A DSI interrupt is taken and SRR0, SRR1, MSR, 
and ESR are modified as follows:

● SRR0 is set to the EA of the instruction causing the interrupt.

● SRR1 is set to the contents of the MSR at the time of the interrupt.

● MSR[CE,ME,DE] are unchanged. All other bits are cleared.

● ESR[DLK] is set if the instruction was a dcbtls, dcbtstls, or a dcblc.

● ESR[ILK] is set if the instruction was a icbtls or a icblc.

● All other ESR bits are cleared.

Instruction execution resumes at address IVPR[0–47]||IVOR2[48–59]||0b0000.

8.2 Direct cache flush APU

8.2.1 Overview

To assist in software flush of the L1 cache, the direct cache flush APU allows the 
programmer to flush and/or invalidate the cache by specifying the cache set and cache way. 
Without such a feature, the programmer must either:

● Know the virtual addresses of the lines that need to be flushed and issue dcbst or dcbf 
instructions to those addresses.

● Flush the entire cache by causing all the lines to be replaced. This requires a virtual 
address range that is mapped as a contiguous physical address range, that the 
programmer knows and can manipulate the replacement policy of the cache, and the 
size and organization of the cache.

With the direct cache flush APU the program needs only specify the way and set of the 
cache to flush.

The direct cache flush APU available bit, L1CFG0[CFISWA], is set for implementations that 
contain the direct cache flush APU.

8.2.2 Programming model

To address a specific physical block of the cache, the L1 flush and invalidate control register 
0 (L1FINV0) is written with the cache set (L1FINV0[CSET]) and cache way 
(L1FINV0[CWAY]) of the line that is to be flushed. L1FINV0 is written using a mtspr 
instruction specifying the L1FINV0 register. No tag match in the cache is required. An 
additional field, L1FINV0[CCMD], is used to specify the type of flush to be performed on the 
line addressed by L1FINV0[CWAY] and L1FINV0[CSET].
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The available L1FINV0[CCMD] encodings are described in Table 33 on page 96.

Only the L1 data cache (or unified cache) is manipulated by the direct cache flush APU. The 
L1 instruction cache or any other caches in the cache hierarchy are not explicitly targeted by 
this APU.

Register model

The direct cache flush APU defined one register, the L1 flush and invalidate control register 
0, described in Chapter 2.11.5 on page 96.” L1FINV0 contains fields to provide the way and 
set selection of a cache line to flush and or invalidate. 

8.3 Cache way partitioning APU
The cache way partitioning APU allows ways in a unified L1 cache to be configured to 
accept either data or instruction miss line-fill replacements. 

8.3.1 Programming model

The cache way partitioning APU is comprised of bits in L1CSR0 and L1CFG0, as follows:

● Way instruction disable field (L1CSR0[WID]) is a 4-bit field that that determines which 
of ways 0–3 are available for replacement by instruction miss line refills. 

● The additional ways instruction disable bit (L1CSR0[AWID]) determines whether ways 
4 and above are available for replacement by instruction miss line refills. 

● Way data disable field (L1CSR0[WDD]) is a 4-bit field that that determines which of 
ways 0–3 are available for replacement by data miss line refills. 

● The additional ways data disable bit (L1CSR0[AWDD]) determines whether ways 4 and 
above are available for replacement by instruction miss line refills. 

● See Chapter 2.11.1: L1 cache control and status register 0 (L1CSR0) on page 90.”

● Way access mode bit, L1CSR0[WAM], Determines whether all ways are available for 
access or only ways partitioned for the specific type of access are used for a fetch or 
read operation. See Chapter 2.11.1 on page 90.”

● Cache way partitioning APU available bit, L1CFG0[CWPA], indicates whether the 
cache way partitioning APU is available. See Chapter 2.11.3 on page 94.”

These fields are described in detail in Chapter 2.11.3 on page 94,” and in Chapter 2.11.1: L1 
cache control and status register 0 (L1CSR0) on page 90.”

8.3.2 Interaction with the cache locking APU

Note that the cache way partitioning APU can affect the cache line locking APU’s ability to 
control replacement of lines. If any cache line locking instruction (icbtls, dcbtls, dcbtstls) is 
allowed to execute and finds a matching line in the cache, the line’s lock bit is set regardless 
of the L1CSR0[WID,AWID,WDD,AWDD] settings. In this case, no replacement has been 
made. 

However, for cache misses that occur while executing a cache line lock set instruction, the 
only candidate lines available for locking are those that correspond to ways of the cache that 
have not been disabled for the particular type of line locking instruction (controlled by WDD 
and AWDD for dcbtls and dcbtstls, controlled by WID and AWID for icbtls). Thus, an 
overlocking condition may result even though fewer than eight lines with the same index are 
locked.y
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9 VLE introduction

This body of this document describes the VLE (variable length encoding) extension to the 
Book E architecture. The VLE extension offers more efficient binary representations of 
applications for the embedded processor spaces where code density plays a major role in 
affecting overall system cost, and to a somewhat lesser extent, performance. The intent of 
the VLE extension is not to define an entirely different ISA nor to supplant the PowerPC ISA; 
instead the VLE extension can be viewed as a supplement that is can be applied to an 
application or to part of an application to improve code density. 

Chapter 11: VLE compatibility with the EIS on page 856,” describes additional VLE 
extensions to the EIS. 

The major objectives of the VLE extension are as follows:

● Coexistence and consistency with the Book E ISA and general architecture

● Maintain a common programming model and instruction operation model in the VLE 
extension

● Reduce overall code size by ~30% over existing PowerPC text segments

● Limit the increase in execution path length to under 10% for most important 
applications

● Limit the increase in hardware complexity for implementations containing the VLE 
extension 

9.1 Compatibility with PowerPC Book E
VLE provides an extension to Book E. There are additional operations defined using an 
alternate instruction encoding to enable reduced code footprint. This alternate encoding set 
is selected on an instruction page basis. A single page attribute bit selects between 
standard Book E instruction encodings and VLE instructions for that page of memory. This 
attribute is an extension to the Book E page attributes. Pages can be freely intermixed, 
allowing for a mixture of both types of encodings.

Instruction encodings in pages marked as using the VLE extension are either 16 or 32 bits 
long, and are aligned on 16-bit boundaries. Because of this, all instruction pages marked as 
VLE are required to use big-endian byte ordering.

The programmer’s model uses the same register set with both instruction encodings, 
although certain registers are not accessible by VLE instructions using the 16-bit formats 
and not all condition register (CR) fields are used by condition setting or conditional branch 
instructions executing from a VLE instruction page. In addition, immediate fields and 
displacements differ in size and use, due to the more restrictive encodings imposed by VLE 
instructions. 

The VLE extension defines additional fields in registers defined by Book E and the EIS. 
These are described in Chapter 11.2: VLE extension processor and storage control 
extensions on page 856.”

Other than the requirement of big-endian byte ordering for instruction pages and the 
additional page attribute to identify whether the instruction page corresponds to a VLE 
section of code, VLE complies with the memory model defined in Book E and the Book E 
Implementation Specifications (EIS). Likewise, the VLE extension complies with the Book E 
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and EIS definitions of the exception and interrupt model, the timer facilities, the debug 
facilities and the special-purpose registers (SPRs). 

9.2 Instruction mnemonics and operands
The description of each instruction includes the mnemonic and a formatted list of operands. 
VLE instruction semantics are either identical or similar to Book E instruction semantics. 
Where the semantics, side-effects, and binary encodings are identical, Book E mnemonics 
and formats are used. Where the semantics are similar but the binary encodings differ, the 
Book E mnemonic is typically preceded with an e_. To distinguish similar instructions 
available in both 16- and 32-bit forms under VLE and standard Book E instructions, VLE 
instructions encoded with 16 bits have an se_ prefix. Those VLE instructions encoded with 
32 bits that have different binary encodings or semantics than the equivalent Book E 
instruction have an e_ prefix. The following are examples:

stw rS,D(rA) // standard Book E instruction
e_stw rS,D(rA) // 32-bit VLE instruction
se_stw rZ,SD4(rX) // 16-bit VLE instruction
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10 VLE storage addressing

A program references memory using the effective address (EA) computed by the processor 
when it executes a branch, storage access, storage control, or TLB management 
instruction, or when it fetches the next sequential instruction.

10.1 Data memory addressing modes
Table 218 lists data memory addressing modes supported by the VLE extension.

         

10.2 Instruction memory addressing modes
Table 219 lists instruction memory addressing modes supported by the VLE extension.

         

Table 218. Data storage addressing modes

Mode Name Description

Base+16-bit 
displacement
(32-bit instruction 
format)

D-mode
The 16-bit D field is sign-extended and added to the contents of 
the GPR designated by rA or to zero if rA = 0 to produce the 
EA.

Base+8-bit 
displacement (32-bit 
instruction format)

D8-mode
The 8-bit D8 field is sign-extended and added to the contents of 
the GPR designated by rA or to zero if rA = 0 to produce the 
EA.

Base+scaled 4-bit 
displacement 
(16-bit instruction 
format)

SD4-
mode

The 4-bit SD4 field zero-extended, scaled (shifted left) 
according to the size of the operand, and added to the contents 
of the GPR designated by rX to produce the EA. (Note that 
rX = 0 is not a special case).

Base+Index 

(32-bit instruction 
format)

X-mode
The GPR contents designated by rB are added to the GPR 
contents designated by rA or to zero if rA = 0 to produce the 
EA.

Table 219. Instruction storage addressing modes

Mode Description

I-form branch instructions (32-
bit instruction format)

The 24-bit BD24 field is concatenated on the right with 0b0, sign-
extended, and then added to the address of the branch instruction.

Taken B15-form branch 
instructions (32-bit instruction 
format)

The 15-bit BD15 field is concatenated on the right with 0b0, sign-
extended, and then added to the address of the branch instruction to 
form the EA of the next instruction.

All branch instructions (16-bit 
instruction format)

The 8-bit BD8 field is concatenated on the right with 0b0, sign-
extended, and then added to the address of the branch instruction to 
form the EA of the next instruction.

Sequential instruction fetching 
(or non-taken branch 
instructions)

The value 4 [2] is added to the address of the current 32-bit [16-bit] 
instruction to form the EA of the next instruction. If the address of the 
current instruction is 0xFFFF_FFFC [0xFFFF_FFFE], the address of 
the next sequential instruction is undefined.
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Any branch instruction with 
LK = 1 (32-bit instruction 
format)

The value 4 is added to the address of the current branch instruction 
and the result is placed into the LR. If the address of the current 
instruction is 0xFFFF_FFFC, the result placed into the LR is 
undefined.

Branch se_bl. se_blrl. 
se_bctrl instructions (16-bit 
instruction format)

The value 2 is added to the address of the current branch instruction 
and the result is placed into the LR. If the address of the current 
instruction is 0xFFFF_FFFE, the result placed into the LR is 
undefined.

Table 219. Instruction storage addressing modes (continued)

Mode Description
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11 VLE compatibility with the EIS

The body of this document addresses the relationship between VLE and Book E. It does not 
explicitly address EIS-defined features, such as the APUs or the use of MAS registers. 
However, the information in the previous chapters provides a model for how the VLE 
extension is integrated with features defined by the layer of architecture defined by the EIS.

11.1 Overview
The VLE extension uses the same semantics as the Book E architecture. Due to the limited 
instruction encoding formats, VLE instructions typically support reduced immediate fields 
and displacements, and not all Book E operations are encoded in the VLE extension. The 
basic philosophy is to capture all useful operations, with most frequent operations given 
priority. Immediate fields and displacements are provided to cover the majority of ranges 
encountered in embedded control code. Instructions are encoded in either a 16- or 32-bit 
format, and these may be freely intermixed. 

Book E floating-point registers (FPRs) are not accessible by VLE instructions. VLE 
instructions use Book E GPR and SPR registers with the following limitations:

● VLE instructions using the 16-bit formats are limited to addressing GPR0–GPR7, and 
GPR24–GPR31 in most instructions. Move instructions are provided to transfer register 
contents between these registers and GPR8–GPR23.

● VLE instructions using the 16-bit formats are limited to addressing CR0

● VLE instructions using the 32-bit formats are limited to addressing CR0–CR3

VLE instruction encodings are generally different than Book E instructions, except that most 
Book E instructions falling within Book E major opcode 31 are encoded identically in 32-bit 
VLE instructions and have identical semantics unless they affect or access a resource not 
supported by the VLE extension. Also, major opcode 4 is available to support additional 
APUs using identical encodings for both Book E and the VLE extension. This allows an 
implementation of the VLE extension to include additional APUs, such as the cache-line 
locking, single-precision floating-point, and SPE APUs, and to use the exact encodings. 

Because future compatibility is desired, and to avoid confusion with Book E, register bit 
numbering remains the same as in Book E. 

11.2 VLE extension processor and storage control extensions
This section describes additional functionality and extensions to the EIS to support the VLE 
extension.

11.2.1 EIS instruction extensions

This section describes extensions to EIS instructions to support VLE operations. Because 
instructions may reside on a half-word boundary, bit 62 is not masked by instructions that 
cause fetching from a register, such as the LR, CTR, or a save/restore register 0, that holds 
an instruction address:

● Return from interrupt instructions, such as rfdi (defined as part of the debug APU) and 
rfmci (defined as part of the machine check APU) no longer mask bit 62 of the 
respective save/restore register 0. The destination address is xSRR0[32–62] || 1’b0.
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11.2.2 Book E instruction extensions

This section describes the various extensions to Book E instructions to support the VLE 
extension:

● rfci, rfdi, and rfi no longer mask bit 62 of CSRR0, DSRR0, or SRR0. The destination 
address is xSRR0[32–62] || 1’b0.

● bclr, bclrl, bcctr, and bcctrl no longer mask bit 62 of the LR or CTR. The destination 
address is [LR,CTR][32–62] || 1’b0.

11.2.3 EIS MMU extensions

The VLE assumes that the MMU implementation complies with the more general MMU 
definition provided by Book E and the more specific definition provided by the EIS. This 
section describes the differences and extensions to the MMU necessary to support the VLE 
extension.

TLB entries

Each TLB entry is augmented with an additional page attribute bit, the VLE bit. If set, VLE 
indicates the corresponding page of memory is a VLE page. 

TLB load on reset

During reset, all TLB entries except entry 0 are invalidated. TLB entry 0 is loaded with the 
additional value shown in Table 220.

         

Note that implementations may provide a p_rst_vlemode input to supply the value of the 
VLE field on reset. If not available, the default value should be 0, indicating a Book E page

VLE attribute bit

If set, the VLE attribute bit indicates the corresponding page of memory is a VLE page. The 
VLE attribute is used only for instruction access and is ignored for data accesses. The VLE 
bit may be set only for big-endian pages, otherwise a byte-ordering exception occurs on 
instruction fetches.

MMU assist registers (MASn)

To support the VLE extension, additional bits are defined in MAS2 and MAS4. These are 
described in the following sections.

MAS2

The MAS2 register is shown below. The VLE page attribute has been added as MAS2[58]. If 
the VLE extension is not present, this bit is always read as zero and writes are ignored.

Table 220. TLB Entry 0 reset value

Field Reset value Comments

VLE p_rst_vlemode value Book E mode, not VLE if no p_rst_vlemode signal is available
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MAS2[VLE] is defined in Table 221.

          

MMU assist register 4 (MAS4)

When the VLE extension is implemented, MAS4[58] is defined as the VLED field, which 
contains the default MAS2[VLE] value. If the VLE extension is not present, this bit is always 
read as zero and writes are ignored. MAS4 is shown below. 

         

MAS4[VLED]is described in Table 222.

         

SPR 626 Access: User read/write

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

R
EPN — VLE W I M G E

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 221. MAS2 field descriptions  

Bits Name Comments, or function when set

58 VLE

VLE

0This page is a standard Book E page
1This page is a VLE page

SPR 628 Access: user read/write

3233 34 35 36 45 46 47 48 5152 555657 58 59 60 61 62 63

R
— TLBSELD — TIDSELD — TSIZED — VLED WD ID MD GD ED

W

Reset All zeros

Table 222. MAS4 field descriptions  

Bits Name Comments, or function when set

58 VLED
Default VLE value. Defined by the EIS. 
0 This page is a standard Book E page
1 This page is a VLE page
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11.2.4 EIS debug APU extensions

The se_rfdi instruction is provided to support the EIS debug interrupt APU.

rfdi rfdi

Return from debug interrupt 

se_rfdi

MSR ← DSRR1

NIA ← DSRR032:62 || 0b0

The se_rfdi instruction is used to return from a debug class interrupt, or as a means of 
establishing a new context and synchronizing on that new context simultaneously. 

The contents of DSRR1 are placed into the MSR. If the new MSR value does not enable any 
pending exceptions, then the next instruction is fetched, under control of the new MSR 
value, from the address DSRR0[32–62]||0b0. If the new MSR value enables one or more 
pending exceptions, the interrupt associated with the highest priority pending exception is 
generated; in this case the value placed into SRR0 or CSRR0 by the interrupt processing 
mechanism (see Book E) is the address of the instruction that would have been executed 
next had the interrupt not occurred (that is, the address in DSRR0 at the time of the 
execution of se_rfdi).

Execution of this instruction is privileged and restricted to supervisor mode only.

Execution of this instruction is context synchronizing.

When the debug APU is disabled, this instruction is treated as an illegal instruction.

Special Registers Altered: MSR

0 15

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
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12 VLE instruction classes

This chapter lists instructions defined or supported by the VLE extension. Unless otherwise 
noted, instructions that are not prefixed with e_ or se_ have identical encodings and 
semantics as in Book E or in the Book E implementation standards (EIS). Full descriptions 
of these instructions are provided in the EREF: Programmers reference manual for ST's 
Book E processors.

A complete list of supported instructions is provided in Chapter 12.6.”

12.1 Processor control instructions
This section lists processor control instructions that can be executed when a processor is in 
VLE mode. These instructions are grouped as follows:

● Chapter 12.1.1: System linkage instructions on page 860”

● Chapter 12.1.2: Processor control register manipulation instructions on page 860”

● Chapter 12.1.3: Instruction synchronization instruction on page 861”

12.1.1 System linkage instructions

se_sc, se_rfi, se_rfci, and se_rfdi are system linkage instructions that enable the program 
to call upon the system to perform a service (that is, invoke a system call interrupt), and by 
which the system can return from performing a service or from processing an interrupt. 
Table 223 lists system linkage instructions.

         

12.1.2 Processor control register manipulation instructions

In addition to the Book E processor control register manipulation instructions, the VLE 
extension provides 16-bit forms of instructions to move to/from the LR and CTR. Table 224 
lists the processor control register manipulation instructions. 

         

Table 223. System linkage instruction set index

Mnemonic Instruction Reference

se_sc System Call Page -954

se_rfci` Return From Critical Interrupt Page -949

se_rfdi Return From Debug Interrupt Page -859

se_rfi Return From Interrupt Page -950

Table 224. System register manipulation instruction set index

Mnemonic Instruction Reference

se_mfctr rX Move From Count Register Page -938

mfdcr rD,DCRN Move From Device Control Register Book E

se_mflr rX Move From Link Register Page -939

mfmsr rD Move From Machine State Register Book E
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12.1.3 Instruction synchronization instruction

Table 225 lists the VLE-defined se_isync instruction. 

         

12.2 Branch operation instructions
This section lists branch instructions that can be executed when a processor is in VLE mode 
and the registers that support them. 

12.2.1 Registers for branch operations

The registers that support branch operations are grouped as follows:

● Chapter 2.5.1: Condition register (CR) on page 61”

● Chapter 2.5.2: Link register (LR) on page 66”

● Chapter 2.5.3: Count register (CTR) on page 67”

Condition register (CR)

The condition register (CR) is a 32-bit register. CR bits are numbered 32 (most-significant 
bit) to 63 (least-significant bit). The CR reflects the result of certain operations, and provides 
a mechanism for testing (and branching). The VLE extension implements the entire CR, but 
some comparison operations and all branch instructions are limited to using CR0–CR3. The 
full Book E condition register field and logical operations are provided however.

mfspr rD,SPRN Move From Special Purpose Register Book E

se_mtctr rX Move To Count Register Page -942

mtdcr DCRN,rS Move To Device Control Register Book E

se_mtlr rX Move To Link Register Page -943

mtmsr rS Move To Machine State Register Book E

mtspr SPRN,rS Move To Special Purpose Register Book E

wrtee rA Write MSR External Enable Book E

wrteei E Write MSR External Enable Immediate Book E

Table 224. System register manipulation instruction set index (continued)

Mnemonic Instruction Reference

Table 225. Instruction Synchronization Instruction Set Index

Mnemonic Instruction Reference

se_isync Instruction Synchronize Page -929

Access: User read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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CR bits are grouped into eight 4-bit fields, CR0–CR7, which are set in one of the following 
ways.

● Specified fields of the condition register can be set by a move to the CR from a GPR 
(mtcrf).

● A specified CR field can be set by a move to the CR from another CR field (e_mcrf).

● CR field 0 can be set as the implicit result of an integer instruction.

● A specified condition register field can be set as the result of an integer compare 
instruction.

● CR field 0 can be set as the result of an integer bit test instruction.

Instructions are provided to perform logical operations on individual CR bits and to test 
individual condition register bits (see Book E).

Condition register settings for integer instructions

For all integer word instructions in which the Rc bit is defined and set, and for addic., the 
first three bits of CR field 0 (CR[32–34]) are set by signed comparison of bits 32–63 of the 
result to zero, and the fourth bit of CR field 0 (CR[35]) is copied from the final state of 
XER[SO].

if      (target_register)32:63 < 0 then c ← 0b100
else if (target_register)32:63 > 0 then c ← 0b010
else                                    c ← 0b001
CR0 ← c || XERSO

If any portion of the result is undefined, the value placed into the first three bits of CR field 0 
is undefined.

The bits of CR field 0 are interpreted as shown in Table 226.

         

Condition register setting for compare instructions

For compare instructions, a CR field specified by the crD operand in for the e_cmph, 
e_cmphl, e_cmpi, and e_cmpli instructions, or CR0 for the e_cmp16i, e_cmph16i, 
e_cmphl16i, e_cmpl16i, se_cmp, se_cmph, se_cmphl, se_cmpi, and se_cmpli 
instructions, is set to reflect the result of the comparison. The CR field bits are interpreted as 
shown in Table 227. A complete description of how the bits are set is given in the instruction 
descriptions and Chapter 12.4.5: Integer compare and bit test instructions on page 872.”

         

Table 226. CR0 encodings

CR Bit Description

32 Negative (LT). Bit 32 of the result is equal to 1.

33
Positive (GT). Bit 32 of the result is equal to 0 and at least one of bits 33–63 of the result is 
non-zero.

34 Zero (EQ). Bits 32–63 of the result are equal to 0.

35
Summary overflow (SO). This is a copy of the final state XER[SO] at the completion of the 
instruction.
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Condition register setting for the bit test instruction

The Bit Test Immediate instruction, se_btsti, also sets CR field 0. See the instruction 
description and also Chapter 12.4.5: Integer compare and bit test instructions on page 872.” 

Link register (LR)

VLE instructions use the LR as defined in Book E, although the VLE extension defines a 
subset of all variants of Book E conditional branches involving the LR, as shown in 
Table 228. 

         

Count register

VLE instructions use the count register (CTR) as defined in Book E, although the VLE 
extension defines a subset of the variants of Book E conditional branches involving the 
CTR, as shown in Table 229.

         

Table 227. Condition register setting for compare instructions

CR Bit Description

4×CRD + 32

Less than (LT)
For signed-integer compare, GPR(rA or rX) < SCI8 or SI or GPR(rB or rY).
For unsigned-integer compare, GPR(rA or rX) <u SCI8 or UI or UI5 or GPR(rB or 
rY).

4×CRD + 33

Greater than (GT)
For signed-integer compare, GPR(rA or rX) > SCI8 or SI or UI5 or GPR(rB or rY).
For unsigned-integer compare, GPR(rA or rX) >u SCI8 or UI or UI5 or GPR(rB or 
rY).

4×CRD + 34
Equal (EQ)
For integer compare, GPR(rA or rX) = SCI8 or UI5 or SI or UI or GPR(rB or rY).

4×CRD + 35
Summary overflow (SO)
For integer compare, this is a copy of the final state of XER[SO] at the completion of 
the instruction.

Table 228. Branch to link register instruction comparison

Book E VLE subset

Instruction Syntax Instruction Syntax

Branch Conditional to Link Register

Branch Conditional to Link Register 
& Link

bclr BO,BI
bclrl BO,BI

Branch (Absolute) to Link Register

Branch (Absolute) to Link Register & 
Link

se_blr 
se_blrl 

Branch Conditional & Link
e_bcl 
BO,BI,BD

Branch Conditional & Link
e_bcl 
BO32,BI32,BD15

Branch (Absolute) & Link
e_bl BD24

se_bl BD8
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12.2.2 Branch instructions

The sequence of instruction execution can be changed by the branch instructions. Because 
VLE instructions must be aligned on half-word boundaries, the low-order bit of the 
generated branch target address is forced to 0 by the processor in performing the branch.

The branch instructions compute the EA of the target in one of the following ways, as 
described in Chapter 10.2: Instruction memory addressing modes on page 854.”

1. Adding a displacement to the address of the branch instruction.

2. Using the address contained in the LR (Branch to Link Register [and Link]).

3. Using the address contained in the CTR (Branch to Count Register [and Link]).

Branching can be conditional or unconditional, and the return address can optionally be 
provided. If the return address is to be provided (LK = 1), the EA of the instruction following 
the branch instruction is placed into the LR after the branch target address has been 
computed: this is done whether or not the branch is taken.

In branch conditional instructions, the BI32 or BI16 instruction field specifies the CR bit to be 
tested. For 32-bit instructions using BI32, CR[32–47] (corresponding to bits in CR0–CR3) 
may be specified. For 16-bit instructions using BI16, only CR[32–35] (bits within CR0) may 
be specified. 

In branch conditional instructions, the BO32 or BO16 field specifies the conditions under 
which the branch is taken and how the branch is affected by or affects the CR and CTR. 
Note that VLE instructions also have different encodings for the BO32 and BO16 fields than 
in Book E’s BO field. 

If the BO32 field specifies that the CTR is to be decremented, CTR[32–63] are 
decremented. If BO[16,32] specifies a condition that must be TRUE or FALSE, that 
condition is obtained from the contents of CR[BI+32]. (Note that CR bits are numbered 32–
63. BI refers to the BI field in the branch instruction encoding. For example, specifying BI = 2 
refers to CR[34].)

Encodings for the BO32 field for the VLE extension are shown in Table 230.

         

 The encoding for the BO16 field for the VLE extension is shown in Table 231.

Table 229. Branch to count register instruction comparison

Book E VLE

Instruction Syntax Instruction Syntax

Branch Conditional to Count Register
Branch Conditional to Count Register & 
Link

bcctr BO,BI
bcctrl 
BO,BI

Branch (Absolute) to Count Register
Branch (Absolute) to Count Register & 
Link

se_bctr 
se_bctrl 

Table 230. VLE extension BO32 encodings

BO32 Description

00 Branch if the condition is FALSE.

01 Branch if the condition is TRUE.

10 Decrement CTR[32–63], then branch if the decremented CTR[32–63]≠0.

11 Decrement CTR[32–63], then branch if the decremented CTR[32–63] = 0.
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The various branch instructions supported by the VLE extension are shown in Table 232.

         

12.3 Condition register instructions
Condition register instructions are provided to transfer values to/from various portions of the 
CR. The VLE extension does not introduce any additional functionality beyond that defined 
in Book E for CR operations, but does remap the CR-logical and mcrf instruction 
functionality into major opcode 31. These instructions operate identically to the Book E 
instructions, but are encoded differently. Table 233 lists condition register instructions 
supported in VLE mode. 

         

Table 231. VLE extension BO16 encodings

BO16 Description

0 Branch if the condition is FALSE.

1 Branch if the condition is TRUE.

Table 232. Branch instruction set index

Mnemonic Instruction Reference

e_b BD24
e_bl BD24

Branch
Branch & Link

Page -903

se_b BD8
se_bl BD8

Branch
Branch & Link

Page -903

e_bc BO32,BI32,BD15
se_bc BO16,BI16,BD8

e_bcl BO32,BI32,BD15

Branch Conditional
Branch Conditional

Branch Conditional & Link

Page -904

se_bctr 
se_bctrl 

Branch to Count Register
Branch to Count Register & Link

Page -906

se_blr 
se_blrl 

Branch to Link Register
Branch to Link Register & Link

Page -908
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12.4 Integer instructions
This section lists the integer instructions supported by the VLE extension. 

12.4.1 Integer load instructions

The integer load instructions compute the EA of the memory to be accessed as described in 
Chapter 10.1: Data memory addressing modes on page 854.”

The byte, half word, or word in memory addressed by EA is loaded into GPR(rD) or 
GPR(rZ).

The VLE extension supports both big- and little-endian byte ordering for data accesses.

Some integer load instructions have an update form in which GPR(rA) is updated with the 
EA. For these forms, if rA ≠ 0 and rA ≠ rD, the EA is placed into GPR(rA) and the memory 
element (byte, half word, word, or double word) addressed by EA is loaded into GPR(rD). If 
rA = 0 or rA = rD, the instruction form is invalid. This is the same behavior as specified for 
load with update instructions in Book E.

Basic integer load instructions are listed in Table 234.

         

Table 233. Condition register instruction set index

Mnemonic Instruction Reference

e_crand crbD,crbA,crbB Condition Register AND Page -920

e_crandc crbD,crbA,crbB Condition Register AND with Complement Page -920

e_creqv crbD,crbA,crbB Condition Register Equivalent Page -920

e_crnand crbD,crbA,crbB Condition Register NAND Page -921

e_crnor crbD,crbA,crbB Condition Register NOR Page -922

e_cror crbD,crbA,crbB Condition Register OR Page -923

e_crorc crbD,crbA,crbB Condition Register OR with Complement Page -923

e_crxor crbD,crbA,crbB Condition Register XOR Page -925

e_mcrf crD,crS Move Condition Register Field Page -936

mcrxr crD
Move to Condition Register from Integer 
Exception Register

Book E

mfcr rD Move From condition register Book E

mtcrf FXM,rS Move to Condition Register Fields Book E

Table 234. Basic integer load instruction set index 

Mnemonic Instruction Reference

e_lbz rD,D(rA)
e_lbzu rD,D8(rA)
se_lbz rZ,SD4(rX)

Load Byte and Zero
Load Byte and Zero with Update

Load Byte and Zero (16-bit form)

Page -930

lbzx rD,rA,rB
lbzux rD,rA,rB

Load Byte and Zero Indexed

Load Byte and Zero with Update Indexed
Book E
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Integer load byte-reversed instructions are listed in Table 235.

         

The VLE-defined integer load multiple instruction is listed in Table 236.

         

The VLE-defined integer load and reserve instruction is listed in Table 237.

         

12.4.2 Integer store instructions

The integer store instructions compute the EA of the memory to be accessed as described 
in Chapter 10.1: Data memory addressing modes on page 854.”

The contents of GPR(rS) or GPR(rZ) are stored into the byte, half word, or word in memory 
addressed by EA.

The VLE extension supports both big- and little-endian byte ordering for data accesses.

e_lha rD,D(rA)
e_lhau rD,D8(rA)

Load Halfword Algebraic

Load Halfword Algebraic with Update
Page -931

lhax rD,rA,rB
lhaux rD,rA,rB

Load Halfword Algebraic Indexed

Load Halfword Algebraic with Update Indexed
Book E

e_lhz rD,D(rA)
e_lhzu rD,D8(rA)
se_lhz rZ,SD4(rX)

Load Halfword and Zero

Load Halfword and Zero with Update

Load Halfword and Zero (16-bit form)

Page -932

lhzx rD,rA,rB
lhzux rD,rA,rB

Load Halfword and Zero Indexed

Load Halfword and Zero with Update Indexed
Book E

e_lwz rD,D(rA)
e_lwzu rD,D8(rA)
se_lwz rZ,SD4(rX)

Load Word and Zero

Load Word and Zero with Update
Load Word and Zero (16-bit form)

Page -935

lwzx rD,rA,rB
lwzux rD,rA,rB

Load Word and Zero Indexed

Load Word and Zero with Update Indexed
Book E

Table 235. Integer Load Byte-Reverse Instruction Set Index

Mnemonic Instruction Reference

lhbrx rD,rA,rB Load Halfword Byte-Reverse Indexed Book E

lwbrx rD,rA,rB Load Word Byte-Reverse Indexed Book E

Table 236. Integer load multiple instruction set index

Mnemonic Instruction Reference

e_lmw rD,D8(rA) Load Multiple Word Page -934

Table 237. Integer load and reserve instruction set index

Mnemonic Instruction Reference

lwarx rD,rA,rB Load Word And Reserve Indexed Book E

Table 234. Basic integer load instruction set index  (continued)

Mnemonic Instruction Reference
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Some integer store instructions have an update form, in which GPR(rA) is updated with the 
EA. For these forms, the following rules (from Book E) apply.

● If rA ≠ 0, the EA is placed into GPR(rA).

● If rS = rA, the contents of GPR(rS) are copied to the target memory element and then 
EA is placed into GPR(rA).

The basic integer store instructions are listed in Table 238.

         

The integer store byte-reverse instructions are listed in Table 239.

         

The integer store multiple instruction is listed in Table 240.

         

The integer store conditional instruction is listed in Table 241.

         

Table 238. Basic integer store instruction set index

Mnemonic Instruction Reference

e_stb rS,D(rA)
e_stbu rS,D8(rA)
se_stb rZ,SD4(rX)

Store Byte

Store Byte with Update

Store Byte (16-bit form)

Page -958

stbx rS,rA,rB
stbux rS,rA,rB

Store Byte Indexed

Store Byte with Update Indexed
Book E

e_sth rS,D(rA)
e_sthu rS,D8(rA)
se_sth rZ,SD4(rX)

Store Halfword

Store Halfword with Update

Store Halfword (16-bit form)

Page -959

sthx rS,rA,rB
sthux rS,rA,rB

Store Halfword Indexed

Store Halfword with Update Indexed
Book E

e_stw rS,D(rA)
e_stwu rS,D8(rA)
se_stw rZ,SD4(rX)

Store Word

Store Word with Update
Store Word (16-bit form)

Page -961

stwx rS,rA,rB
stwux rS,rA,rB

Store Word Indexed
Store Word with Update Indexed

Book E

Table 239. Integer store byte-reverse instruction set index

Mnemonic Instruction Reference

sthbrx rS,rA,rB Store Halfword Byte-Reverse Indexed Book E

stwbrx rS,rA,rB Store Word Byte-Reverse Indexed Book E

Table 240. Integer store multiple instruction set index

Mnemonic Instruction Reference

e_stmw rS,D8(rA) Store Multiple Word Page -960

Table 241. Integer store conditional instruction set index

Mnemonic Instruction Reference

stwcx. rS,rA,rB Store Word Conditional Indexed Book E
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12.4.3 Integer arithmetic instructions

The integer arithmetic instructions use the contents of the GPRs as source operands, and 
place results into GPRs, into status bits in the XER and into CR0.

The integer arithmetic instructions treat source operands as signed, two’s complement 
integers unless the instruction is explicitly identified as performing an unsigned operation.

The e_add2i. instruction and the OIM5-form instruction, se_subi., set the first three bits of 
CR0 to characterize bits 32–63 of the result. These bits are set by signed comparison of bits 
32–63 of the result to zero.

e_addic[.] and e_subfic[.] always set CA to reflect the carry out of bit 32.

The integer arithmetic instructions are listed in Table 242.

         

Table 242. Integer arithmetic instruction set index 

Mnemonic Instruction Reference

add rD,rA,rB
add. rD,rA,rB
addo rD,rA,rB
addo. rD,rA,rB

Add Book E

se_add rX,rY Add Page -897

addc rD,rA,rB
addc. rD,rA,rB
addco rD,rA,rB
addco. rD,rA,rB 

Add Carrying Book E

adde rD,rA,rB
adde. rD,rA,rB
addeo rD,rA,rB
addeo. rD,rA,rB

Add Extended Book E

e_addi  rD,rA,SCI8

e_addi. rD,rA,SCI8
e_add16i rD,rA,SI
e_add2i. rD,SI
se_addi rX,OIMM

Add Immediate Page -898

e_addic rD,rA,SCI8
e_addic. rD,rA,SCI8

Add Immediate Carrying Page -900

e_add2is rD,SI Add Immediate Shifted Page -898

divw rD,rA,rB
divw. rD,rA,rB
divwo rD,rA,rB
divwo. rD,rA,rB

Divide Word Book E

divwu rD,rA,rB
divwu. rD,rA,rB
divwuo rD,rA,rB
divwuo. rD,rA,rB

Divide Word Unsigned Book E
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12.4.4 Integer logical and move instructions

Logical instructions perform bit-parallel operations on 32-bit operands or move register or 
immediate values into registers. The move instructions move values into a GP from either 
another GPR, or an immediate value.

The X-form logical instructions with Rc = 1 and the SCI8-form logical instructions with 
Rc = 1 set the first three bits of CR field 0 as described in Chapter 12.4.3: Integer arithmetic 
instructions on page 869.” The logical instructions do not change XER[SO,OV,CA].

The integer logical instructions are listed in Table 243.

         

mulhw rD,rA,rB
mulhw. rD,rA,rB

Multiply High Word Book E

mulhwu rD,rA,rB
mulhwu. rD,rA,rB

Multiply High Word Unsigned Book E

e_mulli rD,rA,SCI8

e_mull2i rD,SI
Multiply Low Immediate Page -944

mullw rD,rA,rB
mullw. rD,rA,rB
mullwo rD,rA,rB
mullwo. rD,rA,rB

Multiply Low Word Book E

se_mullw rX,rY Multiply Low Word Page -945

neg rD,rA
se_neg rX
neg. rD,rA
nego rD,rA
nego. rD,rA

Negate Page -946

se_sub rX,rY Subtract Page -962

subf rD,rA,rB
subf. rD,rA,rB
subfo rD,rA,rB
subfo. rD,rA,rB

Subtract From Book E

se_subf  rX,rY Subtract From Page -963

subfc rD,rA,rB
subfc. rD,rA,rB
subfco rD,rA,rB
subfco. rD,rA,rB

Subtract From Carrying Book E

e_subfic rD,rA,SCI8

e_subfic. rD,rA,SCI8
Subtract From Immediate Carrying Page -964

se_subi rX,OIMM

se_subi. rX,OIMM
Subtract Immediate Page -965

Table 242. Integer arithmetic instruction set index  (continued)

Mnemonic Instruction Reference
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Table 243. Integer logical instruction set index 

Mnemonic Instruction Reference

and[.] rA,rS,rB
se_and[.] rX,rY

AND Page -901

andc[.] rA,rS,rB
se_andc rX,rY

AND with Complement Page -901

e_andi[.] rA,rS,SCI8
se_andi rX,UI5
e_and2i. rD,UI

AND Immediate Page -901

e_and2is. rD,UI AND Immediate Shifted Page -901

se_bclri rX,UI5 Bit Clear Page -905

se_bgeni rX,UI5 Bit Generate Page -907

se_bmski rX,UI5 Bit Mask Generate Page -909

se_bseti rX,UI5 Bit Set Page -910

cntlzw rA,rS
cntlzw. rA,rS

Count Leading Zeros Word Book E

eqv rA,rS,rB
eqv. rA,rS,rB

Equivalent Book E

extsb rA,rS
extsb. rA,rS
se_extsb rX

Extend Sign Byte Page -926

extsh rA,rS
extsh. rA,rS
se_extsh rX

Extend Sign Halfword Page -926

se_extzb rX Extend with Zeros Byte Page -927

se_extzh rX Extend with Zeros Halfword Page -927

e_li rD,LI20

se_li rX,UI7
Load Immediate Page -933

e_lis rD,UI Load Immediate Shifted Page -933

se_mfar rX,arY Move from Alternate Register Page -937

se_mr rX,rY Move Register Page -940

se_mtar arX,rY Move to Alternate Register Page -941

nand rA,rS,rB
nand. rA,rS,rB

NAND Book E

nor rA,rS,rB
nor. rA,rS,rB

NOR Book E

or rA,rS,rB
or. rA,rS,rB
se_or rX,rY

OR Page -948

se_not rX NOT Page -947
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12.4.5 Integer compare and bit test instructions

The integer compare instructions compare the contents of GPR(rA) with one of the 
following:

● The value of the SCI8 field

● The zero-extended value of the UI field

● The zero-extended value of the UI5 field

● The sign-extended value of the SI field

● The contents of GPR(rB) or GPR(rY). 

The following comparisons are signed: e_cmph, e_cmpi, e_cmp16i, e_cmph16i, se_cmp, 
se_cmph, and se_cmpi. 

The following comparisons are unsigned: e_cmphl, e_cmpli, e_cmphl16i, e_cmpl16i, 
se_cmpli, se_cmpl, and se_cmphl.

When operands are treated as 32-bit signed quantities, GPRn[32] is the sign bit. When 
operands are treated as 16-bit signed quantities, GPRn[48] is the sign bit.

For 32-bit implementations, the L field must be zero.

Compare instructions set one of the left-most three bits of the designated CR field and 
clears the other two. XER[SO] is copied to bit 3 of the designated CR field. 

The CR field is set as shown in Table 244.

         

The integer bit test instruction tests the bit specified by the UI5 instruction field and sets the 
CR0 field as shown in Table 245.

         

orc rA,rS,rB
orc. rA,rS,rB

OR with Complement Book E

e_ori[.] rA,rS,SCI8
e_or2i rD,UI

OR Immediate Page -966

e_or2is rD,UI OR Immediate Shifted Page -966

xor rA,rS,rB
xor. rA,rS,rB

XOR Book E

e_xori[.] rA,rS,SCI8 XOR Immediate Page -966

Table 243. Integer logical instruction set index  (continued)

Mnemonic Instruction Reference

Table 244. CR settings for compare instructions 

Bit Name Description

0 LT
(rA or rX) < SCI8, SI, UI5, or GPR(rB or rY) (signed comparison)
(rA or rX) <u SCI8, UI, UI5 or GPR(rB or rY) (unsigned comparison)

1 GT
(rA or rX) > SCI8, SI, UI5, or GPR(rB or rY) (signed comparison)
(rA or rX) >u SCI8, UI, UI5 or GPR(rB or rY) (unsigned comparison)

2 EQ (rA or rX) = SCI8, SI, UI, UI5, or GPR(rB or rY)

3 SO Summary overflow from the XER
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Table 246 is an index for integer compare and bit test operations. 

         

12.4.6 Integer select instruction 

The isel instruction provides a means to select one of two registers and place the result in a 
destination register under the control of a predicate value supplied by a CR bit. 

The integer select instruction is listed in Table 247.

         

12.4.7 Integer trap instructions

Trap instructions test for a specified set of conditions by comparing the contents of one GPR 
with a second GPR. If any of the conditions tested by a Trap instruction are met, a trap 

Table 245. CR settings for integer bit test instructions

Bit Name Description

0 LT Always cleared

1 GT RXui5 == 1

2 EQ RXui5 == 0

3 SO Summary overflow from the XER

Table 246. Integer compare and bit test instruction set index

Mnemonic Instruction Reference

se_btsti rX,UI5 Bit Test Immediate Page -911

cmp crD,L,rA,rB
se_cmp rX,rY

Compare Page -912

e_cmph crD,rA,rB
se_cmph rX,rY

Compare Halfword Page -914

e_cmph16i rA,SI16 Compare Halfword Immediate Page -914

e_cmphl crD,rA,rB
se_cmphl rX,rY

Compare Halfword Logical Page -916

e_cmphl16i rA,UI16 Compare Halfword Logical Immediate Page -916

e_cmpi crD,rA,SCI8

e_cmp16i rA,SI16
se_cmpi rX,UI5

Compare Immediate Page -912

cmpl crD,L,rA,rB
se_cmpl rX,rY

Compare Logical Page -918

e_cmpli crD,rA,SCI8
e_cmpl16i rA,UI16

se_cmpli rX,UI5

Compare Logical Immediate Page -918

Table 247. Integer select instruction set index

Mnemonic Instruction Reference

isel rD,rA,rB,crb Integer Select EIS
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exception type program interrupt is invoked. If none of the tested conditions are met, 
instruction execution continues normally.

The contents of GPR(rA) are compared with the contents of GPR(rB). For twi and tw, only 
the contents of bits 32–63 of rA (and rB) participate in the comparison.

This comparison results in five conditions that are ANDed with TO. If the result is not 0, the 
trap exception type program interrupt is invoked. These conditions are as shown in 
Table 248.

         

The integer trap instruction is listed in Table 249.

         3

12.4.8 Integer rotate and shift instructions

Instructions are provided that perform shifts and rotates on data from a GPR and return the 
result, or a portion of the result, to a GPR.

The rotation operations rotate a 32-bit quantity left by a specified number of bit positions. 
Bits that exit from position 32 enter at position 63.

The rotate32 operation is used to rotate a given 32-bit quantity.

Some rotate and shift instructions employ a mask generator. The mask is 32 bits long, and 
consists of 1 bits from a start bit, mstart, through and including a stop bit, mstop, and 0-bits 
elsewhere. The values of mstart and mstop range from 32 to 63. If mstart > mstop, the 1 bits 
wrap around from position 63 to position 0. Thus the mask is formed as follows:

    if mstart ≤ mstop then

       maskmstart:mstop   = ones

       maskall other bits = zeros

    else

       maskmstart:63      = ones

       mask32:mstop        = ones

       maskall other bits = zeros

There is no way to specify an all-zero mask.

Table 248. Integer trap conditions

TO Bit ANDed with condition

0 Less Than, using signed comparison

1 Greater Than, using signed comparison

2 Equal

3 Less Than, using unsigned comparison

4 Greater Than, using unsigned comparison

Table 249. Integer trap instruction set index

Mnemonic Instruction Reference

tw TO,rA,rB Trap Word Book E
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For instructions that use the rotate32 operation, the mask start and stop positions are always 
in bits 32–63 of the mask.

The use of the mask is described in following sections.

The rotate word and shift word instructions with Rc = 1 set the first three bits of CR field 0 as 
described in Book E. Rotate and shift instructions do not change the OV and SO bits. Rotate 
and shift instructions, except algebraic right shifts, do not change the CA bit.

The instructions in Table 250 rotate the contents of a register. Depending on the instruction 
type, the amount of the rotation is either specified as an immediate, or contained in a GPR.

         

The instructions in Table 251 rotate the contents of a register. Depending on the instruction 
type, the result of the rotation is either inserted into the target register under control of a 
mask (if a mask bit is 1, the associated bit of the rotated data is placed into the target 
register; if a mask bit is 0, the associated bit in the target register remains unchanged) or 
ANDed with a mask before being placed into the target register.

The rotate left instructions allow right-rotation of the contents of a register to be performed 
(in concept) by a left-rotation of 32-n, where n is the number of bits by which to rotate right. 
They allow right-rotation of the contents of bits 32–63 of a register to be performed (in 
concept) by a left-rotation of 32-n, where n is the number of bits by which to rotate right.

         

The integer shift instructions are listed in <Cross Refs>Table 252.

         

Table 250. Integer rotate instruction set index

Mnemonic Instruction Reference

e_rlw rA,rS,rB Rotate Left Word Page -951

e_rlwi rA,rS,SH Rotate Left Word Immediate Page -951

Table 251. Integer rotate with mask instruction set index

Mnemonic Instruction Reference

e_rlwimi rA,rS,SH,MB,ME Rotate Left Word Immediate then Mask Insert Page -952

e_rlwinm rA,rS,SH,MB,ME Rotate Left Word Immediate then AND with Mask Page -953

Table 252. Integer shift instruction set index 

Mnemonic Instruction Reference

slw rA,rS,rB
slw. rA,rS,rB
se_slw rX,rY

Shift Left Word Page -955

e_slwi rA,rS,SH

se_slwi rX,UI5
Shift Left Word Immediate Page -955

sraw rA,rS,rB
sraw. rA,rS,rB
se_sraw rX,rY

Shift Right Algebraic Word Page -956

srawi rA,rS,SH

srawi. rA,rS,SH
se_srawi rX,UI5

Shift Right Algebraic Word Immediate Page -956
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12.5 Storage control instructions
This section lists storage control instructions, which include the following:

● Chapter 12.5.1: Storage synchronization instructions on page 876”

● Chapter 12.5.2: Cache management instructions on page 876”

● Chapter 12.5.3: TLB management instructions on page 877”

12.5.1 Storage synchronization instructions

The memory synchronization instructions implemented by the VLE extension are identical to 
those defined in Book E. 

The storage synchronization instructions are listed in Table 253.

         

12.5.2 Cache management instructions

Cache management instructions implemented by the VLE extension are identical to those 
defined in Book E.

The cache management instructions are listed in Table 254.

         

srw rA,rS,rB
srw. rA,rS,rB
se_srw rX,rY

Shift Right Word Page -957

e_srwi rA,rS,SH

se_srwi rX,UI5
Shift Right Word Immediate Page -957

Table 252. Integer shift instruction set index  (continued)

Mnemonic Instruction Reference

Table 253. Storage synchronization instruction set index

Mnemonic Instruction Reference

mbar Memory Barrier Book E

msync Memory Synchronize Book E
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12.5.3 TLB management instructions

The TLB management instructions implemented by the VLE extension are identical to those 
defined in Book E and in the EIS. The TLB management instructions are listed in Table 255.

         

12.5.4 Instruction alignment and byte ordering

To be recognized by the instruction decoder, an instruction fetched from memory must be 
placed in the pipeline with its bytes in the proper order. Book E allows instructions to be 
placed into memory marked as either big- or little-endian. This is manageable because 
Book E instructions are always word-size aligned on word boundaries. VLE instructions can 
be either half word or word size, and are aligned on half-word boundaries. Because of this, 
only big-endian instruction memory is supported when executing from a page of VLE 
instructions. Attempts to execute VLE instructions from a page marked as little-endian 
generate an instruction storage interrupt byte-ordering exception.

12.6 Instruction listings
This section lists instructions either defined or supported by the VLE extension. 

Table 256 lists instructions by instruction name. 

         

Table 254. Cache management instruction set index

Mnemonic Instruction Reference

dcba rA,rB Data Cache Block Allocate Book E

dcbf rA,rB Data Cache Block Flush Book E

dcbi rA,rB Data Cache Block Invalidate Book E

dcbst rA,rB Data Cache Block Store Book E

dcbt CT,rA,rB Data Cache Block Touch Book E

dcbtls CT,rA,rB Data Cache Block Touch and Lock Set Book E

dcbtst CT,rA,rB Data Cache Block Touch for Store Book E

dcbz rA,rB Data Cache Block set to Zero Book E

icbi rA,rB Instruction Cache Block Invalidate Book E

icbt CT,rA,rB Instruction Cache Block Touch Book E

Table 255. TLB management instruction set index

Mnemonic Instruction Reference

tlbivax rA,rB TLB Invalidate Virtual Address Indexed Book E

tlbre TLB Read Entry Book E

tlbsx rA,rB TLB Search Indexed Book E

tlbsync TLB Synchronize Book E

tlbwe TLB Write Entry Book E
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Table 256. Instructions listed by name 

Instruction Mnemonic Reference

Add

add rD,rA,rB
add. rD,rA,rB
addo rD,rA,rB
addo. rD,rA,rB

Book E

Add Carrying

addc rD,rA,rB
addc. rD,rA,rB
addco rD,rA,rB
addco. rD,rA,rB 

Book E

Add Extended

adde rD,rA,rB
adde. rD,rA,rB
addeo rD,rA,rB
addeo. rD,rA,rB

Book E

AND with Complement
andc[.] rA,rS,rB
se_andc rX,rY

Book E

Page -901

AND
and[.] rA,rS,rB
se_and[.] rX,rY

Book E

Page -901

Compare
cmp crD,L,rA,rB
se_cmp rX,rY

Book E

Page -912

Compare Logical
cmpl crD,L,rA,rB
se_cmpl rX,rY

Book E

Page -918

Count Leading Zeros Word
cntlzw rA,rS
cntlzw. rA,rS

Book E

Data Cache Block Allocate dcba rA,rB Book E

Data Cache Block Flush dcbf rA,rB Book E

Data Cache Block Invalidate dcbi rA,rB Book E

Data Cache Block Store dcbst rA,rB Book E

Data Cache Block Touch dcbt CT,rA,rB Book E

Data Cache Block Touch for Store dcbtst CT,rA,rB Book E

Data Cache Block set to Zero dcbz rA,rB Book E

Divide Word

divw rD,rA,rB
divw. rD,rA,rB
divwo rD,rA,rB
divwo. rD,rA,rB

Book E

Divide Word Unsigned

divwu rD,rA,rB
divwu. rD,rA,rB
divwuo rD,rA,rB
divwuo. rD,rA,rB

Book E

Equivalent
eqv rA,rS,rB
eqv. rA,rS,rB

Book E
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Extend Sign Byte

extsb rA,rS
extsb. rA,rS
se_extsb rX

Book E

Book E

Page -926

Extend Sign Halfword

extsh rA,rS
extsh. rA,rS
se_extsh rX

Book E

Book E
Page -926

Add Immediate Shifted e_add2is rD,SI Page -897

Add Immediate

e_addi  rD,rA,SCI8

e_addi. rD,rA,SCI8
e_add16i rD,rA,SI
e_add2i. rD,SI
se_addi rX,OIMM

Page -897

Add Immediate Carrying
e_addic rD,rA,SCI8

e_addic. rD,rA,SCI8
Page -900

AND Immediate Shifted e_and2is. rD,UI Page -901

AND Immediate
e_andi[.] rA,rS,SCI8

se_andi rX,UI5
e_and2i. rD,UI

Page -901

Branch Conditional
Branch Conditional

Branch Conditional & Link

e_bc BO32,BI32,BD15
se_bc BO16,BI16,BD8

e_bcl BO32,BI32,BD15

Page -904

Branch

Branch & Link

e_b BD24

e_bl BD24
Page -903

Compare Halfword
e_cmph crD,rA,rB
se_cmph rX,rY

Page -914

Compare Halfword Immediate e_cmph16i rA,SI16 Page -914

Compare Halfword Logical
e_cmphl crD,rA,rB
se_cmphl rX,rY

Page -916

Compare Halfword Logical Immediate e_cmphl16i rA,UI16 Page -916

Compare Immediate

e_cmpi crD,rA,SCI8

e_cmp16i rA,SI16

se_cmpi rX,UI5

Page -912

Compare Logical Immediate

e_cmpli crD,rA,SCI8

e_cmpl16i rA,UI16
se_cmpli rX,UI5

Page -918

Condition Register AND e_crand crbD,crbA,crbB Page -920

Condition Register AND with Complement e_crandc crbD,crbA,crbB Page -920

Condition Register Equivalent e_creqv crbD,crbA,crbB Page -920

Condition Register NAND e_crnand crbD,crbA,crbB Page -921

Condition Register NOR e_crnor crbD,crbA,crbB Page -922

Table 256. Instructions listed by name  (continued)

Instruction Mnemonic Reference
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Condition Register OR e_cror crbD,crbA,crbB Page -923

Condition Register OR with Complement e_crorc crbD,crbA,crbB Page -924

Condition Register XOR e_crxor crbD,crbA,crbB Page -925

Load Byte and Zero

Load Byte and Zero with Update

Load Byte and Zero (16-bit form)

e_lbz rD,D(rA)
e_lbzu rD,D8(rA)
se_lbz rZ,SD4(rX)

Page -930

Load Halfword Algebraic

Load Halfword Algebraic with Update

e_lha rD,D(rA)
e_lhau rD,D8(rA)

Page -931

Load Halfword and Zero

Load Halfword and Zero with Update
Load Halfword and Zero (16-bit form)

e_lhz rD,D(rA)
e_lhzu rD,D8(rA)
se_lhz rZ,SD4(rX)

Page -932

Load Immediate
e_li rD,LI20

se_li rX,UI7
Page -933

Load Immediate Shifted e_lis rD,UI Page -933

Load Multiple Word e_lmw rD,D8(rA) Page -934

Load Word and Zero
Load Word and Zero with Update

Load Word and Zero (16-bit form)

e_lwz rD,D(rA)
e_lwzu rD,D8(rA)
se_lwz rZ,SD4(rX)

Page -935

Move Condition Register Field e_mcrf crD,crS Page -936

Multiply Low Immediate
e_mulli rD,rA,SCI8
e_mull2i rD,SI

Page -944

OR Immediate Shifted e_or2is rD,UI Page -948

OR Immediate
e_ori[.] rA,rS,SCI8
e_or2i rD,UI

Page -948

Rotate Left Word e_rlw rA,rS,rB Page -951

Rotate Left Word Immediate e_rlwi rA,rS,SH Page -951

Rotate Left Word Immediate then Mask 
Insert

e_rlwimi rA,rS,SH,MB,ME Page -952

Rotate Left Word Immediate then AND with 
Mask

e_rlwinm rA,rS,SH,MB,ME Page -953

Shift Left Word Immediate
e_slwi rA,rS,SH
se_slwi rX,UI5

Page -955

Shift Right Word Immediate
e_srwi rA,rS,SH
se_srwi rX,UI5

Page -957

Store Byte
Store Byte with Update

Store Byte (16-bit form)

e_stb rS,D(rA)
e_stbu rS,D8(rA)
se_stb rZ,SD4(rX)

Page -958

Table 256. Instructions listed by name  (continued)

Instruction Mnemonic Reference
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Store Halfword

Store Halfword with Update

Store Halfword (16-bit form)

e_sth rS,D(rA)
e_sthu rS,D8(rA)
se_sth rZ,SD4(rX)

Page -959

Store Multiple Word e_stmw rS,D8(rA) Page -960

Store Word

Store Word with Update

Store Word (16-bit form)

e_stw rS,D(rA)
e_stwu rS,D8(rA)
se_stw rZ,SD4(rX)

Page -961

Subtract From Immediate Carrying
e_subfic rD,rA,SCI8

e_subfic. rD,rA,SCI8
Page -964

XOR Immediate e_xori[.] rA,rS,SCI8 Page -966

Instruction Cache Block Invalidate icbi rA,rB Book E

Instruction Cache Block Touch icbt CT,rA,rB Book E

Integer Select isel rD,rA,rB,crb EIS

Load Byte and Zero Indexed
Load Byte and Zero with Update Indexed

lbzx rD,rA,rB
lbzux rD,rA,rB

Book E

Load Halfword Algebraic Indexed
Load Halfword Algebraic with Update 
Indexed

lhax rD,rA,rB
lhaux rD,rA,rB

Book E

Load Halfword Byte-Reverse Indexed lhbrx rD,rA,rB Book E

Load Halfword and Zero Indexed

Load Halfword and Zero with Update 
Indexed

lhzx rD,rA,rB
lhzux rD,rA,rB

Book E

Load Word And Reserve Indexed lwarx rD,rA,rB Book E

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB Book E

Load Word and Zero Indexed

Load Word and Zero with Update Indexed

lwzx rD,rA,rB
lwzux rD,rA,rB

Book E

Memory Barrier mbar Book E

Move to Condition Register from Integer 
Exception Register

mcrxr crD Book E

Move From condition register mfcr rD Book E

Move From Device Control Register mfdcr rD,DCRN Book E

Move From Machine State Register mfmsr rD Book E

Move From Special Purpose Register mfspr rD,SPRN Book E

Memory Synchronize msync Book E

Move to Condition Register Fields mtcrf FXM,rS Book E

Move To Device Control Register mtdcr DCRN,rS Book E

Move To Machine State Register mtmsr rS Book E

Move To Special Purpose Register mtspr SPRN,rS Book E

Table 256. Instructions listed by name  (continued)

Instruction Mnemonic Reference
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Multiply High Word
mulhw rD,rA,rB
mulhw. rD,rA,rB

Book E

Multiply High Word Unsigned
mulhwu rD,rA,rB
mulhwu. rD,rA,rB

Book E

Multiply Low Word

mullw rD,rA,rB
mullw. rD,rA,rB
mullwo rD,rA,rB
mullwo. rD,rA,rB

Book E

NAND
nand rA,rS,rB
nand. rA,rS,rB

Book E

Negate

neg rD,rA
se_neg rX
neg. rD,rA
nego rD,rA
nego. rD,rA

Book E
Page -946

Book E

Book E

Book E

NOR
nor rA,rS,rB
nor. rA,rS,rB

Book E

OR

or rA,rS,rB
or. rA,rS,rB
se_or rX,rY

Book E

Book E
Page -948

OR with Complement
orc rA,rS,rB
orc. rA,rS,rB

Book E

Add se_add rX,rY Page -897

Bit Clear se_bclri rX,UI5 Page -905

Branch to Count Register

Branch to Count Register & Link

se_bctr 
se_bctrl 

Page -906

Bit Generate se_bgeni rX,UI5 Page -907

Branch to Link Register
Branch to Link Register & Link

se_blr 
se_blrl 

Page -908

Bit Mask Generate se_bmski rX,UI5 Page -909

Bit Set se_bseti rX,UI5 Page -910

Branch

Branch & Link

se_b BD8

se_bl BD8
Page -903

Bit Test Immediate se_btsti rX,UI5 Page -911

Extend with Zeros Byte se_extzb rX Page -927

Extend with Zeros Halfword se_extzh rX Page -927

Instruction Synchronize se_isync Page -929

Move from Alternate Register se_mfar rX,arY Page -937

Move From Count Register se_mfctr rX Page -938
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Move From Link Register se_mflr rX Page -939

Move Register se_mr rX,rY Page -940

Move to Alternate Register se_mtar arX,rY Page -941

Move To Count Register se_mtctr rX Page -942

Move To Link Register se_mtlr rX Page -943

Multiply Low Word se_mullw rX,rY Page -945

NOT se_not rX Page -947

Subtract se_sub rX,rY Page -962

Subtract From se_subf  rX,rY Page -963

Subtract Immediate
se_subi rX,OIMM

se_subi. rX,OIMM
Page -965

Shift Left Word
slw rA,rS,rB
slw. rA,rS,rB
se_slw rX,rY

Book E
Book E

Page -955

Shift Right Algebraic Word

sraw rA,rS,rB
sraw. rA,rS,rB
se_sraw rX,rY

Book E

Book E

Page -956

Shift Right Algebraic Word Immediate

srawi rA,rS,SH

srawi. rA,rS,SH
se_srawi rX,UI5

Book E

Book E
Page -956

Shift Right Word
srw rA,rS,rB
srw. rA,rS,rB
se_srw rX,rY

Book E
Book E

Page -957

Store Byte Indexed

Store Byte with Update Indexed

stbx rS,rA,rB
stbux rS,rA,rB

Book E

Store Halfword Byte-Reverse Indexed sthbrx rS,rA,rB Book E

Store Halfword Indexed
Store Halfword with Update Indexed

sthx rS,rA,rB
sthux rS,rA,rB

Book E

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB Book E

Store Word Conditional Indexed stwcx. rS,rA,rB Book E

Store Word Indexed

Store Word with Update Indexed

stwx rS,rA,rB
stwux rS,rA,rB

Book E

Subtract From

subf rD,rA,rB
subf. rD,rA,rB
subfo rD,rA,rB
subfo. rD,rA,rB

Book E
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Subtract From Carrying

subfc rD,rA,rB
subfc. rD,rA,rB
subfco rD,rA,rB
subfco. rD,rA,rB

Book E

TLB Invalidate Virtual Address Indexed tlbivax rA,rB Book E

TLB Read Entry tlbre Book E

TLB Search Indexed tlbsx rA,rB Book E

TLB Synchronize tlbsync Book E

TLB Write Entry tlbwe Book E

Trap Word tw TO,rA,rB Book E

Write MSR External Enable wrtee rA Book E

Write MSR External Enable Immediate wrteei E Book E

XOR
xor rA,rS,rB
xor. rA,rS,rB

Book E

Table 257. Instructions listed by mnemonic

Mnemonic Instruction Reference

add rD,rA,rB
add. rD,rA,rB
addo rD,rA,rB
addo. rD,rA,rB

Add Book E

addc rD,rA,rB
addc. rD,rA,rB
addco rD,rA,rB
addco. rD,rA,rB 

Add Carrying Book E

adde rD,rA,rB
adde. rD,rA,rB
addeo rD,rA,rB
addeo. rD,rA,rB

Add Extended Book E

andc[.] rA,rS,rB AND with Complement Book E

and[.] rA,rS,rB AND Book E

cmp crD,L,rA,rB Compare Book E

cmpl crD,L,rA,rB Compare Logical Book E

cntlzw rA,rS
cntlzw. rA,rS

Count Leading Zeros Word Book E

dcba rA,rB Data Cache Block Allocate Book E

dcbf rA,rB Data Cache Block Flush Book E

Table 256. Instructions listed by name  (continued)
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dcbi rA,rB Data Cache Block Invalidate Book E

dcbst rA,rB Data Cache Block Store Book E

dcbt CT,rA,rB Data Cache Block Touch Book E

dcbtst CT,rA,rB Data Cache Block Touch for Store Book E

dcbz rA,rB Data Cache Block set to Zero Book E

divw rD,rA,rB
divw. rD,rA,rB
divwo rD,rA,rB
divwo. rD,rA,rB

Divide Word Book E

divwu rD,rA,rB
divwu. rD,rA,rB
divwuo rD,rA,rB
divwuo. rD,rA,rB

Divide Word Unsigned Book E

eqv rA,rS,rB
eqv. rA,rS,rB

Equivalent Book E

extsb rA,rS
extsb. rA,rS

Extend Sign Byte Book E

extsh rA,rS
extsh. rA,rS

Extend Sign Halfword Book E

e_add2is rD,SI Add Immediate Shifted Page -897

e_addi  rD,rA,SCI8

e_addi. rD,rA,SCI8

e_add16i rD,rA,SI
e_add2i. rD,SI

Add Immediate Page -897

e_addic rD,rA,SCI8

e_addic. rD,rA,SCI8
Add Immediate Carrying Page -900

e_and2is. rD,UI AND Immediate Shifted Page -901

e_andi[.] rA,rS,SCI8
e_and2i. rD,UI

AND Immediate Page -901

e_bc BO32,BI32,BD15
e_bcl BO32,BI32,BD15

Branch Conditional
Branch Conditional & Link

Page -904

e_b BD24
e_bl BD24

Branch
Branch & Link

Page -903

e_cmph crD,rA,rB Compare Halfword Page -914

e_cmph16i rA,SI16 Compare Halfword Immediate Page -914

e_cmphl crD,rA,rB Compare Halfword Logical Page -916

e_cmphl16i rA,UI16 Compare Halfword Logical Immediate Page -916

e_cmpi crD,rA,SCI8

e_cmp16i rA,SI16
Compare Immediate Page -912

Table 257. Instructions listed by mnemonic (continued)
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e_cmpli crD,rA,SCI8

e_cmpl16i rA,UI16
Compare Logical Immediate Page -918

e_crand crbD,crbA,crbB Condition Register AND Page -920

e_crandc crbD,crbA,crbB Condition Register AND with Complement Page -920

e_creqv crbD,crbA,crbB Condition Register Equivalent Page -920

e_crnand crbD,crbA,crbB Condition Register NAND Page -921

e_crnor crbD,crbA,crbB Condition Register NOR Page -922

e_cror crbD,crbA,crbB Condition Register OR Page -923

e_crorc crbD,crbA,crbB Condition Register OR with Complement Page -924

e_crxor crbD,crbA,crbB Condition Register XOR Page -925

e_lbz rD,D(rA)
e_lbzu rD,D8(rA)

Load Byte and Zero

Load Byte and Zero with Update
Page -930

e_lha rD,D(rA)
e_lhau rD,D8(rA)

Load Halfword Algebraic

Load Halfword Algebraic with Update
Page -931

e_lhz rD,D(rA)
e_lhzu rD,D8(rA)

Load Halfword and Zero

Load Halfword and Zero with Update
Page -932

e_li rD,LI20 Load Immediate Page -933

e_lis rD,UI Load Immediate Shifted Page -933

e_lmw rD,D8(rA) Load Multiple Word Page -935

e_lwz rD,D(rA)
e_lwzu rD,D8(rA)

Load Word and Zero

Load Word and Zero with Update
Page -936

e_mcrf crD,crS Move Condition Register Field Page -944

e_mulli rD,rA,SCI8
e_mull2i rD,SI

Multiply Low Immediate Page -948

e_or2is rD,UI OR Immediate Shifted Page -948

e_ori[.] rA,rS,SCI8
e_or2i rD,UI

OR Immediate Page -951

e_rlw rA,rS,rB Rotate Left Word Page -951

e_rlwi rA,rS,SH Rotate Left Word Immediate Page -952

e_rlwimi rA,rS,SH,MB,ME Rotate Left Word Immediate then Mask Insert Page -953

e_rlwinm rA,rS,SH,MB,ME
Rotate Left Word Immediate then AND with 
Mask

Page -955

e_slwi rA,rS,SH Shift Left Word Immediate Page -935

e_srwi rA,rS,SH Shift Right Word Immediate Book E

e_stb rS,D(rA)
e_stbu rS,D8(rA)

Store Byte

Store Byte with Update
Page -958

Table 257. Instructions listed by mnemonic (continued)
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e_sth rS,D(rA)
e_sthu rS,D8(rA)

Store Halfword

Store Halfword with Update
Page -959

e_stmw rS,D8(rA) Store Multiple Word Page -960

e_stw rS,D(rA)
e_stwu rS,D8(rA)

Store Word
Store Word with Update

Page -961

e_subfic rD,rA,SCI8
e_subfic. rD,rA,SCI8

Subtract From Immediate Carrying Page -964

e_xori[.] rA,rS,SCI8 XOR Immediate Page -966

icbi rA,rB Instruction Cache Block Invalidate Book E

icbt CT,rA,rB Instruction Cache Block Touch Book E

isel rD,rA,rB,crb Integer Select EIS

lbzx rD,rA,rB
lbzux rD,rA,rB

Load Byte and Zero Indexed

Load Byte and Zero with Update Indexed
Book E

lhax rD,rA,rB
lhaux rD,rA,rB

Load Halfword Algebraic Indexed

Load Halfword Algebraic with Update Indexed
Book E

lhbrx rD,rA,rB Load Halfword Byte-Reverse Indexed Book E

lhzx rD,rA,rB
lhzux rD,rA,rB

Load Halfword and Zero Indexed
Load Halfword and Zero with Update Indexed

Book E

lwarx rD,rA,rB Load Word And Reserve Indexed Book E

lwbrx rD,rA,rB Load Word Byte-Reverse Indexed Book E

lwzx rD,rA,rB
lwzux rD,rA,rB

Load Word and Zero Indexed

Load Word and Zero with Update Indexed
Book E

mbar Memory Barrier Book E

mcrxr crD
Move to Condition Register from Integer 
Exception Register

Book E

mfcr rD Move From condition register Book E

mfdcr rD,DCRN Move From Device Control Register Book E

mfmsr rD Move From Machine State Register Book E

mfspr rD,SPRN Move From Special Purpose Register Book E

msync Memory Synchronize Book E

mtcrf FXM,rS Move to Condition Register Fields Book E

mtdcr DCRN,rS Move To Device Control Register Book E

mtmsr rS Move To Machine State Register Book E

mtspr SPRN,rS Move To Special Purpose Register Book E

mulhw rD,rA,rB
mulhw. rD,rA,rB

Multiply High Word Book E

Table 257. Instructions listed by mnemonic (continued)
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mulhwu rD,rA,rB
mulhwu. rD,rA,rB

Multiply High Word Unsigned Book E

mullw rD,rA,rB
mullw. rD,rA,rB
mullwo rD,rA,rB
mullwo. rD,rA,rB

Multiply Low Word Book E

nand rA,rS,rB
nand. rA,rS,rB

NAND Book E

neg rD,rA
neg. rD,rA
nego rD,rA
nego. rD,rA

Negate Book E

nor rA,rS,rB
nor. rA,rS,rB

NOR Book E

or rA,rS,rB
or. rA,rS,rB

OR Book E

orc rA,rS,rB
orc. rA,rS,rB

OR with Complement Book E

se_add rX,rY Add Page -897

se_addi rX,OIMM Add Immediate Page -897

se_andc rX,rY AND with Complement Page -901

se_andi rX,UI5 AND Immediate Page -901

se_and[.] rX,rY AND Page -901

se_bc BO16,BI16,BD8 Branch Conditional Page -904

se_bclri rX,UI5 Bit Clear Page -905

se_bctr 
se_bctrl 

Branch to Count Register

Branch to Count Register & Link
Page -905

se_bgeni rX,UI5 Bit Generate Page -906

se_blr 
se_blrl 

Branch to Link Register
Branch to Link Register & Link

Page -907

se_bmski rX,UI5 Bit Mask Generate Page -908

se_bseti rX,UI5 Bit Set Page -909

se_b BD8

se_bl BD8

Branch

Branch & Link
Page -910

se_btsti rX,UI5 Bit Test Immediate Page -903

se_cmp rX,rY Compare Page -912

se_cmph rX,rY Compare Halfword Page -914

se_cmphl rX,rY Compare Halfword Logical Page -916

Table 257. Instructions listed by mnemonic (continued)
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se_cmpi rX,UI5 Compare Immediate Page -912

se_cmpl rX,rY Compare Logical Page -918

se_cmpli rX,UI5 Compare Logical Immediate Page -918

se_extsb rX Extend Sign Byte Page -926

se_extsh rX Extend Sign Halfword Page -926

se_extzb rX Extend with Zeros Byte Page -927

se_extzh rX Extend with Zeros Halfword Page -927

se_isync Instruction Synchronize Page -929

se_lbz rZ,SD4(rX) Load Byte and Zero (16-bit form) Page -930

se_lhz rZ,SD4(rX) Load Halfword and Zero (16-bit form) Page -932

se_li rX,UI7 Load Immediate Page -933

se_lwz rZ,SD4(rX) Load Word and Zero (16-bit form) Page -935

se_mfar rX,arY Move from Alternate Register Page -937

se_mfctr rX Move From Count Register Page -938

se_mflr rX Move From Link Register Page -939

se_mr rX,rY Move Register Page -940

se_mtar arX,rY Move to Alternate Register Page -941

se_mtctr rX Move To Count Register Page -942

se_mtlr rX Move To Link Register Page -943

se_mullw rX,rY Multiply Low Word Page -945

se_neg rX Negate Page -946

se_not rX NOT Page -947

se_or rX,rY OR Page -948

se_slw rX,rY Shift Left Word Page -955

se_slwi rX,UI5 Shift Left Word Immediate Page -955

se_sraw rX,rY Shift Right Algebraic Word Page -956

se_srawi rX,UI5 Shift Right Algebraic Word Immediate Page -956

se_srw rX,rY Shift Right Word Page -957

se_srwi rX,UI5 Shift Right Word Immediate Page -957

se_stb rZ,SD4(rX) Store Byte (16-bit form) Page -958

se_sth rZ,SD4(rX) Store Halfword (16-bit form) Page -959

se_stw rZ,SD4(rX) Store Word (16-bit form) Page -961

se_sub rX,rY Subtract Page -962

se_subf  rX,rY Subtract From Page -963
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se_subi rX,OIMM

se_subi. rX,OIMM
Subtract Immediate Page -965

slw rA,rS,rB
slw. rA,rS,rB

Shift Left Word Book E

sraw rA,rS,rB
sraw. rA,rS,rB

Shift Right Algebraic Word Book E

srawi rA,rS,SH

srawi. rA,rS,SH
Shift Right Algebraic Word Immediate Book E

srw rA,rS,rB
srw. rA,rS,rB

Shift Right Word Book E

stbx rS,rA,rB
stbux rS,rA,rB

Store Byte Indexed

Store Byte with Update Indexed
Book E

sthbrx rS,rA,rB Store Halfword Byte-Reverse Indexed Book E

sthx rS,rA,rB
sthux rS,rA,rB

Store Halfword Indexed

Store Halfword with Update Indexed
Book E

stwbrx rS,rA,rB Store Word Byte-Reverse Indexed Book E

stwcx. rS,rA,rB Store Word Conditional Indexed Book E

stwx rS,rA,rB
stwux rS,rA,rB

Store Word Indexed
Store Word with Update Indexed

Book E

subf rD,rA,rB
subf. rD,rA,rB
subfo rD,rA,rB
subfo. rD,rA,rB

Subtract From Book E

subfc rD,rA,rB
subfc. rD,rA,rB
subfco rD,rA,rB
subfco. rD,rA,rB

Subtract From Carrying Book E

tlbivax rA,rB TLB Invalidate Virtual Address Indexed Book E

tlbre TLB Read Entry Book E

tlbsx rA,rB TLB Search Indexed Book E

tlbsync TLB Synchronize Book E

tlbwe TLB Write Entry Book E

tw TO,rA,rB Trap Word Book E

wrtee rA Write MSR External Enable Book E

wrteei E Write MSR External Enable Immediate Book E

xor rA,rS,rB
xor. rA,rS,rB

XOR Book E

Table 257. Instructions listed by mnemonic (continued)
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13 VLE instruction set

The VLE extension ISA is defined in the instruction pages in this chapter. Because of the 
various immediate field and displacement field calculations used in the VLE extension, a 
description of the less obvious ones precedes the actual instruction pages, and the 
instruction descriptions generally assume the appropriate calculation has been performed.

Note: The instructions in this section are listed in order of the root instruction. For example, 
e_cmpi and se_cmpi are both listed under cmpi. 

13.1 Book E– and EIS-defined instructions
Table 258 lists instructions that are used by the VLE extension that are defined by Book E or 
the EIS. Full descriptions of those instructions can be found in the EREF. 

Descriptions in this chapter indicate any limitations on the behavior of VLE instructions as 
compared to their Book E and EIS equivalents. 

         

Table 258. Book E– and EIS-defined instructions listed by mnemonic 

Mnemonic Instruction Defining architecture

add rD,rA,rB
add. rD,rA,rB
addo rD,rA,rB
addo. rD,rA,rB

Add Book E

addc rD,rA,rB
addc. rD,rA,rB
addco rD,rA,rB
addco. rD,rA,rB 

Add Carrying Book E

adde rD,rA,rB
adde. rD,rA,rB
addeo rD,rA,rB
addeo. rD,rA,rB

Add Extended Book E

andc[.] rA,rS,rB AND with Complement Book E

and[.] rA,rS,rB AND Book E

cmp crD,L,rA,rB Compare Book E

cmpl crD,L,rA,rB Compare Logical Book E

cntlzw rA,rS
cntlzw. rA,rS

Count Leading Zeros Word Book E

dcba rA,rB Data Cache Block Allocate Book E

dcbf rA,rB Data Cache Block Flush Book E

dcbi rA,rB Data Cache Block Invalidate Book E

dcbst rA,rB Data Cache Block Store Book E

dcbt CT,rA,rB Data Cache Block Touch Book E
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dcbtls CT,rA,rB Data Cache Block Touch and Lock Set Book E

dcbtst CT,rA,rB Data Cache Block Touch for Store Book E

dcbz rA,rB Data Cache Block set to Zero Book E

divw rD,rA,rB
divw. rD,rA,rB
divwo rD,rA,rB
divwo. rD,rA,rB

Divide Word Book E

divwu rD,rA,rB
divwu. rD,rA,rB
divwuo rD,rA,rB
divwuo. rD,rA,rB

Divide Word Unsigned Book E

eqv rA,rS,rB
eqv. rA,rS,rB

Equivalent Book E

extsb rA,rS
extsb. rA,rS

Extend Sign Byte Book E

extsh rA,rS
extsh. rA,rS

Extend Sign Halfword Book E

e_srwi rA,rS,SH Shift Right Word Immediate Book E

icbi rA,rB Instruction Cache Block Invalidate Book E

icbt CT,rA,rB Instruction Cache Block Touch Book E

lbzx rD,rA,rB
lbzux rD,rA,rB

Load Byte and Zero Indexed

Load Byte and Zero with Update Indexed
Book E

lhax rD,rA,rB
lhaux rD,rA,rB

Load Halfword Algebraic Indexed

Load Halfword Algebraic with Update Indexed
Book E

lhbrx rD,rA,rB Load Halfword Byte-Reverse Indexed Book E

lhzx rD,rA,rB
lhzux rD,rA,rB

Load Halfword and Zero Indexed
Load Halfword and Zero with Update Indexed

Book E

lwarx rD,rA,rB Load Word And Reserve Indexed Book E

lwbrx rD,rA,rB Load Word Byte-Reverse Indexed Book E

lwzx rD,rA,rB
lwzux rD,rA,rB

Load Word and Zero Indexed

Load Word and Zero with Update Indexed
Book E

mbar Memory Barrier Book E

mcrxr crD
Move to Condition Register from Integer 
Exception Register

Book E

mfcr rD Move From condition register Book E

mfdcr rD,DCRN Move From Device Control Register Book E

mfmsr rD Move From Machine State Register Book E

mfspr rD,SPRN Move From Special Purpose Register Book E

Table 258. Book E– and EIS-defined instructions listed by mnemonic  (continued)
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msync Memory Synchronize Book E

mtcrf FXM,rS Move to Condition Register Fields Book E

mtdcr DCRN,rS Move To Device Control Register Book E

mtmsr rS Move To Machine State Register Book E

mtspr SPRN,rS Move To Special Purpose Register Book E

mulhw rD,rA,rB
mulhw. rD,rA,rB

Multiply High Word Book E

mulhwu rD,rA,rB
mulhwu. rD,rA,rB

Multiply High Word Unsigned Book E

mullw rD,rA,rB
mullw. rD,rA,rB
mullwo rD,rA,rB
mullwo. rD,rA,rB

Multiply Low Word Book E

nand rA,rS,rB
nand. rA,rS,rB

NAND Book E

neg rD,rA
neg. rD,rA
nego rD,rA
nego. rD,rA

Negate Book E

nor rA,rS,rB
nor. rA,rS,rB

NOR Book E

or rA,rS,rB
or. rA,rS,rB

OR Book E

orc rA,rS,rB
orc. rA,rS,rB

OR with Complement Book E

slw rA,rS,rB
slw. rA,rS,rB

Shift Left Word Book E

sraw rA,rS,rB
sraw. rA,rS,rB

Shift Right Algebraic Word Book E

srawi rA,rS,SH
srawi. rA,rS,SH

Shift Right Algebraic Word Immediate Book E

srw rA,rS,rB
srw. rA,rS,rB

Shift Right Word Book E

stbx rS,rA,rB
stbux rS,rA,rB

Store Byte Indexed
Store Byte with Update Indexed

Book E

sthbrx rS,rA,rB Store Halfword Byte-Reverse Indexed Book E

sthx rS,rA,rB
sthux rS,rA,rB

Store Halfword Indexed

Store Halfword with Update Indexed
Book E

Table 258. Book E– and EIS-defined instructions listed by mnemonic  (continued)

Mnemonic Instruction Defining architecture



RM0004 VLE instruction set

 894/1176

stwbrx rS,rA,rB Store Word Byte-Reverse Indexed Book E

stwcx. rS,rA,rB Store Word Conditional Indexed Book E

stwx rS,rA,rB
stwux rS,rA,rB

Store Word Indexed

Store Word with Update Indexed
Book E

subf rD,rA,rB
subf. rD,rA,rB
subfo rD,rA,rB
subfo. rD,rA,rB

Subtract From Book E

subfc rD,rA,rB
subfc. rD,rA,rB
subfco rD,rA,rB
subfco. rD,rA,rB

Subtract From Carrying Book E

tlbivax rA,rB TLB Invalidate Virtual Address Indexed Book E

tlbre TLB Read Entry Book E

tlbsx rA,rB TLB Search Indexed Book E

tlbsync TLB Synchronize Book E

tlbwe TLB Write Entry Book E

tw TO,rA,rB Trap Word Book E

wrtee rA Write MSR External Enable Book E

wrteei E Write MSR External Enable Immediate Book E

xor rA,rS,rB
xor. rA,rS,rB

XOR Book E

isel rD,rA,rB,crb Integer Select EIS

Table 258. Book E– and EIS-defined instructions listed by mnemonic  (continued)

Mnemonic Instruction Defining architecture
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13.2 Immediate field and displacement field encodings
Table 259 shows encodings for immediate and displacement fields. 

         

Table 259. Immediate field and displacement field encodings

Encoding Description

BD15
Format used by 32-bit branch conditional class instructions. The BD15 field is an 15-bit signed 
displacement which is sign-extended and shifted left one bit (concatenated with 0b0) and then added 
to the current instruction address to form the branch target address.

BD24
Format used by 32-bit branch class instructions. The BD24 field is an 24-bit signed displacement 
which is sign-extended and shifted left one bit (concatenated with 0b0) and then added to the current 
instruction address to form the branch target address.

BD8
Format used by 16-bit branch and branch conditional class instructions. The BD8 field is an 8-bit 
signed displacement which is sign-extended and shifted left one bit (concatenated with 0b0) and then 
added to the current instruction address to form the branch target address.

D
Format used by some 32-bit load and store class instructions. The D field is a 16-bit signed 
displacement which is sign-extended to 32 bits, and then added to the base register to form a 32-bit 
EA. 

D8
Format used by some 32-bit load and store class instructions. The D8 field is a 8-bit signed 
displacement which is sign-extended to 32 bits, and then added to the base register to form a 32-bit 
EA. 

F, SCL,UI8 
(SCI8 
format)

Format used by some 32-bit arithmetic, compare, and logical instructions. The UI8 field is an 8-bit 
immediate value shifted left 0, 1, 2, or 3 byte positions according to the value of the SCL field. The 
remaining bits in the 32-bit word are filled with the value of the F field, and the resulting 32-bit value is 
used as one operand of the instruction. More formally,

if SCL=0 then imm_value ← 24F || UI8 else
if SCL=1 then imm_value ← 16F || UI8 || 8F else

if SCL=2 then imm_value ← 8F || UI8 || 16F 

else          imm_value ← UI8 || 24F

LI20
Format used by 32-bit e_li instruction. The LI20 field is a 20-bit signed displacement which is sign-
extended to 32 bits for the e_li instruction. 

OIM5

Format used by the 16-bit se_addi, se_cmpli, and se_subi[.] instructions. The OIM5 instruction field 
is a 5-bit value in the range 0–31 and is used to represent immediate values in the range 1–32, thus 
the binary encoding of 0b00000 represents an immediate value of 1, 0b00001 represents an 
immediate value of 2, and so on. In the instruction descriptions, OIMM represents the immediate 
value, not the OIM5 instruction field binary encoding. 

SCI8 
format

Refer to F, SCL,UI8 (SCI8 format)

SD4

Format used by 16-bit load and store class instructions. The SD4 field is a 4-bit unsigned immediate 
value zero-extended to 32 bits, shifted left according to the size of the operation, and then added to 
the base register to form a 32-bit EA. For byte operations, no shift is performed. For half-word 
operations, the immediate is shifted left one bit (concatenated with 0b0). For word operations, the 
immediate is shifted left two bits (concatenated with 0b00). For future double-word operations, the 
immediate is shifted left three bits (concatenated with 0b000).

SI (D 
format,
I16A 
format)

Format used by certain 32-bit arithmetic type instructions. The SI field is a 16-bit signed immediate 
value sign-extended to 32 bits and used as one operand of the instruction. The instruction encoding 
differs between the D and I16A instruction formats
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UI (I16A, 
I16L 
formats)

Format used by certain 32-bit logical and arithmetic type instructions. The UI field is a 16-bit unsigned 
immediate value zero-extended to 32 bits or padded with 16 zeros and used as one operand of the 
instruction. The instruction encoding differs between the I16A and I16L instruction formats.

UI5

This format is used by some 16-bit Reg+Imm class instructions. The UI5 field is a 5-bit unsigned 
immediate value zero-extended to 32 bits and used as the second operand of the instruction. For 
other 16-bit Reg+Imm class instructions, the UI5 field is a 5-bit unsigned immediate value used to 
select a register bit in the range 0–31.

UI7
This format is used by the 16-bit se_li instructions. The UI7 field is a 7-bit unsigned immediate value 
zero-extended to 32 bits and used as the operand of the instruction.

Table 259. Immediate field and displacement field encodings (continued)

Encoding Description
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_addx _addx

Add

se_add rX,rY

sum32:63   ←  GPR(RX) + GPR(RY)

GPR(RX) ← sum32:63

The sum of the contents of GPR(rX) and the contents of GPR(rY) is placed into GPR(rX).

Special registers altered: None

0 5 6 10 11 15

0 0 0 0 0 1 0   0 RY RX

VLE User
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_addix _addix

Add [2 operand] Immediate [Shifted] [and Record]

e_add16i rD,rA,SI

a ← GPR(RA)

b ← EXTS(SI)

GPR(RD) ← a + b

The sum of the contents of GPR(rA) and the sign-extended value of field SI is placed into 
GPR(rD).

Special Registers Altered: None

e_add2i. rA,SI

SI ← SI0:4  || SI5:15 

sum32:63   ←       GPR(RA) + EXTS(SI)

   LT   ← sum32:63 < 0

   GT   ← sum32:63 > 0

   EQ   ← sum32:63 = 0

   CR0  ← LT || GT || EQ || SO

GPR(RA) ← sum32:63

The sum of the contents of GPR(rA) and the sign-extended value of SI is placed into 
GPR(rA).

Special Registers Altered: CR0

e_add2is rA,SI

SI ← SI0:4 || SI5:15 
sum32:63   ←   GPR(RD) + (SI || 160)

GPR(RA) ← sum32:63

The sum of the contents of GPR(rA) and the value of SI concatenated with 16 zeros is 
placed into GPR(rA).

Special Registers Altered: None 

e_addi rD,rA,SCI8 (Rc = 0)
e_addi. rD,rA,SCI8 (Rc = 1)

VLE User

0 5 6 10 11 15 16 31

0 0 0 1 1 1 RD RA SI

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 SI0:4 RA 1   0 0 0 1 SI5:15

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 SI0:4 RA 1   0 0 1 0 SI5:15

0 5 6 10 11 15 16 20 21 22 23 24 31

0 0 0 1 1 0 RD RA 1 0 0 0 Rc F SCL UI8
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imm ← SCI8(F,SCL,UI8)
sum32:63   ←       GPR(RA) + imm

if Rc=1 then do

   LT   ← sum32:63 < 0

   GT   ← sum32:63 > 0

   EQ   ← sum32:63 = 0

   CR0  ← LT || GT || EQ || SO

GPR(RD) ← sum32:63

The sum of the contents of GPR(rA) and the value of SCI8 is placed into GPR(rD).

Special Registers Altered: CR0 (if Rc = 1)

se_addi rX,OIMM 

GPR(RX) ← GPR(RX) + (270 || OFFSET(OIM5))

The sum of the contents of GPR(rX) and the zero-extended offset value of OIM5 (a final 
value in the range 1–32), is placed into GPR(rX). 

Special Registers Altered: None

0 5 6 7 11 12 15

0 0 1 0 0 0 0 OIM5(1)

1. OIMM = OIM5 +1
RX



RM0004 VLE instruction set

 900/1176

_addicx _addicx

Add Immediate Carrying [and Record]

e_addic rD,rA,SCI8 (Rc = 0)
e_addic. rD,rA,SCI8 (Rc = 1)

imm ← SCI8(F,SCL,UI8)
carry32:63 ← Carry(GPR(RA) + imm)

sum32:63   ←       GPR(RA) + imm

if Rc=1 then do

   LT   ← sum32:63 < 0

   GT   ← sum32:63 > 0

   EQ   ← sum32:63 = 0

   CR0  ← LT || GT || EQ || SO

GPR(RD) ← sum32:63
CA      ← carry32

The sum of the contents of GPR(rA) and the value of SCI8 is placed into GPR(rD).

Special Registers Altered: CA, CR0 (if Rc=1)

VLE User

0 5 6 10 11 15 16 19 20 21 22 23 24 31

0 0 0 1 1 0 RD RA 1 0 0 1 Rc F SCL UI8
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_andx _andx

AND [2 operand] [Immediate | with Complement] [and Record]

se_and rX,rY (Rc = 0)
se_and. rX,rY (Rc = 1)

e_and2i. rD,UI

e_and2is. rD,UI

e_andi rA,rS,SCI8 (Rc = 0)
e_andi. rA,rS,SCI8 (Rc = 1)

se_andi rX,UI5

se_andc rX,rY

if ‘e_andi[.]’ then b ← SCI8(F,SCL,UI8)
if ‘se_andi’ then b ← UI5
if ‘se_and[.]’ then b ← GPR(RY)
if ‘se_andc’    then b ← ¬GPR(RY)
if ‘e_and2i.’ then b ← 160 || UI0:4 || UI5:15
if ‘e_and2is.’ then b ← UI0:4 || UI5:15 || 160
result32:63 ← GPR(RS or RD or RX) & b
if Rc=1 then do

LT  ← result32:63 < 0
GT  ← result32:63 > 0
EQ  ← result32:63 = 0
CR0 ← LT || GT || EQ || SO

if ‘se_and[ci]’ then GPR(RX) ← result32:63 else GPR(RA or RD) ← result32:63

For e_andi[.], the contents of GPR(rS) are ANDed with the value of SCI8.

For e_and2i., the contents of GPR(rD) are ANDed with 160 || UI.

For e_and2is., the contents of GPR(rD) are ANDed with UI || 160.

For se_andi, the contents of GPR(rX) are ANDed with the value of UI5.

For se_and[.], the contents of GPR(rX) are ANDed with the contents of GPR(rY).

0 5 6 7 8 11 12 15

0 1 0 0 0 1 1 Rc RY RX

VLE User

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 RD UI0:4 1 1 0 0 1 UI5:15

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 RD UI0:4 1 1 1 0 1 UI5:15

0 5 6 10 11 15 16 20 21 22 23 24 31

0 0 0 1 1 0 RS RA 1 1 0 0 Rc F SCL UI8

0 5 6 7 11 12 15

0 0 1 0 1 1 1 UI5 RX

0 5 6 7 8 11 12 15

0 1 0 0 0 1 0 1 RY RX
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For se_andc, the contents of GPR(rX) are ANDed with the one’s complement of the 
contents of GPR(rY).

The result is placed into GPR(rA) or GPR(rX) (se_and[ic][.])

Special Registers Altered: CR0 (if Rc = 1)
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_bx _bx

Branch [and Link]

e_b BD24 (LK = 0)
e_bl BD24 (LK = 1)

a ← CIA

NIA ← (a + EXTS(BD24||0b0))32:63

if LK=1 then LR ← CIA + 4

Let the BTEA be calculated as follows:

● For e_b[l], let BTEA be the sum of the CIA and the sign-extended value of the BD24 
instruction field concatenated with 0b0.

The BTEA is the address of the next instruction to be executed.

If LK = 1, the sum CIA+4 is placed into the LR.

Special Registers Altered: LR (if LK = 1)

se_b BD8 (LK = 0)
se_bl BD8 (LK = 1)

a ← CIA

NIA ← (a + EXTS(BD8||0b0))32:63

if LK=1 then LR ← CIA + 2

Let the BTEA be calculated as follows:

● For se_b[l], let BTEA be the sum of the CIA and the sign-extended value of the BD8 
instruction field concatenated with 0b0.

The BTEA is the address of the next instruction to be executed.

If LK = 1, the sum CIA+2 is placed into the LR.

Special Registers Altered: LR (if LK = 1)

VLE User

0 5 6 7 30 31

0 1 1 1 1 0 0 BD24 LK

0 5 6 7 8 15

1 1 1 0 1 0 0 LK BD8
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_bcx _bcx

Branch Conditional [and Link]

e_bc BO32,BI32,BD15 (LK = 0)
e_bcl BO32,BI32,BD15 (LK = 1)

if BO320 then CTR32:63 ← CTR32:63 – 1

ctr_ok  ← ¬BO320 | ((CTR32:63 ≠ 0) ⊕ BO321)

cond_ok ← BO320 | (CRBI32+32 ≡ BO321)

if ctr_ok & cond_ok then

               NIA ← (CIA + EXTS(BD15 || 0b0))32:63

else           NIA ← CIA + 4

if LK=1 then LR ← CIA + 4

Let the BTEA be calculated as follows:

● For e_bc[l], let BTEA be the sum of the CIA and the sign-extended value of the BD15 
instruction field concatenated with 0b0.

BO32 specifies any conditions that must be met for the branch to be taken, as defined in 
Chapter 12.2.2: Branch instructions on page 864.” The sum BI32+32 specifies the CR bit. 
Only CR[32–47] may be specified.

If the branch conditions are met, the BTEA is the address of the next instruction to be 
executed.

If LK = 1, the sum CIA + 4 is placed into the LR.

Special Registers Altered: CTR (if BO320 = 1) 
LR (if LK = 1)

se_bc BO16,BI16,BD8

cond_ok ← (CRBI16+32 ≡ BO16)

if cond_ok then

               NIA ← (CIA + EXTS(BD8 || 0b0))32:63

else           NIA ← CIA + 2

Let the BTEA be calculated as follows:

● For se_bc, BTEA is the sum of the CIA and the sign-extended value of the BD8 
instruction field concatenated with 0b0.

BO16 specifies any conditions that must be met for the branch to be taken, as defined in 
Chapter 12.2.2: Branch instructions on page 864.” The sum BI16+32 specifies CR bit; only 
CR[32–35] may be specified. If the branch conditions are met, the BTEA is the address of 
the next instruction to be executed.

Special Registers Altered: None

VLE User

0 5 6 9 10 11 12 15 16 30 31

0 1 1 1 1 0 1   0   0   0 BO32 BI32 BD15 LK

0 4 5 6 7 8 15

1 1 1 0 0 BO16 BI16 BD8
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_bclri _bclri

Bit Clear Immediate

se_bclri rX,UI5

a ← UI5
b ← a1 || 0 ||  31-a1

result32:63 ← GPR(RX) & b

GPR(RX) ← result32:63

For se_bclri, the bit of GPR(rX) specified by the value of UI5 is cleared and all other bits in 
GPR(rX) remain unaffected.

Special Registers Altered: None

0 5 6 7 11 12 15

0 1 1 0 0 0 0 UI5 RX

VLE User
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_bctrx _bctrx

Branch to Count Register [and Link]

se_bctr (LK = 0)
se_bctrl (LK = 1)

NIA ← CTR32:62 || 0b0

if LK=1 then LR ← CIA + 2

Let the BTEA be calculated as follows:

● For se_bctr[l], let BTEA be bits 32–62 of the contents of the CTR concatenated with 
0b0.

The BTEA is the address of the next instruction to be executed.

If LK = 1, the sum CIA + 2 is placed into the LR.

Special Registers Altered: LR (if LK = 1)

0 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 LK

VLE User
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_bgeni _bgeni

Bit Generate Immediate

se_bgeni rX,UI5

a ← UI5

b ← a0 || 1 ||  31-a0

GPR(RX) ← b

For se_bgeni, a constant value consisting of a single ’1’ bit surrounded by ’0’s is generated 
and the value is placed into GPR(rX). The position of the ’1’ bit is specified by the UI5 field.

Special Registers Altered: None

0 5 6 7 11 12 15

0 1 1 0 0 0 1 UI5 RX

VLE User
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_blrx _blrx

Branch to Link Register [and Link]

se_blr (LK = 0)
se_blrl (LK = 1)

NIA ← LR32:62 || 0b0

if LK=1 then LR ← CIA + 2

Let the BTEA be calculated as follows:

● For se_blr[l], let BTEA be bits 32–62 of the contents of the LR concatenated with 0b0.

The BTEA is the address of the next instruction to be executed.

If LK = 1, the sum CIA + 2 is placed into the LR.

Special Registers Altered: LR (if LK = 1)

0 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 LK

VLE User
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_bmaski _bmaski

Bit Mask Generate Immediate

se_bmaski rX,UI5

a ← UI5

if a = 0 then b ← 321   else    b ← 32-a0 ||  a1

GPR(RX) ← b

For se_bmaski, a constant value consisting of a mask of low-order ’1’ bits that is zero-
extended to 32 bits is generated, and the value is placed into GPR(rX). The number of low-
order  ’1’ bits is specified by the UI5 field. If UI5 is 0b00000, a value of all ’1’s is generated

Special Registers Altered: None

0 5 6 7 11 12 15

0 0 1 0 1 1 0 UI5 RX

VLE User
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_bseti _bseti

Bit Set Immediate

se_bseti rX,UI5

a ← UI5
b ← a0 || 1 ||  31-a0

result32:63 ← GPR(RX) | b

GPR(RX) ← result32:63

For se_bseti, the bit of GPR(rX) specified by the value of UI5 is set, and all other bits in 
GPR(rX) remain unaffected.

Special Registers Altered: None

0 5 6 7 11 12 15

0 1 1 0 0 1 0 UI5 RX

VLE User
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_btsti _btsti

Bit Test Immediate

se_btsti rX,UI5

a ← UI5
b ← a0 || 1 ||  31-a0

c ← GPR(RX) & b

if c = 320 then d ← 0b001 else d ← 0b010

CR0:3 ← d || XERSO

For se_btsti, the bit of GPR(rX) specified by the value of UI5 is tested for equality to ’1’. The 
result of the test is recorded in the CR. EQ is set if the tested bit is clear, LT is cleared, and 
GT is set to the inverse value of EQ.

Special Registers Altered: CR[0–3]

0 5 6 7 11 12 15

0 1 1 0 0 1 1 UI5 RX

VLE User
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_cmp _cmp

Compare [Immediate]

e_cmp16i rA,SI

e_cmpi crD32,rA,SCI8

a ← GPR(RA)32:63

if ‘e_cmpi’  then b ← SCI8(F,SCL,UI8)

if ‘e_cmp16i’  then b ← EXTS(SI0:4 || SI5:15)

if a < b then c ← 0b100

if a > b then c ← 0b010

if a = b then c ← 0b001

if ‘e_cmpi’     then CR4×CRD32+32:4×CRD32+35 ← c || XERSO // only CR0-CR3

if ‘e_cmp16i’     then CR32:35 ← c || XERSO // only CR0

If e_cmpi, GPR(rA) contents are compared with the value of SCI8, treating operands as 
signed integers. 

If e_cmp16i, GPR(rA) contents are compared with the sign-extended value of the SI field, 
treating operands as signed integers. 

The result of the comparison is placed into CR field crD (crD32). For e_cmpi, only CR0–
CR3 may be specified. For e_cmp16i, only CR0 may be specified.

Special Registers Altered: CR field crD (crD32) (CR0 for e_cmp16i)

se_cmp rX,rY

se_cmpi rX,UI5

a ← GPR(RX)32:63

if ‘se_cmpi’  then b ← 270 || UI5

if ‘se_cmp’   then b ← GPR(RY)32:63

if a < b then c ← 0b100

if a > b then c ← 0b010

if a = b then c ← 0b001

CR0:3 ← c || XERSO

VLE User

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 SI0:4 RA 1   0 0 1 1 SI5:15

0 5 6 8 9 10 11 15 16 20 21 22 23 24 31

0 0 0 1 1 0 0  0 0 CRD32 RA 1 0 1 0 1 F SCL UI8

0 5 6 7 8 11 12 15

0 0 0 0 1 1 0 0 RY RX

0 5 6 7 11 12 15

0 0 1 0 1 0 1 UI5 RX
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If se_cmp, the contents of GPR(rX) are compared with the contents of GPR(rY), treating 
the operands as signed integers. The result of the comparison is placed into CR field 0.

If se_cmpi, the contents of GPR(rX) are compared with the value of the zero-extended UI5 
field, treating the operands as signed integers. The result of the comparison is placed into 
CR field 0.

Special Registers Altered: CR[0–3]
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_cmph _cmph

Compare Halfword [Immediate]

e_cmph crD,rA,rB

a ← EXTS(GPR(RA)48:63)

b ← EXTS(GPR(RB)48:63)

if a < b then c ← 0b100

if a > b then c ← 0b010

if a = b then c ← 0b001

CR4×CRD+32:4×CRD+35 ← c || XERSO

For e_cmph, the contents of the low-order 16 bits of GPR(rA) and GPR(rB) are compared, 
treating the operands as signed integers. The result of the comparison is placed into CR 
field CRD.

Special Registers Altered: CR field CRD

se_cmph rX,rY

a ← EXTS(GPR(RX)48:63)

b ← EXTS(GPR(RY)48:63)

if a < b then c ← 0b100

if a > b then c ← 0b010

if a = b then c ← 0b001

CR0:3 ← c || XERSO

For se_cmph, the contents of the low-order 16 bits of GPR(rX) and GPR(rY) are compared, 
treating the operands as signed integers. The result of the comparison is placed into CR 
field 0.

Special Registers Altered: CR[0–3]

e_cmph16i rA,SI

a ← EXTS(GPR(RA)48:63)

b ← EXTS(SI0:4 || SI5:15)

if a < b then c ← 0b100

if a > b then c ← 0b010

if a = b then c ← 0b001

CR32:35 ← c || XERSO // only CR0

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRD / RA RB 0 0 0 0 0 0 1 1 1 0 /

0 5 6 7 8 11 12 15

0 0 0 0 1 1 1 0 RY RX

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 SI0:4 RA 1   0 1 1 0 SI5:15
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The contents of the lower 16-bits of GPR(rA) are sign-extended and compared with the 
sign-extended value of the SI field, treating the operands as signed integers. 

The result of the comparison is placed into CR0.

Special Registers Altered: CR0
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_cmphl __cmphl   _

Compare Halfword Logical [Immediate]

e_cmphl crD,rA,rB

a ← EXTZ(GPR(RA)48:63)

b ← EXTZ(GPR(RB)48:63)

if a < b then c ← 0b100

if a > b then c ← 0b010

if a = b then c ← 0b001

CR4×CRD+32:4×CRD+35 ← c || XERSO

For e_cmphl, the contents of the low-order 16 bits of GPR(rA) and GPR(rB) are compared, 
treating the operands as unsigned integers. The result of the comparison is placed into CR 
field CRD.

Special Registers Altered: CR field CRD

se_cmphl rX,rY

a ← GPR(RX)48:63

b ← GPR(RY)48:63

if a < b then c ← 0b100

if a > b then c ← 0b010

if a = b then c ← 0b001

CR0:3 ← c || XERSO

For se_cmphl, the contents of the low-order 16 bits of GPR(rX) and GPR(rY) are 
compared, treating the operands as unsigned integers. The result of the comparison is 
placed into CR field 0.

Special Registers Altered: CR[0–3]

e_cmphl16i rA,UI

a ← 160 || GPR(RA)48:63)

b ← 160 || UI0:4 || UI5:15

if a < b then c ← 0b100

if a > b then c ← 0b010

if a = b then c ← 0b001

CR32:35 ← c || XERSO // only CR0

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRD / RA RB 0 0 0 0 1 0 1 1 1 0 /

0 5 6 7 8 11 12 15

0 0 0 0 1 1 1 1 RY RX

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 UI0:4 RA 1   0 1 1 1 UI5:15



VLE instruction set RM0004

917/1176  

The contents of the lower 16-bits of GPR(rA) are zero-extended and compared with the 
zero-extended value of the UI field, treating the operands as unsigned integers. 

The result of the comparison is placed into CR0.

Special Registers Altered: CR0



RM0004 VLE instruction set

 918/1176

_cmpl __cmpl  _

Compare Logical [Immediate]

e_cmpl16i rA,UI

e_cmpli crD32,rA,SCI8

a ← GPR(RA)32:63

if ‘e_cmpli’ then b ← SCI8(F,SCL,UI8)

if ‘e_cmpl16i’ then b ← 160 || UI0:4 || UI5:15

if a <u b then c ← 0b100

if a >u b then c ← 0b010

if a = b then c ← 0b001

if ‘e_cmpli’     then CR4×CRD32+32:4×CRD32+35 ← c || XERSO // only CR0-CR3

if ‘e_cmp16i’     then CR32:35 ← c || XERSO // only CR0

If e_cmpi, the contents of bits 32–63 of GPR(rA) are compared with the value of SCI8, 
treating the operands as unsigned integers. 

L must be 0 for 32-bit implementations

If e_cmpl16i, the contents of GPR(rA) are compared with the zero-extended value of the UI 
field, treating the operands as unsigned integers. 

The result of the comparison is placed into CR field CRD (CRD32). For e_cmpli, only CR0–
CR3 may be specified. For e_cmpl16i, only CR0 may be specified.

Special Registers Altered: CR field CRD (CRD32) (CR0 for e_cmpl16i)

se_cmpl rX,rY

se_cmpli rX,OIMM

a ← GPR(RX)32:63

if ‘se_cmpli’  then b ← 270 || OFFSET(OIM5)

if ‘se_cmpl’   then b ← GPR(RY)32:63

if a <u b then c ← 0b100

if a >u b then c ← 0b010

if a = b then c ← 0b001

VLE User

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 UI0:4 RA 1   0 1 0 1 UI5:15

0 5 6 8 9 10 11 15 16 20 21 22 23 24 31

0 0 0 1 1 0 0  0 1 CRD32 RA 1 0 1 0 1 F SCL UI8

0 5 6 7 8 11 12 15

0 0 0 0 1 1 0 1 RY RX

0 5 6 7 11 12 15

0 0 1 0 0 0 1 OIM5(1)

1. OIMM = OIM5 +1

RX



VLE instruction set RM0004

919/1176  

CR0:3 ← c || XERSO

If se_cmpl, the contents of GPR(rX) are compared with the contents of GPR(rY), treating 
the operands as unsigned integers. The result of the comparison is placed into CR field 0.

If se_cmpli, the contents of GPR(rX) are compared with the value of the zero-extended 
offset value of the OIM5 field (a final value in the range 1–32), treating the operands as 
unsigned integers. The result of the comparison is placed into CR field 0.

Special Registers Altered: CR[0–3]



RM0004 VLE instruction set

 920/1176

_crand __crand   _

Condition Register AND

e_crand crbD,crbA,crbB

CRBT+32 ← CRBA+32 & CRBB+32

The content of bit CRBA+32 of the CR is ANDed with the content of bit CRBB+32 of the CR, 
and the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

Condition Register AND with Complement

e_crandc crbD,crbA,crbB

CRBT+32 ← CRBA+32 & ¬CRBB+32

The content of bit CRBA+32 of the CR is ANDed with the one’s complement of the content 
of bit CRBB+32 of the CR, and the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

CR Equivalent

e_creqv crbD,crbA,crbB

CRBT+32 ← CRBA+32 ≡ CRBB+32

The content of bit CRBA+32 of the CR is XORed with the content of bit CRBB+32 of the CR, 
and the one’s complement of result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 1 0 0 0 0 0 0 0 1 /

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 0 1 0 0 0 0 0 0 1 /

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 1 0 0 1 0 0 0 0 1 /



VLE instruction set RM0004

921/1176  

_crnand __crnand   _

Condition Register NAND

e_crnand crbD,crbA,crbB

CRBT+32 ← ¬(CRBA+32 & CRBB+32)

The content of bit CRBA+32 of the CR is ANDed with the content of bit CRBB+32 of the CR, 
and the one’s complement of the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 0 1 1 1 0 0 0 0 1 /



RM0004 VLE instruction set

 922/1176

_crnor _ crnor

Condition Register NOR

e_crnor crbD,crbA,crbB

CRBT+32 ← ¬(CRBA+32 | CRBB+32)

The content of bit CRBA+32 of the CR is ORed with the content of bit CRBB+32 of the CR, 
and the one’s complement of the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 0 0 0 1 0 0 0 0 1 /



VLE instruction set RM0004

923/1176  

_cror _cror

Condition Register OR

e_cror crbD,crbA,crbB

CRBT+32 ← CRBA+32 | CRBB+32

The content of bit CRBA+32 of the CR is ORed with the content of bit CRBB+32 of the CR, 
and the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 1 1 1 0 0 0 0 0 1 /



RM0004 VLE instruction set

 924/1176

_cror __cror  _

Condition Register OR with Complement

e_crorc crbD,crbA,crbB

CRBT+32 ← CRBA+32 | ¬CRBB+32

The content of bit CRBA+32 of the CR is ORed with the one’s complement of the content of 
bit CRBB+32 of the CR, and the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 1 1 0 1 0 0 0 0 1 /



VLE instruction set RM0004

925/1176  

_crxor __crxor   _

Condition Register XOR

e_crxor crbD,crbA,crbB

CRcrbD+32 ← CRBA+32 ⊕ CRBB+32

The content of bit CRBA+32 of the CR is XORed with the content of bit CRBB+32 of the CR, 
and the result is placed into bit CRBD+32 of the CR.

Special Registers Altered: CR

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 CRBD CRBA CRBB 0 0 1 1 0 0 0 0 0 1 /



RM0004 VLE instruction set

 926/1176

_extsbx _extsbx

Extend Sign (Byte | Halfword)

se_extsb rX

se_extsh0. rX

if se_extsb then n ← 56

if se_extsh then n ← 48

if ‘extsw’    then n ← 32

if Rc=1 then do

LT  ← GPR(RS)n:63 < 0

GT  ← GPR(RS)n:63 > 0

EQ  ← GPR(RS)n:63 = 0

CR0 ← LT || GT || EQ || SO

s ← GPR(RS or RX)n

GPR(RA or RX) ← n-32s || GPR(RS or RX)n:63

For se_extsb, the contents of bits 56–63 of GPR(rX) are placed into bits 56–63 of GPR(rX). 
Bit 56 of the contents of GPR(rX) is copied into bits 32–55 of GPR(rX).

For se_extsh, the contents of bits 48–63 of GPR(rX) are placed into bits 48–63 of GPR(rX). 
Bit 48 of the contents of GPR(rX) is copied into bits 32–47 of GPR(rX).

Special Registers Altered: CR0 (if Rc=1)

0 5 6 11 12 15

0 0 0 0 0 0 0 0 1 1 0 1 RX

0 5 6 11 12 15

0 0 0 0 0 0 0 0 1 1 1 1 RX

VLE User



VLE instruction set RM0004

927/1176  

_extzx extzx

Extend Zero (Byte | Halfword)

se_extzb rX

se_extzh rX

if ‘se_extzb’  then n ← 56

if ‘se_extzh’  then n ← 48

GPR(RX) ← n-320 || GPR(RX)n:63

For se_extzb, the contents of bits 56–63 of GPR(rX) are placed into bits 56–63 of GPR(rX). 
Bits 32–55 of GPR(rX) are cleared.

For se_extzh, the contents of bits 48–63 of GPR(rX) are placed into bits 48–63 of GPR(rX). 
Bits 32–47 of GPR(rX) are cleared.

Special Registers Altered: None

0 5 6 11 12 15

0 0 0 0 0 0 0 0 1 1 0 0 RX

0 5 6 11 12 15

0 0 0 0 0 0 0 0 1 1 1 0 RX

VLE User



RM0004 VLE instruction set

 928/1176

_illegal _illegal

Illegal

se_illegal

SRR1 ← MSR

SRR0 ← CIA

NIA  ← IVPR32:47 || IVOR648:59 || 0b0000

MSRWE,EE,PR,IS,DS,FP,FE0,FE1 ← 0b0000_0000

se_illegal is used to request an illegal instruction exception. A program interrupt is 
generated. The contents of the MSR are copied into SRR1 and the address of the 
se_illegal instruction is placed into SRR0.

MSR[WE,EE,PR,IS,DS,FP,FE0,FE1] are cleared.

The interrupt causes the next instruction to be fetched from address IVPR[32–
47]||IVOR6[48–59]||0b0000

This instruction is context synchronizing.

Special Registers Altered: SRR0 SRR1 MSR[WE,EE,PR,IS,DS,FP,FE0,FE1]

0 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VLE User



VLE instruction set RM0004

929/1176  

_isync _isync

Instruction Synchronize

se_isync

The se_isync instruction provides an ordering function for the effects of all instructions 
executed by the processor executing the se_isync instruction. Executing an se_isync 
instruction ensures that all instructions preceding the se_isync instruction have completed 
before the se_isync instruction completes, and that no subsequent instructions are initiated 
until after the se_isync instruction completes. It also causes any prefetched instructions to 
be discarded, with the effect that subsequent instructions are fetched and executed in the 
context established by the instructions preceding the se_isync instruction.

The se_isync instruction may complete before memory accesses associated with 
instructions preceding the se_isync instruction have been performed.

This instruction is context synchronizing (see Book E). It has identical semantics to Book E 
isync, just a different encoding.

Special Registers Altered: None

0 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

VLE User



RM0004 VLE instruction set

 930/1176

_lbzx _lbzx

Load Byte and Zero [with Update] [Indexed] 

e_lbz rD,D(rA) (D-mode)

se_lbz rZ,SD4(rX) (SD4-mode)

e_lbzu rD,D8(rA) (D8-mode)

if (RA=0 & !se_lbz) then a ← 320 else a ← GPR(RA or RX)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode   then EA ← (a + EXTS(D8))32:63

if SD4-mode   then EA ← (a + (280 || SD4))32:63

GPR(RD or RZ) ← 240 || MEM(EA,1)

if e_lbzu then GPR(RA) ← EA

Let the EA be calculated as follows:

● For e_lbz and e_lbzu, let EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, 
and the sign-extended value of the D or D8 instruction field.

● For se_lbz, let EA be the sum of the contents of GPR(rX) and the zero-extended value 
of the SD4 instruction field.

The byte in memory addressed by EA is loaded into bits 56–63 of GPR(rD or rZ). Bits 32–55 
of GPR(rD or rZ) are cleared.

If e_lbzu, EA is placed into GPR(rA).

If e_lbzu and rA = 0 or rA = rD, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 31

0 0 1 1 0 0 RD RA D

0 3 4 7 8 11 12 15

1   0   0   0 SD4 RZ RX

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RD RA 0 0 0 0 0 0 0 0 D8



VLE instruction set RM0004

931/1176  

_lhax _lhax

Load Halfword Algebraic [with Update] [Indexed]

e_lha rD,D(rA) (D-mode)

e_lhau rD,D8(rA) (D8-mode)

if RA=0 then a ← 320 else a ← GPR(RA)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode then EA ← (a + EXTS(D8))32:63

GPR(RD) ← EXTS(MEM(EA,2))32:63

if e_lhau then GPR(RA) ← EA

Let the EA be calculated as follows:

● For e_lha and e_lhau, let EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, 
and the sign-extended value of the D or D8 instruction field.

The half word in memory addressed by EA is loaded into bits 48–63 of GPR(rD). Bits 32–47 
of GPR(rD) are filled with a copy of bit 0 of the loaded half word.

If e_lhau, EA is placed into GPR(rA).

If e_lhau and rA = 0 or rA = rD, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 31

0 0 1 1 1 0 RD RA D

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RD RA 0 0 0 0 0 0 1 1 D8



RM0004 VLE instruction set

 932/1176

_lhzx _lhzx

Load Halfword and Zero [with Update] [Indexed]

e_lhz rD,D(rA) (D-mode)

se_lhz rZ,SD4(rX) (SD4-mode)

e_lhzu rD,D8(rA) (D8-mode)

if (RA=0 & !se_lhz) then a ← 320 else a ← GPR(RA or RX)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode   then EA ← (a + EXTS(D8))32:63

if SD4-mode   then EA ← (a + (270 || SD4 || 0))32:63

GPR(RD or RZ) ← 160 || MEM(EA,2)

if e_lhzu then GPR(RA) ← EA

Let the EA be calculated as follows:

● For e_lhz and e_lhzu, let EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, 
and the sign-extended value of the D or D8 instruction field.

● For se_lhz let EA be the sum of the contents of GPR(rX) and the zero-extended value 
of the SD4 instruction field shifted left by 1 bit.

The half word in memory addressed by EA is loaded into bits 48–63 of GPR(rD). Bits 32–47 
of GPR(rD) are cleared.

If e_lhzu, EA is placed into GPR(rA).

If e_lhzu and rA = 0 or rA = rD, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 31

0 1 0 1 1 0 RD RA D

0 3 4 7 8 11 12 15

1   0   1   0 SD4 RZ RX

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RD RA 0 0 0 0 0 0 0 1 D8



VLE instruction set RM0004

933/1176  

_lix _lix

Load Immediate [Shifted]

e_li rD,LI20 (LI20-mode)

LI20  ←  LI200:3 || LI204:8 || LI209:19
GPR(RD) ←  EXTS(LI20)

For e_li, the sign-extended LI20 field is placed into GPR(rD). 

Special Registers Altered: None

e_lis rD,UI

UI  ←  UI0:4 || UI5:15
GPR(RD) ←  UI || 160

For e_lis, the UI field is concatenated on the right with 16 0’s and placed into GPR(rD).

Special Registers Altered: None

se_li rX,UI7

GPR(RX) ← 250 || UI7 

For se_li, the zero-extended UI7 field is placed into GPR(rX). 

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 17 20 21 31

0 1 1 1 0 0 RD LI204:8 0 LI200:3 LI209:19

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 RD UI0:4 1 1 1 0 0 UI5:15

0 4 5 11 12 15

0 1 0 0 1 UI7 RX



RM0004 VLE instruction set

 934/1176

_lmw _lmw

Load Multiple Word

e_lmw rD,D8(rA)

if RA=0 then EA ← EXTS(D8)32:63

else         EA ← (GPR(RA)+EXTS(D8))32:63

r ← RD

do while r ≤ 31

GPR(r) ← MEM(EA,4)

r  ← r + 1

EA ← (EA+4)32:63

Let the EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, and the sign-extended 
value of the D8 instruction field.

Let n = (32-rD). n consecutive words starting at EA are loaded into bits 32–63 of registers 
GPR(rD) through GPR(31).

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results 
are boundedly undefined. If rA is in the range of registers to be loaded, including the case in 
which rA = 0, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RD RA 0   0   0   0   1   0   0   0 D8



VLE instruction set RM0004

935/1176  

_lwz _lwz

Load Word and Zero [with Update] [Indexed] 

e_lwz rD,D(rA) (D-mode)

se_lwz rZ,SD4(rX) (SD4-mode)

e_lwzu rD,D8(rA) (D8-mode)

if (RA=0 & !se_lwz) then a ← 320 else a ← GPR(RA or RX)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode   then EA ← (a + EXTS(D8))32:63

if SD4-mode   then EA ← (a + (260 || SD4 || 20))32:63

GPR(RD or RZ) ← MEM(EA,4)

if e_lwzu then GPR(RA) ← EA

Let the EA be calculated as follows:

● For e_lwz and e_lwzu, let EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, 
and the sign-extended value of the D or D8 instruction field.

● For se_lwz let EA be the sum of the contents of GPR(rX) and the zero-extended value 
of the SD4 instruction field shifted left by 2 bits.

The word in memory addressed by the EA is loaded into bits 32–63 of GPR(rD). 

If e_lwzu, EA is placed into GPR(rA).

If e_lwzu and rA = 0 or rA = rD, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 31

0 1 0 1 0 0 RD RA D

0 3 4 7 8 11 12 15

1   1   0   0 SD4 RZ RX

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RD RA 0 0 0 0 0 0 1 0 D8



RM0004 VLE instruction set

 936/1176

_mcrf _mcrf

Move CR Field

e_mcrf crD,crS

CR4xCRD+32:4xCRD+35 ← CR4xCRS+32:4xCRS+35

The contents of field crS (bits 4×CRS+32 through 4×CRS+35) of the CR are copied to field 
crD (bits 4×CRD+32 through 4×CRD+35) of the CR.

Special Registers Altered: CR

VLE User

0 5 6 8 9 10 11 13 14 20 21 30 31

0 1 1 1 1 1 CRD // CRS /// 0 0 0 0 0 1 0 0 0 0 /



VLE instruction set RM0004

937/1176  

_mfar _mfar

Move from Alternate Register

se_mfar rX,arY

GPR(RX) ← GPR(ARY)

For se_mfar, the contents of GPR(arY) are placed into GPR(rX). arY specifies a GPR in the 
range R8–R23. The encoding 0000 specifies R8, 0001 specifies R9,…, 1111 specifies R23. 

Special Registers Altered: None

0 5 6 7 8 11 12 15

0 0 0 0 0 0 1 1 ARY RX

VLE User



RM0004 VLE instruction set

 938/1176

_mfctr _mfctr

Move From Count Register

se_mfctr rX

GPR(RX) ← CTR

The CTR contents are placed into bits 32–63 of GPR(rX).

Special Registers Altered: None

0 5 6 11 12 15

0 0 0 0 0 0 0   0   1   0   1   0 RX

VLE User



VLE instruction set RM0004

939/1176  

_mflr _mflr

Move From Link Register

se_mflr rX

GPR(RX) ← LR

The LR contents are placed into bits 32–63 of GPR(rX).

Special Registers Altered: None

0 5 6 11 12 15

0 0 0 0 0 0 0   0   1   0   0   0 RX

VLE User



RM0004 VLE instruction set

 940/1176

_mr _mr

Move Register

se_mr rX,rY

GPR(RX) ← GPR(RY)

For se_mr, the contents of GPR(rY) are placed into GPR(rX). 

Special Registers Altered: None

0 5 6 7 8 11 12 15

0 0 0 0 0 0 0 1 RY RX

VLE User



VLE instruction set RM0004

941/1176  

_mtar _mtar

Move to Alternate Register

se_mtar arX,rY

GPR(ARX) ← GPR(RY)

For se_mtar, the contents of GPR(rY) are placed into GPR(arX). arX specifies a GPR in the 
range R8–R23. The encoding 0000 specifies R8, 0001 specifies R9,…, 1111 specifies R23. 

Special Registers Altered: None

0 5 6 7 8 11 12 15

0 0 0 0 0 0 1 0 RY ARX

VLE User



RM0004 VLE instruction set

 942/1176

_mtctr _mtctr

Move To Count Register

se_mtctr rX

CTR ← GPR(RX)

The contents of bits 32–63 of GPR(rX) are placed into the CTR.

Special Registers Altered: CTR

0 5 6 11 12 15

0 0 0 0 0 0 0   0   1   0   1   1 RX

VLE User



VLE instruction set RM0004

943/1176  

_mtlr _mtlr

Move To Link Register

se_mtlr rX

LR ← GPR(RX)

The contents of bits 32–63 of GPR(rX) are placed into the LR.

Special Registers Altered: LR

0 5 6 11 12 15

0 0 0 0 0 0 0   0   1   0   0   1 RX

VLE User



RM0004 VLE instruction set

 944/1176

_mullix _mullix

Multiply Low [2 operand] Immediate

e_mulli rD,rA,SCI8

imm ← SCI8(F,SCL,UI8)
prod0:63 ← GPR(RA) × imm 

GPR(RD) ← prod32:63

Bits 32–63 of the 64-bit product of the contents of GPR(rA) and the value of SCI8 are placed 
into GPR(rD).

Both operands and the product are interpreted as signed integers.

Special Registers Altered: None

e_mull2i rA,SI

prod0:63 ← GPR(RA) × EXTS(SI0:4 || SI5:15) 

GPR(RA) ← prod32:63

Bits 32–63 of the 64-bit product of the contents of GPR(rA) and the sign-extended value of 
the SI field are placed into GPR(rA).

Both operands and the product are interpreted as signed integers.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 20 21 22 23 24 31

0 0 0 1 1 0 RD RA 1 0 1 0 0 F SCL UI8

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 SI0:4 RA 1   0 1 0 0 SI5:15



VLE instruction set RM0004

945/1176  

_mullwx _mullwx

Multiply Low Word

se_mullw rX,rY

prod0:63 ← GPR(RX)32:63 × GPR(RY)32:63

GPR(RX) ← prod32:63

Bits 32–63 of the 64-bit product of the contents of bits 32–63 of GPR(rX) and the contents of 
bits 32–63 of GPR(rY) is placed into GPR(rX).

Special Registers Altered: None

0 5 6 7 8 11 12 15

0 0 0 0 0 1 0 1 RY RX

VLE User



RM0004 VLE instruction set

 946/1176

_negx _negx

Negate

se_neg rX

result32:63 ← ¬GPR(RX)+ 1

GPR(RX) ← result32:63

The sum of the one’s complement of the contents of GPR(rX) and 1 is placed into GPR(rX).

If bits 32–63 of GPR(rX) contain the most negative 32-bit number (0x8000_0000), bits 32–
63 of the result contain the most negative 32-bit number

Special Registers Altered: None

0 5 6 11 12 15

0 0 0 0 0 0 0 0 0 0 1 1 RX

VLE User
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_notx _notx

NOT

se_not rX

result32:63 ← ¬GPR(RX)

GPR(RX) ← result32:63

The contents of GPR(rX) are inverted.

Special Registers Altered: None

0 5 6 11 21 15

0 0 0 0 0 0 0 0 0 0 1 0 RX

VLE User
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_orx _orx

OR [2 operand] [Immediate | with Complement] [Shifted][and Record]

se_or rX,rY

e_or2i rD,UI

e_or2is rD,UI

e_ori rA,rS,SCI8 (Rc = 0)
e_ori. rA,rS,SCI8 (Rc = 1)

if ‘e_ori[.]’    then b ← SCI8(F,SCL,UI8)

if ‘e_or2i’  then b ← 160 || UI0:4 || UI5:15
if ‘e_or2is’  then b ← UI0:4 || UI5:15 || 160
if ‘se_or’  then b ← GPR(RB)

result0:63 ← GPR(RS or RD or RX) | b

if Rc=1 then do

LT  ← result32:63 < 0

GT  ← result32:63 > 0

EQ  ← result32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RA or RD or RX) ← result

For e_ori[.], the contents of GPR(rS) are ORed with the value of SCI8.

For e_or2i, the contents of GPR(rD) are ORed with 160 || UI.

For e_or2is, the contents of GPR(rD) are ORed with UI || 160.

For se_or, the contents of GPR(rX) are ORed with the contents of GPR(rY).

The result is placed into GPR(rA or rX).

The preferred ‘no-op’ (an instruction that does nothing) is:

     e_ori  0,0,0

Special Registers Altered: CR0 (if Rc = 1)

0 5 6 7 8 11 12 15

0 1 0 0 0 1 0 0 RY RX

VLE User

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 RD UI0:4 1 1 0 0 0 UI5:15

0 5 6 10 11 15 16 20 21 31

0 1 1 1 0 0 RD UI0:4 1 1 0 1 0 UI5:15

0 5 6 10 11 15 16 19 20 21 22 23 24 31

0 0 0 1 1 0 RS RA 1 1 0 1 Rc F SCL UI8
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_rfci _rfci

Return From Critical Interrupt

se_rfci

MSR ← CSRR1

NIA ← CSRR00:62 || 0b0

The se_rfci instruction is used to return from a critical class interrupt, or as a means of 
establishing a new context and synchronizing on that new context simultaneously. 

The contents of CSRR1 are placed into the MSR. If the new MSR value does not enable any 
pending exceptions, then the next instruction is fetched, under control of the new MSR 
value, from the address CSRR0[32–62]||0b0. If the new MSR value enables one or more 
pending exceptions, the interrupt associated with the highest priority pending exception is 
generated; in this case the value placed into SRR0 or CSRR0 by the interrupt processing 
mechanism (see Book E) is the address of the instruction that would have been executed 
next had the interrupt not occurred (that is, the address in CSRR0 at the time of the 
execution of the se_rfci).

Execution of this instruction is privileged and restricted to supervisor mode.

Execution of this instruction is context synchronizing.

Special Registers Altered: MSR

0 15

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1

VLE Supervisor
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_rfi _rfi

Return From Interrupt

se_rfi

MSR ← SRR1

NIA ← SRR00:62 || 0b0

The se_rfi instruction is used to return from a non-critical class interrupt, or as a means of 
simultaneously establishing a new context and synchronizing on that new context.

The contents of SRR1 are placed into the MSR. If the new MSR value does not enable any 
pending exceptions, then the next instruction is fetched under control of the new MSR value 
from the address SRR0[32–62]||0b0. If the new MSR value enables one or more pending 
exceptions, the interrupt associated with the highest priority pending exception is generated; 
in this case the value placed into SRR0 or CSRR0 by the interrupt processing mechanism 
(see Book E) is the address of the instruction that would have been executed next had the 
interrupt not occurred (that is, the address in SRR0 at the time of the execution of the 
se_rfi).

Execution of this instruction is privileged and restricted to supervisor mode.

Execution of this instruction is context synchronizing.

Special Registers Altered: MSR

0 15

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

VLE Supervisor
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_rlw _rlw

Rotate Left Word [Immediate] 

e_rlw rA,rS,rB (Rc = 0)
e_rlw. rA,rS,rB (Rc = 1)

e_rlwi rA,rS,SH (Rc = 0)
e_rlwi. rA,rS,SH (Rc = 1)

if ‘e_rlw[.]’ then n ← GPR(RB)59:63

else               n ← SH

result32:63 ← ROTL32(GPR(RS)32:63,n)

if Rc=1 then do

LT  ← result32:63 < 0

GT  ← result32:63 > 0

EQ  ← result32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RA) ← result32:63

If e_rlw[.], let the shift count n be the contents of bits 59–63 of GPR(rB).

If e_rlwi[.], let the shift count n be SH.

The contents of GPR(rS) are rotated32 left n bits. The rotated data is placed into GPR(rA).

Special Registers Altered: CR0 (if Rc = 1)

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 RS RA RB 0 1 0 0 0 1 1 0 0 0 Rc

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 RS RA SH 0 1 0 0 1 1 1 0 0 0 Rc
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_rlwimi _rlwimi

Rotate Left Word Immediate then Mask Insert

e_rlwimi rA,rS,SH,MB,ME

n ← SH

b ← MB+32

e ← ME+32

r ← ROTL32(GPR(RS)32:63,n)

m ← MASK(b,e)

result32:63 ← r&m | GPR(RA)&¬m

GPR(RA) ← result32:63

Let the shift count n be the value SH.

The contents of GPR(rS) are rotated32 left n bits. A mask is generated having 1 bits from bit 
MB+32 through bit ME+32 and 0 bits elsewhere. The rotated data are inserted into GPR(rA) 
under control of the generated mask (if a mask bit is 1 the associated bit of the rotated data 
is placed into the target register, and if the mask bit is 0 the associated bit in the target 
register remains unchanged).

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 20 21 25 26 30 31

0 1 1 1 0 1 RS RA SH MB ME 0
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_rlwinm _rlwinm

Rotate Left Word Immediate then AND with Mask

e_rlwinm rA,rS,SH,MB,ME

n ← SH

b ← MB+32

e ← ME+32

r ← ROTL32(GPR(RS)32:63,n)

m ← MASK(b,e)

result32:63 ← r & m

GPR(RA) ← result32:63

Let the shift count n be SH.

The contents of GPR(rS) are rotated32 left n bits. A mask is generated having 1 bits from bit 
MB+32 through bit ME+32 and 0 bits elsewhere. The rotated data are ANDed with the 
generated mask and the result is placed into GPR(rA).

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 20 21 25 26 30 31

0 1 1 1 0 1 RS RA SH MB ME 1
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_sc _sc

System Call

se_sc

SRR1 ← MSR

SRR0 ← CIA+2

NIA  ← IVPR32:47 || IVOR848:59 || 0b0000

MSRWE,EE,PR,IS,DS,FP,FE0,FE1 ← 0b0000_0000

se_sc is used to request a system service. A system call interrupt is generated. The 
contents of the MSR are copied into SRR1 and the address of the instruction after the 
se_sc instruction is placed into SRR0.

MSR[WE,EE,PR,IS,DS,FP,FE0,FE1] are cleared.

The interrupt causes the next instruction to be fetched from the address

IVPR[32–47]||IVOR8[48–59]||0b0000

This instruction is context synchronizing.

Special Registers Altered: SRR0 SRR1 MSR[WE,EE,PR,IS,DS,FP,FE0,FE1]

0 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

VLE User
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_slwx _slwx

Shift Left Word [Immediate] [and Record]

e_slwi rA,rS,SH (Rc = 0)
e_slwi. rA,rS,SH (Rc = 1)

se_slw rX,rY

se_slwi rX,UI5

if ‘e_slwi[.]’ then n ← SH

if se_slw then n ← GPR(RY)58:63
if se_slwi then n ← UI5

r ← ROTL32(GPR(RS or RX)32:63,n)

if n<32 then m ← MASK(32,63-n)

else                m ← 320

result32:63 ← r & m

if Rc=1 then do

LT  ← result32:63 < 0

GT  ← result32:63 > 0

EQ  ← result32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RA or RX) ← result32:63

Let the shift count n be the value specified by the contents of bits 58–63 of GPR(rB or rY), or 
by the value of the SH or UI5 field.

The contents of bits 32–63 of GPR(rS or rX) are shifted left n bits. Bits shifted out of position 
32 are lost. Zeros are supplied to the vacated positions on the right. The 32-bit result is 
placed into bits 32–63 of GPR(rA or rX). 

Shift amounts from 32 to 63 give a zero result.

Special Registers Altered: CR0 (if Rc = 1)

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 RS RA SH 0 0 0 0 1 1 1 0 0 0 Rc

0 5 6 7 8 11 12 15

0 1 0 0 0 0 1 0 RY RX

0 5 6 7 11 12 15

0 1 1 0 1 1 0 UI5 RX
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_srawx _srawx

Shift Right Algebraic Word [Immediate] [and Record]

se_sraw rX,rY

se_srawi rX,UI5

if ‘se_sraw’   then n ← GPR(RY)59:63
if ‘se_srawi’  then n ← UI5

r ← ROTL32(GPR(RS or RX)32:63,32-n)

if ((se_sraw & GPR(RY)58=1) then m ← 320

else     m ← MASK(n+32,63)

s ← GPR(RS or RX)32

result0:63 ← r&m | (32s)&¬m

if Rc=1 then do

LT  ← result32:63 < 0

GT  ← result32:63 > 0

EQ  ← result32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RA or RX) ← result32:63

CA      ← s & ((r&¬m)32:63≠0)

If se_sraw, let the shift count n be the contents of bits 58–63 of GPR(rY).

If se_srawi, let the shift count n be the value of the UI5 field.

The contents of bits 32–63 of GPR(rS or rX) are shifted right n bits. Bits shifted out of 
position 63 are lost. Bit 32 of rS or rX is replicated to fill vacated positions on the left. The 
32-bit result is placed into bits 32–63 of GPR(rA or rX). 

CA is set if bits 32–63 of GPR(rS or rX) contain a negative value and any 1 bits are shifted 
out of bit position 63; otherwise CA is cleared. 

A shift amount of zero causes GPR(rA or rX) to receive EXTS(GPR(rS or rX)32:63), and CA 
to be cleared. For se_sraw, shift amounts from 32 to 63 give a result of 64 sign bits, and 
cause CA to receive bit 32 of the contents of GPR(rS or rX) (that is, sign bit of GPR(rS or 
rX)32:63).

Special Registers Altered: CA
CR0 (if Rc = 1)

0 5 6 7 8 11 12 15

0 1 0 0 0 0 0 1 RY RX

0 5 6 7 11 12 15

0 1 1 0 1 0 1 UI5 RX

VLE User
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_srwx _srwx

Shift Right Word [Immediate] [and Record]

e_srwi rA,rS,SH (Rc = 0)
e_srwi. rA,rS,SH (Rc = 1)

se_srw rX,rY

se_srwi rX,UI5

n ← GPR(RB)59:63

if ‘e_srwi[.]’ then n ← SH
if ‘se_srw’   then n ← GPR(RY)59:63
if ‘se_srwi’ then n ← UI5
r ← ROTL32(GPR(RS or RX)32:63,32-n)

if ((se_srw & GPR(RY)58=1) then m ← 320

else                m ← MASK(n+32,63)

result32:63 ← r & m

if Rc=1 then do

LT  ← result32:63 < 0

GT  ← result32:63 > 0

EQ  ← result32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RA or RX) ← result32:63

If e_srwi, let the shift count n be the value of the SH field.

If se_srw, let the shift count n be the contents of bits 58–63 of GPR(rY).

If se_srwi, let the shift count n be the value of the UI5 field.

The contents of bits 32–63 of GPR(rS or rX) are shifted right n bits. Bits shifted out of 
position 63 are lost. Zeros are supplied to the vacated positions on the left. The 32-bit result 
is placed into bits 32–63 of GPR(rA or rX). 

Shift amounts from 32 to 63 give a zero result.

Special Registers Altered: CR0 (if Rc = 1)

VLE User

0 5 6 10 11 15 16 20 21 30 31

0 1 1 1 1 1 RS RA SH 1 0 0 0 1 1 1 0 0 0 Rc

0 5 6 7 8 11 12 15

0 1 0 0 0 0 0 0 RY RX

0 5 6 7 11 12 15

0 1 1 0 1 0 0 UI5 RX
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_stbx _stbx

Store Byte [with Update] [Indexed] 

e_stb rS,D(rA) (D-mode)

se_stb rZ,SD4(rX) (SD4-mode)

e_stbu rS,D8(rA) (D8-mode)

if (RA=0 & !se_stb) then a ← 320 else a ← GPR(RA or RX)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode   then EA ← (a + EXTS(D8))32:63

if SD4-mode   then EA ← (a + (280 || SD4))32:63

MEM(EA,1) ← GPR(RS or RZ)56:63

if e_stbu then GPR(RA) ← EA

Let the EA be calculated as follows:

● For e_stb and e_stbu, let EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, 
and the sign-extended value of the D or D8 instruction field.

● For se_stb, let EA be the sum of the contents of GPR(rX) and the zero-extended value 
of the SD4 instruction field.

The contents of bits 56–63 of GPR(rS) are stored into the byte in memory addressed by EA.

● If e_stbu, EA is placed into GPR(rA).

● If e_stbu and rA = 0, the instruction form is invalid.

● None

VLE User

0 5 6 10 11 15 16 31

0 0 1 1 0 1 RS RA D

0 3 4 7 8 11 12 15

1   0   0   1 SD4 RZ RX

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RS RA 0 0 0 0 0 1 0 0 D8
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_sthx _sthx

Store Halfword [with Update] [Indexed] 

e_sth rS,D(rA) (D-mode)

se_sth rZ,SD4(rX) (SD4-mode)

e_sthu rS,D8(rA) (D8-mode)

if (RA=0 & !se_sth) then a ← 320 else a ← GPR(RA or RX)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode   then EA ← (a + EXTS(D8))32:63

if SD4-mode   then EA ← (a + (270 || SD4 || 0))32:63

MEM(EA,2) ← GPR(RS or RZ)48:63

if e_sthu then GPR(RA) ← EA

Let the EA be calculated as follows:

● For e_sth and e_sthu, let EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, 
and the sign-extended value of the D or D8 instruction field.

● For se_sth let EA be the sum of the contents of GPR(rX) and the zero-extended value 
of the SD4 instruction field shifted left by 1 bit.

The contents of bits 48–63 of GPR(rS) are stored into the half word in memory addressed 
by EA.

If e_sthu, EA is placed into GPR(rA).

If e_sthu and rA = 0, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 31

0 1 0 1 1 1 RS RA D

0 3 4 7 8 11 12 15

1   0   1   1 SD4 RZ RX

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RS RA 0   0   0   0   0   1   0   1 D8
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_stmw _stmw

Store Multiple Word

e_stmw rS,D8(rA) (D8-mode)

if RA=0 then EA ← EXTS(D8)32:63

else         EA ← (GPR(RA)+EXTS(D8))32:63

r ← RS

do while r ≤ 31

MEM(EA,4) ← GPR(r)32:63

r  ← r + 1

EA ← (EA+4)32:63

Let the EA be the sum of the contents of GPR(rA), or 32 0s if rA = 0, and the sign-extended 
value of the D8 instruction field.

Let n = (32 - rS). Bits 32–63 of registers GPR(rS) through GPR(31) are stored in n 
consecutive words in memory starting at address EA.

EA must be a multiple of 4. If it is not, either an alignment interrupt is invoked or the results 
are boundedly undefined.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RS RA 0 0 0 0 1 0 0 1 D8
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_stwx _stwx

Store Word [with Update] [Indexed] 

e_stw rS,D(rA) (D-mode)

se_stw rZ,SD4(rX) (SD4-mode)

e_stwu rS,D8(rA) (D8-mode)

if (RA=0 & !se_stw) then a ← 320 else a ← GPR(RA or RX)

if D-mode  then EA ← (a + EXTS(D))32:63

if D8-mode   then EA ← (a + EXTS(D8))32:63

if SD4-mode   then EA ← (a + (260 || SD4 || 20))32:63

MEM(EA,4) ← GPR(RS or RZ)32:63

Let the EA be calculated as follows:

● For e_stw and e_stwu, let EA be the sum of the contents of GPR(rA), or 32 0s if 
rA = 0, and the sign-extended value of the D or D8 instruction field.

● For se_stw, let EA be the sum of the contents of GPR(rX) and the zero-extended value 
of the SD4 instruction field shifted left by 2 bits.

The contents of bits 32–63 of GPR(rS) are stored into the word in memory addressed by 
EA.

If e_stwu, EA is placed into GPR(rA).

If e_stwu and rA = 0, the instruction form is invalid.

Special Registers Altered: None

VLE User

0 5 6 10 11 15 16 31

0 1 0 1 0 1 RS RA D

0 3 4 7 8 11 12 15

1   1   0   1 SD4 RZ RX

0 5 6 10 11 15 16 23 24 31

0 0 0 1 1 0 RS RA 0 0 0 0 0 1 1 0 D8
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_sub _sub

Subtract 

se_sub rX,rY 

sum32:63   ←  GPR(RX) + ¬GPR(RY) + 1

GPR(RX) ← sum32:63

The sum of the contents of GPR(rX), the one’s complement of contents of GPR(rY), and 1 is 
placed into GPR(rX).

Special Registers Altered: None

0 5 6 7 8 11 12 15

0 0 0 0 0 1 1 0 RY RX

VLE User
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_subfx _subfx

Subtract From

se_subf rX,rY

sum32:63   ←  ¬GPR(RX) + GPR(RY) + 1

GPR(RX) ← sum32:63

The sum of the one’s complement of the contents of GPR(rX), the contents of GPR(rY), and 
1 is placed into GPR(rX).

Special Registers Altered: None

0 5 6 10 11 15

VLE User
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_subficx _subficx

Subtract From Immediate Carrying [and Record]

e_subfic rD,rA,SCI8 (Rc = 0)
e_subfic. rD,rA,SCI8 (Rc = 1)

imm ← SCI8(F,SCL,UI8)
carry32:63 ← Carry(¬GPR(RA) + imm + 1)

sum32:63   ←       ¬GPR(RA) + imm + 1

if Rc=1 then do

   LT   ← sum32:63 < 0

   GT   ← sum32:63 > 0

   EQ   ← sum32:63 = 0

   CR0  ← LT || GT || EQ || SO

GPR(RD) ← sum32:63
CA      ← carry32

The sum of the one’s complement of the contents of GPR(rA), the value of SCI8, and 1 is 
placed into GPR(rD).

Special Registers Altered: CA CR0 (if Rc=1)

VLE User

0 5 6 10 11 15 16 20 21 22 23 24 31

0 0 0 1 1 0 RD RA 1 0 1 1 Rc F SCL UI8



VLE instruction set RM0004

965/1176  

_subix _subix

Subtract Immediate [and Record]

se_subi rX,OIMM (Rc = 0)

se_subi. rX,OIMM (Rc = 1)

sum32:63   ←  GPR(RX) + ¬(270 || OFFSET(OIM5)) + 1 

if Rc=1 then do

LT  ← sum32:63 < 0

GT  ← sum32:63 > 0

EQ  ← sum32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RX) ← sum32:63

The sum of the contents of GPR(rX), the one’s complement of the zero-extended value of 
the offseted OIM5 field (a final value in the range 1–32), and 1 is placed into GPR(rX).

Special Registers Altered: CR0 (if Rc = 1)

0 5 6 7 11 12 15

0 0 1 0 0 1 Rc OIM5(1)

1. OIMM = OIM5 +1

RX

VLE User
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_xorx _xorx

XOR [Immediate] [and Record]

e_xori rA,rS,SCI8 (Rc = 0)
e_xori. rA,rS,SCI8 (Rc = 1)

if ‘e_xori[.]’  then b ← SCI8(F,SCL,UI8)

result32:63 ← GPR(RS) ⊕ b

if Rc=1 then do

LT  ← result32:63 < 0

GT  ← result32:63 > 0

EQ  ← result32:63 = 0

CR0 ← LT || GT || EQ || SO

GPR(RA) ← result

For e_xori[.], the contents of GPR(rS) are XORed with SCI8.

The result is placed into GPR(rA).

Special Registers Altered: CR0 (if Rc = 1)

VLE User

0 5 6 10 11 15 16 19 20 21 22 23 24 31

0 0 0 1 1 0 RS RA 1 1 1 0 Rc F SCL UI8
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14 VLE instruction index

The tables in this appendix use the following conventions:

         

14.1 Instruction index sorted by opcode
Table 261 lists the 16-bit VLE instructions, sorted by opcode.

         

Table 260. Notation conventions

Notation Meaning

- Don’t care, usually part of an operand field

/ Reserved bit, invalid instruction form if encoded as 1

? Allocated for implementation-dependent use. See the implementation documentation.

Table 261. Instruction index sorted by opcode

Format
 16-Bit opcodes

Mnemonic Instruction Page
(Inst0:15)

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 se_illegal Illegal -928

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 se_isync Instruction Synchronize -929

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 se_sc System Call -954

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 se_blr Branch to Link Register -908

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 se_blrl Branch to link register & link -908

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 se_bctr Branch to Count Register -906

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 se_bctrl
Branch to Count Register & 
Link

-906

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 se_rfi Return From Interrupt -950

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 se_rfci Return From Critical Interrupt -949

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 se_rfdi Return From Debug Interrupt -949

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

C 0 0 0 0 0 0 0 0 0 0 0 1 - - - -

R 0 0 0 0 0 0 0 0 0 0 1 0 x x x x se_not NOT -947

R 0 0 0 0 0 0 0 0 0 0 1 1 x x x x se_neg Negate -946

R 0 0 0 0 0 0 0 0 0 1 - - x x x x

R 0 0 0 0 0 0 0 0 1 0 0 0 x x x x se_mflr Move From Link Register -939

R 0 0 0 0 0 0 0 0 1 0 0 1 x x x x se_mtlr Move To Link Register -943

R 0 0 0 0 0 0 0 0 1 0 1 0 x x x x se_mfctr Move From Count Register -938

R 0 0 0 0 0 0 0 0 1 0 1 1 x x x x se_mtctr Move To Count Register -942

R 0 0 0 0 0 0 0 0 1 1 0 0 x x x x se_extzb Extend with Zeros Byte -927
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R 0 0 0 0 0 0 0 0 1 1 0 1 x x x x se_extsb Extend Sign Byte -926

R 0 0 0 0 0 0 0 0 1 1 1 0 x x x x se_extzh Extend with Zeros Halfword -927

R 0 0 0 0 0 0 0 0 1 1 1 1 x x x x se_extsh Extend Sign Halfword -926

R 0 0 0 0 0 0 0 1 y y y y x x x x se_mr Move Register -940

RR 0 0 0 0 0 0 1 0 y y y y x x x x se_mtar Move to Alternate Register -941

RR 0 0 0 0 0 0 1 1 y y y y x x x x se_mfar Move from Alternate Register -937

RR 0 0 0 0 0 1 0 0 y y y y x x x x se_add Add -897

RR 0 0 0 0 0 1 0 1 y y y y x x x x se_mullw Multiply Low Word -945

RR 0 0 0 0 0 1 1 0 y y y y x x x x se_sub Subtract -962

RR 0 0 0 0 0 1 1 1 y y y y x x x x se_subf Subtract From -963

RR 0 0 0 0 1 0 - - y y y y x x x x

RR 0 0 0 0 1 1 0 0 y y y y x x x x se_cmp Compare -912

RR 0 0 0 0 1 1 0 1 y y y y x x x x se_cmpl Compare Logical -918

RR 0 0 0 0 1 1 1 0 y y y y x x x x se_cmph Compare Halfword -914

RR 0 0 0 0 1 1 1 1 y y y y x x x x se_cmphl Compare Halfword Logical -916

IM5 0 0 1 0 0 0 0 i i i i i x x x x se_addi Add Immediate -897

IM5 0 0 1 0 0 0 1 i i i i i x x x x se_cmpli Compare Logical Immediate -918

IM5 0 0 1 0 0 1 0 i i i i i x x x x se_subi Subtract Immediate -965

IM5 0 0 1 0 0 1 1 i i i i i x x x x se_subi.
Subtract Immediate and 
Record

-965

IM5 0 0 1 0 1 0 0 i i i i i x x x x

IM5 0 0 1 0 1 0 1 i i i i i x x x x se_cmpi Compare Immediate -912

IM5 0 0 1 0 1 1 0 i i i i i x x x x
se_bmask

i
Bit Mask Generate Immediate -909

IM5 0 0 1 0 1 1 1 i i i i i x x x x se_andi And Immediate -901

RR 0 1 0 0 0 0 0 0 y y y y x x x x se_srw Shift Right Word -957

RR 0 1 0 0 0 0 0 1 y y y y x x x x se_sraw Shift Right Algebraic Word -956

RR 0 1 0 0 0 0 1 0 y y y y x x x x se_slw Shift Left Word -955

RR 0 1 0 0 0 0 1 1 y y y y x x x x

RR 0 1 0 0 0 1 0 0 y y y y x x x x se_or OR -948

RR 0 1 0 0 0 1 0 1 y y y y x x x x se_andc AND with Complement -901

RR 0 1 0 0 0 1 1 0 y y y y x x x x se_and AND -901

RR 0 1 0 0 0 1 1 1 y y y y x x x x se_and. AND and Record -901

IM7 0 1 0 0 1 i i i i i i i x x x x se_li Load Immediate -933

Table 261. Instruction index sorted by opcode (continued)

Format
 16-Bit opcodes

Mnemonic Instruction Page
(Inst0:15)
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IM5 0 1 1 0 0 0 0 i i i i i x x x x se_bclri Bit Clear Immediate -905

IM5 0 1 1 0 0 0 1 i i i i i x x x x se_bgeni Bit Generate Immediate -906

IM5 0 1 1 0 0 1 0 i i i i i x x x x se_bseti Bit Set Immediate -910

IM5 0 1 1 0 0 1 1 i i i i i x x x x se_btsti Bit Test Immediate -911

IM5 0 1 1 0 1 0 0 i i i i i x x x x se_srwi Shift Right Word Immediate -957

IM5 0 1 1 0 1 0 1 i i i i i x x x x se_srawi
Shift Right Algebraic  Word 
Immediate

-957

IM5 0 1 1 0 1 1 0 i i i i i x x x x se_slwi Shift Left Word  Immediate -955

IM5 0 1 1 0 1 1 1 i i i i i x x x x

SD4 1 0 0 0 i i i i z z z z x x x x se_lbz Load Byte and Zero -930

SD4 1 0 0 1 i i i i z z z z x x x x se_stb Store Byte -958

SD4 1 0 1 0 i i i i z z z z x x x x se_lhz Load Halfword and Zero -932

SD4 1 0 1 1 i i i i z z z z x x x x se_sth Store Halfword -959

SD4 1 1 0 0 i i i i z z z z x x x x se_lwz Load Word and Zero -935

SD4 1 1 0 1 i i i i z z z z x x x x se_stw Store Word -961

B8 1 1 1 0 0 o i i d d d d d d d d se_bc Branch Conditional -904

B8 1 1 1 0 1 0 0 0 d d d d d d d d se_b Branch -910

B8 1 1 1 0 1 0 0 1 d d d d d d d d se_bl Branch and Link -910

1 1 1 0 1 0 1 - - - - - - - - -

1 1 1 0 1 1 - - - - - - - - - -

Table 261. Instruction index sorted by opcode (continued)

Format
 16-Bit opcodes

Mnemonic Instruction Page
(Inst0:15)

Table 262. 32-bit instruction encodings 

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)

APU 0 0 0 1 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - apu
Reserved for 
APUs

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 0 0 d d d d d d d d e_lbzu
Load Byte & 
Zero with Update

-930

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 0 1 d d d d d d d d e_lhzu
Load Halfword & 
Zero with Update

-932

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 1 0 d d d d d d d d e_lwzu
Load Word & 
Zero with Update

-935
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D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 1 1 d d d d d d d d e_lhau
Load Halfword 
Algebraic With 
Update

-931

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 0 0 d d d d d d d d e_stbu
Store Byte with 
Update

-958

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 0 1 d d d d d d d d e_sthu
Store Halfword 
with Update

-959

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 1 0 d d d d d d d d e_stwu
Store Word with 
Update

-961

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 1 1 d d d d d d d d

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 0 0 d d d d d d d d e_lmw
Load Multiple 
Word

-934

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 0 1 d d d d d d d d e_stmw
Store Multiple 
Word

-960

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 1 0 d d d d d d d d

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 1 1 d d d d d d d d

0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 1 1 - - d d d d d d d d

0 0 0 1 1 0 t t t t t a a a a a 0 0 0 1 - - - - - - - - - - - -

0 0 0 1 1 0 t t t t t a a a a a 0 0 1 - - - - - - - - - - - - -

0 0 0 1 1 0 t t t t t a a a a a 0 1 - - - - - - - - - - - - - -

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 0 0 0 F S S i i i i i i i i e_addi Add Immediate -897

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 0 0 1 F S S i i i i i i i i e_addi.
Add Immediate 
and Record

-897

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 0 1 0 F S S i i i i i i i i e_addic
Add Immediate 
Carrying

-900

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 0 1 1 F S S i i i i i i i i e_addic.
Add Immediate 
Carrying and 
Record

-900

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 1 0 0 F S S i i i i i i i i e_mulli
Multiply Low 
Immediate

-944

SCI8 0 0 0 1 1 0 0 0 0 b f a a a a a 1 0 1 0 1 F S S i i i i i i i i e_cmpi
Compare 
Immediate

-912

SCI8 0 0 0 1 1 0 0 0 1 b f a a a a a 1 0 1 0 1 F S S i i i i i i i i e_cmpli
Compare Logical 
Immediate

-918

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 1 1 0 F S S i i i i i i i i e_subfic
Subtract from 
Immediate 
Carrying

-964

Table 262. 32-bit instruction encodings  (continued)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)



VLE instruction index RM0004

971/1176  

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 1 1 1 F S S i i i i i i i i e_subfic. 
Subtract from 
Immediate and 
Record

-964

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 0 0 0 F S S i i i i i i i i e_andi AND Immediate -901

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 0 0 1 F S S i i i i i i i i e_andi. 
AND Immediate 
and Record

-901

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 0 1 0 F S S i i i i i i i i e_ori OR Immediate -951

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 0 1 1 F S S i i i i i i i i e_ori.
OR Immediate 
and Record

-951

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 1 0 0 F S S i i i i i i i i e_xori XOR Immediate -966

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 1 0 1 F S S i i i i i i i i e_xori.
XOR Immediate 
and Record

-966

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 1 1 0 F S S i i i i i i i i

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 1 1 1 F S S i i i i i i i i

D 0 0 0 1 1 1 t t t t t a a a a a i i i i i i i i i i i i i i i i e_add16i Add Immediate -897

D 0 0 1 1 0 0 t t t t t a a a a a d d d d d d d d d d d d d d d d e_lbz
Load Byte & 
Zero

-930

D 0 0 1 1 0 1 t t t t t a a a a a d d d d d d d d d d d d d d d d e_stb Store Byte -958

D 0 0 1 1 1 0 t t t t t a a a a a d d d d d d d d d d d d d d d d e_lha
Load Halfword 
Algebraic

-931

0 0 1 1 1 1 - - - - - - - - - - - - - - - - - - - - - - - - - -

D 0 1 0 1 0 0 t t t t t a a a a a d d d d d d d d d d d d d d d d e_lwz
Load Word & 
Zero

-935

D 0 1 0 1 0 1 t t t t t a a a a a d d d d d d d d d d d d d d d d e_stw Store Word -961

D 0 1 0 1 1 0 t t t t t a a a a a d d d d d d d d d d d d d d d d e_lhz
Load Halfword & 
Zero

-932

D 0 1 0 1 1 1 t t t t t a a a a a d d d d d d d d d d d d d d d d e_sth Store Halfword -959

LI20 0 1 1 1 0 0 t t t t t i i i i i 0 i i i i i i i i i i i i i i i e_li Load Immediate -933

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 0 0 0 i i i i i i i i i i i

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 0 0 1 i i i i i i i i i i i e_add2i.
Add (2 operand) 
Immediate and 
Record CR

-898

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 0 1 0 i i i i i i i i i i i e_add2is
Add (2 operand) 
Immediate 
Shifted

-898

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 0 1 1 i i i i i i i i i i i e_cmp16i
Compare 
Immediate

-912

Table 262. 32-bit instruction encodings  (continued)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)
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I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 1 0 0 i i i i i i i i i i i e_mull2i

Multiply Low 
Word  (2 
operand) 
Immediate

-944

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 1 0 1 i i i i i i i i i i i e_cmpl16i
Compare Logical 
Immediate

-918

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 1 1 0 i i i i i i i i i i i
e_cmph16

i

Compare 
Halfword 
Immediate

-914

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 1 1 1 i i i i i i i i i i i
e_cmphl1

6i

Compare  
Halfword Logical 
Immediate

-916

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 0 0 0 i i i i i i i i i i i e_or2i
OR (2 operand) 
Immediate 

-948

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 0 0 1 i i i i i i i i i i i e_and2i.
AND (2 operand) 
Immediate  & 
record CR

-901

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 0 1 0 i i i i i i i i i i i e_or2is
OR (2 operand) 
Immediate 
Shifted

-966

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 0 1 1 i i i i i i i i i i i

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 1 0 0 i i i i i i i i i i i e_lis
Load Immediate 
Shifted

-933

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 1 0 1 i i i i i i i i i i i e_and2is.

AND (2 operand) 
Immediate 
Shifted & record 
CR

-901

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 1 1 0 i i i i i i i i i i i

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 1 1 1 i i i i i i i i i i i

RLWI 0 1 1 1 0 1 s s s s s a a a a a h h h h h b b b b b e e e e e 0 e_rlwimi
Rotate Left Word 
Immed then 
Mask Insert

-952

RLWI 0 1 1 1 0 1 s s s s s a a a a a h h h h h b b b b b e e e e e 1 e_rlwinm
Rotate Left Word 
Immed then AND 
with Mask

-953

BD24 0 1 1 1 1 0 0 d d d d d d d d d d d d d d d d d d d d d d d d 0 e_b Branch -903

BD24 0 1 1 1 1 0 0 d d d d d d d d d d d d d d d d d d d d d d d d 1 e_bl Branch & Link -903

BD15 0 1 1 1 1 0 1 0 0 0 o o i i i i d d d d d d d d d d d d d d d 0 e_bc
Branch 
Conditional

-904

Table 262. 32-bit instruction encodings  (continued)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)
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BD15 0 1 1 1 1 0 1 0 0 0 o o i i i i d d d d d d d d d d d d d d d 1 e_bcl
Branch 
Conditional & 
Link

-904

X 0 1 1 1 1 1 - - - - - 0 1 1 1 1 / isel Integer Select
Book 

E

X 0 1 1 1 1 1 / 0 0 0 0 0 1 0 1 1 0 mulhwu
Multiply High 
Word Unsigned

Book 
E

X 0 1 1 1 1 1 / 0 0 0 0 0 1 0 1 1 1 mulhwu.
Multiply High 
Word Unsigned 
& Record

Book 
E

X 0 1 1 1 1 1 / 0 0 1 0 0 1 0 1 1 0 mulhw
Multiply High 
Word

Book 
E

X 0 1 1 1 1 1 / 0 0 1 0 0 1 0 1 1 1 mulhw.
Multiply High 
Word & record 
CR

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 / cmp Compare
Book 

E

X 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 / tw Trap Word
Book 

E

X 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 subfc
Subtract From 
Carrying

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 subfc.
Subtract From 
Carrying & 
record CR

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 addc Add Carrying
Book 

E

X 0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 addc.
Add Carrying & 
record CR

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 / e_cmph
Compare 
Halfword

-914

XL 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 / e_mcrf
Move Condition 
Register Field

-944

X 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 / mfcr
Move From 
Condition 
Register

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 / lwarx
Load Word  &  
Reserve Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 / icbt
Instruction 
Cache Block 
Touch Indexed

Book 
E

Table 262. 32-bit instruction encodings  (continued)

Format
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X 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 / lwzx
Load Word & 
Zero Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 slw Shift Left Word
Book 

E

X 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 slw.
Shift Left Word & 
record CR

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 0 cntlzw
Count Leading 
Zeros Word

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 cntlzw.
Count Leading 
Zeros Word & 
record CR

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 and AND
Book 

E

X 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 and.
AND & record 
CR

Book 
E

X 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 / cmpl Compare Logical
Book 

E

XL 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 / e_crnor
Condition 
Register NOR

-922

X 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 subf Subtract From
Book 

E

X 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1 subf.
Subtract From & 
record CR

Book 
E

X 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 / e_cmphl
Compare 
Halfword Logical

-916

X 0 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 / dcbst
Data Cache 
Block Store 
Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 / lwzux
Load Word & 
Zero with Update 
Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 e_slwi
Shift Left Word 
Immediate

-955

X 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 e_slwi.
Shift Left Word 
Immediate & 
record CR

-955

X 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 andc
AND with 
Complement

Book 
E

X 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 andc.
AND with 
Complement & 
record CR

Book 
E

Table 262. 32-bit instruction encodings  (continued)
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X 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1 / mfmsr
Move From 
Machine State 
Register

Book 
E

X 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 0 / dcbf
Data Cache 
Block Flush 
Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 / lbzx
Load Byte & 
Zero Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 neg Negate
Book 

E

X 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 1 neg.
Negate & record 
CR

Book 
E

X 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 / lbzux
Load Byte & 
Zero with Update 
Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 nor NOR
Book 

E

X 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 nor.
NOR & record 
CR

Book 
E

XL 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 / e_crandc

Condition 
Register AND 
with 
Complement

-920

X 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 1 / wrtee
Write External 
Enable

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 subfe
Subtract From 
Extended with 
CA

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 subfe.
Subtract From 
Extended with 
CA & record CR

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 adde
Add Extended 
with CA

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 adde.
Add Extended 
with CA & record 
CR

Book 
E

XFX 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 / mtcrf
Move To 
Condition 
Register Fields

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 / mtmsr
Move To 
Machine State 
Register

Book 
E

Table 262. 32-bit instruction encodings  (continued)
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X 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 stwcx.

Store Word 
Conditional 
Indexed & record 
CR

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 1 / stwx
Store Word 
Indexed

Book 
E

X 0 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 / wrteei
Write External 
Enable 
Immediate

Book 
E

X 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 / stwux
Store Word with 
Update Indexed

Book 
E

XL 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 / e_crxor
Condition 
Register XOR

-925

X 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 subfze
Subtract From 
Zero Extended 
with CA

Book 
E

X 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 subfze.

Subtract From 
Zero Extended 
with CA & record 
CR

Book 
E

X 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 addze
Add to Zero 
Extended with 
CA

Book 
E

X 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 addze.
Add to Zero 
Extended with 
CA & record CR

Book 
E

X 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 / stbx
Store Byte 
Indexed

Book 
E

XL 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 / e_crnand
Condition 
Register NAND

Book 
E

X 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 0 subfme

Subtract From 
Minus One 
Extended with 
CA

Book 
E

X 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 1 subfme.

Subtract From 
Minus One 
Extended with 
CA & record CR

Book 
E

X 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 addme
Add to Minus 
One Extended 
with CA

Book 
E

Table 262. 32-bit instruction encodings  (continued)
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X 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 addme.

Add to Minus 
One Extended 
with CA & record 
CR

Book 
E

X 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 mullw
Multiply Low 
Word

Book 
E

X 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 mullw.
Multiply Low 
Word & record 
CR

Book 
E

X 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 / dcbtst
Data Cache 
Block Touch for 
Store Indexed

Book 
E

X 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 / stbux
Store Byte with 
Update Indexed

Book 
E

XL 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 / e_crand
Condition 
Register AND

-920

X 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 add Add
Book 

E

X 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 add. Add & record CR
Book 

E

X 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 / mfapidi
Move From APID 
Indirect

Book 
E

X 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 / dcbt
Data Cache 
Block Touch 
Indexed

Book 
E

X 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 / lhzx
Load Halfword & 
Zero Indexed

Book 
E

X 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 e_rlw Rotate Left Word -951

X 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 e_rlw.
Rotate Left Word 
& record CR

-951

X 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 eqv Equivalent
Book 

E

X 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 eqv.
Equivalent & 
record CR

Book 
E

XL 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 / e_creqv
Condition 
Register 
Equivalent

-920

X 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 / lhzux
Load Halfword & 
Zero with Update 
Indexed

Book 
E

Table 262. 32-bit instruction encodings  (continued)

Format

Opcode
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X 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 e_rlwi
Rotate Left Word 
Immediate

-952

X 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 e_rlwi.
Rotate Left Word 
Immediate & 
record CR

-952

X 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 xor XOR
Book 

E

X 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1 xor.
XOR & record 
CR

Book 
E

XFX 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 / mfdcr
Move From 
Device Control 
Register

Book 
E

XFX 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 / mfspr
Move From 
Special Purpose 
Register

Book 
E

X 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 / lhax
Load Halfword 
Algebraic 
Indexed

Book 
E

X 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 / lhaux
Load Halfword 
Algebraic with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 / sthx
Store Halfword 
Indexed

Book 
E

X 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 orc
OR with 
Complement

Book 
E

X 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 orc.
OR with 
Complement & 
record CR

Book 
E

XL 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 / e_crorc
Condition 
Register OR with 
Complement

-923

X 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 / sthux
Store Halfword 
with Update 
Indexed

Book 
E

X 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 or OR
Book 

E

X 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 or. OR & record CR
Book 

E

XL 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 / e_cror
Condition 
Register OR

-923

Table 262. 32-bit instruction encodings  (continued)
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XFX 0 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 / mtdcr
Move To Device 
Control Register

Book 
E

X 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 divwu
Divide Word 
Unsigned

Book 
E

X 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 divwu.
Divide Word 
Unsigned & 
record CR

Book 
E

XFX 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 / mtspr
Move To Special 
Purpose 
Register

Book 
E

X 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 / dcbi
Data Cache 
Block Invalidate 
Indexed

Book 
E

X 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 nand NAND
Book 

E

X 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 nand.
NAND & record 
CR

Book 
E

X 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 divw Divide Word
Book 

E

X 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 divw.
Divide Word & 
record CR

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 / mcrxr

Move to 
Condition 
Register from 
XER

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 subfco
Subtract From 
Carrying & 
record OV

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 subfco.
Subtract From 
Carrying & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 addco
Add Carrying & 
record OV

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 addco.
Add Carrying & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 / lwbrx
Load Word Byte-
Reverse Indexed

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 srw Shift Right Word
Book 

E

X 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 srw.
Shift Right Word 
& record CR

Book 
E

Table 262. 32-bit instruction encodings  (continued)
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X 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 subfo
Subtract From & 
record OV

Book 
E

X 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 1 subfo.
Subtract From & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 / tlbsync TLB Synchronize
Book 

E

X 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 e_srwi
Shift Right Word 
Immediate

-957

X 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 e_srwi.
Shift Right Word 
Immediate & 
record CR

-957

X 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 / msync
Memory 
Synchronize

Book 
E

X 0 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 nego
Negate & record 
OV

Book 
E

X 0 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 1 nego.
Negate & record 
OV & record CR

Book 
E

X 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 subfeo
Subtract From 
Extended with 
CA & record OV

Book 
E

X 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 subfeo.

Subtract From 
Extended with 
CA & record OV 
& CR

Book 
E

X 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 addeo
Add Extended 
with CA & record 
OV

Book 
E

X 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 addeo.
Add Extended 
with CA & record 
OV & CR

Book 
E

X 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 / stswx
Store String 
Word Indexed

Book 
E

X 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 / stwbrx
Store Word Byte-
Reverse Indexed

Book 
E

X 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 subfzeo

Subtract From 
Zero Extended 
with CA & record 
OV

Book 
E

X 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 subfzeo.

Subtract From 
Zero Extended 
with CA & record 
OV & CR

Book 
E

Table 262. 32-bit instruction encodings  (continued)
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X 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 addzeo
Add to Zero 
Extended with 
CA & record OV

Book 
E

X 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 addzeo.

Add to Zero 
Extended with 
CA & record OV 
& CR

Book 
E

X 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 / stswi
Store String 
Word Immediate

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 subfmeo

Subtract From 
Minus One 
Extended with 
CA & record OV

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1 subfmeo.

Subtract From 
Minus One 
Extended with 
CA & record OV 
& CR

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 addmeo

Add to Minus 
One Extended 
with CA & record 
OV

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 addmeo.

Add to Minus 
One Extended 
with CA & record 
OV & CR

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 mullwo
Multiply Low 
Word & record 
OV

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 mullwo.
Multiply Low 
Word & record 
OV & CR

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 / dcba
Data Cache 
Block Allocate 
Indexed

Book 
E

X 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 addo Add & record OV
Book 

E

X 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 addo.
Add & record OV 
& CR

Book 
E

X 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 / tlbivax
TLB Invalidate 
Virtual Address 
Indexed

Book 
E

Table 262. 32-bit instruction encodings  (continued)
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X 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 / lhbrx
Load Halfword 
Byte-Reverse 
Indexed

Book 
E

X 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 sraw
Shift Right 
Algebraic Word

Book 
E

X 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 sraw.
Shift Right 
Algebraic Word 
& record CR

Book 
E

X 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 srawi
Shift Right 
Algebraic Word 
Immediate

Book 
E

X 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 srawi.

Shift Right 
Algebraic Word 
Immediate & 
record CR

Book 
E

X 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 / mbar Memory Barrier
Book 

E

X 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 ? tlbsx
TLB Search 
Indexed

Book 
E

X 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 / sthbrx
Store Halfword 
Byte-Reverse 
Indexed

Book 
E

X 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 extsh
Extend Sign 
Halfword

Book 
E

X 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 extsh.
Extend Sign 
Halfword & 
record CR

Book 
E

X 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 / tlbre TLB Read Entry
Book 

E

X 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 extsb Extend Sign Byte
Book 

E

X 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 extsb.
Extend Sign Byte 
& record CR

Book 
E

X 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 divwuo
Divide Word 
Unsigned & 
record OV

Book 
E

X 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 divwuo.
Divide Word 
Unsigned & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 / tlbwe TLB Write Entry
Book 

E

Table 262. 32-bit instruction encodings  (continued)
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X 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 / icbi

Instruction 
Cache Block 
Invalidate 
Indexed

Book 
E

X 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 divwo
Divide Word & 
Record OV

Book 
E

X 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 divwo.
Divide Word & 
Record OV & CR

Book 
E

X 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 / dcbz
Data Cache 
Block Set to Zero 
Indexed

Book 
E

X 1 1 1 1 - - Reserved

Table 262. 32-bit instruction encodings  (continued)
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14.2 Instruction index sorted by mnemonic
Table 263 lists all of the 16-bit VLE instructions, sorted by mnemonic.

         

Table 263. 16-Bit VLE instructions sorted by mnemonic

Format  16-Bit Opcodes (Inst0:15) Mnemonic Instruction Page

RR 0 0 0 0 0 1 0 0 y y y y x x x x se_add Add -897

IM5 0 0 1 0 0 0 0 i i i i i x x x x se_addi Add Immediate -897

RR 0 1 0 0 0 1 1 0 y y y y x x x x se_and AND -901

RR 0 1 0 0 0 1 1 1 y y y y x x x x se_and. AND and Record -901

RR 0 1 0 0 0 1 0 1 y y y y x x x x se_andc AND with Complement -901

IM5 0 0 1 0 1 1 1 i i i i i x x x x se_andi And Immediate -901

B8 1 1 1 0 0 o i i d d d d d d d d se_bc Branch Conditional -904

IM5 0 1 1 0 0 0 0 i i i i i x x x x se_bclri Bit Clear Immediate -905

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 se_bctr
Branch to Count 
Register

-905

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 se_bctrl
Branch to Count 
Register & Link

-905

IM5 0 1 1 0 0 0 1 i i i i i x x x x se_bgeni Bit Generate Immediate -906

B8 1 1 1 0 1 0 0 1 d d d d d d d d se_bl Branch and Link -910

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 se_blr Branch to Link Register -908

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 se_blrl
Branch to Link Register 
& Link

-908

IM5 0 0 1 0 1 1 0 i i i i i x x x x se_bmaski
Bit Mask Generate 
Immediate

-909

B8 1 1 1 0 1 0 0 0 d d d d d d d d se_b Branch -903

IM5 0 1 1 0 0 1 0 i i i i i x x x x se_bseti Bit Set Immediate -910

IM5 0 1 1 0 0 1 1 i i i i i x x x x se_btsti Bit Test Immediate -911

RR 0 0 0 0 1 1 0 0 y y y y x x x x se_cmp Compare -912

RR 0 0 0 0 1 1 1 0 y y y y x x x x se_cmph Compare Halfword -914

RR 0 0 0 0 1 1 1 1 y y y y x x x x se_cmphl
Compare Halfword 
Logical

-916

IM5 0 0 1 0 1 0 1 i i i i i x x x x se_cmpi Compare Immediate -912

RR 0 0 0 0 1 1 0 1 y y y y x x x x se_cmpl Compare Logical -918

IM5 0 0 1 0 0 0 1 i i i i i x x x x se_cmpli
Compare Logical 
Immediate

-918

R 0 0 0 0 0 0 0 0 1 1 0 1 x x x x se_extsb Extend Sign Byte -926

R 0 0 0 0 0 0 0 0 1 1 1 1 x x x x se_extsh Extend Sign Halfword -926

R 0 0 0 0 0 0 0 0 1 1 0 0 x x x x se_extzb Extend with Zeros Byte -927
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R 0 0 0 0 0 0 0 0 1 1 1 0 x x x x se_extzh
Extend with Zeros 
Halfword

-927

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 se_illegal Illegal -928

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 se_isync Instruction Synchronize -929

SD4 1 0 0 0 i i i i z z z z x x x x se_lbz Load Byte and Zero -930

SD4 1 0 1 0 i i i i z z z z x x x x se_lhz Load Halfword and Zero -932

IM7 0 1 0 0 1 i i i i i i i x x x x se_li Load Immediate -933

SD4 1 1 0 0 i i i i z z z z x x x x se_lwz Load Word and Zero -935

RR 0 0 0 0 0 0 1 1 y y y y x x x x se_mfar
Move from Alternate 
Register

-937

R 0 0 0 0 0 0 0 0 1 0 1 0 x x x x se_mfctr
Move From Count 
Register

-938

R 0 0 0 0 0 0 0 0 1 0 0 0 x x x x se_mflr
Move From Link 
Register

-939

RR 0 0 0 0 0 0 0 1 y y y y x x x x se_mr Move Register -940

RR 0 0 0 0 0 0 1 0 y y y y x x x x se_mtar
Move to Alternate 
Register

-941

R 0 0 0 0 0 0 0 0 1 0 1 1 x x x x se_mtctr Move To Count Register -942

R 0 0 0 0 0 0 0 0 1 0 0 1 x x x x se_mtlr Move To Link Register -943

RR 0 0 0 0 0 1 0 1 y y y y x x x x se_mullw Multiply Low Word -945

R 0 0 0 0 0 0 0 0 0 0 1 1 x x x x se_neg Negate -946

R 0 0 0 0 0 0 0 0 0 0 1 0 x x x x se_not NOT -947

RR 0 1 0 0 0 1 0 0 y y y y x x x x se_or OR -948

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 se_rfci
Return From Critical 
Interrupt

-949

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 se_rfdi
Return From Debug 
Interrupt

-859

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 se_rfi Return From Interrupt -950

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 se_sc System Call -954

RR 0 1 0 0 0 0 1 0 y y y y x x x x se_slw Shift Left Word -955

IM5 0 1 1 0 1 1 0 i i i i i x x x x se_slwi
Shift Left Word  
Immediate

-955

RR 0 1 0 0 0 0 0 1 y y y y x x x x se_sraw
Shift Right Algebraic 
Word

-956

IM5 0 1 1 0 1 0 1 i i i i i x x x x se_srawi
Shift Right Algebraic  
Word Immediate

-956

RR 0 1 0 0 0 0 0 0 y y y y x x x x se_srw Shift Right Word -957

IM5 0 1 1 0 1 0 0 i i i i i x x x x se_srwi
Shift Right Word 
Immediate

-957

Table 263. 16-Bit VLE instructions sorted by mnemonic (continued)

Format  16-Bit Opcodes (Inst0:15) Mnemonic Instruction Page
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Table 264 outlines the 32-bit instruction encodings. 

         

SD4 1 0 0 1 i i i i z z z z x x x x se_stb Store Byte -958

SD4 1 0 1 1 i i i i z z z z x x x x se_sth Store Halfword -959

SD4 1 1 0 1 i i i i z z z z x x x x se_stw Store Word -961

RR 0 0 0 0 0 1 1 0 y y y y x x x x se_sub Subtract -962

RR 0 0 0 0 0 1 1 1 y y y y x x x x se_subf Subtract From -963

IM5 0 0 1 0 0 1 0 i i i i i x x x x se_subi Subtract Immediate -965

IM5 0 0 1 0 0 1 1 i i i i i x x x x se_subi.
Subtract Immediate and 
Record

-962

Table 263. 16-Bit VLE instructions sorted by mnemonic (continued)

Format  16-Bit Opcodes (Inst0:15) Mnemonic Instruction Page

Table 264. 32-bit instruction encodings (by mnemonic)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)

X 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 add Add
Book 

E

X 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 1 add.
Add & record 
CR

Book 
E

D 0 0 0 1 1 1 t t t t t a a a a a i i i i i i i i i i i i i i i i e_add16i Add Immediate -897

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 0 0 1 i i i i i i i i i i i e_add2i.
Add (2 operand) 
Immediate and 
Record CR

-897

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 0 1 0 i i i i i i i i i i i e_add2is
Add (2 operand) 
Immediate 
Shifted

-897

X 0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 0 addc Add Carrying
Book 

E

X 0 1 1 1 1 1 0 0 0 0 0 0 1 0 1 0 1 addc.
Add Carrying & 
record CR

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 addco
Add Carrying & 
record OV

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 addco.
Add Carrying & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 0 adde
Add Extended 
with CA

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 0 1 0 1 0 1 adde.
Add Extended 
with CA & record 
CR

Book 
E
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X 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 addeo
Add Extended 
with CA & record 
OV

Book 
E

X 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 1 addeo.
Add Extended 
with CA & record 
OV & CR

Book 
E

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 0 0 0 F S S i i i i i i i i e_addi Add Immediate -897

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 0 0 1 F S S i i i i i i i i e_addi.
Add Immediate 
and Record

-897

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 0 1 0 F S S i i i i i i i i e_addic
Add Immediate 
Carrying

-900

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 0 1 1 F S S i i i i i i i i e_addic.
Add Immediate 
Carrying and 
Record

-900

X 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 0 0 addme
Add to Minus 
One Extended 
with CA

Book 
E

X 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 addme.

Add to Minus 
One Extended 
with CA & record 
CR

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 addmeo

Add to Minus 
One Extended 
with CA & record 
OV

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 addmeo.

Add to Minus 
One Extended 
with CA & record 
OV & CR

Book 
E

X 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 addo Add & record OV
Book 

E

X 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 addo.
Add & record OV 
& CR

Book 
E

X 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 0 addze
Add to Zero 
Extended with 
CA

Book 
E

X 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 1 addze.
Add to Zero 
Extended with 
CA & record CR

Book 
E

X 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 0 addzeo
Add to Zero 
Extended with 
CA & record OV

Book 
E

Table 264. 32-bit instruction encodings (by mnemonic) (continued)

Format

Opcode
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Intermediate
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Extended

(Inst21:31)
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 988/1176

X 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 addzeo.

Add to Zero 
Extended with 
CA & record OV 
& CR

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 and AND
Book 

E

X 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 and.
AND & record 
CR

Book 
E

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 0 0 1 i i i i i i i i i i i e_and2i.

AND (2 
operand) 
Immediate  & 
record CR

-901

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 1 0 1 i i i i i i i i i i i e_and2is.

AND (2 
operand) 
Immediate 
Shifted & record 
CR

-901

X 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 andc
AND with 
Complement

Book 
E

X 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 andc.
AND with 
Complement & 
record CR

Book 
E

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 0 0 0 F S S i i i i i i i i e_andi AND Immediate -901

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 0 0 1 F S S i i i i i i i i e_andi. 
AND Immediate 
and Record

-901

APU 0 0 0 1 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - apu
Reserved for 
APUs

BD24 0 1 1 1 1 0 0 d d d d d d d d d d d d d d d d d d d d d d d d 0 e_b Branch -903

BD15 0 1 1 1 1 0 1 0 0 0 o o i i i i d d d d d d d d d d d d d d d 0 e_bc
Branch 
Conditional

-904

BD15 0 1 1 1 1 0 1 0 0 0 o o i i i i d d d d d d d d d d d d d d d 1 e_bcl
Branch 
Conditional & 
Link

-904

BD24 0 1 1 1 1 0 0 d d d d d d d d d d d d d d d d d d d d d d d d 1 e_bl Branch & Link -903

X 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 / cmp Compare
Book 

E

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 0 1 1 i i i i i i i i i i i e_cmp16i
Compare 
Immediate

-912

X 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 / e_cmph
Compare 
Halfword

-914

Table 264. 32-bit instruction encodings (by mnemonic) (continued)
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I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 1 1 0 i i i i i i i i i i i e_cmph16i
Compare 
Halfword 
Immediate

-914

X 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 0 / e_cmphl
Compare 
Halfword Logical

-916

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 1 1 1 i i i i i i i i i i i
e_cmphl16

i

Compare  
Halfword Logical 
Immediate

-916

SCI8 0 0 0 1 1 0 0 0 0 b f a a a a a 1 0 1 0 1 F S S i i i i i i i i e_cmpi
Compare 
Immediate

-912

X 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 / cmpl
Compare 
Logical

Book 
E

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 1 0 1 i i i i i i i i i i i e_cmpl16i
Compare 
Logical 
Immediate

-918

SCI8 0 0 0 1 1 0 0 0 1 b f a a a a a 1 0 1 0 1 F S S i i i i i i i i e_cmpli
Compare 
Logical 
Immediate

-918

X 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 0 cntlzw
Count Leading 
Zeros Word

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 0 1 cntlzw.
Count Leading 
Zeros Word & 
record CR

Book 
E

XL 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 1 / e_crand
Condition 
Register AND

-920

XL 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 / e_crandc

Condition 
Register AND 
with 
Complement

-920

XL 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 1 / e_creqv
Condition 
Register 
Equivalent

-920

XL 0 1 1 1 1 1 0 0 1 1 1 0 0 0 0 1 / e_crnand
Condition 
Register NAND

Book 
E

XL 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 / e_crnor
Condition 
Register NOR

-922

XL 0 1 1 1 1 1 0 1 1 1 0 0 0 0 0 1 / e_cror
Condition 
Register OR

-923

XL 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 1 / e_crorc

Condition 
Register OR 
with 
Complement

-924

Table 264. 32-bit instruction encodings (by mnemonic) (continued)
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XL 0 1 1 1 1 1 0 0 1 1 0 0 0 0 0 1 / e_crxor
Condition 
Register XOR

-925

X 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 / dcba
Data Cache 
Block Allocate 
Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 0 / dcbf
Data Cache 
Block Flush 
Indexed

Book 
E

X 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 / dcbi
Data Cache 
Block Invalidate 
Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 0 1 1 0 1 1 0 / dcbst
Data Cache 
Block Store 
Indexed

Book 
E

X 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 0 / dcbt
Data Cache 
Block Touch 
Indexed

Book 
E

X 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 0 / dcbtst
Data Cache 
Block Touch for 
Store Indexed

Book 
E

X 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 / dcbz
Data Cache 
Block Set to 
Zero Indexed

Book 
E

X 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 0 divw Divide Word
Book 

E

X 0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 divw.
Divide Word & 
record CR

Book 
E

X 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 divwo
Divide Word & 
Record OV

Book 
E

X 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 divwo.
Divide Word & 
Record OV & 
CR

Book 
E

X 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 0 divwu
Divide Word 
Unsigned

Book 
E

X 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 divwu.
Divide Word 
Unsigned & 
record CR

Book 
E

X 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 divwuo
Divide Word 
Unsigned & 
record OV

Book 
E

Table 264. 32-bit instruction encodings (by mnemonic) (continued)
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X 0 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 divwuo.
Divide Word 
Unsigned & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 eqv Equivalent
Book 

E

X 0 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 1 eqv.
Equivalent & 
record CR

Book 
E

X 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 0 extsb
Extend Sign 
Byte

Book 
E

X 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 extsb.
Extend Sign 
Byte & record 
CR

Book 
E

X 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 extsh
Extend Sign 
Halfword

Book 
E

X 0 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 extsh.
Extend Sign 
Halfword & 
record CR

Book 
E

X 0 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 / icbi

Instruction 
Cache Block 
Invalidate 
Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 / icbt
Instruction 
Cache Block 
Touch Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - 0 1 1 1 1 / isel Integer Select
Book 

E

D 0 0 1 1 0 0 t t t t t a a a a a d d d d d d d d d d d d d d d d e_lbz
Load Byte & 
Zero

-930

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 0 0 d d d d d d d d e_lbzu
Load Byte & 
Zero with 
Update

-930

X 0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 / lbzux
Load Byte & 
Zero with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 1 0 1 0 1 1 1 / lbzx
Load Byte & 
Zero Indexed

Book 
E

D 0 0 1 1 1 0 t t t t t a a a a a d d d d d d d d d d d d d d d d e_lha
Load Halfword 
Algebraic

-931

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 1 1 d d d d d d d d e_lhau
Load Halfword 
Algebraic With 
Update

-931

Table 264. 32-bit instruction encodings (by mnemonic) (continued)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)



RM0004 VLE instruction index

 992/1176

X 0 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 / lhaux
Load Halfword 
Algebraic with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 / lhax
Load Halfword 
Algebraic 
Indexed

Book 
E

X 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 / lhbrx
Load Halfword 
Byte-Reverse 
Indexed

Book 
E

D 0 1 0 1 1 0 t t t t t a a a a a d d d d d d d d d d d d d d d d e_lhz
Load Halfword & 
Zero

-932

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 0 1 d d d d d d d d e_lhzu
Load Halfword & 
Zero with 
Update

-932

X 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 / lhzux
Load Halfword & 
Zero with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 0 1 0 0 0 1 0 1 1 1 / lhzx
Load Halfword & 
Zero Indexed

Book 
E

LI20 0 1 1 1 0 0 t t t t t i i i i i 0 i i i i i i i i i i i i i i i e_li Load Immediate -933

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 1 0 0 i i i i i i i i i i i e_lis
Load Immediate 
Shifted

-933

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 0 0 d d d d d d d d e_lmw
Load Multiple 
Word

-935

X 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 / lwarx
Load Word  &  
Reserve 
Indexed

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 / lwbrx
Load Word Byte-
Reverse Indexed

Book 
E

D 0 1 0 1 0 0 t t t t t a a a a a d d d d d d d d d d d d d d d d e_lwz
Load Word & 
Zero

-935

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 1 0 d d d d d d d d e_lwzu
Load Word & 
Zero with 
Update

-935

X 0 1 1 1 1 1 0 0 0 0 1 1 0 1 1 1 / lwzux
Load Word & 
Zero with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 / lwzx
Load Word & 
Zero Indexed

Book 
E

X 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 0 / mbar Memory Barrier
Book 

E

Table 264. 32-bit instruction encodings (by mnemonic) (continued)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)



VLE instruction index RM0004

993/1176  

XL 0 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 / e_mcrf
Move Condition 
Register Field

-936

X 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 / mcrxr

Move to 
Condition 
Register from 
XER

Book 
E

X 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 / mfapidi
Move From 
APID Indirect

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 1 0 0 1 1 / mfcr
Move From 
Condition 
Register

Book 
E

XFX 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 / mfdcr
Move From 
Device Control 
Register

Book 
E

X 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 1 / mfmsr
Move From 
Machine State 
Register

Book 
E

XFX 0 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 / mfspr
Move From 
Special Purpose 
Register

Book 
E

X 0 1 1 1 1 1 1 0 0 1 0 1 0 1 1 0 / msync
Memory 
Synchronize

Book 
E

XFX 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 / mtcrf
Move To 
Condition 
Register Fields

Book 
E

XFX 0 1 1 1 1 1 0 1 1 1 0 0 0 0 1 1 / mtdcr
Move To Device 
Control Register

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 1 0 0 1 0 / mtmsr
Move To 
Machine State 
Register

Book 
E

XFX 0 1 1 1 1 1 0 1 1 1 0 1 0 0 1 1 / mtspr
Move To Special 
Purpose 
Register

Book 
E

X 0 1 1 1 1 1 / 0 0 1 0 0 1 0 1 1 0 mulhw
Multiply High 
Word

Book 
E

X 0 1 1 1 1 1 / 0 0 1 0 0 1 0 1 1 1 mulhw.
Multiply High 
Word & record 
CR

Book 
E

X 0 1 1 1 1 1 / 0 0 0 0 0 1 0 1 1 0 mulhwu
Multiply High 
Word Unsigned

Book 
E

Table 264. 32-bit instruction encodings (by mnemonic) (continued)
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X 0 1 1 1 1 1 / 0 0 0 0 0 1 0 1 1 1 mulhwu.
Multiply High 
Word Unsigned 
& Record

Book 
E

I16A 0 1 1 1 0 0 i i i i i a a a a a 1 0 1 0 0 i i i i i i i i i i i e_mull2i

Multiply Low 
Word  (2 
operand) 
Immediate

-944

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 1 0 0 F S S i i i i i i i i e_mulli
Multiply Low 
Immediate

-944

X 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 mullw
Multiply Low 
Word

Book 
E

X 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 mullw.
Multiply Low 
Word & record 
CR

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 mullwo
Multiply Low 
Word & record 
OV

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 0 1 0 1 1 1 mullwo.
Multiply Low 
Word & record 
OV & CR

Book 
E

X 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 0 nand NAND
Book 

E

X 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 nand.
NAND & record 
CR

Book 
E

X 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 neg Negate
Book 

E

X 0 1 1 1 1 1 0 0 0 1 1 0 1 0 0 0 1 neg.
Negate & record 
CR

Book 
E

X 0 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 0 nego
Negate & record 
OV

Book 
E

X 0 1 1 1 1 1 1 0 0 1 1 0 1 0 0 0 1 nego.
Negate & record 
OV & record CR

Book 
E

X 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 nor NOR
Book 

E

X 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 1 nor.
NOR & record 
CR

Book 
E

X 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 0 or OR
Book 

E

X 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 or. OR & record CR
Book 

E

Table 264. 32-bit instruction encodings (by mnemonic) (continued)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)



VLE instruction index RM0004

995/1176  

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 0 0 0 i i i i i i i i i i i e_or2i
OR (2 operand) 
Immediate 

-948

I16L 0 1 1 1 0 0 t t t t t i i i i i 1 1 0 1 0 i i i i i i i i i i i e_or2is
OR (2 operand) 
Immediate 
Shifted

-948

X 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 orc
OR with 
Complement

Book 
E

X 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 orc.
OR with 
Complement & 
record CR

Book 
E

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 0 1 0 F S S i i i i i i i i e_ori OR Immediate -951

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 0 1 1 F S S i i i i i i i i e_ori.
OR Immediate 
and Record

-951

X 1 1 1 1 - - Reserved

X 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 e_rlw
Rotate Left 
Word 

-951

X 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 e_rlw.
Rotate Left 
Word & record 
CR

-951

X 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 e_rlwi
Rotate Left 
Word Immediate

-952

X 0 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 1 e_rlwi.
Rotate Left 
Word Immediate 
& record CR

-952

RLWI 0 1 1 1 0 1 s s s s s a a a a a h h h h h b b b b b e e e e e 0 e_rlwimi
Rotate Left 
Word Immed 
then Mask Insert

-953

RLWI 0 1 1 1 0 1 s s s s s a a a a a h h h h h b b b b b e e e e e 1 e_rlwinm

Rotate Left 
Word Immed 
then AND with 
Mask

-955

X 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 slw Shift Left Word
Book 

E

X 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 slw.
Shift Left Word 
& record CR

Book 
E

X 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 e_slwi
Shift Left Word 
Immediate

-935

X 0 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 1 e_slwi.
Shift Left Word 
Immediate & 
record CR

-935
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X 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 sraw
Shift Right 
Algebraic Word

Book 
E

X 0 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 1 sraw.
Shift Right 
Algebraic Word 
& record CR

Book 
E

X 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 srawi
Shift Right 
Algebraic Word 
Immediate

Book 
E

X 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 srawi.

Shift Right 
Algebraic Word 
Immediate & 
record CR

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 srw Shift Right Word
Book 

E

X 0 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 srw.
Shift Right Word 
& record CR

Book 
E

X 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 e_srwi
Shift Right Word 
Immediate

-957

X 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 e_srwi.
Shift Right Word 
Immediate & 
record CR

-957

D 0 0 1 1 0 1 t t t t t a a a a a d d d d d d d d d d d d d d d d e_stb Store Byte -958

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 0 0 d d d d d d d d e_stbu
Store Byte with 
Update

-958

X 0 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 / stbux
Store Byte with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 / stbx
Store Byte 
Indexed

Book 
E

D 0 1 0 1 1 1 t t t t t a a a a a d d d d d d d d d d d d d d d d e_sth Store Halfword -959

X 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 / sthbrx
Store Halfword 
Byte-Reverse 
Indexed

Book 
E

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 0 1 d d d d d d d d e_sthu
Store Halfword 
with Update

-959

X 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 / sthux
Store Halfword 
with Update 
Indexed

Book 
E

X 0 1 1 1 1 1 0 1 1 0 0 1 0 1 1 1 / sthx
Store Halfword 
Indexed

Book 
E

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 0 1 d d d d d d d d e_stmw
Store Multiple 
Word

-960
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X 0 1 1 1 1 1 1 0 1 1 0 1 0 1 0 1 / stswi
Store String 
Word Immediate

Book 
E

X 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 / stswx
Store String 
Word Indexed

Book 
E

D 0 1 0 1 0 1 t t t t t a a a a a d d d d d d d d d d d d d d d d e_stw Store Word -961

X 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 0 / stwbrx
Store Word 
Byte-Reverse 
Indexed

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 stwcx.

Store Word 
Conditional 
Indexed & 
record CR

Book 
E

D8 0 0 0 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 1 0 d d d d d d d d e_stwu
Store Word with 
Update

-961

X 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1 1 / stwux
Store Word with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 1 / stwx
Store Word 
Indexed

Book 
E

X 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 subf Subtract From
Book 

E

X 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 1 subf.
Subtract From & 
record CR

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 subfc
Subtract From 
Carrying

Book 
E

X 0 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 subfc.
Subtract From 
Carrying & 
record CR

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 subfco
Subtract From 
Carrying & 
record OV

Book 
E

X 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 1 subfco.
Subtract From 
Carrying & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 0 subfe
Subtract From 
Extended with 
CA

Book 
E

X 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 subfe.
Subtract From 
Extended with 
CA & record CR

Book 
E
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X 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 subfeo
Subtract From 
Extended with 
CA & record OV

Book 
E

X 0 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 subfeo.

Subtract From 
Extended with 
CA & record OV 
& CR

Book 
E

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 1 1 0 F S S i i i i i i i i e_subfic
Subtract from 
Immediate 
Carrying

-964

SCI8 0 0 0 1 1 0 t t t t t a a a a a 1 0 1 1 1 F S S i i i i i i i i e_subfic. 
Subtract from 
Immediate and 
Record

-964

X 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 0 subfme

Subtract From 
Minus One 
Extended with 
CA

Book 
E

X 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 1 subfme.

Subtract From 
Minus One 
Extended with 
CA & record CR

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 0 subfmeo

Subtract From 
Minus One 
Extended with 
CA & record OV

Book 
E

X 0 1 1 1 1 1 1 0 1 1 1 0 1 0 0 0 1 subfmeo.

Subtract From 
Minus One 
Extended with 
CA & record OV 
& CR

Book 
E

X 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 subfo
Subtract From & 
record OV

Book 
E

X 0 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 1 subfo.
Subtract From & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 0 subfze
Subtract From 
Zero Extended 
with CA

Book 
E

X 0 1 1 1 1 1 0 0 1 1 0 0 1 0 0 0 1 subfze.

Subtract From 
Zero Extended 
with CA & record 
CR

Book 
E

Table 264. 32-bit instruction encodings (by mnemonic) (continued)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)
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X 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 0 subfzeo

Subtract From 
Zero Extended 
with CA & record 
OV

Book 
E

X 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 0 1 subfzeo.

Subtract From 
Zero Extended 
with CA & record 
OV & CR

Book 
E

X 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 / tlbivax
TLB Invalidate 
Virtual Address 
Indexed

Book 
E

X 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 / tlbre TLB Read Entry
Book 

E

X 0 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 ? tlbsx
TLB Search 
Indexed

Book 
E

X 0 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 / tlbsync
TLB 
Synchronize

Book 
E

X 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 / tlbwe TLB Write Entry
Book 

E

X 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 / tw Trap Word
Book 

E

X 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 1 / wrtee
Write External 
Enable

Book 
E

X 0 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 / wrteei
Write External 
Enable 
Immediate

Book 
E

X 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 0 xor XOR
Book 

E

X 0 1 1 1 1 1 0 1 0 0 1 1 1 1 0 0 1 xor.
XOR & record 
CR

Book 
E

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 1 0 0 F S S i i i i i i i i e_xori XOR Immediate -966

SCI8 0 0 0 1 1 0 s s s s s a a a a a 1 1 1 0 1 F S S i i i i i i i i e_xori.
XOR Immediate 
and Record

-966

Table 264. 32-bit instruction encodings (by mnemonic) (continued)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)
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14.3 Instruction index sorted by opcode
Table 265 lists all the 16-bit Power*Embedded instructions, sorted by opcode.

         

Table 265. Instruction index sorted by opcode

Format  16-Bit Opcodes (Inst0:15) Mnemonic Instruction Page

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 se_isync Instruction Synchronize -929

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 se_sc System Call -954

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 se_blr Branch to Link Register -908

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 se_blrl
Branch to Link Register 
& Link

-908

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 se_bctr
Branch to Count 
Register

-906

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 se_bctrl
Branch to Count 
Register & Link

-906

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 se_rfi Return From Interrupt -950

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 se_rfci
Return From Critical 
Interrupt

-949

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 se_rfdi
Return From Debug 
Interrupt

-859

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 unimp

C 0 0 0 0 0 0 0 0 0 0 0 0 1 1 - - unimp

C 0 0 0 0 0 0 0 0 0 0 0 1 - - - - unimp

R 0 0 0 0 0 0 0 0 0 0 1 0 x x x x se_not NOT -947

R 0 0 0 0 0 0 0 0 0 0 1 1 x x x x unimp

R 0 0 0 0 0 0 0 0 0 1 0 0 x x x x se_lmw Load Multiple Word -934

R 0 0 0 0 0 0 0 0 0 1 0 1 x x x x se_stmw Store Multiple Word -960

R 0 0 0 0 0 0 0 0 0 1 1 - x x x x unimp

R 0 0 0 0 0 0 0 0 1 0 0 0 x x x x se_mflr
Move From Link 
Register

-939

R 0 0 0 0 0 0 0 0 1 0 0 1 x x x x se_mtlr Move To Link Register -943

R 0 0 0 0 0 0 0 0 1 0 1 0 x x x x se_mfctr
Move From Count 
Register

-938

R 0 0 0 0 0 0 0 0 1 0 1 1 x x x x se_mtctr
Move To Count 
Register

-942

R 0 0 0 0 0 0 0 0 1 1 0 0 x x x x se_extzb Extend with Zeros Byte -927

R 0 0 0 0 0 0 0 0 1 1 0 1 x x x x se_extsb Extend Sign Byte -926

R 0 0 0 0 0 0 0 0 1 1 1 0 x x x x se_extzh
Extend with Zeros 
Halfword

-927

R 0 0 0 0 0 0 0 0 1 1 1 1 x x x x se_extsh Extend Sign Halfword -926

R 0 0 0 0 0 0 0 1 - - - - x x x x unimp
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RR 0 0 0 0 0 0 1 0 y y y y x x x x se_mtar
Move to Alternate 
Register

-941

RR 0 0 0 0 0 0 1 1 y y y y x x x x se_mfar
Move from Alternate 
Register

-937

RR 0 0 0 0 0 1 0 0 y y y y x x x x se_add Add -897

RR 0 0 0 0 0 1 0 1 y y y y x x x x unimp

RR 0 0 0 0 0 1 1 0 y y y y x x x x se_sub Subtract -962

RR 0 0 0 0 0 1 1 1 y y y y x x x x se_sub. Subtract  and Record -962

RR 0 0 0 0 1 0 0 0 y y y y x x x x unimp

RR 0 0 0 0 1 0 0 1 y y y y x x x x unimp

RR 0 0 0 0 1 0 1 0 y y y y x x x x se_mullw Multiply Low Word -945

RR 0 0 0 0 1 0 1 1 y y y y x x x x se_mr Move Register -940

RR 0 0 0 0 1 1 0 0 y y y y x x x x se_cmp Compare -912

RR 0 0 0 0 1 1 0 1 y y y y x x x x se_cmpl Compare Logical -918

RR 0 0 0 0 1 1 1 0 y y y y x x x x se_xor XOR -966

RR 0 0 0 0 1 1 1 1 y y y y x x x x se_or OR -948

IM5 0 0 1 0 0 0 0 i i i i i x x x x se_addi Add Immediate -897

IM5 0 0 1 0 0 0 1 i i i i i x x x x se_cmpli
Compare Logical 
Immediate

-918

IM5 0 0 1 0 0 1 0 i i i i i x x x x se_subi Subtract Immediate -965

IM5 0 0 1 0 0 1 1 i i i i i x x x x se_subi.
Subtract Immediate 
and Record

-965

IM5 0 0 1 0 1 0 0 i i i i i x x x x se_subfic
Subtract From 
Immediate Carrying

-964

IM5 0 0 1 0 1 0 1 i i i i i x x x x se_cmpi Compare Immediate -912

IM5 0 0 1 0 1 1 0 i i i i i x x x x
se_bmask

i
Bit Mask Generate 
Immediate

-909

IM5 0 0 1 0 1 1 1 i i i i i x x x x se_andi And Immediate -901

RR 0 1 0 0 0 0 0 0 y y y y x x x x se_sraw
Shift Right Algebraic 
Word

-956

RR 0 1 0 0 0 0 0 1 y y y y x x x x se_rlw Rotate Left Word -951

RR 0 1 0 0 0 0 1 0 y y y y x x x x se_srw Shift Right Word -957

RR 0 1 0 0 0 0 1 1 y y y y x x x x se_slw Shift Left Word -955

RR 0 1 0 0 0 1 0 0 y y y y x x x x se_subf Subtract From -963

RR 0 1 0 0 0 1 0 1 y y y y x x x x se_andc AND with Complement -901

RR 0 1 0 0 0 1 1 0 y y y y x x x x se_and AND -901

RR 0 1 0 0 0 1 1 1 y y y y x x x x se_and. AND and Record -901

Table 265. Instruction index sorted by opcode (continued)

Format  16-Bit Opcodes (Inst0:15) Mnemonic Instruction Page
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IM7 0 1 0 0 1 i i i i i i i x x x x se_li Load Immediate -933

IM5 0 1 1 0 0 0 0 i i i i i x x x x se_bclri Bit Clear Immediate -905

IM5 0 1 1 0 0 0 1 i i i i i x x x x se_bgeni Bit Generate Immediate -907

IM5 0 1 1 0 0 1 0 i i i i i x x x x se_bseti Bit Set Immediate -910

IM5 0 1 1 0 0 1 1 i i i i i x x x x se_btsti Bit Test Immediate -911

IM5 0 1 1 0 1 0 0 i i i i i x x x x se_rlwi
Rotate Left Word 
Immediate

-951

IM5 0 1 1 0 1 0 1 i i i i i x x x x se_srawi
Shift Right Algebraic  
Word Immediate

-956

IM5 0 1 1 0 1 1 0 i i i i i x x x x se_slwi
Shift Left Word  
Immediate

-955

IM5 0 1 1 0 1 1 1 i i i i i x x x x se_srwi
Shift Right Word 
Immediate

-957

SD4 1 0 0 0 i i i i z z z z x x x x se_lbz Load Byte and Zero -930

SD4 1 0 0 1 i i i i z z z z x x x x se_stb Store Byte -958

SD4 1 0 1 0 i i i i z z z z x x x x se_lhz
Load Halfword and 
Zero

-932

SD4 1 0 1 1 i i i i z z z z x x x x se_sth Store Halfword -959

SD4 1 1 0 0 i i i i z z z z x x x x se_lwz Load Word and Zero -935

SD4 1 1 0 1 i i i i z z z z x x x x se_stw Store Word -961

UNIMP 1 1 1 0 - - - - - - - - - - - - unimp

B8 1 1 1 1 0 o i i d d d d d d d d se_bc Branch Conditional -904

B8 1 1 1 1 1 0 0 0 d d d d d d d d se_b Branch -903

B8 1 1 1 1 1 0 0 1 d d d d d d d d se_bl Branch and Link -903

UNIMP 1 1 1 1 1 0 1 - - - - - - - - - unimp

UNIMP 1 1 1 1 1 1 - - - - - - - - - - unimp

Table 265. Instruction index sorted by opcode (continued)

Format  16-Bit Opcodes (Inst0:15) Mnemonic Instruction Page
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Table 266 outlines the 32-bit instruction encodings.

         

Table 266. 32-bit instruction encodings

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)

APU 0 - 0 1 - - ————— ————— —————- - - - - - - - - - - apu Reserved for APUs

D14 0 0 1 1 0 0 t t t t t a a a a a 0 0 d d d d d d d d d d d d d d e_lbz Load Byte & Zero -930

D14 0 0 1 1 0 0 t t t t t a a a a a 0 1 d d d d d d d d d d d d d d e_lhz Load Halfword & Zero -932

D14 0 0 1 1 0 0 t t t t t a a a a a 1 0 d d d d d d d d d d d d d d e_lwz Load Word & Zero -936

D14 0 0 1 1 0 0 t t t t t a a a a a 1 1 d d d d d d d d d d d d d d e_ld Load Doubleword & 
Zero (reserved for 64b 
GPR)

D14 0 0 1 1 0 1 t t t t t a a a a a 0 0 d d d d d d d d d d d d d d e_stb Store Byte -958

D14 0 0 1 1 0 1 t t t t t a a a a a 0 1 d d d d d d d d d d d d d d e_sth Store Halfword -959

D14 0 0 1 1 0 1 t t t t t a a a a a 1 0 d d d d d d d d d d d d d d e_stw Store Word -961

D14 0 0 1 1 0 1 t t t t t a a a a a 1 1 d d d d d d d d d d d d d d e_std Store Doubleword  
(reserved for 64b 
GPR)

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 0 0 d d d d d d d d e_lbzu Load Byte & Zero with 
Update

-930

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 0 1 d d d d d d d d e_lhzu Load Halfword & Zero 
with Update

-932

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 1 0 d d d d d d d d e_lwzu Load Word & Zero with 
Update

-935

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 1 1 d d d d d d d d e_ldu Load Doubleword  with 
Update (reserved for 
64b GPR)

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 0 0 d d d d d d d d e_stbu Store Byte with 
Update

-958

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 0 1 d d d d d d d d e_sthu Store Halfword with 
Update

-959

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 1 0 d d d d d d d d e_stwu Store Word with 
Update

-961

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 1 1 d d d d d d d d e_stdu Store Doubleword with 
Update  (reserved for 
64b GPR)

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 0 0 d d d d d d d d e_lmw Load Multiple Word -934

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 0 1 d d d d d d d d e_stmw Store Multiple Word -960

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 1 0 d d d d d d d d e_lha Load Halfword 
Algebraic

-931

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 1 1 d d d d d d d d e_lhau Load Halfword 
Algebraic with Update

-931
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UNIMP 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 1 1 - - d d d d d d d d unimp

UNIMP 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 1 —- - - - - - - - - - - unimp

UNIMP 0 0 1 1 1 0 t t t t t a a a a a 0 0 1 ——- - - - - - - - - - - unimp

SCI8 0 0 1 1 1 0 0 0 0 0 0 a a a a a 0 1 0 b F F s s i i i i i i i i e_cmpi Compare Immediate -912

SCI8 0 0 1 1 1 0 0 0 0 0 0 a a a a a 0 1 1 b F F s s i i i i i i i i e_cmpli Compare Logical 
Immediate

-918

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 0 0 0 F s s i i i i i i i i e_addi Add Immediate -897

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 0 0 1 F s s i i i i i i i i e_addic Add Immediate 
Carrying

-900

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 0 1 0 F s s i i i i i i i i e_andi AND Immediate -901

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 0 1 1 F s s i i i i i i i i e_ori OR Immediate -951

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 1 0 0 F s s i i i i i i i i e_subfic Subtract from 
Immediate Carrying

-964

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 1 0 1 F s s i i i i i i i i unimp

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 1 1 0 F s s i i i i i i i i e_mulli Multiply Low 
Immediate

-944

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 1 1 1 F s s i i i i i i i i e_xori XOR Immediate -966

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 0 0 0 F s s i i i i i i i i e_addi. Add Immediate and 
Record

-897

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 0 0 1 F s s i i i i i i i i e_addic. Add Immediate 
Carrying and Record

-900

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 0 1 0 F s s i i i i i i i i e_andi. AND Immediate and 
Record

-901

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 0 1 1 F s s i i i i i i i i e_ori. OR Immediate and 
Record

-951

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 1 0 0 F s s i i i i i i i i e_subfic. Subtract from 
Immediate and 
Record

-964

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 1 0 1 F s s i i i i i i i i unimp

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 1 1 0 F s s i i i i i i i i e_mulli. Multiply Low 
Immediate and 
Record

-944

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 1 1 1 F s s i i i i i i i i e_xori. XOR Immediate and 
Record

-966

D 0 0 1 1 1 1 t t t t t a a a a a i i i i i i i i i i i i i i i i e_add16i Add Immediate -898

LI20 0 1 1 1 0 0 t t t t t 0 i i i i i i i i i i i i i i i i i i i i e_li Load Immediate -933

LI20 0 1 1 1 0 0 t t t t t 1 i i i i i i i i i i i i i i i i i i i i e_lis Load Immediate 
Shifted

-933

Table 266. 32-bit instruction encodings (continued)

Format

Opcode
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RLWI 0 1 1 1 0 1 s s s s s a a a a a h h h h h b b b b b e e e e e 0 e_rlwimi. Rotate Left Word 
Immed then Mask 
Insert & record CR

-952

RLWI 0 1 1 1 0 1 s s s s s a a a a a h h h h h b b b b b e e e e e 1 e_rlwinm. Rotate Left Word 
Immed then AND with 
Mask  & record CR

-953

BD24 0 1 1 1 1 0 0 d d d d d d d d d d d d d d d d d d d d d d d d 0 e_b Branch -903

BD24 0 1 1 1 1 0 0 d d d d d d d d d d d d d d d d d d d d d d d d 1 e_bl Branch & Link -903

BD15 0 1 1 1 1 0 1 0 0 0 o o i i i i d d d d d d d d d d d d d d d 0 e_bc Branch Conditional -904

BD15 0 1 1 1 1 0 1 0 0 0 o o i i i i d d d d d d d d d d d d d d d 1 e_bcl Branch Conditional & 
Link

-904

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - - - - - - 0 1 1 1 1 / isel Integer Select Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - / 0 0 0 0 0 1 0 1 1 0 mulhwu Multiply High Word 
Unsigned

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - / 0 0 0 0 0 1 0 1 1 1 mulhwu. Multiply High Word 
Unsigned & Record

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - / 0 0 1 0 0 1 0 1 1 0 mulhw Multiply High Word Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - / 0 0 1 0 0 1 0 1 1 1 mulhw. Multiply High Word & 
record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 / cmp Compare Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 0 0 1 0 0 / tw Trap Word Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 0 1 0 0 0 0 subfc Subtract From 
Carrying

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 0 1 0 0 0 1 subfc. Subtract From 
Carrying & record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 0 1 0 1 0 0 addc Add Carrying Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 0 1 0 1 0 1 addc. Add Carrying & record 
CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 1 0 0 1 1 / mfcr Move From Condition 
Register

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 1 0 1 0 0 / lwarx Load Word  &  
Reserve Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 1 0 1 1 0 / icbt Instruction Cache 
Block Touch Indexed

Book 
E

Table 266. 32-bit instruction encodings (continued)
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X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 1 0 1 1 1 / lwzx Load Word & Zero 
Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 1 1 0 0 0 0 slw Shift Left Word Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 1 1 0 0 0 1 slw. Shift Left Word & 
record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 1 1 0 1 0 0 cntlzw Count Leading Zeros 
Word

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 1 1 0 1 0 1 cntlzw. Count Leading Zeros 
Word & record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 1 1 1 0 0 0 and AND Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 0 1 1 1 0 0 1 and. AND & record CR Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 1 0 0 0 0 0 / cmpl Compare Logical Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 1 0 1 0 0 0 0 subf Subtract From Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 1 0 1 0 0 0 1 subf. Subtract From & 
record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 1 1 0 1 1 0 / dcbst Data Cache Block 
Store Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 1 1 0 1 1 1 / lwzux Load Word & Zero with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 1 1 1 1 0 0 0 andc AND with 
Complement

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 0 1 1 1 1 0 0 1 andc. AND with 
Complement & record 
CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 1 0 1 0 0 1 1 / mfmsr Move From Machine 
State Register

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 1 0 1 0 1 1 0 / dcbf Data Cache Block 
Flush Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 1 0 1 0 1 1 1 / lbzx Load Byte & Zero 
Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 1 1 0 1 0 0 0 0 neg Negate Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 1 1 0 1 0 0 0 1 neg. Negate & record CR Book 
E

Table 266. 32-bit instruction encodings (continued)
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X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 1 1 1 0 1 1 1 / lbzux Load Byte & Zero with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 1 1 1 1 1 0 0 0 nor NOR Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 0 1 1 1 1 1 0 0 1 nor. NOR & record CR Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 0 0 0 0 0 1 1 / wrtee Write External Enable Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 0 0 0 1 0 0 0 0 subfe Subtract From 
Extended with CA

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 0 0 0 1 0 0 0 1 subfe. Subtract From 
Extended with CA & 
record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 0 0 0 1 0 1 0 0 adde Add Extended with CA Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 0 0 0 1 0 1 0 1 adde. Add Extended with CA 
& record CR

Book 
E

XFX 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 0 0 1 0 0 0 0 / mtcrf Move To Condition 
Register Fields

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 0 0 1 0 0 1 0 / mtmsr Move To Machine 
State Register

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 0 0 1 0 1 1 0 1 stwcx. Store Word 
Conditional Indexed & 
record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 0 0 1 0 1 1 1 / stwx Store Word Indexed Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 0 1 0 0 0 1 1 / wrteei Write External Enable 
Immediate

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 0 1 1 0 1 1 1 / stwux Store Word with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 0 0 1 0 0 0 0 subfze Subtract From Zero 
Extended with CA

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 0 0 1 0 0 0 1 subfze. Subtract From Zero 
Extended with CA & 
record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 0 0 1 0 1 0 0 addze Add to Zero Extended 
with CA

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 0 0 1 0 1 0 1 addze. Add to Zero Extended 
with CA & record CR

Book 
E

Table 266. 32-bit instruction encodings (continued)
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X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 0 1 0 1 1 1 / stbx Store Byte Indexed Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 1 0 1 0 0 0 0 subfme Subtract From Minus 
One Extended with CA

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 1 0 1 0 0 0 1 subfme. Subtract From Minus 
One Extended with CA 
& record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 1 0 1 0 1 0 0 addme Add to Minus One 
Extended with CA

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 1 0 1 0 1 0 1 addme. Add to Minus One 
Extended with CA & 
record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 1 0 1 0 1 1 0 mullw Multiply Low Word Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 1 0 1 0 1 1 1 mullw. Multiply Low Word & 
record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 1 1 0 1 1 0 / dcbtst Data Cache Block 
Touch for Store 
Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 0 1 1 1 1 0 1 1 1 / stbux Store Byte with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 0 0 0 1 0 1 0 0 add Add Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 0 0 0 1 0 1 0 1 add. Add & record CR Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 0 0 1 0 0 1 1 / mfapidi Move From APID 
Indirect

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 0 0 1 0 1 1 0 / dcbt Data Cache Block 
Touch Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 0 0 1 0 1 1 1 / lhzx Load Halfword & Zero 
Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 0 0 1 1 1 0 0 0 eqv Equivalent Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 0 0 1 1 1 0 0 1 eqv. Equivalent & record 
CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 0 1 1 0 1 1 1 / lhzux Load Halfword & Zero 
with Update Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 0 1 1 1 1 0 0 0 xor XOR Book 
E

Table 266. 32-bit instruction encodings (continued)
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X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 0 1 1 1 1 0 0 1 xor. XOR & record CR Book 
E

XFX 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 1 0 0 0 0 1 1 / mfdcr Move From Device 
Control Register

Book 
E

XFX 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 1 0 1 0 0 1 1 / mfspr Move From Special 
Purpose Register

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 1 0 1 0 1 1 1 / lhax Load Halfword 
Algebraic Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 0 1 1 1 0 1 1 1 / lhaux Load Halfword 
Algebraic with Update 
Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 0 0 1 0 1 1 1 / sthx Store Halfword 
Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 0 0 1 1 1 0 0 0 orc OR with Complement Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 0 0 1 1 1 0 0 1 orc. OR with Complement 
& record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 0 1 1 0 1 1 1 / sthux Store Halfword with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 0 1 1 1 1 0 0 0 or OR Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 0 1 1 1 1 0 0 1 or. OR & record CR Book 
E

XFX 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 1 0 0 0 0 1 1 / mtdcr Move To Device 
Control Register

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 1 0 0 1 0 1 1 0 divwu Divide Word Unsigned Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 1 0 0 1 0 1 1 1 divwu. Divide Word Unsigned 
& record CR

Book 
E

XFX 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 1 0 1 0 0 1 1 / mtspr Move To Special 
Purpose Register

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 1 0 1 0 1 1 0 / dcbi Data Cache Block 
Invalidate Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 1 0 1 1 1 0 0 0 nand NAND Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 1 0 1 1 1 0 0 1 nand. NAND & record CR Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 1 1 0 1 0 1 1 0 divw Divide Word Book 
E
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X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 0 1 1 1 1 0 1 0 1 1 1 divw. Divide Word & record 
CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 0 0 0 0 0 0 0 / mcrxr Move to Condition 
Register from XER

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 0 0 0 1 0 0 0 0 subfco Subtract From 
Carrying & record OV

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 0 0 0 1 0 0 0 1 subfco. Subtract From 
Carrying & record OV 
& CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 0 0 0 1 0 1 0 0 addco Add Carrying & record 
OV

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 0 0 0 1 0 1 0 1 addco. Add Carrying & record 
OV & CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 0 0 1 0 1 1 0 / lwbrx Load Word Byte-
Reverse Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 0 0 1 1 0 0 0 0 srw Shift Right Word Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 0 0 1 1 0 0 0 1 srw. Shift Right Word & 
record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 0 1 0 1 0 0 0 0 subfo Subtract From & 
record OV

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 0 1 0 1 0 0 0 1 subfo. Subtract From & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 0 1 1 0 1 1 0 / tlbsync TLB Synchronize Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 1 0 1 0 1 1 0 / msync Memory Synchronize Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 1 1 0 1 0 0 0 0 nego Negate & record OV Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 0 1 1 0 1 0 0 0 1 nego. Negate & record OV & 
record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 0 0 0 1 0 0 0 0 subfeo Subtract From 
Extended with CA & 
record OV

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 0 0 0 1 0 0 0 1 subfeo. Subtract From 
Extended with CA & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 0 0 0 1 0 1 0 0 addeo Add Extended with CA 
& record OV

Book 
E
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X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 0 0 0 1 0 1 0 1 addeo. Add Extended with CA 
& record OV & CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 0 0 1 0 1 0 1 / stswx Store String Word 
Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 0 0 1 0 1 1 0 / stwbrx Store Word Byte-
Reverse Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 1 0 0 1 0 0 0 0 subfzeo Subtract From Zero 
Extended with CA & 
record OV

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 1 0 0 1 0 0 0 1 subfzeo. Subtract From Zero 
Extended with CA & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 1 0 0 1 0 1 0 0 addzeo Add to Zero Extended 
with CA & record OV

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 1 0 0 1 0 1 0 1 addzeo. Add to Zero Extended 
with CA & record OV & 
CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 1 0 1 0 1 0 1 / stswi Store String Word 
Immediate

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 1 1 0 1 0 0 0 0 subfmeo Subtract From Minus 
One Extended with CA 
& record OV

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 1 1 0 1 0 0 0 1 subfmeo. Subtract From Minus 
One Extended with CA 
& record OV & CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 1 1 0 1 0 1 0 0 addmeo Add to Minus One 
Extended with CA & 
record OV

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 1 1 0 1 0 1 0 1 addmeo. Add to Minus One 
Extended with CA & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 1 1 0 1 0 1 1 0 mullwo Multiply Low Word & 
record OV

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 1 1 0 1 0 1 1 1 mullwo. Multiply Low Word & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 0 1 1 1 1 0 1 1 0 / dcba Data Cache Block 
Allocate Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 0 0 0 0 1 0 1 0 0 addo Add & record OV Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 0 0 0 0 1 0 1 0 1 addo. Add & record OV & CR Book 
E
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X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 0 0 0 1 0 0 1 0 / tlbivax TLB Invalidate Virtual 
Address Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 0 0 0 1 0 1 1 0 / lhbrx Load Halfword Byte-
Reverse Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 0 0 0 1 1 0 0 0 0 sraw Shift Right Algebraic 
Word

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 0 0 0 1 1 0 0 0 1 sraw. Shift Right Algebraic 
Word & record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 0 0 1 1 1 0 0 0 0 srawi Shift Right Algebraic 
Word Immediate

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 0 0 1 1 1 0 0 0 1 srawi. Shift Right Algebraic 
Word Immediate & 
record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 0 1 0 1 0 1 1 0 / mbar Memory Barrier Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 0 0 1 0 0 1 0 ? tlbsx TLB Search Indexed Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 0 0 1 0 1 1 0 / sthbrx Store Halfword Byte-
Reverse Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 0 0 1 1 0 1 0 0 extsh Extend Sign Halfword Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 0 0 1 1 0 1 0 1 extsh. Extend Sign Halfword 
& record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 0 1 1 0 0 1 0 / tlbre TLB Read Entry Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 0 1 1 1 0 1 0 0 extsb Extend Sign Byte Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 0 1 1 1 0 1 0 1 extsb. Extend Sign Byte & 
record CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 1 0 0 1 0 1 1 0 divwuo Divide Word Unsigned 
& record OV

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 1 0 0 1 0 1 1 1 divwuo. Divide Word Unsigned 
& record OV & CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 1 0 1 0 0 1 0 / tlbwe TLB Write Entry Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 1 0 1 0 1 1 0 / icbi Instruction Cache 
Block Invalidate 
Indexed

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 1 1 0 1 0 1 1 0 divwo Divide Word & record 
OV

Book 
E
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X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 1 1 0 1 0 1 1 1 divwo. Divide Word & record 
OV & CR

Book 
E

X 0 1 1 1 1 1 -- - - - - - - - - - - - - - 1 1 1 1 1 1 0 1 1 0 / dcbz Data Cache Block set 
to Zero Indexed

Book 
E

Table 266. 32-bit instruction encodings (continued)
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14.4 Instruction index sorted by mnemonic
Table 267 lists all the 16-bit Power*Embedded instructions, sorted by mnemonic.

         

Table 267. Instruction index sorted by mnemonic

Form
at

 16-Bit Opcodes

(Inst0:15)
Mnemonic Instruction Page

RR 0 0 0 0 0 1 0 0 y y y y x x x x se_add Add -897

IM5 0 0 1 0 0 0 0 i i i i i x x x x se_addi Add Immediate -898

RR 0 1 0 0 0 1 1 0 y y y y x x x x se_and AND -901

RR 0 1 0 0 0 1 1 1 y y y y x x x x se_and. AND and Record -901

RR 0 1 0 0 0 1 0 1 y y y y x x x x se_andc AND with Complement -901

IM5 0 0 1 0 1 1 1 i i i i i x x x x se_andi And Immediate -901

B8 1 1 1 1 0 o i i d d d d d d d d se_bc Branch Conditional -904

IM5 0 1 1 0 0 0 0 i i i i i x x x x se_bclri Bit Clear Immediate -905

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 se_bctr
Branch to Count 
Register

-906

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 se_bctrl
Branch to Count 
Register & Link

-906

IM5 0 1 1 0 0 0 1 i i i i i x x x x se_bgeni Bit Generate Immediate -907

B8 1 1 1 1 1 0 0 1 d d d d d d d d se_bl Branch and Link -903

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 se_blr Branch to Link Register -908

C 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 se_blrl
Branch to Link Register 
& Link

-908

IM5 0 0 1 0 1 1 0 i i i i i x x x x se_bmaski
Bit Mask Generate 
Immediate

-909

B8 1 1 1 1 1 0 0 0 d d d d d d d d se_b Branch -903

IM5 0 1 1 0 0 1 0 i i i i i x x x x se_bseti Bit Set Immediate -909

IM5 0 1 1 0 0 1 1 i i i i i x x x x se_btsti Bit Test Immediate -911

RR 0 0 0 0 1 1 0 0 y y y y x x x x se_cmp Compare -912

IM5 0 0 1 0 1 0 1 i i i i i x x x x se_cmpi Compare Immediate -912

RR 0 0 0 0 1 1 0 1 y y y y x x x x se_cmpl Compare Logical -918

IM5 0 0 1 0 0 0 1 i i i i i x x x x se_cmpli
Compare Logical 
Immediate

-918

R 0 0 0 0 0 0 0 0 1 1 0 1 x x x x se_extsb Extend Sign Byte -926

R 0 0 0 0 0 0 0 0 1 1 1 1 x x x x se_extsh Extend Sign Halfword -926

R 0 0 0 0 0 0 0 0 1 1 0 0 x x x x se_extzb Extend with Zeros Byte -927

R 0 0 0 0 0 0 0 0 1 1 1 0 x x x x se_extzh
Extend with Zeros 
Halfword

-927

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 se_isync Instruction Synchronize -929
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SD4 1 0 0 0 i i i i z z z z x x x x se_lbz Load Byte and Zero -930

R 0 0 0 0 0 0 0 0 0 1 0 0 x x x x se_lmw Load Multiple Word -934

SD4 1 0 1 0 i i i i z z z z x x x x se_lhz Load Halfword and Zero -932

IM7 0 1 0 0 1 i i i i i i i x x x x se_li Load Immediate -933

SD4 1 1 0 0 i i i i z z z z x x x x se_lwz Load Word and Zero -935

RR 0 0 0 0 0 0 1 1 y y y y x x x x se_mfar
Move from Alternate 
Register

-937

R 0 0 0 0 0 0 0 0 1 0 1 0 x x x x se_mfctr
Move From Count 
Register

-938

R 0 0 0 0 0 0 0 0 1 0 0 0 x x x x se_mflr
Move From Link 
Register

-939

RR 0 0 0 0 1 0 1 1 y y y y x x x x se_mr Move Register -940

RR 0 0 0 0 0 0 1 0 y y y y x x x x se_mtar
Move to Alternate 
Register

-941

R 0 0 0 0 0 0 0 0 1 0 1 1 x x x x se_mtctr Move To Count Register -942

R 0 0 0 0 0 0 0 0 1 0 0 1 x x x x se_mtlr Move To Link Register -943

RR 0 0 0 0 1 0 1 0 y y y y x x x x se_mullw Multiply Low Word -945

R 0 0 0 0 0 0 0 0 0 0 1 0 x x x x se_not NOT -947

RR 0 0 0 0 1 1 1 1 y y y y x x x x se_or OR -948

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 se_rfci
Return From Critical 
Interrupt

-949

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 se_rfdi
Return From Debug 
Interrupt

-859

C 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 se_rfi Return From Interrupt -950

RR 0 1 0 0 0 0 0 1 y y y y x x x x se_rlw Rotate Left Word -951

IM5 0 1 1 0 1 0 0 i i i i i x x x x se_rlwi
Rotate Left Word 
Immediate

-951

C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 se_sc System Call -954

RR 0 1 0 0 0 0 1 1 y y y y x x x x se_slw Shift Left Word -955

IM5 0 1 1 0 1 1 0 i i i i i x x x x se_slwi
Shift Left Word  
Immediate

-955

RR 0 1 0 0 0 0 0 0 y y y y x x x x se_sraw
Shift Right Algebraic 
Word

-956

IM5 0 1 1 0 1 0 1 i i i i i x x x x se_srawi
Shift Right Algebraic  
Word Immediate

-956

RR 0 1 0 0 0 0 1 0 y y y y x x x x se_srw Shift Right Word -957

IM5 0 1 1 0 1 1 1 i i i i i x x x x se_srwi
Shift Right Word 
Immediate

-957

Table 267. Instruction index sorted by mnemonic (continued)

Form
at

 16-Bit Opcodes

(Inst0:15)
Mnemonic Instruction Page
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SD4 1 0 0 1 i i i i z z z z x x x x se_stb Store Byte -958

SD4 1 0 1 1 i i i i z z z z x x x x se_sth Store Halfword -959

R 0 0 0 0 0 0 0 0 0 1 0 1 x x x x se_stmw Store Multiple Word -960

SD4 1 1 0 1 i i i i z z z z x x x x se_stw Store Word -961

RR 0 0 0 0 0 1 1 0 y y y y x x x x se_sub Subtract -961

RR 0 0 0 0 0 1 1 1 y y y y x x x x se_sub. Subtract  and Record -961

RR 0 1 0 0 0 1 0 0 y y y y x x x x se_subf Subtract From -963

IM5 0 0 1 0 1 0 0 i i i i i x x x x se_subfic
Subtract From 
Immediate Carrying

-964

IM5 0 0 1 0 0 1 0 i i i i i x x x x se_subi Subtract Immediate -965

IM5 0 0 1 0 0 1 1 i i i i i x x x x se_subi.
Subtract Immediate and 
Record

-965

RR 0 0 0 0 1 1 1 0 y y y y x x x x se_xor XOR -966

Table 267. Instruction index sorted by mnemonic (continued)

Form
at

 16-Bit Opcodes

(Inst0:15)
Mnemonic Instruction Page
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Table 268 sorts 32-bit instructions by mnemonic, ignoring the e_ prefix.

         

Table 268. 32-bit instructions by mnemonic (ignoring the e_ prefix)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 0 0 0 1 0 1 0 0 add Add
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 0 0 0 1 0 1 0 1 add. Add & record CR
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 0 0 0 0 1 0 1 0 0 addo Add & record OV
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 0 0 0 0 1 0 1 0 1 addo.
Add & record OV & 
CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 0 1 0 1 0 0 addc Add Carrying
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 0 1 0 1 0 1 addc.
Add Carrying & 
record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 0 0 0 1 0 1 0 0 addco
Add Carrying & 
record OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 0 0 0 1 0 1 0 1 addco.
Add Carrying & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 0 0 0 1 0 1 0 0 adde
Add Extended with 
CA

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 0 0 0 1 0 1 0 1 adde.
Add Extended with 
CA & record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 0 0 0 1 0 1 0 0 addeo
Add Extended with 
CA & record OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 0 0 0 1 0 1 0 1 addeo.
Add Extended with 
CA & record OV & 
CR

Book 
E

D 0 0 1 1 1 1 t t t t t a a a a a i i i i i i i i i i i i i i i i e_add16i Add Immediate -898

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 0 0 0 F S S i i i i i i i i e_addi Add Immediate -898

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 0 0 0 F S S i i i i i i i i e_addi.
Add Immediate and 
Record

-898

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 0 0 1 F S S i i i i i i i i e_addic
Add Immediate 
Carrying

-900

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 0 0 1 F S S i i i i i i i i e_addic.
Add Immediate 
Carrying and 
Record

-900

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 1 0 1 0 1 0 0 addme
Add to Minus One 
Extended with CA

Book 
E
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X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 1 0 1 0 1 0 1 addme.
Add to Minus One 
Extended with CA 
& record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 1 1 0 1 0 1 0 0 addmeo
Add to Minus One 
Extended with CA 
& record OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 1 1 0 1 0 1 0 1 addmeo.
Add to Minus One 
Extended with CA 
& record OV & CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 0 0 1 0 1 0 0 addze
Add to Zero 
Extended with CA

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 0 0 1 0 1 0 1 addze.
Add to Zero 
Extended with CA 
& record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 1 0 0 1 0 1 0 0 addzeo
Add to Zero 
Extended with CA 
& record OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 1 0 0 1 0 1 0 1 addzeo.
Add to Zero 
Extended with CA 
& record OV & CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 1 1 1 0 0 0 and AND
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 1 1 1 0 0 1 and. AND & record CR
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 1 1 1 1 0 0 0 andc
AND with 
Complement

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 1 1 1 1 0 0 1 andc.
AND with 
Complement & 
record CR

Book 
E

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 0 1 0 F S S i i i i i i i i e_andi AND Immediate -901

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 0 1 0 F S S i i i i i i i i e_andi.
AND Immediate 
and Record

-901

BD24 0 1 1 1 1 0 0 d d d d d d d d d d d d d d d d d d d d d d d d 0 e_b Branch -903

BD15 0 1 1 1 1 0 1 0 0 0 o o i i i i d d d d d d d d d d d d d d d 0 e_bc Branch Conditional -904

BD15 0 1 1 1 1 0 1 0 0 0 o o i i i i d d d d d d d d d d d d d d d 1 e_bcl
Branch Conditional 
& Link

-904

BD24 0 1 1 1 1 0 0 d d d d d d d d d d d d d d d d d d d d d d d d 1 e_bl Branch & Link -903

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 0 0 0 / cmp Compare
Book 

E

Table 268. 32-bit instructions by mnemonic (ignoring the e_ prefix) (continued)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)
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SCI8 0 0 1 1 1 0 0 0 0 0 0 a a a a a 0 1 0 b F F S S i i i i i i i i e_cmpi
Compare 
Immediate

-912

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 1 0 0 0 0 0 / cmpl Compare Logical
Book 

E

SCI8 0 0 1 1 1 0 0 0 0 0 0 a a a a a 0 1 1 b F F S S i i i i i i i i e_cmpli
Compare Logical 
Immediate

-918

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 1 1 0 1 0 0 cntlzw
Count Leading 
Zeros Word

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 1 1 0 1 0 1 cntlzw.
Count Leading 
Zeros Word & 
record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 1 1 1 0 1 1 0 / dcba
Data Cache Block 
Allocate Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 1 0 1 0 1 1 0 / dcbf
Data Cache Block 
Flush Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 1 0 1 0 1 1 0 / dcbi
Data Cache Block 
Invalidate Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 1 1 0 1 1 0 / dcbst
Data Cache Block 
Store Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 1 1 0 1 1 0 / dcbtst
Data Cache Block 
Touch for Store 
Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 0 0 1 0 1 1 0 / dcbt
Data Cache Block 
Touch Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 1 1 1 0 1 1 0 / dcbz
Data Cache Block 
set to Zero Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 1 1 0 1 0 1 1 0 divw Divide Word
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 1 1 0 1 0 1 1 1 divw.
Divide Word & 
record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 1 1 0 1 0 1 1 0 divwo
Divide Word & 
record OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 1 1 0 1 0 1 1 1 divwo.
Divide Word & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 1 0 0 1 0 1 1 0 divwu
Divide Word 
Unsigned

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 1 0 0 1 0 1 1 1 divwu.
Divide Word 
Unsigned & record 
CR

Book 
E

Table 268. 32-bit instructions by mnemonic (ignoring the e_ prefix) (continued)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)
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X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 1 0 0 1 0 1 1 0 divwuo
Divide Word 
Unsigned & record 
OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 1 0 0 1 0 1 1 1 divwuo.
Divide Word 
Unsigned & record 
OV & CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 0 0 1 1 1 0 0 0 eqv Equivalent
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 0 0 1 1 1 0 0 1 eqv.
Equivalent & 
record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 0 1 1 1 0 1 0 0 extsb Extend Sign Byte
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 0 1 1 1 0 1 0 1 extsb.
Extend Sign Byte & 
record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 0 0 1 1 0 1 0 0 extsh
Extend Sign 
Halfword

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 0 0 1 1 0 1 0 1 extsh.
Extend Sign 
Halfword & record 
CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 1 0 1 0 1 1 0 / icbi
Instruction Cache 
Block Invalidate 
Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 1 0 1 1 0 / icbt
Instruction Cache 
Block Touch 
Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - - - - - - 0 1 1 1 1 / isel Integer Select
Book 

E

D14 0 0 1 1 0 0 t t t t t a a a a a 0 0 d d d d d d d d d d d d d d e_lbz Load Byte & Zero -930

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 1 0 1 0 1 1 1 / lbzx
Load Byte & Zero 
Indexed

Book 
E

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 0 0 d d d d d d d d e_lbzu
Load Byte & Zero 
with Update

-930

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 1 1 1 0 1 1 1 / lbzux
Load Byte & Zero 
with Update 
Indexed

Book 
E

D14 0 0 1 1 0 0 t t t t t a a a a a 1 1 d d d d d d d d d d d d d d e_ld
Load Doubleword 
& Zero (reserved 
for 64b GPR)

Table 268. 32-bit instructions by mnemonic (ignoring the e_ prefix) (continued)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)
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D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 1 1 d d d d d d d d e_ldu

Load Doubleword  
with Update 
(reserved for 64b 
GPR)

D14 0 0 1 1 0 0 t t t t t a a a a a 0 1 d d d d d d d d d d d d d d e_lhz
Load Halfword & 
Zero

-932

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 0 1 d d d d d d d d e_lhzu
Load Halfword & 
Zero with Update

-932

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 0 0 1 0 1 1 1 / lhzx
Load Halfword & 
Zero Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 0 1 1 0 1 1 1 / lhzux
Load Halfword & 
Zero with Update 
Indexed

Book 
E

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 1 0 d d d d d d d d e_lha
Load Halfword 
Algebraic

-931

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 1 0 1 0 1 1 1 / lhax
Load Halfword 
Algebraic Indexed

Book 
E

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 1 1 d d d d d d d d e_lhau
Load Halfword 
Algebraic with 
Update

-931

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 1 1 1 0 1 1 1 / lhaux
Load Halfword 
Algebraic with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 0 0 0 1 0 1 1 0 / lhbrx
Load Halfword 
Byte-Reverse 
Indexed

Book 
E

LI20 0 1 1 1 0 0 t t t t t 0 i i i i i i i i i i i i i i i i i i i i e_li Load Immediate -933

LI20 0 1 1 1 0 0 t t t t t 1 i i i i i i i i i i i i i i i i i i i i e_lis
Load Immediate 
Shifted

-933

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 0 0 d d d d d d d d e_lmw Load Multiple Word -934

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 1 0 1 0 0 / lwarx
Load Word  &  
Reserve Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 0 0 1 0 1 1 0 / lwbrx
Load Word Byte-
Reverse Indexed

Book 
E

D14 0 0 1 1 0 0 t t t t t a a a a a 1 0 d d d d d d d d d d d d d d e_lwz Load Word & Zero -936

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 0 1 0 d d d d d d d d e_lwzu
Load Word & Zero 
with Update

-935

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 1 0 1 1 1 / lwzx
Load Word & Zero 
Indexed

Book 
E

Table 268. 32-bit instructions by mnemonic (ignoring the e_ prefix) (continued)

Format

Opcode

Mnemonic Instruction PagePrimary
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Intermediate
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Extended
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X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 1 1 0 1 1 1 / lwzux
Load Word & Zero 
with Update 
Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 0 1 0 1 0 1 1 0 / mbar Memory Barrier
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 0 0 1 0 0 1 1 / mfapidi
Move From APID 
Indirect

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 1 0 0 1 1 / mfcr
Move From 
Condition Register

Book 
E

XFX 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 1 0 0 0 0 1 1 / mfdcr
Move From Device 
Control Register

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 1 0 1 0 0 1 1 / mfmsr
Move From 
Machine State 
Register

Book 
E

XFX 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 1 0 1 0 0 1 1 / mfspr
Move From Special 
Purpose Register

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 1 0 1 0 1 1 0 / msync
Memory 
Synchronize

Book 
E

XFX 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 0 0 1 0 0 0 0 / mtcrf
Move To Condition 
Register Fields

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 0 0 0 0 0 0 0 / mcrxr
Move to Condition 
Register from XER

Book 
E

XFX 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 1 0 0 0 0 1 1 / mtdcr
Move To Device 
Control Register

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 0 0 1 0 0 1 0 / mtmsr
Move To Machine 
State Register

Book 
E

XFX 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 1 0 1 0 0 1 1 / mtspr
Move To Special 
Purpose Register

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - / 0 0 1 0 0 1 0 1 1 0 mulhw Multiply High Word
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - / 0 0 1 0 0 1 0 1 1 1 mulhw.
Multiply High Word 
& record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - / 0 0 0 0 0 1 0 1 1 0 mulhwu
Multiply High Word 
Unsigned

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - / 0 0 0 0 0 1 0 1 1 1 mulhwu.
Multiply High Word 
Unsigned & record 
CR

Book 
E

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 1 1 0 F S S i i i i i i i i e_mulli
Multiply Low 
Immediate

-944

Table 268. 32-bit instructions by mnemonic (ignoring the e_ prefix) (continued)
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SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 1 1 0 F S S i i i i i i i i e_mulli.
Multiply Low 
Immediate and 
Record

-944

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 1 0 1 0 1 1 0 mullw Multiply Low Word
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 1 0 1 0 1 1 1 mullw.
Multiply Low Word 
& record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 1 1 0 1 0 1 1 0 mullwo
Multiply Low Word 
& record OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 1 1 0 1 0 1 1 1 mullwo.
Multiply Low Word 
& record OV & CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 1 0 1 1 1 0 0 0 nand NAND
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 1 0 1 1 1 0 0 1 nand. NAND & record CR
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 1 1 0 1 0 0 0 0 neg Negate
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 1 1 0 1 0 0 0 1 neg.
Negate & record 
CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 1 1 0 1 0 0 0 0 nego
Negate & record 
OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 1 1 0 1 0 0 0 1 nego.
Negate & record 
OV & record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 1 1 1 1 1 0 0 0 nor NOR
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 1 1 1 1 1 0 0 1 nor. NOR & record CR
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 0 1 1 1 1 0 0 0 or OR
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 0 1 1 1 1 0 0 1 or. OR & record CR
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 0 0 1 1 1 0 0 0 orc
OR with 
Complement

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 0 0 1 1 1 0 0 1 orc.
OR with 
Complement & 
record CR

Book 
E

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 0 1 1 F S S i i i i i i i i e_ori OR Immediate -948

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 0 1 1 F S S i i i i i i i i e_ori.
OR Immediate and 
Record

-951

Table 268. 32-bit instructions by mnemonic (ignoring the e_ prefix) (continued)
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0 1 1 1 0 1 S S S S S a a a a a h h h h h b b b b b e e e e e 1 e_rlwinm.

Rotate Left Word 
Immed then AND 
with Mask  & 
record CR

-953

0 1 1 1 0 1 S S S S S a a a a a h h h h h b b b b b e e e e e 0 e_rlwimi.
Rotate Left Word 
Immed then Mask 
Insert & record CR

-952

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 1 1 0 0 0 0 slw Shift Left Word
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 1 1 0 0 0 1 slw.
Shift Left Word & 
record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 0 0 0 1 1 0 0 0 0 sraw
Shift Right 
Algebraic Word

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 0 0 0 1 1 0 0 0 1 sraw.
Shift Right 
Algebraic Word & 
record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 0 0 1 1 1 0 0 0 0 srawi
Shift Right 
Algebraic Word 
Immediate

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 0 0 1 1 1 0 0 0 1 srawi.

Shift Right 
Algebraic Word 
Immediate & 
record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 0 0 1 1 0 0 0 0 srw Shift Right Word
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 0 0 1 1 0 0 0 1 srw.
Shift Right Word & 
record CR

Book 
E

D14 0 0 1 1 0 1 t t t t t a a a a a 0 0 d d d d d d d d d d d d d d e_stb Store Byte -958

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 0 1 0 1 1 1 / stbx Store Byte Indexed
Book 

E

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 0 0 d d d d d d d d e_stbu
Store Byte with 
Update

-958

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 1 1 0 1 1 1 / stbux
Store Byte with 
Update Indexed

-958

D14 0 0 1 1 0 1 t t t t t a a a a a 1 1 d d d d d d d d d d d d d d e_std
Store Doubleword  
(reserved for 64b 
GPR)

Book 
E

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 1 1 d d d d d d d d e_stdu

Store Doubleword 
with Update  
(reserved for 64b 
GPR)

Table 268. 32-bit instructions by mnemonic (ignoring the e_ prefix) (continued)

Format
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Mnemonic Instruction PagePrimary
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D14 0 0 1 1 0 1 t t t t t a a a a a 0 1 d d d d d d d d d d d d d d e_sth Store Halfword -959

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 0 0 1 0 1 1 0 / sthbrx
Store Halfword 
Byte-Reverse 
Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 0 0 1 0 1 1 1 / sthx
Store Halfword 
Indexed

Book 
E

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 0 1 d d d d d d d d e_sthu
Store Halfword with 
Update

-959

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 1 0 1 1 0 1 1 1 / sthux
Store Halfword with 
Update Indexed

Book 
E

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 1 0 0 1 d d d d d d d d e_stmw
Store Multiple 
Word

Book 
E

D14 0 0 1 1 0 1 t t t t t a a a a a 1 0 d d d d d d d d d d d d d d e_stw Store Word -961

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 0 0 1 0 1 1 0 / stwbrx
Store Word Byte-
Reverse Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 0 0 1 0 1 1 0 1 stwcx.

Store Word 
Conditional 
Indexed & record 
CR

Book 
E

D8 0 0 1 1 1 0 t t t t t a a a a a 0 0 0 0 0 1 1 0 d d d d d d d d e_stwu
Store Word with 
Update

-961

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 0 1 1 0 1 1 1 / stwux
Store Word with 
Update Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 0 0 1 0 1 1 1 / stwx
Store Word 
Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 1 0 1 0 0 0 0 subf Subtract From
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 1 0 1 0 0 0 1 subf.
Subtract From & 
record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 0 1 0 0 0 0 subfc
Subtract From 
Carrying

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 0 1 0 0 0 1 subfc.
Subtract From 
Carrying & record 
CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 0 0 0 1 0 0 0 0 subfco
Subtract From 
Carrying & record 
OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 0 0 0 1 0 0 0 1 subfco.
Subtract From 
Carrying & record 
OV & CR

Book 
E
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X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 0 1 0 1 0 0 0 0 subfo
Subtract From & 
record OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 0 1 0 1 0 0 0 1 subfo.
Subtract From & 
record OV & CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 0 0 0 1 0 0 0 0 subfe
Subtract From 
Extended with CA

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 0 0 0 1 0 0 0 1 subfe.
Subtract From 
Extended with CA 
& record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 0 0 0 1 0 0 0 0 subfeo
Subtract From 
Extended with CA 
& record OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 0 0 0 1 0 0 0 1 subfeo.
Subtract From 
Extended with CA 
& record OV & CR

Book 
E

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 1 0 0 F S S i i i i i i i i e_subfic
Subtract from 
Immediate 
Carrying

-964

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 1 0 0 F S S i i i i i i i i e_subfic.

Subtract from 
Immediate 
Carrying and 
Record

-964

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 1 0 1 0 0 0 0 subfme
Subtract From 
Minus One 
Extended with CA

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 1 0 1 0 0 0 1 subfme.

Subtract From 
Minus One 
Extended with CA 
& record CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 1 1 0 1 0 0 0 0 subfmeo

Subtract From 
Minus One 
Extended with CA 
& record OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 1 1 0 1 0 0 0 1 subfmeo.

Subtract From 
Minus One 
Extended with CA 
& record OV & CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 0 0 1 0 0 0 0 subfze
Subtract From Zero 
Extended with CA

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 1 0 0 1 0 0 0 1 subfze.
Subtract From Zero 
Extended with CA 
& record CR

Book 
E

Table 268. 32-bit instructions by mnemonic (ignoring the e_ prefix) (continued)

Format

Opcode

Mnemonic Instruction PagePrimary

(Inst0:5)

Intermediate

(Inst6:20)

Extended

(Inst21:31)



VLE instruction index RM0004

1027/1176  

         

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 1 0 0 1 0 0 0 0 subfzeo
Subtract From Zero 
Extended with CA 
& record OV

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 1 1 0 0 1 0 0 0 1 subfzeo.
Subtract From Zero 
Extended with CA 
& record OV & CR

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 0 0 0 1 0 0 1 0 / tlbivax
TLB Invalidate 
Virtual Address 
Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 0 1 1 0 0 1 0 / tlbre TLB Read Entry
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 0 0 1 0 0 1 0 ? tlbsx
TLB Search 
Indexed

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 0 0 0 1 1 0 1 1 0 / tlbsync TLB Synchronize
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 1 1 1 1 0 1 0 0 1 0 / tlbwe TLB Write Entry
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 1 0 0 / tw Trap Word
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 0 0 0 0 0 1 1 / wrtee
Write External 
Enable

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 0 1 0 1 0 0 0 1 1 / wrteei
Write External 
Enable Immediate

Book 
E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 0 1 1 1 1 0 0 0 xor XOR
Book 

E

X 0 1 1 1 1 1 - - - - - - - - - - - - - - - 0 1 0 0 1 1 1 1 0 0 1 xor. XOR & record CR
Book 

E

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 0 1 1 1 F S S i i i i i i i i e_xori XOR Immediate -966

SCI8 0 0 1 1 1 0 t t t t t a a a a a 1 1 1 1 1 F S S i i i i i i i i e_xori.
XOR Immediate 
and Record

-966

Table 268. 32-bit instructions by mnemonic (ignoring the e_ prefix) (continued)
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Appendix A  Instruction set listings

This appendix lists the instructions by both mnemonic and opcode, and includes a quick 
reference table with general information, such as the architecture level, privilege level, form, 
and whether the instruction is optional. The tables in the chapter are organized as follows:

● Chapter A.1: Instructions sorted by mnemonic (decimal and hexadecimal)”

● Chapter A.2: Instructions sorted by primary opcodes (decimal and hexadecimal)”

● Chapter A.3: Instructions sorted by mnemonic (binary)”

● Chapter A.4: Instructions sorted by opcode (binary)”

● Chapter A.5: Instruction set legend”

Note that this appendix does not include instructions defined by the VLE extension. These 
instructions are listed in Chapter 14: VLE instruction index on page 862.

A.1 Instructions sorted by mnemonic (decimal and hexadecimal)
Table 269 lists instructions in alphabetical order by mnemonic, showing decimal and 
hexadecimal values of the primary opcode (0–5) and binary values of the secondary opcode 
(21–31). This list also includes simplified mnemonics and their equivalents using standard 
mnemonics. 

         

Table 269. Instructions sorted by mnemonic (decimal and hexadecimal)

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

add 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 1 0 0 X add

add. 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 1 0 1 X add.

addc 31 (0x1F) rD rA rB 0 0 0 0 0 0 1 0 1 0 0 X addc

addc. 31 (0x1F) rD rA rB 0 0 0 0 0 0 1 0 1 0 1 X addc.

addco 31 (0x1F) rD rA rB 1 0 0 0 0 0 1 0 1 0 0 X addco

addco. 31 (0x1F) rD rA rB 1 0 0 0 0 0 1 0 1 0 1 X addco.

adde 31 (0x1F) rD rA rB 0 0 1 0 0 0 1 0 1 0 0 X adde

adde. 31 (0x1F) rD rA rB 0 0 1 0 0 0 1 0 1 0 1 X adde.

addeo 31 (0x1F) rD rA rB 1 0 1 0 0 0 1 0 1 0 0 X addeo

addeo. 31 (0x1F) rD rA rB 1 0 1 0 0 0 1 0 1 0 1 X addeo.

addi 14 (0x0E) rD rA SIMM D addi

addic 12 (0x0C) rD rA SIMM D addic

addic. 13 (0x0D) rD rA SIMM D addic.

addis 15 (0x0F) rD rA SIMM D addis

addme 31 (0x1F) rD rA /// 0 0 1 1 1 0 1 0 1 0 0 X addme

addme. 31 (0x1F) rD rA /// 0 0 1 1 1 0 1 0 1 0 1 X addme.

addmeo 31 (0x1F) rD rA /// 1 0 1 1 1 0 1 0 1 0 0 X addmeo

addmeo. 31 (0x1F) rD rA /// 1 0 1 1 1 0 1 0 1 0 1 X addmeo.

addo 31 (0x1F) rD rA rB 1 1 0 0 0 0 1 0 1 0 0 X addo

addo. 31 (0x1F) rD rA rB 1 1 0 0 0 0 1 0 1 0 1 X addo.
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addze 31 (0x1F) rD rA /// 0 0 1 1 0 0 1 0 1 0 0 X addze

addze. 31 (0x1F) rD rA /// 0 0 1 1 0 0 1 0 1 0 1 X addze.

addzeo 31 (0x1F) rD rA /// 1 0 1 1 0 0 1 0 1 0 0 X addzeo

addzeo. 31 (0x1F) rD rA /// 1 0 1 1 0 0 1 0 1 0 1 X addzeo.

and 31 (0x1F) rS rA rB 0 0 0 0 0 1 1 1 0 0 0 X and

and. 31 (0x1F) rS rA rB 0 0 0 0 0 1 1 1 0 0 1 X and.

andc 31 (0x1F) rS rA rB 0 0 0 0 1 1 1 1 0 0 0 X andc

andc. 31 (0x1F) rS rA rB 0 0 0 0 1 1 1 1 0 0 1 X andc.

andi. 28 (0x1C) rS rA UIMM D andi.

andis. 29 (0x1D) rS rA UIMM D andis.

b 18 (0x12) LI 0 0 I b

ba 18 (0x12) LI 1 0 I ba

bc 16 (0x10) BO BI BD 0 0 B bc

bca 16 (0x10) BO BI BD 1 0 B bca

bcctr 19 (0x13) BO BI /// 1 0 0 0 0 1 0 0 0 0 0 XL bcctr

bcctrl 19 (0x13) BO BI /// 1 0 0 0 0 1 0 0 0 0 1 XL bcctrl

bcl 16 (0x10) BO BI BD 0 1 B bcl

bcla 16 (0x10) BO BI BD 1 1 B bcla

bclr 19 (0x13) BO BI /// 0 0 0 0 0 1 0 0 0 0 0 XL bclr

bclrl 19 (0x13) BO BI /// 0 0 0 0 0 1 0 0 0 0 1 XL bclrl

bctr bctr(1) equivalent to bcctr 20,0 bctr

bctrl bctrl 1 equivalent to bcctrl 20,0 bctrl

bdnz bdnz target 1 equivalent to bc 16,0,target bdnz

bdnza bdnza target 1 equivalent to bca 16,0,target bdnza

bdnzf bdnzf BI,target equivalent to bc 0,BI,target bdnzf

bdnzfa bdnzfa BI,target equivalent to bca 0,BI,target bdnzfa

bdnzfl bdnzfl BI,target  equivalent to bcl 0,BI,target bdnzfl

bdnzfla bdnzfla BI,target equivalent to bcla 0,BI,target bdnzfla

bdnzflr bdnzflr BI equivalent to bclr 0,BI bdnzflr

bdnzflrl bdnzflrl BI equivalent to bclrl 0,BI bdnzflrl

bdnzl bdnzl target 1 equivalent to bcl 16,0,target bdnzl

bdnzla bdnzla target 1 equivalent to bcla 16,0,target bdnzla

bdnzlr bdnzlr BI equivalent to bclr 16,BI bdnzlr

bdnzlrl bdnzlrl 1 equivalent to bclrl 16,0 bdnzlrl

bdnzt bdnzt BI,target equivalent to bc 8,BI,target bdnzt

bdnzta bdnzta BI,target equivalent to bca 8,BI,target bdnzta

bdnztl bdnztl BI,target equivalent to bcl 8,0,target bdnztl

bdnztla bdnztla BI,target equivalent to bcla 8,BI,target bdnztla

bdnztlr bdnztlr BI equivalent to bclr 8,BI bdnztlr

bdnztlr bdnztlr BI equivalent to bclr 8,BI bdnztlr

Table 269. Instructions sorted by mnemonic (decimal and hexadecimal) (continued)

Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic
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bdnztlrl bdnztlrl BI equivalent to bclrl 8,BI bdnztlrl

bdz bdz target 1 equivalent to bc 18,0,target bdz

bdza bdza target 1 equivalent to bca 18,0,target bdza

bdzf bdzf BI,target equivalent to bc 2,BI,target bdzf

bdzfa bdzfa BI,target equivalent to bca 2,BI,target bdzfa

bdzfl bdzfl BI,target equivalent to bcl 2,BI,target bdzfl

bdzfla bdzfla BI,target equivalent to bcla 2,BI,target bdzfla

bdzflr bdzflr BI equivalent to bclr 2,BI bdzflr

bdzflrl bdzflrl BI equivalent to bclrl 2,BI bdzflrl

bdzl bdzl target 1 equivalent to bcl 18,BI,target bdzl

bdzla bdzla target 1 equivalent to bcla 18,BI,target bdzla

bdzlr bdzlr 1 equivalent to bclr 18,0 bdzlr

bdzlrl bdzlrl 1 equivalent to bclrl 18,0 bdzlrl

bdzt bdzt BI,target equivalent to bc 10,BI,target bdzt

bdzta bdzta BI,target equivalent to bca 10,BI,target bdzta

bdztl bdztl BI,target equivalent to bcl 10,BI,target bdztl

bdztla bdztla BI,target equivalent to bcla 10,BI,target bdztla

bdztlrl bdztlrl BI equivalent to bclrl 10, BI bdztlrl

beq beq crS,target equivalent to bc 12,BI(2),target beq

beqa beqa crS,target equivalent to bca 12,BI2,target beqa

beqctr beqctr crS,target equivalent to bcctr 12,BI2,target beqctr

beqctrl beqctrl crS,target equivalent to bcctrl 12,BI2,target beqctrl

beql beql crS,target equivalent to bcl 12,BI2,target beql

beqla beqla crS,target equivalent to bcla 12,BI2,target beqla

beqlr beqlr crS,target equivalent to bclr 12,BI2,target beqlr

beqlrl beqlrl crS,target equivalent to bclrl 12,BI2,target beqlrl

bf bf BI,target equivalent to bc 4,BI,target bf

bfa bfa BI,target equivalent to bca 4,BI,target bfa

bfctr bfctr BI equivalent to bcctr 4,BI bfctr

bfctrl bfctrl BI equivalent to bcctrl 4, BI bfctrl

bfl bfl BI,target equivalent t bcl 4,BI,target bfl

bfla bfla BI,target equivalent to bcla 4,BI,target bfla

bflr bflr BI equivalent to bclr 4,BI bflr

bflrl bflrl BI equivalent to bclrl 4,BI bflrl

bge bge crS,target equivalent to bc 4,BI(3),target bge

bgea bgea crS,target equivalent to bca 4,BI3,target bgea

bgectr bgectr crS,target equivalent to bcctr 4,BI3,target bgectr

bgectrl bgectrl crS,target equivalent to bcctrl 4,BI3,target bgectrl

bgel bgel crS,target equivalent to bcl 4,BI3,target bgel

bgela bgela crS,target equivalent to bcla 4,BI3,target bgela

Table 269. Instructions sorted by mnemonic (decimal and hexadecimal) (continued)
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bgelr bgelr crS,target equivalent to bclr 4,BI3,target bgelr

bgelrl bgelrl crS,target equivalent to bclrl 4,BI3,target bgelrl

bgt bgt crS,target equivalent to bc 12,BI(4),target bgt

bgta bgta crS,target equivalent to bca 12,BI4,target bgta

bgtctr bgtctr crS,target equivalent to bcctr 12,BI4,target bgtctr

bgtctrl bgtctrl crS,target equivalent to bcctrl 12,BI4,target bgtctrl

bgtl bgtl crS,target equivalent to bcl 12,BI4,target bgtl

bgtla bgtla crS,target equivalent to bcla 12,BI4,target bgtla

bgtlr bgtlr crS,target equivalent to bclr 12,BI4,target bgtlr

bgtlrl bgtlrl crS,target equivalent to bclrl 12,BI4,target bgtlrl

bl 18 (0x12) LI 0 1 I bl

bla 18 (0x12) LI 1 1 I bla

ble ble crS,target equivalent to bc 4,BI4,target ble

blea blea crS,target equivalent to bca 4,BI4,target blea

blectr blectr crS,target equivalent to bcctr 4,BI4,target blectr

blectrl blectrl crS,target equivalent to bcctrl 4,BI4,target blectrl

blel blel crS,target equivalent to bcl 4,BI4,target blel

blela blela crS,target equivalent to bcla 4,BI4,target blela

blelr blelr crS,target equivalent to bclr 4,BI4,target blelr

blelrl blelrl crS,target equivalent to bclrl 4,BI4,target blelrl

blr blr 1 equivalent to bclr 20,0 blr

blrl blrl 1 equivalent to bclrl 20,0 blrl

blt blt crS,target equivalent to bc 12,BI,target blt

blta blta crS,target equivalent to bca 12,BI3,target blta

bltctr bltctr crS,target equivalent to bcctr 12,BI3,target bltctr

bltctrl bltctrl crS,target equivalent to bcctrl 12,BI3,target bltctrl

bltl bltl crS,target equivalent to bcl 12,BI3,target bltl

bltla bltla crS,target equivalent to bcla 12,BI3,target bltla

bltlr bltlr crS,target equivalent to bclr 12,BI3,target bltlr

bltlrl bltlrl crS,target equivalent to bclrl 12,BI3,target bltlrl

bne bne crS,target equivalent to bc 4,BI3,target bne

bnea bnea crS,target equivalent to bca 4,BI3,target bnea

bnectr bnectr crS,target equivalent to bcctr 4,BI3,target bnectr

bnectrl bnectrl crS,target equivalent to bcctrl 4,BI3,target bnectrl

bnel bnel crS,target equivalent to bcl 4,BI3,target bnel

bnela bnela crS,target equivalent to bcla 4,BI3,target bnela

bnelr bnelr crS,target equivalent to bclr 4,BI3,target bnelr

bnelrl bnelrl crS,target equivalent to bclrl 4,BI3,target bnelrl

bng bng crS,target equivalent to bc 4,BI4,target bng

bnga bnga crS,target equivalent to bca 4,BI4,target bnga

Table 269. Instructions sorted by mnemonic (decimal and hexadecimal) (continued)
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bngctr bngctr crS,target equivalent to bcctr 4,BI4,target bngctr

bngctrl bngctrl crS,target equivalent to bcctrl 4,BI4,target bngctrl

bngl bngl crS,target equivalent to bcl 4,BI4,target bngl

bngla bngla crS,target equivalent to bcla 4,BI4,target bngla

bnglr bnglr crS,target equivalent to bclr 4,BI4,target bnglr

bnglrl bnglrl crS,target equivalent to bclrl 4,BI4,target bnglrl

bnl bnl crS,target equivalent to bc 4,BI3,target bnl

bnla bnla crS,target equivalent to bca 4,BI3,target bnla

bnlctr bnlctr crS,target equivalent to bcctr 4,BI3,target bnlctr

bnlctrl bnlctrl crS,target equivalent to bcctrl 4,BI3,target bnlctrl

bnll bnll crS,target equivalent to bcl 4,BI3,target bnll

bnlla bnlla crS,target equivalent to bcla 4,BI3,target bnlla

bnllr bnllr crS,target equivalent to bclr 4,BI3,target bnllr

bnllrl bnllrl crS,target equivalent to bclrl 4,BI3,target bnllrl

bns bns crS,target equivalent to bc 4,BI(5),target bns

bnsa bnsa crS,target equivalent to bca 4,BI5,target bnsa

bnsctr bnsctr crS,target equivalent to bcctr 4,BI5,target bnsctr

bnsctrl bnsctrl crS,target equivalent to bcctrl 4,BI5,target bnsctrl

bnsl bnsl crS,target equivalent to bcl 4,BI5,target bnsl

bnsla bnsla crS,target equivalent to bcla 4,BI5,target bnsla

bnslr bnslr crS,target equivalent to bclr 4,BI5,target bnslr

bnslrl bnslrl crS,target equivalent to bclrl 4,BI5,target bnslrl

bnu bnu crS,target equivalent to bc 4,BI5,target bnu

bnua bnua crS,target equivalent to bca 4,BI5,target bnua

bnuctr bnuctr crS,target equivalent to bcctr 4,BI5,target bnuctr

bnuctrl bnuctrl crS,target equivalent to bcctrl 4,BI5,target bnuctrl

bnul bnul crS,target equivalent to bcl 4,BI5,target bnul

bnula bnula crS,target equivalent to bcla 4,BI5,target bnula

bnulr bnulr crS,target equivalent to bclr 4,BI5,target bnulr

bnulrl bnulrl crS,target equivalent to bclrl 4,BI5,target bnulrl

brinc 04 rD rA rB 0 1 0 0 0 0 0 1 1 1 1 EVX brinc

bso bso crS,target equivalent to bc 12,BI5,target bso

bsoa bsoa crS,target equivalent to bca 12,BI5,target bsoa

bsoctr bsoctr crS,target equivalent to bcctr 12,BI5,target bsoctr

bsoctrl bsoctrl crS,target equivalent to bcctrl 12,BI5,target bsoctrl

bsol bsol crS,target equivalent to bcl 12,BI5,target bsol

bsola bsola crS,target equivalent to bcla 12,BI5,target bsola

bsolr bsolr crS,target equivalent to bclr 12,BI5,target bsolr

bsolrl bsolrl crS,target equivalent to bclrl 12,BI5,target bsolrl

bt bt BI,target equivalent to bc 12,BI,target bt
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bta bta BI,target equivalent to bca 12,BI,target bta

btctr btctr BI equivalent to bcctr 12,BI btctr

btctrl btctrl BI equivalent to bcctrl 12,BI btctrl

btl btl BI,target equivalent to bcl 12,BI,target btl

btla btla BI,target equivalent to bcla 12,BI,target btla

btlr btlr BI equivalent to bclr 12,BI btlr

btlrl btlrl BI equivalent to bclrl 12,BI btlrl

bun bun crS,target equivalent to bc 12,BI5,target bun

buna buna crS,target equivalent to bca 12,BI5,target buna

bunctr bunctr crS,target equivalent to bcctr 12,BI5,target bunctr

bunctrl bunctrl crS,target equivalent to bcctrl 12,BI5,target bunctrl

bunl bunl crS,target equivalent to bcl 12,BI5,target bunl

bunla bunla crS,target equivalent to bcla 12,BI5,target bunla

bunlr bunlr crS,target equivalent to bclr 12,BI5,target bunlr

bunlrl bunlrl crS,target equivalent to bclrl 12,BI5,target bunlrl

clrlslwi clrlslwi rA,rS,b,n (n £ b £ 31) equivalent to rlwinm rA,rS,n,b – n,31 – n clrlslwi

clrlwi clrlwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,0,n,31 clrlwi

clrrwi clrrwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,0,0,31 – n clrrwi

cmp 31 (0x1F) crfD / L rA rB 0 0 0 0 0 0 0 0 0 0 / X cmp

cmpi 11 (0x0B) crfD / L rA SIMM D cmpi

cmpl 31 (0x1F) / L rA rB /// 0 0 0 0 1 0 0 0 0 0 / X cmpl

cmpli 10 (0x0A) crfD / L rA UIMM D cmpli

cmplw cmplw crD,rA,rB equivalent to cmpl crD,0,rA,rB cmplw

cmplwi cmplwi crD,rA,UIMM equivalent to cmpli crD,0,rA,UIMM cmplwi

cmpw cmpw crD,rA,rB equivalent to cmp crD,0,rA,rB cmpw

cmpwi cmpwi crD,rA,SIMM equivalent to cmpi crD,0,rA,SIMM cmpwi

cntlzw 31 (0x1F) rS rA /// 0 0 0 0 0 1 1 0 1 0 0 X cntlzw

cntlzw. 31 (0x1F) rS rA /// 0 0 0 0 0 1 1 0 1 0 1 X cntlzw.

crand 19 (0x13) crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 / XL crand

crandc 19 (0x13) crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 / XL crandc

crclr crclr bx equivalent to crxor bx,bx,bx crclr

creqv 19 (0x13) crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 / XL creqv

crmove crmove bx,by equivalent to cror bx,by,by crmove

crnand 19 (0x13) crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 / XL crnand

crnor 19 (0x13) crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 / XL crnor

crnot crnot bx,by equivalent to crnor bx,by,by crnot

cror 19 (0x13) crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 / XL cror

crorc 19 (0x13) crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 / XL crorc

crset crset bx equivalent to creqv bx,bx,bx crset

crxor 19 (0x13) crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 / XL crxor
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dcba(6) 31 (0x1F) /// rA rB 1 0 1 1 1 1 0 1 1 0 / X dcba

dcbf 31 (0x1F) /// rA rB 0 0 0 1 0 1 0 1 1 0 / X dcbf

dcbi (7) 31 (0x1F) /// rA rB 0 1 1 1 0 1 0 1 1 0 / X dcbi

dcblc 31 (0x1F) CT rA rB 0 1 1 0 0 0 0 1 1 0 0 X dcblc

dcbst 31 (0x1F) /// rA rB 0 0 0 0 1 1 0 1 1 0 / X dcbst

dcbt 31 (0x1F) CT rA rB 0 1 0 0 0 1 0 1 1 0 / X dcbt

dcbtls 31 (0x1F) CT rA rB 0 0 1 0 1 0 0 1 1 0 0 X dcbtls

dcbtst 31 (0x1F) CT rA rB 0 0 1 1 1 1 0 1 1 0 / X dcbtst

dcbtstls 31 (0x1F) CT rA rB 0 0 1 0 0 0 0 1 1 0 0 X dcbtstls

dcbz 31 (0x1F) /// rA rB 1 1 1 1 1 1 0 1 1 0 / X dcbz

divw 31 (0x1F) rD rA rB 0 1 1 1 1 0 1 0 1 1 0 X divw

divw. 31 (0x1F) rD rA rB 0 1 1 1 1 0 1 0 1 1 1 X divw.

divwo 31 (0x1F) rD rA rB 1 1 1 1 1 0 1 0 1 1 0 X divwo

divwo. 31 (0x1F) rD rA rB 1 1 1 1 1 0 1 0 1 1 1 X divwo.

divwu 31 (0x1F) rD rA rB 0 1 1 1 0 0 1 0 1 1 0 X divwu

divwu. 31 (0x1F) rD rA rB 0 1 1 1 0 0 1 0 1 1 1 X divwu.

divwuo 31 (0x1F) rD rA rB 1 1 1 1 0 0 1 0 1 1 0 X divwuo

divwuo. 31 (0x1F) rD rA rB 1 1 1 1 0 0 1 0 1 1 1 X divwuo.

dss dss STRM equivalent to  dss STRM,0 dss

efdabs 04 rD rA /// 0 1 0 1 1 1 0 0 1 0 0 EFX efdabs

efdadd 04 rD rA rB 0 1 0 1 1 1 0 0 0 0 0 EFX efdadd

efdcfs 04 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 1 1 1 EFX efdcfs

efdcfsf 04 rD /// rB 0 1 0 1 1 1 1 0 0 1 1 EFX efdcfsf

efdcfsi 04 rD /// rB 0 1 0 1 1 1 1 0 0 0 1 EFX efdcfsi

efdcfuf 04 rD /// rB 0 1 0 1 1 1 1 0 0 1 0 EFX efdcfuf

efdcfui 04 rD /// rB 0 1 0 1 1 1 1 0 0 0 0 EFX efdcfui

efdcmpeq 04 crfD / / rA rB 0 1 0 1 1 1 0 1 1 1 0 EFX efdcmpeq

efdcmpgt 04 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 0 EFX efdcmpgt

efdcmplt 04 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 1 EFX efdcmplt

efdctsf 04 rD /// rB 0 1 0 1 1 1 1 0 1 1 1 EFX efdctsf

efdctsi 04 rD /// rB 0 1 0 1 1 1 1 0 1 0 1 EFX efdctsi

efdctsiz 04 rD /// rB 0 1 0 1 1 1 1 1 0 1 0 EFX efdctsiz

efdctuf 04 rD /// rB 0 1 0 1 1 1 1 0 1 1 0 EFX efdctuf

efdctui 04 rD /// rB 0 1 0 1 1 1 1 0 1 0 0 EFX efdctui

efdctuiz 04 rD /// rB 0 1 0 1 1 1 1 1 0 0 0 EFX efdctuiz

efddiv 04 rD rA rB 0 1 0 1 1 1 0 1 0 0 1 EFX efddiv

efdmul 04 rD rA rB 0 1 0 1 1 1 0 1 0 0 0 EFX efdmul

efdnabs 04 rD rA /// 0 1 0 1 1 1 0 0 1 0 1 EFX efdnabs

efdneg 04 rD rA /// 0 1 0 1 1 1 0 0 1 1 0 EFX efdneg

efdsub 04 rD rA rB 0 1 0 1 1 1 0 0 0 0 1 EFX efdsub
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efdtsteq 04 crfD / / rA rB 0 1 0 1 1 1 1 1 1 1 0 EFX efdtsteq

efdtstgt 04 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 0 EFX efdtstgt

efdtstlt 04 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 1 EFX efdtstlt

efsabs 04 rD rA /// 0 1 0 1 1 0 0 0 1 0 0 EFX efsabs

efsadd 04 rD rA rB 0 1 0 1 1 0 0 0 0 0 0 EFX efsadd

efscfd 04 rD 0 0 0 0 0 rB 0 1 0 1 1 0 0 1 1 1 1 EFX efscfd

efscfsf 04 rD /// rB 0 1 0 1 1 0 1 0 0 1 1 EFX efscfsf

efscfsi 04 rD /// rB 0 1 0 1 1 0 1 0 0 0 1 EFX efscfsi

efscfuf 04 rD /// rB 0 1 0 1 1 0 1 0 0 1 0 EFX efscfuf

efscfui 04 rD /// rB 0 1 0 1 1 0 1 0 0 0 0 EFX efscfui

efscmpeq 04 crfD / / rA rB 0 1 0 1 1 0 0 1 1 1 0 EFX efscmpeq

efscmpgt 04 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 0 EFX efscmpgt

efscmplt 04 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 1 EFX efscmplt

efsctsf 04 rD /// rB 0 1 0 1 1 0 1 0 1 1 1 EFX efsctsf

efsctsi 04 rD /// rB 0 1 0 1 1 0 1 0 1 0 1 EFX efsctsi

efsctsiz 04 rD /// rB 0 1 0 1 1 0 1 1 0 1 0 EFX efsctsiz

efsctuf 04 rD /// rB 0 1 0 1 1 0 1 0 1 1 0 EFX efsctuf

efsctui 04 rD /// rB 0 1 0 1 1 0 1 0 1 0 0 EFX efsctui

efsctuiz 04 rD /// rB 0 1 0 1 1 0 1 1 0 0 0 EFX efsctuiz

efsdiv 04 rD rA rB 0 1 0 1 1 0 0 1 0 0 1 EFX efsdiv

efsmul 04 rD rA rB 0 1 0 1 1 0 0 1 0 0 0 EFX efsmul

efsnabs 04 rD rA /// 0 1 0 1 1 0 0 0 1 0 1 EFX efsnabs

efsneg 04 rD rA /// 0 1 0 1 1 0 0 0 1 1 0 EFX efsneg

efssub 04 rD rA rB 0 1 0 1 1 0 0 0 0 0 1 EFX efssub

efststeq 04 crfD / / rA rB 0 1 0 1 1 0 1 1 1 1 0 EFX efststeq

efststgt 04 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 0 EFX efststgt

efststlt 04 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 1 EFX efststlt

eqv 31 (0x1F) rD rA rB 0 1 0 0 0 1 1 1 0 0 0 X eqv

eqv. 31 (0x1F) rD rA rB 0 1 0 0 0 1 1 1 0 0 1 X eqv.

evabs 31 (0x1F) rD rA /// 0 1 0 0 0 0 0 1 0 0 0 EVX evabs

evaddiw 31 (0x1F) rD UIMM rB 0 1 0 0 0 0 0 0 0 1 0 EVX evaddiw

evaddsm
iaaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 1 0 0 1 EVX evaddsmi

aaw

evaddssi
aaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 0 0 0 1 EVX evaddssia

aw

evaddum
iaaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 1 0 0 0 EVX evaddumi

aaw

evaddusi
aaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 0 0 0 0 EVX evaddusi

aaw

evaddw 31 (0x1F) rD rA rB 0 1 0 0 0 0 0 0 0 0 0 EVX evaddw

evand 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 0 0 1 EVX evand
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evandc 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 0 1 0 EVX evandc

evcmpeq 31 (0x1F) crfD / / rA rB 0 1 0 0 0 1 1 0 1 0 0 EVX evcmpeq

evcmpgt
s 31 (0x1F) crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 1 EVX evcmpgts

evcmpgt
u 31 (0x1F) crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 0 EVX evcmpgtu

evcmplts 31 (0x1F) crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 1 EVX evcmplts

evcmpltu 31 (0x1F) crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 0 EVX evcmpltu

evcntlsw 31 (0x1F) rD rA /// 0 1 0 0 0 0 0 1 1 1 0 EVX evcntlsw

evcntlzw 31 (0x1F) rD rA /// 0 1 0 0 0 0 0 1 1 0 1 EVX evcntlzw

evdivws 31 (0x1F) rD rA rB 1 0 0 1 1 0 0 0 1 1 0 EVX evdivws

evdivwu 31 (0x1F) rD rA rB 1 0 0 1 1 0 0 0 1 1 1 EVX evdivwu

eveqv 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 1 0 0 1 EVX eveqv

evextsb 31 (0x1F) rD rA /// 0 1 0 0 0 0 0 1 0 1 0 EVX evextsb

evextsh 31 (0x1F) rD rA /// 0 1 0 0 0 0 0 1 0 1 1 EVX evextsh

evfsabs 31 (0x1F) rD rA /// 0 1 0 1 0 0 0 0 1 0 0 EVX evfsabs

evfsadd 31 (0x1F) rD rA rB 0 1 0 1 0 0 0 0 0 0 0 EVX evfsadd

evfscfsf 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 0 1 1 EVX evfscfsf

evfscfsi 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 0 0 1 EVX evfscfsi

evfscfuf 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 0 1 0 EVX evfscfuf

evfscfui 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 0 0 0 EVX evfscfui

evfscmp
eq 31 (0x1F) crfD / / rA rB 0 1 0 1 0 0 0 1 1 1 0 EVX evfscmpe

q

evfscmp
gt 31 (0x1F) crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 0 EVX evfscmpg

t

evfscmpl
t 31 (0x1F) crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 1 EVX evfscmplt

evfsctsf 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 1 1 1 EVX evfsctsf

evfsctsi 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 1 0 1 EVX evfsctsi

evfsctsiz 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 1 0 1 0 EVX evfsctsiz

evfsctuf 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 1 1 0 EVX evfsctuf

evfsctui 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 1 0 0 EVX evfsctui

evfsctuiz 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 1 0 0 0 EVX evfsctuiz

evfsdiv 31 (0x1F) rD rA rB 0 1 0 1 0 0 0 1 0 0 1 EVX evfsdiv

evfsmul 31 (0x1F) rD rA rB 0 1 0 1 0 0 0 1 0 0 0 EVX evfsmul

evfsnabs 31 (0x1F) rD rA /// 0 1 0 1 0 0 0 0 1 0 1 EVX evfsnabs

evfsneg 31 (0x1F) rD rA /// 0 1 0 1 0 0 0 0 1 1 0 EVX evfsneg

evfssub 31 (0x1F) rD rA rB 0 1 0 1 0 0 0 0 0 0 1 EVX evfssub

evfststeq 31 (0x1F) crfD / / rA rB 0 1 0 1 0 0 1 1 1 1 0 EVX evfststeq

evfststgt 31 (0x1F) crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 0 EVX evfststgt

evfststlt 31 (0x1F) crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 1 EVX evfststlt

evldd 31 (0x1F) rD rA UIMM 8 0 1 1 0 0 0 0 0 0 0 1 EVX evldd
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evlddx 31 (0x1F) rD rA rB 0 1 1 0 0 0 0 0 0 0 0 EVX evlddx

evldh 31 (0x1F) rD rA UIMM 8 0 1 1 0 0 0 0 0 1 0 1 EVX evldh

evldhx 31 (0x1F) rD rA rB 0 1 1 0 0 0 0 0 1 0 0 EVX evldhx

evldw 31 (0x1F) rD rA UIMM 8 0 1 1 0 0 0 0 0 0 1 1 EVX evldw

evldwx 31 (0x1F) rD rA rB 0 1 1 0 0 0 0 0 0 1 0 EVX evldwx

evlhhesp
lat 31 (0x1F) rD rA UIMM 8 0 1 1 0 0 0 0 1 0 0 1 EVX evlhhespl

at

evlhhesp
latx 31 (0x1F) rD rA rB 0 1 1 0 0 0 0 1 0 0 0 EVX evlhhespl

atx

evlhhoss
plat 31 (0x1F) rD rA UIMM 9 0 1 1 0 0 0 0 1 1 1 1 EVX evlhhoss

plat

evlhhoss
platx 31 (0x1F) rD rA rB 0 1 1 0 0 0 0 1 1 1 0 EVX evlhhoss

platx

evlhhous
plat 31 (0x1F) rD rA UIMM 9 0 1 1 0 0 0 0 1 1 0 1 EVX evlhhous

plat

evlhhous
platx 31 (0x1F) rD rA rB 0 1 1 0 0 0 0 1 1 0 0 EVX evlhhous

platx

evlwhe 31 (0x1F) rD rA UIMM 8 0 1 1 0 0 0 1 0 0 0 1 EVX evlwhe

evlwhex 31 (0x1F) rD rA rB 0 1 1 0 0 0 1 0 0 0 0 EVX evlwhex

evlwhos 31 (0x1F) rD rA UIMM 10 0 1 1 0 0 0 1 0 1 1 1 EVX evlwhos

evlwhosx 31 (0x1F) rD rA rB 0 1 1 0 0 0 1 0 1 1 0 EVX evlwhosx

evlwhou 31 (0x1F) rD rA UIMM 10 0 1 1 0 0 0 1 0 1 0 1 EVX evlwhou

evlwhoux 31 (0x1F) rD rA rB 0 1 1 0 0 0 1 0 1 0 0 EVX evlwhoux

evlwhspl
at 31 (0x1F) rD rA UIMM 10 0 1 1 0 0 0 1 1 1 0 1 EVX evlwhsplat

evlwhspl
atx 31 (0x1F) rD rA rB 0 1 1 0 0 0 1 1 1 0 0 EVX evlwhspla

tx

evlwwspl
at 31 (0x1F) rD rA UIMM 10 0 1 1 0 0 0 1 1 0 0 1 EVX evlwwspl

at

evlwwspl
atx 31 (0x1F) rD rA rB 0 1 1 0 0 0 1 1 0 0 0 EVX evlwwspl

atx

evmerge
hi 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 1 0 0 EVX evmergeh

i

evmerge
hilo 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 1 1 0 EVX evmergeh

ilo

evmergelo 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 1 0 1 EVX evmergelo

evmergel
ohi 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 1 1 1 EVX evmergel

ohi

evmhegs
mfaa 31 (0x1F) rD rA rB 1 0 1 0 0 1 0 1 0 1 1 EVX evmhegs

mfaa

evmhegs
mfan 31 (0x1F) rD rA rB 1 0 1 1 0 1 0 1 0 1 1 EVX evmhegs

mfan

evmhegs
miaa 31 (0x1F) rD rA rB 1 0 1 0 0 1 0 1 0 0 1 EVX evmhegs

miaa

evmhegs
mian 31 (0x1F) rD rA rB 1 0 1 1 0 1 0 1 0 0 1 EVX evmhegs

mian

evmhegu
miaa 31 (0x1F) rD rA rB 1 0 1 0 0 1 0 1 0 0 0 EVX evmhegu

miaa
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evmhegu
mian 31 (0x1F) rD rA rB 1 0 1 1 0 1 0 1 0 0 0 EVX evmhegu

mian

evmhes
mf 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 1 0 1 1 EVX evmhesm

f

evmhes
mfa 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 0 1 1 EVX evmhesm

fa

evmhes
mfaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 1 0 1 1 EVX evmhesm

faaw

evmhes
mfanw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 1 0 1 1 EVX evmhesm

fanw

evmhes
mi 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 1 0 0 1 EVX evmhesm

i

evmhes
mia 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 0 0 1 EVX evmhesm

ia

evmhes
miaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 1 0 0 1 EVX evmhesm

iaaw

evmhes
mianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 1 0 0 1 EVX evmhesm

ianw

evmhessf 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 0 0 1 1 EVX evmhessf

evmhess
fa 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 0 0 1 1 EVX evmhessf

a

evmhess
faaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 0 0 1 1 EVX evmhessf

aaw

evmhess
fanw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 0 0 1 1 EVX evmhessf

anw

evmhess
iaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 0 0 0 1 EVX evmhessi

aaw

evmhess
ianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 0 0 0 1 EVX evmhessi

anw

evmheu
mi 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 1 0 0 0 EVX evmheum

i

evmheu
mia 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 0 0 0 EVX evmheum

ia

evmheu
miaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 1 0 0 0 EVX evmheum

iaaw

evmheu
mianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 1 0 0 0 EVX evmheum

ianw

evmheus
iaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 0 0 0 0 EVX evmheusi

aaw

evmheus
ianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 0 0 0 0 EVX evmheusi

anw

evmhogs
mfaa 31 (0x1F) rD rA rB 1 0 1 0 0 1 0 1 1 1 1 EVX evmhogs

mfaa

evmhogs
mfan 31 (0x1F) rD rA rB 1 0 1 1 0 1 0 1 1 1 1 EVX evmhogs

mfan

evmhogs
miaa 31 (0x1F) rD rA rB 1 0 1 0 0 1 0 1 1 0 1 EVX evmhogs

miaa

evmhogs
mian 31 (0x1F) rD rA rB 1 0 1 1 0 1 0 1 1 0 1 EVX evmhogs

mian

evmhogu
miaa 31 (0x1F) rD rA rB 1 0 1 0 0 1 0 1 1 0 0 EVX evmhogu

miaa
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evmhogu
mian 31 (0x1F) rD rA rB 1 0 1 1 0 1 0 1 1 0 0 EVX evmhogu

mian

evmhos
mf 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 1 1 1 1 EVX evmhosm

f

evmhos
mfa 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 1 1 1 EVX evmhosm

fa

evmhos
mfaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 1 1 1 1 EVX evmhosm

faaw

evmhos
mfanw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 1 1 1 1 EVX evmhosm

fanw

evmhos
mi 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 1 1 0 1 EVX evmhosm

i

evmhos
mia 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 1 0 1 EVX evmhosm

ia

evmhos
miaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 1 1 0 1 EVX evmhosm

iaaw

evmhos
mianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 1 1 0 1 EVX evmhosm

ianw

evmhoss
f 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 0 1 1 1 EVX evmhossf

evmhoss
fa 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 0 1 1 1 EVX evmhossf

a

evmhoss
faaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 0 1 1 1 EVX evmhossf

aaw

evmhoss
fanw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 0 1 1 1 EVX evmhossf

anw

evmhoss
iaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 0 1 0 1 EVX evmhossi

aaw

evmhoss
ianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 0 1 0 1 EVX evmhossi

anw

evmhou
mi 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 1 1 0 0 EVX evmhoum

i

evmhou
mia 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 1 0 0 EVX evmhoum

ia

evmhou
miaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 1 1 0 0 EVX evmhoum

iaaw

evmhou
mianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 1 1 0 0 EVX evmhoum

ianw

evmhous
iaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 0 1 0 0 EVX evmhousi

aaw

evmhous
ianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 0 1 0 0 EVX evmhousi

anw

evmr evmr rD,rA equivalent to evor rD,rA,rA evmr

evmra 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 0 1 0 0 EVX evmra

evmwhg
smfaa 31 (0x1F) rD rA rB 1 0 1 0 1 1 0 1 1 1 1 EVX evmwhgs

mfaa

evmwhg
smfan 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 1 1 1 1 EVX evmwhgs

mfan

evmwhg
smiaa 31 (0x1F) rD rA rB 1 0 1 0 1 1 0 1 1 0 1 EVX evmwhgs

miaa
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evmwhg
smian 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 1 1 0 1 EVX evmwhgs

mian

evmwhg
ssfaa 31 (0x1F) rD rA rB 1 0 1 0 1 1 0 0 1 1 1 EVX evmwhgs

sfaa

evmwhg
ssfan 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 0 1 1 1 EVX evmwhgs

sfan

evmwhg
umiaa 31 (0x1F) rD rA rB 1 0 1 0 1 1 0 1 1 0 0 EVX evmwhgu

miaa

evmwhg
umian 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 1 1 0 0 EVX evmwhgu

mian

evmwhs
mf 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 1 1 1 1 EVX evmwhsm

f

evmwhs
mfa 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 1 1 1 1 EVX evmwhsm

fa

evmwhs
mfaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 1 1 1 1 EVX evmwhsm

faaw

evmwhs
mfanw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 1 1 1 1 EVX evmwhsm

fanw

evmwhs
mi 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 1 1 0 1 EVX evmwhsm

i

evmwhs
mia 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 1 1 0 1 EVX evmwhsm

ia

evmwhs
miaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 1 1 0 1 EVX evmwhsm

iaaw

evmwhs
mianw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 1 1 0 1 EVX evmwhsm

ianw

evmwhs
sf 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 0 1 1 1 EVX evmwhssf

evmwhs
sfa 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 0 1 1 1 EVX evmwhssf

a

evmwhs
sfaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 0 1 1 1 EVX evmwhssf

aaw

evmwhs
sfanw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 0 1 1 1 EVX evmwhssf

anw

evmwhs
sianw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 0 1 0 1 EVX evmwhssi

anw

evmwhs
smaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 0 1 0 1 EVX evmwhss

maaw

evmwhu
mi 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 1 1 0 0 EVX evmwhu

mi

evmwhu
mia 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 1 1 0 0 EVX evmwhu

mia

evmwhu
siaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 0 1 0 0 EVX evmwhusi

aaw

evmwhu
sianw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 0 1 0 0 EVX evmwhusi

anw

evmwls
mf 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 1 0 1 1 EVX evmwlsmf

evmwls
mfa 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 1 0 1 1 EVX evmwlsmf

a

evmwls
mfaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 1 0 1 1 EVX evmwlsmf

aaw
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evmwls
mfanw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 1 0 1 1 EVX evmwlsmf

anw

evmwls
miaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 1 0 0 1 EVX evmwlsmi

aaw

evmwls
mianw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 1 0 0 1 EVX evmwlsmi

anw

evmwlss
f 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 0 0 1 1 EVX evmwlssf

evmwlss
fa 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 0 0 1 1 EVX evmwlssf

a

evmwlss
faaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 0 0 1 1 EVX evmwlssf

aaw

evmwlss
fanw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 0 0 1 1 EVX evmwlssf

anw

evmwlssi
aaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 0 0 0 1 EVX evmwlssi

aaw

evmwlssi
anw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 0 0 0 1 EVX evmwlssi

anw

evmwlu
mi 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 1 0 0 0 EVX evmwlumi

evmwlu
mia 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 1 0 0 0 EVX evmwlumi

a

evmwlu
miaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 1 0 0 0 EVX evmwlumi

aaw

evmwlu
mianw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 1 0 0 0 EVX evmwlumi

anw

evmwlus
iaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 0 0 0 0 EVX evmwlusi

aaw

evmwlus
ianw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 0 0 0 0 EVX evmwlusi

anw

evmwsm
f 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 1 0 1 1 EVX evmwsmf

evmwsm
fa 31 (0x1F) rD rA rB 1 0 0 0 1 1 1 1 0 1 1 EVX evmwsmf

a

evmwsm
faa 31 (0x1F) rD rA rB 1 0 1 0 1 0 1 1 0 1 1 EVX evmwsmf

aa

evmwsm
fan 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 1 0 1 1 EVX evmwsmf

an

evmwsm
i 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 1 0 0 1 EVX evmwsmi

evmwsm
ia 31 (0x1F) rD rA rB 1 0 0 0 1 1 1 1 0 0 1 EVX evmwsmi

a

evmwsm
iaa 31 (0x1F) rD rA rB 1 0 1 0 1 0 1 1 0 0 1 EVX evmwsmi

aa

evmwsm
ian 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 1 0 0 1 EVX evmwsmi

an

evmwssf 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 0 0 1 1 EVX evmwssf

evmwssf
a 31 (0x1F) rD rA rB 1 0 0 0 1 1 1 0 0 1 1 EVX evmwssfa

evmwssf
aa 31 (0x1F) rD rA rB 1 0 1 0 1 0 1 0 0 1 1 EVX evmwssfa

a
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evmwssf
an 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 0 0 1 1 EVX evmwssfa

n

evmwum
i 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 1 0 0 0 EVX evmwumi

evmwum
ia 31 (0x1F) rD rA rB 1 0 0 0 1 1 1 1 0 0 0 EVX evmwumi

a

evmwum
iaa 31 (0x1F) rD rA rB 1 0 1 0 1 0 1 1 0 0 0 EVX evmwumi

aa

evmwum
ian 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 1 0 0 0 EVX evmwumi

an

evnand 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 1 1 1 0 EVX evnand

evneg 31 (0x1F) rD rA /// 0 1 0 0 0 0 0 1 0 0 1 EVX evneg

evnor 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 1 0 0 0 EVX evnor

evnot evnot rD,rA equivalent to evnor rD,rA,rA evnot

evor 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 1 1 1 EVX evor

evorc 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 1 0 1 1 EVX evorc

evrlw 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 0 0 0 EVX evrlw

evrlwi 31 (0x1F) rD rA UIMM 0 1 0 0 0 1 0 1 0 1 0 EVX evrlwi

evrndw 31 (0x1F) rD rA UIMM 0 1 0 0 0 0 0 1 1 0 0 EVX evrndw

evsel 31 (0x1F) rD rA rB 0 1 0 0 1 1 1 1 crfS EVX evsel

evslw 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 0 1 0 0 EVX evslw

evslwi 31 (0x1F) rD rA UIMM 0 1 0 0 0 1 0 0 1 1 0 EVX evslwi

evsplatfi 31 (0x1F) rD SIMM /// 0 1 0 0 0 1 0 1 0 1 1 EVX evsplatfi

evsplati 31 (0x1F) rD SIMM /// 0 1 0 0 0 1 0 1 0 0 1 EVX evsplati

evsrwis 31 (0x1F) rD rA UIMM 0 1 0 0 0 1 0 0 0 1 1 EVX evsrwis

evsrwiu 31 (0x1F) rD rA UIMM 0 1 0 0 0 1 0 0 0 1 0 EVX evsrwiu

evsrws 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 0 0 0 1 EVX evsrws

evsrwu 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 0 0 0 0 EVX evsrwu

evstdd 31 (0x1F) rD rA UIMM 8 0 1 1 0 0 1 0 0 0 0 1 EVX evstdd

evstddx 31 (0x1F) rS rA rB 0 1 1 0 0 1 0 0 0 0 0 EVX evstddx

evstdh 31 (0x1F) rS rA UIMM 8 0 1 1 0 0 1 0 0 1 0 1 EVX evstdh

evstdhx 31 (0x1F) rS rA rB 0 1 1 0 0 1 0 0 1 0 0 EVX evstdhx

evstdw 31 (0x1F) rS rA UIMM 8 0 1 1 0 0 1 0 0 0 1 1 EVX evstdw

evstdwx 31 (0x1F) rS rA rB 0 1 1 0 0 1 0 0 0 1 0 EVX evstdwx

evstwhe 31 (0x1F) rS rA UIMM 10 0 1 1 0 0 1 1 0 0 0 1 EVX evstwhe

evstwhex 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 0 0 0 0 EVX evstwhex

evstwho 31 (0x1F) rS rA UIMM 10 0 1 1 0 0 1 1 0 1 0 1 EVX evstwho

evstwhox 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 0 1 0 0 EVX evstwhox

evstwwe 31 (0x1F) rS rA UIMM 10 0 1 1 0 0 1 1 1 0 0 1 EVX evstwwe

evstwwex 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 1 0 0 0 EVX evstwwex

evstwwo 31 (0x1F) rS rA UIMM 10 0 1 1 0 0 1 1 1 1 0 1 EVX evstwwo

evstwwox 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 1 1 0 0 EVX evstwwox
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evsubfs
miaaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 1 0 1 1 EVX evsubfsm

iaaw

evsubfss
iaaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 0 0 1 1 EVX evsubfssi

aaw

evsubfu
miaaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 1 0 1 0 EVX evsubfum

iaaw

evsubfus
iaaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 0 0 1 0 EVX evsubfusi

aaw

evsubfw 31 (0x1F) rD rA rB 0 1 0 0 0 0 0 0 1 0 0 EVX evsubfw

evsubifw 31 (0x1F) rD UIMM rB 0 1 0 0 0 0 0 0 1 1 0 EVX evsubifw

evsubiw evsubiw rD,rB,UIMM equivalent to evsubifw rD,UIMM,rB evsubiw

evsubw evsubw rD,rB,rA equivalent to evsubfw rD,rA,rB evsubw

evxor 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 1 1 0 EVX evxor

extlwi extlwi rA,rS,n,b (n > 0) equivalent to rlwinm rA,rS,b,0,n – 1 extlwi

extrwi extrwi rA,rS,n,b (n > 0) equivalent to rlwinm rA,rS,b + n, 32 – n,31 extrwi

extsb 31 (0x1F) rS rA /// 1 1 1 0 1 1 1 0 1 0 0 X extsb

extsb. 31 (0x1F) rS rA /// 1 1 1 0 1 1 1 0 1 0 1 X extsb.

extsh 31 (0x1F) rS rA /// 1 1 1 0 0 1 1 0 1 0 0 X extsh

extsh. 31 (0x1F) rS rA /// 1 1 1 0 0 1 1 0 1 0 1 X extsh.

fres 6 59(0x3B) frD /// frB /// 1 1 0 0 0 0 A fres

fres. 6 59(0x3B) frD /// frB /// 1 1 0 0 0 1 A fres.

fsel 6 63(0x3F) frD frA frB frC 1 0 1 1 1 0 A fsel

fsel. 6 63(0x3F) frD frA frB frC 1 0 1 1 1 1 A fsel.

icbi 31 (0x1F) /// rA rB 1 1 1 1 0 1 0 1 1 0 / X icbi

icblc 31 (0x1F) CT rA rB 0 0 1 1 1 0 0 1 1 0 0 X icblc

icbt 31 (0x1F) CT rA rB 0 0 0 0 0 1 0 1 1 0 / X icbt

icbtls 31 (0x1F) CT rA rB 0 1 1 1 1 0 0 1 1 0 0 X icbtls

inslwi inslwi rA,rS,n,b (n > 0) equivalent to rlwimi rA,rS,32 – b,b,(b + n) – 1 inslwi

insrwi insrwi rA,rS,n,b (n > 0) equivalent to rlwimi rA,rS,32 – (b + n),b,(b + n) – 1 insrwi

isel 31 (0x1F) rD rA rB crb 0 1 1 1 1 0 X isel

iseleq iseleq rD,rA,rB equivalent to isel rD,rA,rB,2 iseleq

iselgt iselgt rD,rA,rB equivalent to isel rD,rA,rB,1 iselgt

isellt isellt rD,rA,rB equivalent to isel rD,rA,rB,0 isellt

isync 19 (0x13) /// 0 0 1 0 0 1 0 1 1 0 / XL isync

la la rD,d(rA) equivalent to addi rD,rA,d la

lbz 34(0x22) rD rA D D lbz

lbzu 35(0x23) rD rA D D lbzu

lbzux 31 (0x1F) rD rA rB 0 0 0 1 1 1 0 1 1 1 / X lbzux

lbzx 31 (0x1F) rD rA rB 0 0 0 1 0 1 0 1 1 1 / X lbzx

lha 42(0x2A) rD rA D D lha

lhau 43(0x2B) rD rA D D lhau
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lhaux 31 (0x1F) rD rA rB 0 1 0 1 1 1 0 1 1 1 / X lhaux

lhax 31 (0x1F) rD rA rB 0 1 0 1 0 1 0 1 1 1 / X lhax

lhbrx 31 (0x1F) rD rA rB 1 1 0 0 0 1 0 1 1 0 / X lhbrx

lhz 40(0x28) rD rA D D lhz

lhzu 41(0x29) rD rA D D lhzu

lhzux 31 (0x1F) rD rA rB 0 1 0 0 1 1 0 1 1 1 / X lhzux

lhzx 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 1 1 / X lhzx

li li rD,value  equivalent to addi rD,0,value li

lis lis rD,value  equivalent to addis rD,0,value lis

lmw 46(0x2E) rD rA D D lmw

lwarx 31 (0x1F) rD rA rB 0 0 0 0 0 1 0 1 0 0 / X lwarx

lwbrx 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 1 0 / X lwbrx

lwz 32 (0x20) rD rA D D lwz

lwzu 33 (0x21) rD rA D D lwzu

lwzux 31 (0x1F) rD rA rB 0 0 0 0 1 1 0 1 1 1 / X lwzux

lwzx 31 (0x1F) rD rA rB 0 0 0 0 0 1 0 1 1 1 / X lwzx

mbar 31 (0x1F) MO /// 1 1 0 1 0 1 0 1 1 0 / X mbar

mcrf 19 (0x13) crfD // crfS /// 0 0 0 0 0 0 0 0 0 0 / XL mcrf

mcrxr 31 (0x1F) crfD /// 1 0 0 0 0 0 0 0 0 0 / X mcrxr

mfcr mtcr rS equivalent to mtcrf 0xFF,rS mfcr

mfcr 31 (0x1F) rD /// 0 0 0 0 0 1 0 0 1 1 / X mfcr

mfdcr 31 (0x1F) rD DCRN5–9 DCRN0–4 0 1 0 1 0 0 0 0 1 1 / XFX mfdcr

mfmsr 7 31 (0x1F) rD /// 0 0 0 1 0 1 0 0 1 1 / X mfmsr

mfpmr 31 (0x1F) rD PMRN5–9 PMRN0–4 0 1 0 1 0 0 1 1 1 0 0 XFX mfpmr

mfregname mfregname rD equivalent to mfspr rD,SPRn mfregname

mfspr (8) 31 (0x1F) rD SPR[5–9] SPR[0–4] 0 1 0 1 0 1 0 0 1 1 / XFX mfspr

mr mr rA,rS  equivalent to or rA,rS,rS mr

msync 31 (0x1F) /// 1 0 0 1 0 1 0 1 1 0 / X msync

mtcr mtcr rS equivalent to mtcrf 0xFF,rS mtcr

mtcrf 31 (0x1F) rS / CRM / 0 0 1 0 0 1 0 0 0 0 / XFX mtcrf

mtdcr 31 (0x1F) rS DCRN5–9 DCRN0–4 0 1 1 1 0 0 0 0 1 1 / XFX mtdcr

mtmsr 7 31 (0x1F) rS /// 0 0 1 0 0 1 0 0 1 0 / X mtmsr

mtpmr 31 (0x1F) rS PMRN5–9 PMRN0–4 0 1 1 1 0 0 1 1 1 0 0 XFX mtpmr

mtregname mtregname rS equivalent to mtspr SPRn rS mtregname

mtspr 8 31 (0x1F) rS SPR[5–9] SPR[0–4] 0 1 1 1 0 1 0 0 1 1 / XFX mtspr

mulhw 31 (0x1F) rD rA rB / 0 0 1 0 0 1 0 1 1 0 X mulhw

mulhw. 31 (0x1F) rD rA rB / 0 0 1 0 0 1 0 1 1 1 X mulhw.

mulhwu 31 (0x1F) rD rA rB / 0 0 0 0 0 1 0 1 1 0 X mulhwu

mulhwu. 31 (0x1F) rD rA rB / 0 0 0 0 0 1 0 1 1 1 X mulhwu.

mulli 07 rD rA SIMM D mulli
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mullw 31 (0x1F) rD rA rB 0 0 1 1 1 0 1 0 1 1 0 X mullw

mullw. 31 (0x1F) rD rA rB 0 0 1 1 1 0 1 0 1 1 1 X mullw.

mullwo 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 0 1 1 0 X mullwo

mullwo. 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 0 1 1 1 X mullwo.

nand 31 (0x1F) rS rA rB 0 1 1 1 0 1 1 1 0 0 0 X nand

nand. 31 (0x1F) rS rA rB 0 1 1 1 0 1 1 1 0 0 1 X nand.

neg 31 (0x1F) rD rA /// 0 0 0 1 1 0 1 0 0 0 0 X neg

neg. 31 (0x1F) rD rA /// 0 0 0 1 1 0 1 0 0 0 1 X neg.

nego 31 (0x1F) rD rA /// 1 0 0 1 1 0 1 0 0 0 0 X nego

nego. 31 (0x1F) rD rA /// 1 0 0 1 1 0 1 0 0 0 1 X nego.

nop nop equivalent to ori 0,0,0 nop

nor 31 (0x1F) rS rA rB 0 0 0 1 1 1 1 1 0 0 0 X nor

nor. 31 (0x1F) rS rA rB 0 0 0 1 1 1 1 1 0 0 1 X nor.

not not rA,rS equivalent to nor rA,rS,rS not

or 31 (0x1F) rS rA rB 0 1 1 0 1 1 1 1 0 0 0 X or

or. 31 (0x1F) rS rA rB 0 1 1 0 1 1 1 1 0 0 1 X or.

orc 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 1 0 0 0 X orc

orc. 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 1 0 0 1 X orc.

ori 24 (0x18) rS rA UIMM D ori

oris 25 (0x19) rS rA UIMM D oris

rfci 19 (0x13) /// 0 0 0 0 1 1 0 0 1 1 / XL rfci

rfdi 7 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 X rfdi

rfi 7 19 (0x13) /// 0 0 0 0 1 1 0 0 1 0 / XL rfi

rfmci 7 19 (0x13) /// 0 0 0 0 1 0 0 1 1 0 / XL rfmci

rlwimi 20 (0x14) rS rA SH MB ME 0 M rlwimi

rlwimi. 20 (0x14) rS rA SH MB ME 1 M rlwimi.

rlwinm 21 (0x15) rS rA SH MB ME 0 M rlwinm

rlwinm. 21 (0x15) rS rA SH MB ME 1 M rlwinm.

rlwnm 23 (0x17) rS rA rB MB ME 0 M rlwnm

rlwnm. 23 (0x17) rS rA rB MB ME 1 M rlwnm.

rotlw rotlw rA,rS,rB equivalent to rlwnm rA,rS,rB,0,31 rotlw

rotlwi rotlwi rA,rS,n equivalent to rlwinm rA,rS,n,0,31 rotlwi

rotrwi rotrwi rA,rS,n equivalent to rlwinm rA,rS,32 – n,0,31 rotrwi

sc 17 (0x11) /// 1 / SC sc

slw 31 (0x1F) rS rA rB 0 0 0 0 0 1 1 0 0 0 0 X slw

slw. 31 (0x1F) rS rA rB 0 0 0 0 0 1 1 0 0 0 1 X slw.

slwi slwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,n,0,31 – n slwi

sraw 31 (0x1F) rS rA rB 1 1 0 0 0 1 1 0 0 0 0 X sraw

sraw. 31 (0x1F) rS rA rB 1 1 0 0 0 1 1 0 0 0 1 X sraw.

srawi 31 (0x1F) rS rA SH 1 1 0 0 1 1 1 0 0 0 0 X srawi
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srawi. 31 (0x1F) rS rA SH 1 1 0 0 1 1 1 0 0 0 1 X srawi.

srw 31 (0x1F) rS rA rB 1 0 0 0 0 1 1 0 0 0 0 X srw

srw. 31 (0x1F) rS rA rB 1 0 0 0 0 1 1 0 0 0 1 X srw.

srwi srwi rA,rS,n (n < 32)equivalent to rlwinm rA,rS,32 – n,n,31 srwi

stb 38(0x26) rS rA D D stb

stbu 39(0x27) rS rA D D stbu

stbux 31 (0x1F) rS rA rB 0 0 1 1 1 1 0 1 1 1 0 X stbux

stbx 31 (0x1F) rS rA rB 0 0 1 1 0 1 0 1 1 1 0 X stbx

sth 44(0x2C) rS rA D D sth

sthbrx 31 (0x1F) rS rA rB 1 1 1 0 0 1 0 1 1 0 / X sthbrx

sthu 45(0x2D) rS rA D D sthu

sthux 31 (0x1F) rS rA rB 0 1 1 0 1 1 0 1 1 1 / X sthux

sthx 31 (0x1F) rS rA rB 0 1 1 0 0 1 0 1 1 1 / X sthx

stmw 47(0x2F) rS rA D D stmw

stw 36(0x24) rS rA D D stw

stwbrx 31 (0x1F) rS rA rB 1 0 1 0 0 1 0 1 1 0 / X stwbrx

stwcx. 31 (0x1F) rS rA rB 0 0 1 0 0 1 0 1 1 0 1 X stwcx.

stwu 37(0x25) rS rA D D stwu

stwux 31 (0x1F) rS rA rB 0 0 1 0 1 1 0 1 1 1 / D stwux

stwx 31 (0x1F) rS rA rB 0 0 1 0 0 1 0 1 1 1 / D stwx

sub sub rD,rA,rB equivalent to subf rD,rB,rA sub

subc subc rD,rA,rB equivalent to subfc rD,rB,rA subc

subf 31 (0x1F) rD rA rB 0 0 0 0 1 0 1 0 0 0 0 X subf

subf. 31 (0x1F) rD rA rB 0 0 0 0 1 0 1 0 0 0 1 X subf.

subfc 31 (0x1F) rD rA rB 0 0 0 0 0 0 1 0 0 0 0 X subfc

subfc. 31 (0x1F) rD rA rB 0 0 0 0 0 0 1 0 0 0 1 X subfc.

subfco 31 (0x1F) rD rA rB 1 0 0 0 0 0 1 0 0 0 0 X subfco

subfco. 31 (0x1F) rD rA rB 1 0 0 0 0 0 1 0 0 0 1 X subfco.

subfe 31 (0x1F) rD rA rB 0 0 1 0 0 0 1 0 0 0 0 X subfe

subfe. 31 (0x1F) rD rA rB 0 0 1 0 0 0 1 0 0 0 1 X subfe.

subfeo 31 (0x1F) rD rA rB 1 0 1 0 0 0 1 0 0 0 0 X subfeo

subfeo. 31 (0x1F) rD rA rB 1 0 1 0 0 0 1 0 0 0 1 X subfeo.

subfic 08 rD rA SIMM D subfic

subfme 31 (0x1F) rD rA /// 0 0 1 1 1 0 1 0 0 0 0 X subfme

subfme. 31 (0x1F) rD rA /// 0 0 1 1 1 0 1 0 0 0 1 X subfme.

subfmeo 31 (0x1F) rD rA /// 1 0 1 1 1 0 1 0 0 0 0 X subfmeo

subfmeo. 31 (0x1F) rD rA /// 1 0 1 1 1 0 1 0 0 0 1 X subfmeo.

subfo 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 0 0 0 0 X subfo

subfo. 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 0 0 0 1 X subfo.

subfze 31 (0x1F) rD rA /// 0 0 1 1 0 0 1 0 0 0 0 X subfze

Table 269. Instructions sorted by mnemonic (decimal and hexadecimal) (continued)
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subfze. 31 (0x1F) rD rA /// 0 0 1 1 0 0 1 0 0 0 1 X subfze.

subfzeo 31 (0x1F) rD rA /// 1 0 1 1 0 0 1 0 0 0 0 X subfzeo

subfzeo. 31 (0x1F) rD rA /// 1 0 1 1 0 0 1 0 0 0 1 X subfzeo.

subi subi rD,rA,value equivalent to addi rD,rA,–value subi

subic subic rD,rA,value equivalent to addic rD,rA,–value subic

subic. subic. rD,rA,value equivalent to addic. rD,rA,–value subic.

subis subis rD,rA,value equivalent to addis rD,rA,–value subis

tlbie 6,7 31 (0x1F) /// /// rB 0 1 0 0 1 1 0 0 1 0 0 X tlbie

tlbivax 31 (0x1F) /// rA rB 1 1 0 0 0 1 0 0 1 0 / X tlbivax

tlbre 31 (0x1F) ///9 1 1 1 0 1 1 0 0 1 0 / X tlbre

tlbsx 31 (0x1F) ///12 rA rB 1 1 1 0 0 1 0 0 1 0 /12 X tlbsx

tlbsync 
6,7 31 (0x1F) /// /// /// 1 0 0 0 1 1 0 1 1 0 / X tlbsync

tlbwe 31 (0x1F) ///12 1 1 1 1 0 1 0 0 1 0 / X tlbwe

tw 31 (0x1F) TO rA rB 0 0 0 0 0 0 0 1 0 0 / X tw

tweq tweq rA,SIMM equivalent to tw 4,rA,SIMM tweq

tweqi tweqi rA,SIMM equivalent to twi 4,rA,SIMM tweqi

twge twge rA,SIMM equivalent to tw 12,rA,SIMM twge

twgei twgei rA,SIMM equivalent to twi 12,rA,SIMM twgei

twgt twgt rA,SIMM equivalent to tw 8,rA,SIMM twgt

twgti twgti rA,SIMM equivalent to twi 8,rA,SIMM twgti

twi 03 TO rA SIMM D twi

twle twle rA,SIMM equivalent to tw 20,rA,SIMM twle

twlei twlei rA,SIMM equivalent to twi 20,rA,SIMM twlei

twlge twlge rA,SIMM equivalent to tw 12,rA,SIMM twlge

twlgei twlgei rA,SIMM equivalent to twi 12,rA,SIMM twlgei

twlgt twlgt rA,SIMM equivalent to tw 1,rA,SIMM twlgt

twlgti twlgti rA,SIMM equivalent to twi 1,rA,SIMM twlgti

twlle twlle rA,SIMM equivalent to tw 6,rA,SIMM twlle

twllei twllei rA,SIMM equivalent to twi 6,rA,SIMM twllei

twllt twllt rA,SIMM equivalent to tw 2,rA,SIMM twllt

twllti twllti rA,SIMM equivalent totwi 2,rA,SIMM twllti

twlng twlng rA,SIMM equivalent to tw 6,rA,SIMM twlng

twlngi twlngi rA,SIMM equivalent to twi 6,rA,SIMM twlngi

twlnl twlnl rA,SIMM equivalent to tw 5,rA,SIMM twlnl

twlnli twlnli rA,SIMM equivalent to twi 5,rA,SIMM twlnli

twlt twlt rA,SIMM equivalent to tw 16,rA,SIMM twlt

twlti twlti rA,SIMM equivalent to twi 16,rA,SIMM twlti

twne twne rA,SIMM equivalent to tw 24,rA,SIMM twne

twnei twnei rA,SIMM equivalent to twi 24,rA,SIMM twnei

Table 269. Instructions sorted by mnemonic (decimal and hexadecimal) (continued)
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A.2 Instructions sorted by primary opcodes (decimal and 
hexadecimal)
Table 270 lists instructions by their primary (0–5) opcodes in decimal and hexadecimal 
format.

         

twng twng rA,SIMM equivalent to tw 20,rA,SIMM twng

twngi twngi rA,SIMM equivalent to twi 20,rA,SIMM twngi

twnl twnl rA,SIMM equivalent to tw 12,rA,SIMM twnl

twnli twnli rA,SIMM equivalent to twi 12,rA,SIMM twnli

wait 31 (0x1F) /// 0 0 0 0 1 1 1 1 1 0 / wait

wrtee 31 (0x1F) rS /// 0 0 1 0 0 0 0 0 1 1 / X wrtee

wrteei 31 (0x1F) /// E /// 0 0 1 0 1 0 0 0 1 1 / X wrteei

xor 31 (0x1F) rS rA rB 0 1 0 0 1 1 1 1 0 0 0 X xor

xor. 31 (0x1F) rS rA rB 0 1 0 0 1 1 1 1 0 0 1 X xor.

xori 26 (0x1A) rS rA UIMM D xori

xoris 27 (0x1B) rS rA UIMM D xoris

1. Simplified mnemonics for branch instructions that do not test a CR bit should not specify one; a programming error may occur.

2. The value in the BI operand selects CRn[2], the EQ bit. 

3. The value in the BI operand selects CRn[0], the LT bit. 

4. The value in the BI operand selects CRn[1], the GT bit. 

5. The value in the BI operand selects CRn[3], the SO bit. 

6. Optional to the PowerPC classic architecture.

7. Supervisor-level instruction

8. Access level is detemined by whether the SPR is defined as a user- or supervisor-level SPR.

Table 269. Instructions sorted by mnemonic (decimal and hexadecimal) (continued)
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Table 270. Instructions sorted by primary opcodes (decimal and hexadecimal)
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rfdi 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 X rfdi

twi 03 TO rA SIMM D twi

brinc 04 rD rA rB 0 1 0 0 0 0 0 1 1 1 1 EVX brinc

efdabs 04 rD rA /// 0 1 0 1 1 1 0 0 1 0 0 EFX efdabs

efdadd 04 rD rA rB 0 1 0 1 1 1 0 0 0 0 0 EFX efdadd

efdcfs 04 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 1 1 1 EFX efdcfs

efdcfsf 04 rD /// rB 0 1 0 1 1 1 1 0 0 1 1 EFX efdcfsf

efdcfsi 04 rD /// rB 0 1 0 1 1 1 1 0 0 0 1 EFX efdcfsi

efdcfuf 04 rD /// rB 0 1 0 1 1 1 1 0 0 1 0 EFX efdcfuf

efdcfui 04 rD /// rB 0 1 0 1 1 1 1 0 0 0 0 EFX efdcfui

efdcmpeq 04 crfD / / rA rB 0 1 0 1 1 1 0 1 1 1 0 EFX efdcmpeq

efdcmpgt 04 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 0 EFX efdcmpgt

efdcmplt 04 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 1 EFX efdcmplt
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efdctsf 04 rD /// rB 0 1 0 1 1 1 1 0 1 1 1 EFX efdctsf

efdctsi 04 rD /// rB 0 1 0 1 1 1 1 0 1 0 1 EFX efdctsi

efdctsiz 04 rD /// rB 0 1 0 1 1 1 1 1 0 1 0 EFX efdctsiz

efdctuf 04 rD /// rB 0 1 0 1 1 1 1 0 1 1 0 EFX efdctuf

efdctui 04 rD /// rB 0 1 0 1 1 1 1 0 1 0 0 EFX efdctui

efdctuiz 04 rD /// rB 0 1 0 1 1 1 1 1 0 0 0 EFX efdctuiz

efddiv 04 rD rA rB 0 1 0 1 1 1 0 1 0 0 1 EFX efddiv

efdmul 04 rD rA rB 0 1 0 1 1 1 0 1 0 0 0 EFX efdmul

efdnabs 04 rD rA /// 0 1 0 1 1 1 0 0 1 0 1 EFX efdnabs

efdneg 04 rD rA /// 0 1 0 1 1 1 0 0 1 1 0 EFX efdneg

efdsub 04 rD rA rB 0 1 0 1 1 1 0 0 0 0 1 EFX efdsub

efdtsteq 04 crfD / / rA rB 0 1 0 1 1 1 1 1 1 1 0 EFX efdtsteq

efdtstgt 04 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 0 EFX efdtstgt

efdtstlt 04 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 1 EFX efdtstlt

efsabs 04 rD rA /// 0 1 0 1 1 0 0 0 1 0 0 EFX efsabs

efsadd 04 rD rA rB 0 1 0 1 1 0 0 0 0 0 0 EFX efsadd

efscfd 04 rD 0 0 0 0 0 rB 0 1 0 1 1 0 0 1 1 1 1 EFX efscfd

efscfsf 04 rD /// rB 0 1 0 1 1 0 1 0 0 1 1 EFX efscfsf

efscfsi 04 rD /// rB 0 1 0 1 1 0 1 0 0 0 1 EFX efscfsi

efscfuf 04 rD /// rB 0 1 0 1 1 0 1 0 0 1 0 EFX efscfuf

efscfui 04 rD /// rB 0 1 0 1 1 0 1 0 0 0 0 EFX efscfui

efscmpeq 04 crfD / / rA rB 0 1 0 1 1 0 0 1 1 1 0 EFX efscmpeq

efscmpgt 04 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 0 EFX efscmpgt

efscmplt 04 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 1 EFX efscmplt

efsctsf 04 rD /// rB 0 1 0 1 1 0 1 0 1 1 1 EFX efsctsf

efsctsi 04 rD /// rB 0 1 0 1 1 0 1 0 1 0 1 EFX efsctsi

efsctsiz 04 rD /// rB 0 1 0 1 1 0 1 1 0 1 0 EFX efsctsiz

efsctuf 04 rD /// rB 0 1 0 1 1 0 1 0 1 1 0 EFX efsctuf

efsctui 04 rD /// rB 0 1 0 1 1 0 1 0 1 0 0 EFX efsctui

efsctuiz 04 rD /// rB 0 1 0 1 1 0 1 1 0 0 0 EFX efsctuiz

efsdiv 04 rD rA rB 0 1 0 1 1 0 0 1 0 0 1 EFX efsdiv

efsmul 04 rD rA rB 0 1 0 1 1 0 0 1 0 0 0 EFX efsmul

efsnabs 04 rD rA /// 0 1 0 1 1 0 0 0 1 0 1 EFX efsnabs

efsneg 04 rD rA /// 0 1 0 1 1 0 0 0 1 1 0 EFX efsneg

efssub 04 rD rA rB 0 1 0 1 1 0 0 0 0 0 1 EFX efssub

efststeq 04 crfD / / rA rB 0 1 0 1 1 0 1 1 1 1 0 EFX efststeq

efststgt 04 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 0 EFX efststgt

efststlt 04 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 1 EFX efststlt

mulli 07 rD rA SIMM D mulli

subfic 08 rD rA SIMM D subfic
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cmpli 10 (0x0A) crfD / L rA UIMM D cmpli

cmpi 11 (0x0B) crfD / L rA SIMM D cmpi

addic 12 (0x0C) rD rA SIMM D addic

addic. 13 (0x0D) rD rA SIMM D addic.

addi 14 (0x0E) rD rA SIMM D addi

addis 15 (0x0F) rD rA SIMM D addis

bc 16 (0x10) BO BI BD 0 0 B bc

bca 16 (0x10) BO BI BD 1 0 B bca

bcl 16 (0x10) BO BI BD 0 1 B bcl

bcla 16 (0x10) BO BI BD 1 1 B bcla

sc 17 (0x11) /// 1 / SC sc

b 18 (0x12) LI 0 0 I b

ba 18 (0x12) LI 1 0 I ba

bl 18 (0x12) LI 0 1 I bl

bla 18 (0x12) LI 1 1 I bla

rfci 19 (0x13) /// 0 0 0 0 1 1 0 0 1 1 / XL rfci

rfmci 1 19 (0x13) /// 0 0 0 0 1 0 0 1 1 0 / XL rfmci

mcrf 19 (0x13) crfD // crfS /// 0 0 0 0 0 0 0 0 0 0 / XL mcrf

bclr 19 (0x13) BO BI /// 0 0 0 0 0 1 0 0 0 0 0 XL bclr

bclrl 19 (0x13) BO BI /// 0 0 0 0 0 1 0 0 0 0 1 XL bclrl

crnor 19 (0x13) crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 / XL crnor

rfi (1) 19 (0x13) /// 0 0 0 0 1 1 0 0 1 0 / XL rfi

crandc 19 (0x13) crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 / XL crandc

isync 19 (0x13) /// 0 0 1 0 0 1 0 1 1 0 / XL isync

crxor 19 (0x13) crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 / XL crxor

crand 19 (0x13) crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 / XL crand

crnand 19 (0x13) crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 / XL crnand

creqv 19 (0x13) crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 / XL creqv

crorc 19 (0x13) crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 / XL crorc

cror 19 (0x13) crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 / XL cror

bcctr 19 (0x13) BO BI /// 1 0 0 0 0 1 0 0 0 0 0 XL bcctr

bcctrl 19 (0x13) BO BI /// 1 0 0 0 0 1 0 0 0 0 1 XL bcctrl

rlwimi 20 (0x14) rS rA SH MB ME 0 M rlwimi

rlwimi. 20 (0x14) rS rA SH MB ME 1 M rlwimi.

rlwinm 21 (0x15) rS rA SH MB ME 0 M rlwinm

rlwinm. 21 (0x15) rS rA SH MB ME 1 M rlwinm.

rlwnm 23 (0x17) rS rA rB MB ME 0 M rlwnm

rlwnm. 23 (0x17) rS rA rB MB ME 1 M rlwnm.

ori 24 (0x18) rS rA UIMM D ori

oris 25 (0x19) rS rA UIMM D oris
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xori 26 (0x1A) rS rA UIMM D xori

xoris 27 (0x1B) rS rA UIMM D xoris

andi. 28 (0x1C) rS rA UIMM D andi.

andis. 29 (0x1D) rS rA UIMM D andis.

dcblc 31 (0x1F) CT rA rB 0 1 1 0 0 0 0 1 1 0 0 X dcblc

dcbtls 31 (0x1F) CT rA rB 0 0 1 0 1 0 0 1 1 0 0 X dcbtls

dcbtstls 31 (0x1F) CT rA rB 0 0 1 0 0 0 0 1 1 0 0 X dcbtstls

evabs 31 (0x1F) rD rA /// 0 1 0 0 0 0 0 1 0 0 0 EVX evabs

evaddiw 31 (0x1F) rD UIMM rB 0 1 0 0 0 0 0 0 0 1 0 EVX evaddiw

evaddsm
iaaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 1 0 0 1 EVX evaddsm

iaaw

evaddssi
aaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 0 0 0 1 EVX evaddssi

aaw

evaddum
iaaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 1 0 0 0 EVX evaddum

iaaw

evaddusi
aaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 0 0 0 0 EVX evaddusi

aaw

evaddw 31 (0x1F) rD rA rB 0 1 0 0 0 0 0 0 0 0 0 EVX evaddw

evand 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 0 0 1 EVX evand

evandc 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 0 1 0 EVX evandc

evcmpeq 31 (0x1F) crfD / / rA rB 0 1 0 0 0 1 1 0 1 0 0 EVX evcmpeq

evcmpgts 31 (0x1F) crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 1 EVX evcmpgts

evcmpgtu 31 (0x1F) crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 0 EVX evcmpgtu

evcmplts 31 (0x1F) crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 1 EVX evcmplts

evcmpltu 31 (0x1F) crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 0 EVX evcmpltu

evcntlsw 31 (0x1F) rD rA /// 0 1 0 0 0 0 0 1 1 1 0 EVX evcntlsw

evcntlzw 31 (0x1F) rD rA /// 0 1 0 0 0 0 0 1 1 0 1 EVX evcntlzw

evdivws 31 (0x1F) rD rA rB 1 0 0 1 1 0 0 0 1 1 0 EVX evdivws

evdivwu 31 (0x1F) rD rA rB 1 0 0 1 1 0 0 0 1 1 1 EVX evdivwu

eveqv 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 1 0 0 1 EVX eveqv

evextsb 31 (0x1F) rD rA /// 0 1 0 0 0 0 0 1 0 1 0 EVX evextsb

evextsh 31 (0x1F) rD rA /// 0 1 0 0 0 0 0 1 0 1 1 EVX evextsh

evfsabs 31 (0x1F) rD rA /// 0 1 0 1 0 0 0 0 1 0 0 EVX evfsabs

evfsadd 31 (0x1F) rD rA rB 0 1 0 1 0 0 0 0 0 0 0 EVX evfsadd

evfscfsf 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 0 1 1 EVX evfscfsf

evfscfsi 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 0 0 1 EVX evfscfsi

evfscfuf 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 0 1 0 EVX evfscfuf

evfscfui 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 0 0 0 EVX evfscfui

evfscmpeq 31 (0x1F) crfD / / rA rB 0 1 0 1 0 0 0 1 1 1 0 EVX evfscmpeq

evfscmpgt 31 (0x1F) crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 0 EVX evfscmpgt

evfscmplt 31 (0x1F) crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 1 EVX evfscmplt

evfsctsf 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 1 1 1 EVX evfsctsf
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evfsctsi 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 1 0 1 EVX evfsctsi

evfsctsiz 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 1 0 1 0 EVX evfsctsiz

evfsctuf 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 1 1 0 EVX evfsctuf

evfsctui 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 0 1 0 0 EVX evfsctui

evfsctuiz 31 (0x1F) rD /// rB 0 1 0 1 0 0 1 1 0 0 0 EVX evfsctuiz

evfsdiv 31 (0x1F) rD rA rB 0 1 0 1 0 0 0 1 0 0 1 EVX evfsdiv

evfsmul 31 (0x1F) rD rA rB 0 1 0 1 0 0 0 1 0 0 0 EVX evfsmul

evfsnabs 31 (0x1F) rD rA /// 0 1 0 1 0 0 0 0 1 0 1 EVX evfsnabs

evfsneg 31 (0x1F) rD rA /// 0 1 0 1 0 0 0 0 1 1 0 EVX evfsneg

evfssub 31 (0x1F) rD rA rB 0 1 0 1 0 0 0 0 0 0 1 EVX evfssub

evfststeq 31 (0x1F) crfD / / rA rB 0 1 0 1 0 0 1 1 1 1 0 EVX evfststeq

evfststgt 31 (0x1F) crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 0 EVX evfststgt

evfststlt 31 (0x1F) crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 1 EVX evfststlt

evldd 31 (0x1F) rD rA UIMM 2 0 1 1 0 0 0 0 0 0 0 1 EVX evldd

evlddx 31 (0x1F) rD rA rB 0 1 1 0 0 0 0 0 0 0 0 EVX evlddx

evldh 31 (0x1F) rD rA UIMM 2 0 1 1 0 0 0 0 0 1 0 1 EVX evldh

evldhx 31 (0x1F) rD rA rB 0 1 1 0 0 0 0 0 1 0 0 EVX evldhx

evldw 31 (0x1F) rD rA UIMM 2 0 1 1 0 0 0 0 0 0 1 1 EVX evldw

evldwx 31 (0x1F) rD rA rB 0 1 1 0 0 0 0 0 0 1 0 EVX evldwx

evlhhesp
lat 31 (0x1F) rD rA UIMM 2 0 1 1 0 0 0 0 1 0 0 1 EVX evlhhesp

lat

evlhhesp
latx 31 (0x1F) rD rA rB 0 1 1 0 0 0 0 1 0 0 0 EVX evlhhesp

latx

evlhhoss
plat 31 (0x1F) rD rA UIMM 3 0 1 1 0 0 0 0 1 1 1 1 EVX evlhhoss

plat

evlhhoss
platx 31 (0x1F) rD rA rB 0 1 1 0 0 0 0 1 1 1 0 EVX evlhhoss

platx

evlhhous
plat 31 (0x1F) rD rA UIMM 3 0 1 1 0 0 0 0 1 1 0 1 EVX evlhhou

splat

evlhhous
platx 31 (0x1F) rD rA rB 0 1 1 0 0 0 0 1 1 0 0 EVX evlhhou

splatx

evlwhe 31 (0x1F) rD rA UIMM 2 0 1 1 0 0 0 1 0 0 0 1 EVX evlwhe

evlwhex 31 (0x1F) rD rA rB 0 1 1 0 0 0 1 0 0 0 0 EVX evlwhex

evlwhos 31 (0x1F) rD rA UIMM 4 0 1 1 0 0 0 1 0 1 1 1 EVX evlwhos

evlwhosx 31 (0x1F) rD rA rB 0 1 1 0 0 0 1 0 1 1 0 EVX evlwhosx

evlwhou 31 (0x1F) rD rA UIMM 4 0 1 1 0 0 0 1 0 1 0 1 EVX evlwhou

evlwhoux 31 (0x1F) rD rA rB 0 1 1 0 0 0 1 0 1 0 0 EVX evlwhoux

evlwhsplat 31 (0x1F) rD rA UIMM 4 0 1 1 0 0 0 1 1 1 0 1 EVX evlwhsplat

evlwhspl
atx 31 (0x1F) rD rA rB 0 1 1 0 0 0 1 1 1 0 0 EVX evlwhspl

atx

evlwwspl
at 31 (0x1F) rD rA UIMM 4 0 1 1 0 0 0 1 1 0 0 1 EVX evlwwspl

at
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evlwwspl
atx 31 (0x1F) rD rA rB 0 1 1 0 0 0 1 1 0 0 0 EVX evlwwspl

atx

evmerge
hi 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 1 0 0 EVX evmerge

hi

evmerge
hilo 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 1 1 0 EVX evmerge

hilo

evmergel
o 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 1 0 1 EVX evmerge

lo

evmergel
ohi 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 1 1 1 EVX evmerge

lohi

evmhegs
mfaa 31 (0x1F) rD rA rB 1 0 1 0 0 1 0 1 0 1 1 EVX evmhegs

mfaa

evmhegs
mfan 31 (0x1F) rD rA rB 1 0 1 1 0 1 0 1 0 1 1 EVX evmhegs

mfan

evmhegs
miaa 31 (0x1F) rD rA rB 1 0 1 0 0 1 0 1 0 0 1 EVX evmhegs

miaa

evmhegs
mian 31 (0x1F) rD rA rB 1 0 1 1 0 1 0 1 0 0 1 EVX evmhegs

mian

evmhegu
miaa 31 (0x1F) rD rA rB 1 0 1 0 0 1 0 1 0 0 0 EVX evmheg

umiaa

evmhegu
mian 31 (0x1F) rD rA rB 1 0 1 1 0 1 0 1 0 0 0 EVX evmheg

umian

evmhes
mf 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 1 0 1 1 EVX evmhes

mf

evmhes
mfa 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 0 1 1 EVX evmhes

mfa

evmhes
mfaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 1 0 1 1 EVX evmhes

mfaaw

evmhes
mfanw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 1 0 1 1 EVX evmhes

mfanw

evmhes
mi 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 1 0 0 1 EVX evmhes

mi

evmhes
mia 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 0 0 1 EVX evmhes

mia

evmhes
miaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 1 0 0 1 EVX evmhes

miaaw

evmhes
mianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 1 0 0 1 EVX evmhes

mianw

evmhessf 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 0 0 1 1 EVX evmhessf

evmhessfa 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 0 0 1 1 EVX evmhessfa

evmhess
faaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 0 0 1 1 EVX evmhess

faaw

evmhess
fanw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 0 0 1 1 EVX evmhess

fanw

evmhess
iaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 0 0 0 1 EVX evmhess

iaaw

evmhess
ianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 0 0 0 1 EVX evmhess

ianw

evmheu
mi 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 1 0 0 0 EVX evmheu

mi
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evmheu
mia 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 0 0 0 EVX evmheu

mia

evmheu
miaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 1 0 0 0 EVX evmheu

miaaw

evmheu
mianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 1 0 0 0 EVX evmheu

mianw

evmheus
iaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 0 0 0 0 EVX evmheus

iaaw

evmheus
ianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 0 0 0 0 EVX evmheus

ianw

evmhogs
mfaa 31 (0x1F) rD rA rB 1 0 1 0 0 1 0 1 1 1 1 EVX evmhog

smfaa

evmhogs
mfan 31 (0x1F) rD rA rB 1 0 1 1 0 1 0 1 1 1 1 EVX evmhog

smfan

evmhogs
miaa 31 (0x1F) rD rA rB 1 0 1 0 0 1 0 1 1 0 1 EVX evmhog

smiaa

evmhogs
mian 31 (0x1F) rD rA rB 1 0 1 1 0 1 0 1 1 0 1 EVX evmhog

smian

evmhogu
miaa 31 (0x1F) rD rA rB 1 0 1 0 0 1 0 1 1 0 0 EVX evmhog

umiaa

evmhogu
mian 31 (0x1F) rD rA rB 1 0 1 1 0 1 0 1 1 0 0 EVX evmhog

umian

evmhos
mf 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 1 1 1 1 EVX evmhos

mf

evmhos
mfa 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 1 1 1 EVX evmhos

mfa

evmhos
mfaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 1 1 1 1 EVX evmhos

mfaaw

evmhos
mfanw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 1 1 1 1 EVX evmhos

mfanw

evmhos
mi 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 1 1 0 1 EVX evmhos

mi

evmhos
mia 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 1 0 1 EVX evmhos

mia

evmhos
miaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 1 1 0 1 EVX evmhos

miaaw

evmhos
mianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 1 1 0 1 EVX evmhos

mianw

evmhoss
f 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 0 1 1 1 EVX evmhoss

f

evmhoss
fa 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 0 1 1 1 EVX evmhoss

fa

evmhoss
faaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 0 1 1 1 EVX evmhoss

faaw

evmhoss
fanw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 0 1 1 1 EVX evmhoss

fanw

evmhoss
iaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 0 1 0 1 EVX evmhoss

iaaw

evmhoss
ianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 0 1 0 1 EVX evmhoss

ianw

evmhou
mi 31 (0x1F) rD rA rB 1 0 0 0 0 0 0 1 1 0 0 EVX evmhou

mi

Table 270. Instructions sorted by primary opcodes (decimal and hexadecimal) (continued)
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evmhou
mia 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 1 0 0 EVX evmhou

mia

evmhou
miaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 1 1 0 0 EVX evmhou

miaaw

evmhou
mianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 1 1 0 0 EVX evmhou

mianw

evmhous
iaaw 31 (0x1F) rD rA rB 1 0 1 0 0 0 0 0 1 0 0 EVX evmhou

siaaw

evmhous
ianw 31 (0x1F) rD rA rB 1 0 1 1 0 0 0 0 1 0 0 EVX evmhou

sianw

evmra 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 0 1 0 0 EVX evmra

evmwhg
smfaa 31 (0x1F) rD rA rB 1 0 1 0 1 1 0 1 1 1 1 EVX evmwhg

smfaa

evmwhg
smfan 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 1 1 1 1 EVX evmwhg

smfan

evmwhg
smiaa 31 (0x1F) rD rA rB 1 0 1 0 1 1 0 1 1 0 1 EVX evmwhg

smiaa

evmwhg
smian 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 1 1 0 1 EVX evmwhg

smian

evmwhg
ssfaa 31 (0x1F) rD rA rB 1 0 1 0 1 1 0 0 1 1 1 EVX evmwhg

ssfaa

evmwhg
ssfan 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 0 1 1 1 EVX evmwhg

ssfan

evmwhg
umiaa 31 (0x1F) rD rA rB 1 0 1 0 1 1 0 1 1 0 0 EVX evmwhg

umiaa

evmwhg
umian 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 1 1 0 0 EVX evmwhg

umian

evmwhs
mf 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 1 1 1 1 EVX evmwhs

mf

evmwhs
mfa 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 1 1 1 1 EVX evmwhs

mfa

evmwhs
mfaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 1 1 1 1 EVX evmwhs

mfaaw

evmwhs
mfanw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 1 1 1 1 EVX evmwhs

mfanw

evmwhs
mi 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 1 1 0 1 EVX evmwhs

mi

evmwhs
mia 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 1 1 0 1 EVX evmwhs

mia

evmwhs
miaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 1 1 0 1 EVX evmwhs

miaaw

evmwhs
mianw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 1 1 0 1 EVX evmwhs

mianw

evmwhs
sf 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 0 1 1 1 EVX evmwhs

sf

evmwhs
sfa 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 0 1 1 1 EVX evmwhs

sfa

evmwhs
sfaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 0 1 1 1 EVX evmwhs

sfaaw

evmwhs
sfanw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 0 1 1 1 EVX evmwhs

sfanw
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evmwhs
sianw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 0 1 0 1 EVX evmwhs

sianw

evmwhs
smaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 0 1 0 1 EVX evmwhs

smaaw

evmwhu
mi 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 1 1 0 0 EVX evmwhu

mi

evmwhu
mia 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 1 1 0 0 EVX evmwhu

mia

evmwhu
siaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 0 1 0 0 EVX evmwhu

siaaw

evmwhu
sianw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 0 1 0 0 EVX evmwhu

sianw

evmwls
mf 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 1 0 1 1 EVX evmwls

mf

evmwls
mfa 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 1 0 1 1 EVX evmwls

mfa

evmwls
mfaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 1 0 1 1 EVX evmwls

mfaaw

evmwls
mfanw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 1 0 1 1 EVX evmwls

mfanw

evmwls
miaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 1 0 0 1 EVX evmwls

miaaw

evmwls
mianw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 1 0 0 1 EVX evmwls

mianw

evmwlss
f 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 0 0 1 1 EVX evmwlss

f

evmwlss
fa 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 0 0 1 1 EVX evmwlss

fa

evmwlss
faaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 0 0 1 1 EVX evmwlss

faaw

evmwlss
fanw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 0 0 1 1 EVX evmwlss

fanw

evmwlssi
aaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 0 0 0 1 EVX evmwlss

iaaw

evmwlssi
anw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 0 0 0 1 EVX evmwlss

ianw

evmwlu
mi 31 (0x1F) rD rA rB 1 0 0 0 1 0 0 1 0 0 0 EVX evmwlu

mi

evmwlu
mia 31 (0x1F) rD rA rB 1 0 0 0 1 1 0 1 0 0 0 EVX evmwlu

mia

evmwlu
miaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 1 0 0 0 EVX evmwlu

miaaw

evmwlu
mianw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 1 0 0 0 EVX evmwlu

mianw

evmwlus
iaaw 31 (0x1F) rD rA rB 1 0 1 0 1 0 0 0 0 0 0 EVX evmwlus

iaaw

evmwlus
ianw 31 (0x1F) rD rA rB 1 0 1 1 1 0 0 0 0 0 0 EVX evmwlus

ianw

evmwsm
f 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 1 0 1 1 EVX evmwsm

f

evmwsm
fa 31 (0x1F) rD rA rB 1 0 0 0 1 1 1 1 0 1 1 EVX evmwsm

fa
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evmwsm
faa 31 (0x1F) rD rA rB 1 0 1 0 1 0 1 1 0 1 1 EVX evmwsm

faa

evmwsm
fan 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 1 0 1 1 EVX evmwsm

fan

evmwsm
i 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 1 0 0 1 EVX evmwsm

i

evmwsm
ia 31 (0x1F) rD rA rB 1 0 0 0 1 1 1 1 0 0 1 EVX evmwsm

ia

evmwsm
iaa 31 (0x1F) rD rA rB 1 0 1 0 1 0 1 1 0 0 1 EVX evmwsm

iaa

evmwsm
ian 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 1 0 0 1 EVX evmwsm

ian

evmwssf 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 0 0 1 1 EVX evmwssf

evmwssf
a 31 (0x1F) rD rA rB 1 0 0 0 1 1 1 0 0 1 1 EVX evmwssf

a

evmwssf
aa 31 (0x1F) rD rA rB 1 0 1 0 1 0 1 0 0 1 1 EVX evmwssf

aa

evmwssf
an 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 0 0 1 1 EVX evmwssf

an

evmwum
i 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 1 0 0 0 EVX evmwum

i

evmwum
ia 31 (0x1F) rD rA rB 1 0 0 0 1 1 1 1 0 0 0 EVX evmwum

ia

evmwum
iaa 31 (0x1F) rD rA rB 1 0 1 0 1 0 1 1 0 0 0 EVX evmwum

iaa

evmwum
ian 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 1 0 0 0 EVX evmwum

ian

evnand 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 1 1 1 0 EVX evnand

evneg 31 (0x1F) rD rA /// 0 1 0 0 0 0 0 1 0 0 1 EVX evneg

evnor 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 1 0 0 0 EVX evnor

evor 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 1 1 1 EVX evor

evorc 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 1 0 1 1 EVX evorc

evrlw 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 0 0 0 EVX evrlw

evrlwi 31 (0x1F) rD rA UIMM 0 1 0 0 0 1 0 1 0 1 0 EVX evrlwi

evrndw 31 (0x1F) rD rA UIMM 0 1 0 0 0 0 0 1 1 0 0 EVX evrndw

evsel 31 (0x1F) rD rA rB 0 1 0 0 1 1 1 1 crfS EVX evsel

evslw 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 0 1 0 0 EVX evslw

evslwi 31 (0x1F) rD rA UIMM 0 1 0 0 0 1 0 0 1 1 0 EVX evslwi

evsplatfi 31 (0x1F) rD SIMM /// 0 1 0 0 0 1 0 1 0 1 1 EVX evsplatfi

evsplati 31 (0x1F) rD SIMM /// 0 1 0 0 0 1 0 1 0 0 1 EVX evsplati

evsrwis 31 (0x1F) rD rA UIMM 0 1 0 0 0 1 0 0 0 1 1 EVX evsrwis

evsrwiu 31 (0x1F) rD rA UIMM 0 1 0 0 0 1 0 0 0 1 0 EVX evsrwiu

evsrws 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 0 0 0 1 EVX evsrws

evsrwu 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 0 0 0 0 EVX evsrwu

evstdd 31 (0x1F) rD rA UIMM 4 0 1 1 0 0 1 0 0 0 0 1 EVX evstdd

evstddx 31 (0x1F) rS rA rB 0 1 1 0 0 1 0 0 0 0 0 EVX evstddx

Table 270. Instructions sorted by primary opcodes (decimal and hexadecimal) (continued)
Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic



RM0004 Instruction set listings

 1058/1176

evstdh 31 (0x1F) rS rA UIMM 2 0 1 1 0 0 1 0 0 1 0 1 EVX evstdh

evstdhx 31 (0x1F) rS rA rB 0 1 1 0 0 1 0 0 1 0 0 EVX evstdhx

evstdw 31 (0x1F) rS rA UIMM 2 0 1 1 0 0 1 0 0 0 1 1 EVX evstdw

evstdwx 31 (0x1F) rS rA rB 0 1 1 0 0 1 0 0 0 1 0 EVX evstdwx

evstwhe 31 (0x1F) rS rA UIMM 4 0 1 1 0 0 1 1 0 0 0 1 EVX evstwhe

evstwhe
x 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 0 0 0 0 EVX evstwhe

x

evstwho 31 (0x1F) rS rA UIMM 4 0 1 1 0 0 1 1 0 1 0 1 EVX evstwho

evstwho
x 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 0 1 0 0 EVX evstwho

x

evstwwe 31 (0x1F) rS rA UIMM 4 0 1 1 0 0 1 1 1 0 0 1 EVX evstwwe

evstwwe
x 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 1 0 0 0 EVX evstwwe

x

evstwwo 31 (0x1F) rS rA UIMM 4 0 1 1 0 0 1 1 1 1 0 1 EVX evstwwo

evstwwo
x 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 1 1 0 0 EVX evstwwo

x

evsubfs
miaaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 1 0 1 1 EVX evsubfs

miaaw

evsubfss
iaaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 0 0 1 1 EVX evsubfss

iaaw

evsubfu
miaaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 1 0 1 0 EVX evsubfu

miaaw

evsubfus
iaaw 31 (0x1F) rD rA /// 1 0 0 1 1 0 0 0 0 1 0 EVX evsubfu

siaaw

evsubfw 31 (0x1F) rD rA rB 0 1 0 0 0 0 0 0 1 0 0 EVX evsubfw

evsubifw 31 (0x1F) rD UIMM rB 0 1 0 0 0 0 0 0 1 1 0 EVX evsubifw

evxor 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 1 1 0 EVX evxor

icblc 31 (0x1F) CT rA rB 0 0 1 1 1 0 0 1 1 0 0 X icblc

icbt 31 (0x1F) CT rA rB 0 0 0 0 0 1 0 1 1 0 / X icbt

icbtls 31 (0x1F) CT rA rB 0 1 1 1 1 0 0 1 1 0 0 X icbtls

isel 31 (0x1F) rD rA rB crb 0 1 1 1 1 0 X isel

mbar 31 (0x1F) MO /// 1 1 0 1 0 1 0 1 1 0 / X mbar

mfdcr 31 (0x1F) rD DCRN5–9 DCRN0–4 0 1 0 1 0 0 0 0 1 1 / XFX mfdcr

mfpmr 31 (0x1F) rD PMRN5–9 PMRN0–4 0 1 0 1 0 0 1 1 1 0 0 XFX mfpmr

msync 31 (0x1F) /// 1 0 0 1 0 1 0 1 1 0 / X msync

mtdcr 31 (0x1F) rS DCRN5–9 DCRN0–4 0 1 1 1 0 0 0 0 1 1 / XFX mtdcr

mtpmr 31 (0x1F) rS PMRN5–9 PMRN0–4 0 1 1 1 0 0 1 1 1 0 0 XFX mtpmr

tlbivax 31 (0x1F) /// rA rB 1 1 0 0 0 1 0 0 1 0 / X tlbivax

tlbre 31 (0x1F) ///2 1 1 1 0 1 1 0 0 1 0 / X tlbre

tlbsx 31 (0x1F) ///5 rA rB 1 1 1 0 0 1 0 0 1 0 /5 X tlbsx

tlbwe 31 (0x1F) ///6 1 1 1 1 0 1 0 0 1 0 / X tlbwe

wait 31 (0x1F) /// 0 0 0 0 1 1 1 1 1 0 / wait
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wrtee 31 (0x1F) rS /// 0 0 1 0 0 0 0 0 1 1 / X wrtee

wrteei 31 (0x1F) /// E /// 0 0 1 0 1 0 0 0 1 1 / X wrteei

cmp 31 (0x1F) crfD / L rA rB 0 0 0 0 0 0 0 0 0 0 / X cmp

tw 31 (0x1F) TO rA rB 0 0 0 0 0 0 0 1 0 0 / X tw

subfc 31 (0x1F) rD rA rB 0 0 0 0 0 0 1 0 0 0 0 X subfc

subfc. 31 (0x1F) rD rA rB 0 0 0 0 0 0 1 0 0 0 1 X subfc.

addc 31 (0x1F) rD rA rB 0 0 0 0 0 0 1 0 1 0 0 X addc

addc. 31 (0x1F) rD rA rB 0 0 0 0 0 0 1 0 1 0 1 X addc.

mulhwu 31 (0x1F) rD rA rB / 0 0 0 0 0 1 0 1 1 0 X mulhwu

mulhwu. 31 (0x1F) rD rA rB / 0 0 0 0 0 1 0 1 1 1 X mulhwu.

mfcr 31 (0x1F) rD /// 0 0 0 0 0 1 0 0 1 1 / X mfcr

lwarx 31 (0x1F) rD rA rB 0 0 0 0 0 1 0 1 0 0 / X lwarx

lwzx 31 (0x1F) rD rA rB 0 0 0 0 0 1 0 1 1 1 / X lwzx

slw 31 (0x1F) rS rA rB 0 0 0 0 0 1 1 0 0 0 0 X slw

slw. 31 (0x1F) rS rA rB 0 0 0 0 0 1 1 0 0 0 1 X slw.

cntlzw 31 (0x1F) rS rA /// 0 0 0 0 0 1 1 0 1 0 0 X cntlzw

cntlzw. 31 (0x1F) rS rA /// 0 0 0 0 0 1 1 0 1 0 1 X cntlzw.

and 31 (0x1F) rS rA rB 0 0 0 0 0 1 1 1 0 0 0 X and

and. 31 (0x1F) rS rA rB 0 0 0 0 0 1 1 1 0 0 1 X and.

cmpl 31 (0x1F) / L rA rB /// 0 0 0 0 1 0 0 0 0 0 / X cmpl

subf 31 (0x1F) rD rA rB 0 0 0 0 1 0 1 0 0 0 0 X subf

subf. 31 (0x1F) rD rA rB 0 0 0 0 1 0 1 0 0 0 1 X subf.

dcbst 31 (0x1F) /// rA rB 0 0 0 0 1 1 0 1 1 0 / X dcbst

lwzux 31 (0x1F) rD rA rB 0 0 0 0 1 1 0 1 1 1 / X lwzux

andc 31 (0x1F) rS rA rB 0 0 0 0 1 1 1 1 0 0 0 X andc

andc. 31 (0x1F) rS rA rB 0 0 0 0 1 1 1 1 0 0 1 X andc.

mulhw 31 (0x1F) rD rA rB / 0 0 1 0 0 1 0 1 1 0 X mulhw

mulhw. 31 (0x1F) rD rA rB / 0 0 1 0 0 1 0 1 1 1 X mulhw.

mfmsr 1 31 (0x1F) rD /// 0 0 0 1 0 1 0 0 1 1 / X mfmsr

dcbf 31 (0x1F) /// rA rB 0 0 0 1 0 1 0 1 1 0 / X dcbf

lbzx 31 (0x1F) rD rA rB 0 0 0 1 0 1 0 1 1 1 / X lbzx

neg 31 (0x1F) rD rA /// 0 0 0 1 1 0 1 0 0 0 0 X neg

neg. 31 (0x1F) rD rA /// 0 0 0 1 1 0 1 0 0 0 1 X neg.

lbzux 31 (0x1F) rD rA rB 0 0 0 1 1 1 0 1 1 1 / X lbzux

nor 31 (0x1F) rS rA rB 0 0 0 1 1 1 1 1 0 0 0 X nor

nor. 31 (0x1F) rS rA rB 0 0 0 1 1 1 1 1 0 0 1 X nor.

subfe 31 (0x1F) rD rA rB 0 0 1 0 0 0 1 0 0 0 0 X subfe

subfe. 31 (0x1F) rD rA rB 0 0 1 0 0 0 1 0 0 0 1 X subfe.

adde 31 (0x1F) rD rA rB 0 0 1 0 0 0 1 0 1 0 0 X adde

adde. 31 (0x1F) rD rA rB 0 0 1 0 0 0 1 0 1 0 1 X adde.
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mtcrf 31 (0x1F) rS / CRM / 0 0 1 0 0 1 0 0 0 0 / XFX mtcrf

mtmsr 1 31 (0x1F) rS /// 0 0 1 0 0 1 0 0 1 0 / X mtmsr

stwcx. 31 (0x1F) rS rA rB 0 0 1 0 0 1 0 1 1 0 1 X stwcx.

stwx 31 (0x1F) rS rA rB 0 0 1 0 0 1 0 1 1 1 / D stwx

stwux 31 (0x1F) rS rA rB 0 0 1 0 1 1 0 1 1 1 / D stwux

subfze 31 (0x1F) rD rA /// 0 0 1 1 0 0 1 0 0 0 0 X subfze

subfze. 31 (0x1F) rD rA /// 0 0 1 1 0 0 1 0 0 0 1 X subfze.

addze 31 (0x1F) rD rA /// 0 0 1 1 0 0 1 0 1 0 0 X addze

addze. 31 (0x1F) rD rA /// 0 0 1 1 0 0 1 0 1 0 1 X addze.

stbx 31 (0x1F) rS rA rB 0 0 1 1 0 1 0 1 1 1 0 X stbx

subfme 31 (0x1F) rD rA /// 0 0 1 1 1 0 1 0 0 0 0 X subfme

subfme. 31 (0x1F) rD rA /// 0 0 1 1 1 0 1 0 0 0 1 X subfme.

addme 31 (0x1F) rD rA /// 0 0 1 1 1 0 1 0 1 0 0 X addme

addme. 31 (0x1F) rD rA /// 0 0 1 1 1 0 1 0 1 0 1 X addme.

mullw 31 (0x1F) rD rA rB 0 0 1 1 1 0 1 0 1 1 0 X mullw

mullw. 31 (0x1F) rD rA rB 0 0 1 1 1 0 1 0 1 1 1 X mullw.

dcbtst 31 (0x1F) CT rA rB 0 0 1 1 1 1 0 1 1 0 / X dcbtst

stbux 31 (0x1F) rS rA rB 0 0 1 1 1 1 0 1 1 1 0 X stbux

add 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 1 0 0 X add

add. 31 (0x1F) rD rA rB 0 1 0 0 0 0 1 0 1 0 1 X add.

dcbt 31 (0x1F) CT rA rB 0 1 0 0 0 1 0 1 1 0 / X dcbt

lhzx 31 (0x1F) rD rA rB 0 1 0 0 0 1 0 1 1 1 / X lhzx

eqv 31 (0x1F) rD rA rB 0 1 0 0 0 1 1 1 0 0 0 X eqv

eqv. 31 (0x1F) rD rA rB 0 1 0 0 0 1 1 1 0 0 1 X eqv.

tlbie 1, 2 31 (0x1F) /// /// rB 0 1 0 0 1 1 0 0 1 0 0 X tlbie

lhzux 31 (0x1F) rD rA rB 0 1 0 0 1 1 0 1 1 1 / X lhzux

xor 31 (0x1F) rS rA rB 0 1 0 0 1 1 1 1 0 0 0 X xor

xor. 31 (0x1F) rS rA rB 0 1 0 0 1 1 1 1 0 0 1 X xor.

mfspr2 31 (0x1F) rD SPR[5–9] SPR[0–4] 0 1 0 1 0 1 0 0 1 1 / XFX mfspr

lhax 31 (0x1F) rD rA rB 0 1 0 1 0 1 0 1 1 1 / X lhax

lhaux 31 (0x1F) rD rA rB 0 1 0 1 1 1 0 1 1 1 / X lhaux

sthx 31 (0x1F) rS rA rB 0 1 1 0 0 1 0 1 1 1 / X sthx

orc 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 1 0 0 0 X orc

orc. 31 (0x1F) rS rA rB 0 1 1 0 0 1 1 1 0 0 1 X orc.

sthux 31 (0x1F) rS rA rB 0 1 1 0 1 1 0 1 1 1 / X sthux

or 31 (0x1F) rS rA rB 0 1 1 0 1 1 1 1 0 0 0 X or

or. 31 (0x1F) rS rA rB 0 1 1 0 1 1 1 1 0 0 1 X or.

divwu 31 (0x1F) rD rA rB 0 1 1 1 0 0 1 0 1 1 0 X divwu

divwu. 31 (0x1F) rD rA rB 0 1 1 1 0 0 1 0 1 1 1 X divwu.
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mtspr 2 31 (0x1F) rS SPR[5–9] SPR[0–4] 0 1 1 1 0 1 0 0 1 1 / XFX mtspr

dcbi 1 31 (0x1F) /// rA rB 0 1 1 1 0 1 0 1 1 0 / X dcbi

nand 31 (0x1F) rS rA rB 0 1 1 1 0 1 1 1 0 0 0 X nand

nand. 31 (0x1F) rS rA rB 0 1 1 1 0 1 1 1 0 0 1 X nand.

divw 31 (0x1F) rD rA rB 0 1 1 1 1 0 1 0 1 1 0 X divw

divw. 31 (0x1F) rD rA rB 0 1 1 1 1 0 1 0 1 1 1 X divw.

mcrxr 31 (0x1F) crfD /// 1 0 0 0 0 0 0 0 0 0 / X mcrxr

subfco 31 (0x1F) rD rA rB 1 0 0 0 0 0 1 0 0 0 0 X subfco

subfco. 31 (0x1F) rD rA rB 1 0 0 0 0 0 1 0 0 0 1 X subfco.

addco 31 (0x1F) rD rA rB 1 0 0 0 0 0 1 0 1 0 0 X addco

addco. 31 (0x1F) rD rA rB 1 0 0 0 0 0 1 0 1 0 1 X addco.

lwbrx 31 (0x1F) rD rA rB 1 0 0 0 0 1 0 1 1 0 / X lwbrx

srw 31 (0x1F) rS rA rB 1 0 0 0 0 1 1 0 0 0 0 X srw

srw. 31 (0x1F) rS rA rB 1 0 0 0 0 1 1 0 0 0 1 X srw.

subfo 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 0 0 0 0 X subfo

subfo. 31 (0x1F) rD rA rB 1 0 0 0 1 0 1 0 0 0 1 X subfo.

tlbsync 
1,6

31 (0x1F) /// /// /// 1 0 0 0 1 1 0 1 1 0 / X tlbsync

nego 
MBC 31 (0x1F) rD rA /// 1 0 0 1 1 0 1 0 0 0 0 X nego

nego. 31 (0x1F) rD rA /// 1 0 0 1 1 0 1 0 0 0 1 X nego.

subfeo 31 (0x1F) rD rA rB 1 0 1 0 0 0 1 0 0 0 0 X subfeo

subfeo. 31 (0x1F) rD rA rB 1 0 1 0 0 0 1 0 0 0 1 X subfeo.

addeo 31 (0x1F) rD rA rB 1 0 1 0 0 0 1 0 1 0 0 X addeo

addeo. 31 (0x1F) rD rA rB 1 0 1 0 0 0 1 0 1 0 1 X addeo.

stwbrx 31 (0x1F) rS rA rB 1 0 1 0 0 1 0 1 1 0 / X stwbrx

subfzeo 31 (0x1F) rD rA /// 1 0 1 1 0 0 1 0 0 0 0 X subfzeo

subfzeo. 31 (0x1F) rD rA /// 1 0 1 1 0 0 1 0 0 0 1 X subfzeo.

addzeo 31 (0x1F) rD rA /// 1 0 1 1 0 0 1 0 1 0 0 X addzeo

addzeo. 31 (0x1F) rD rA /// 1 0 1 1 0 0 1 0 1 0 1 X addzeo.

subfmeo 31 (0x1F) rD rA /// 1 0 1 1 1 0 1 0 0 0 0 X subfmeo

subfmeo. 31 (0x1F) rD rA /// 1 0 1 1 1 0 1 0 0 0 1 X subfmeo
.

addmeo 31 (0x1F) rD rA /// 1 0 1 1 1 0 1 0 1 0 0 X addmeo

addmeo. 31 (0x1F) rD rA /// 1 0 1 1 1 0 1 0 1 0 1 X addmeo.

mullwo 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 0 1 1 0 X mullwo

mullwo. 31 (0x1F) rD rA rB 1 0 1 1 1 0 1 0 1 1 1 X mullwo.

dcba 6 31 (0x1F) /// rA rB 1 0 1 1 1 1 0 1 1 0 / X dcba

addo 31 (0x1F) rD rA rB 1 1 0 0 0 0 1 0 1 0 0 X addo

addo. 31 (0x1F) rD rA rB 1 1 0 0 0 0 1 0 1 0 1 X addo.

lhbrx 31 (0x1F) rD rA rB 1 1 0 0 0 1 0 1 1 0 / X lhbrx
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sraw 31 (0x1F) rS rA rB 1 1 0 0 0 1 1 0 0 0 0 X sraw

sraw. 31 (0x1F) rS rA rB 1 1 0 0 0 1 1 0 0 0 1 X sraw.

srawi 31 (0x1F) rS rA SH 1 1 0 0 1 1 1 0 0 0 0 X srawi

srawi. 31 (0x1F) rS rA SH 1 1 0 0 1 1 1 0 0 0 1 X srawi.

sthbrx 31 (0x1F) rS rA rB 1 1 1 0 0 1 0 1 1 0 / X sthbrx

extsh 31 (0x1F) rS rA /// 1 1 1 0 0 1 1 0 1 0 0 X extsh

extsh. 31 (0x1F) rS rA /// 1 1 1 0 0 1 1 0 1 0 1 X extsh.

extsb 31 (0x1F) rS rA /// 1 1 1 0 1 1 1 0 1 0 0 X extsb

extsb. 31 (0x1F) rS rA /// 1 1 1 0 1 1 1 0 1 0 1 X extsb.

divwuo 31 (0x1F) rD rA rB 1 1 1 1 0 0 1 0 1 1 0 X divwuo

divwuo. 31 (0x1F) rD rA rB 1 1 1 1 0 0 1 0 1 1 1 X divwuo.

icbi 31 (0x1F) /// rA rB 1 1 1 1 0 1 0 1 1 0 / X icbi

divwo 31 (0x1F) rD rA rB 1 1 1 1 1 0 1 0 1 1 0 X divwo

divwo. 31 (0x1F) rD rA rB 1 1 1 1 1 0 1 0 1 1 1 X divwo.

dcbz 31 (0x1F) /// rA rB 1 1 1 1 1 1 0 1 1 0 / X dcbz

lwz 32 (0x20) rD rA D D lwz

lwzu 33 (0x21) rD rA D D lwzu

lbz 34(0x22) rD rA D D lbz

lbzu 35(0x23) rD rA D D lbzu

stw 36(0x24) rS rA D D stw

stwu 37(0x25) rS rA D D stwu

stb 38(0x26) rS rA D D stb

stbu 39(0x27) rS rA D D stbu

lhz 40(0x28) rD rA D D lhz

lhzu 41(0x29) rD rA D D lhzu

lha 42(0x2A) rD rA D D lha

lhau 43(0x2B) rD rA D D lhau

sth 44(0x2C) rS rA D D sth

sthu 45(0x2D) rS rA D D sthu

lmw 46(0x2E) rD rA D D lmw

stmw 47(0x2F) rS rA D D stmw

fres 6 59(0x3B) frD /// frB /// 1 1 0 0 0 0 A fres

fres. 6 59(0x3B) frD /// frB /// 1 1 0 0 0 1 A fres.

fsel 6 63(0x3F) frD frA frB frC 1 0 1 1 1 0 A fsel

fsel. 6 63(0x3F) frD frA frB frC 1 0 1 1 1 1 A fsel.

1. Supervisor-level instruction

Table 270. Instructions sorted by primary opcodes (decimal and hexadecimal) (continued)
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A.3 Instructions sorted by mnemonic (binary)
Table 271 lists instructions in alphabetical order by mnemonic with binary values. This list 
also includes simplified mnemonics and their equivalents using standard mnemonics. 

         

Table 271. Instructions sorted by mnemonic (binary)
Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic

add 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 1 0 0 X add

add. 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 1 0 1 X add.

addc 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 1 0 0 X addc

addc. 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 1 0 1 X addc.

addco 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 1 0 0 X addco

addco. 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 1 0 1 X addco.

adde 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 1 0 0 X adde

adde. 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 1 0 1 X adde.

addeo 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 1 0 0 X addeo

addeo. 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 1 0 1 X addeo.

addi 0 0 1 1 1 0 rD rA SIMM D addi

addic 0 0 1 1 0 0 rD rA SIMM D addic

addic. 0 0 1 1 0 1 rD rA SIMM D addic.

addis 0 0 1 1 1 1 rD rA SIMM D addis

addme 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 1 0 0 X addme

addme. 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 1 0 1 X addme.

addmeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 1 0 0 X addmeo

addmeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 1 0 1 X addmeo.

addo 0 1 1 1 1 1 rD rA rB 1 1 0 0 0 0 1 0 1 0 0 X addo

addo. 0 1 1 1 1 1 rD rA rB 1 1 0 0 0 0 1 0 1 0 1 X addo.

addze 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 1 0 0 X addze

addze. 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 1 0 1 X addze.

addzeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 1 0 0 X addzeo

addzeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 1 0 1 X addzeo.

and 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 1 0 0 0 X and

and. 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 1 0 0 1 X and.

andc 0 1 1 1 1 1 rS rA rB 0 0 0 0 1 1 1 1 0 0 0 X andc

andc. 0 1 1 1 1 1 rS rA rB 0 0 0 0 1 1 1 1 0 0 1 X andc.

andi. 0 1 1 1 0 0 rS rA UIMM D andi.

andis. 0 1 1 1 0 1 rS rA UIMM D andis.

b 0 1 0 0 1 0 LI 0 0 I b

ba 0 1 0 0 1 0 LI 1 0 I ba

bc 0 1 0 0 0 0 BO BI BD 0 0 B bc

bca 0 1 0 0 0 0 BO BI BD 1 0 B bca

bcctr 0 1 0 0 1 1 BO BI /// 1 0 0 0 0 1 0 0 0 0 0 XL bcctr

bcctrl 0 1 0 0 1 1 BO BI /// 1 0 0 0 0 1 0 0 0 0 1 XL bcctrl
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bcl 0 1 0 0 0 0 BO BI BD 0 1 B bcl

bcla 0 1 0 0 0 0 BO BI BD 1 1 B bcla

bclr 0 1 0 0 1 1 BO BI /// 0 0 0 0 0 1 0 0 0 0 0 XL bclr

bclrl 0 1 0 0 1 1 BO BI /// 0 0 0 0 0 1 0 0 0 0 1 XL bclrl

bctr bctr(1) equivalent to bcctr 20,0 bctr

bctrl bctrl 1 equivalent to bcctrl 20,0 bctrl

bdnz bdnz target 1 equivalent to bc 16,0,target bdnz

bdnza bdnza target 1 equivalent to bca 16,0,target bdnza

bdnzf bdnzf BI,target equivalent to bc 0,BI,target bdnzf

bdnzfa bdnzfa BI,target equivalent to bca 0,BI,target bdnzfa

bdnzfl bdnzfl BI,target equivalent to bcl 0,BI,target bdnzfl

bdnzfla bdnzfla BI,target equivalent to bcla 0,BI,target bdnzfla

bdnzflr bdnzflr BI equivalent to bclr 0,BI bdnzflr

bdnzflrl bdnzflrl BI equivalent to bclrl 0,BI bdnzflrl

bdnzl bdnzl target 1 equivalent to bcl 16,0,target bdnzl

bdnzla bdnzla target 1 equivalent to bcla 16,0,target bdnzla

bdnzlr bdnzlr BI equivalent to bclr 16,BI bdnzlr

bdnzlrl bdnzlrl 1 equivalent to bclrl 16,0 bdnzlrl

bdnzt bdnzt BI,target equivalent to bc 8,BI,target bdnzt

bdnzta bdnzta BI,target equivalent to bca 8,BI,target bdnzta

bdnztl bdnztl BI,target equivalent to bcl 8,0,target bdnztl

bdnztla bdnztla BI,target equivalent to bcla 8,BI,target bdnztla

bdnztlr bdnztlr BI equivalent to bclr 8,BI bdnztlr

bdnztlr bdnztlr BI equivalent to bclr 8,BI bdnztlr

bdnztlrl bdnztlrl BI equivalent to bclrl 8,BI bdnztlrl

bdz bdz target 1 equivalent to bc 18,0,target bdz

bdza bdza target 1 equivalent to bca 18,0,target bdza

bdzf bdzf BI,target equivalent to bc 2,BI,target bdzf

bdzfa bdzfa BI,target equivalent to bca 2,BI,target bdzfa

bdzfl bdzfl BI,target equivalent to bcl 2,BI,target bdzfl

bdzfla bdzfla BI,target equivalent to bcla 2,BI,target bdzfla

bdzflr bdzflr BI equivalent to bclr 2,BI bdzflr

bdzflrl bdzflrl BI equivalent to bclrl 2,BI bdzflrl

bdzl bdzl target 1 equivalent to bcl 18,BI,target bdzl

bdzla bdzla target 1 equivalent to bcla 18,BI,target bdzla

bdzlr bdzlr 1 equivalent to bclr 18,0 bdzlr

bdzlrl bdzlrl 1 equivalent to bclrl 18,0 bdzlrl

bdzt bdzt BI,target equivalent to bc 10,BI,target bdzt

bdzta bdzta BI,target equivalent to bca 10,BI,target bdzta

bdztl bdztl BI,target equivalent to bcl 10,BI,target bdztl
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bdztla bdztla BI,target equivalent to bcla 10,BI,target bdztla

bdztlrl bdztlrl BI equivalent to bclrl 10, BI bdztlrl

beq beq crS,target equivalent to bc 12,BI(2),target beq

beqa beqa crS,target equivalent to bca 12,BI2,target beqa

beqctr beqctr crS,target equivalent to bcctr 12,BI2,target beqctr

beqctrl beqctrl crS,targetequivalent to bcctrl 12,BI2,target beqctrl

beql beql crS,target equivalent to bcl 12,BI2,target beql

beqla beqla crS,target equivalent to bcla 12,BI2,target beqla

beqlr beqlr crS,target equivalent to bclr 12,BI2,target beqlr

beqlrl beqlrl crS,target equivalent to bclrl 12,BI2,target beqlrl

bf bf BI,target equivalent to bc 4,BI,target bf

bfa bfa BI,target equivalent to bca 4,BI,target bfa

bfctr bfctr BI equivalent to bcctr 4,BI bfctr

bfctrl bfctrl BI equivalent to bcctrl 4,BI bfctrl

bfl bfl BI,target equivalent to bcl 4,BI,target bfl

bfla bfla BI,target equivalent to bcla 4,BI,target bfla

bflr bflr BI equivalent to bclr 4,BI bflr

bflrl bflrl BI equivalent to bclrl 4,BI bflrl

bge bge crS,target equivalent to bc 4,BI(3),target bge

bgea bgea crS,target equivalent to bca 4,BI3,target bgea

bgectr bgectr crS,target equivalent to bcctr 4,BI3,target bgectr

bgectrl bgectrl crS,targetequivalent to bcctrl 4,BI3,target bgectrl

bgel bgel crS,target equivalent to bcl 4,BI3,target bgel

bgela bgela crS,target equivalent to bcla 4,BI3,target bgela

bgelr bgelr crS,target equivalent to bclr 4,BI3,target bgelr

bgelrl bgelrl crS,target equivalent to bclrl 4,BI3,target bgelrl

bgt bgt crS,target equivalent to bc 12,BI(4),target bgt

bgta bgta crS,target equivalent to bca 12,BI4,target bgta

bgtctr bgtctr crS,target equivalent to bcctr 12,BI4,target bgtctr

bgtctrl bgtctrl crS,target equivalent to bcctrl 12,BI4,target bgtctrl

bgtl bgtl crS,target equivalent to bcl 12,BI4,target bgtl

bgtla bgtla crS,target equivalent to bcla 12,BI4,target bgtla

bgtlr bgtlr crS,target equivalent to bclr 12,BI4,target bgtlr

bgtlrl bgtlrl crS,target equivalent to bclrl 12,BI4,target bgtlrl

bl 0 1 0 0 1 0 LI 0 1 I bl

bla 0 1 0 0 1 0 LI 1 1 I bla

ble ble crS,target equivalent to bc 4,BI4,target ble

blea blea crS,target equivalent to bca 4,BI4,target blea

blectr blectr crS,target equivalent to bcctr 4,BI4,target blectr

blectrl blectrl crS,target equivalent to bcctrl 4,BI4,target blectrl
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blel blel crS,target equivalent to bcl 4,BI4,target blel

blela blela crS,target equivalent to bcla 4,BI4,target blela

blelr blelr crS,target equivalent to bclr 4,BI4,target blelr

blelrl blelrl crS,target equivalent to bclrl 4,BI4,target blelrl

blr blr 1 equivalent to bclr 20,0 blr

blrl blrl 1 equivalent to bclrl 20,0 blrl

blt blt crS,target equivalent to bc 12,BI,target blt

blta blta crS,target equivalent to bca 12,BI3,target blta

bltctr bltctr crS,target equivalent to bcctr 12,BI3,target bltctr

bltctrl bltctrl crS,target equivalent to bcctrl 12,BI3,target bltctrl

bltl bltl crS,target equivalent to bcl 12,BI3,target bltl

bltla bltla crS,target equivalent to bcla 12,BI3,target bltla

bltlr bltlr crS,target equivalent to bclr 12,BI3,target bltlr

bltlrl bltlrl crS,target equivalent to bclrl 12,BI3,target bltlrl

bne bne crS,target equivalent to bc 4,BI3,target bne

bnea bnea crS,target equivalent to bca 4,BI3,target bnea

bnectr bnectr crS,target equivalent to bcctr 4,BI3,target bnectr

bnectrl bnectrl crS,targetequivalent to bcctrl 4,BI3,target bnectrl

bnel bnel crS,target equivalent to bcl 4,BI3,target bnel

bnela bnela crS,target equivalent to bcla 4,BI3,target bnela

bnelr bnelr crS,target equivalent to bclr 4,BI3,target bnelr

bnelrl bnelrl crS,target equivalent to bclrl 4,BI3,target bnelrl

bng bng crS,target equivalent to bc 4,BI4,target bng

bnga bnga crS,target equivalent to bca 4,BI4,target bnga

bngctr bngctr crS,target equivalent to bcctr 4,BI4,target bngctr

bngctrl bngctrl crS,targetequivalent to bcctrl 4,BI4,target bngctrl

bngl bngl crS,target equivalent to bcl 4,BI4,target bngl

bngla bngla crS,target equivalent to bcla 4,BI4,target bngla

bnglr bnglr crS,target equivalent to bclr 4,BI4,target bnglr

bnglrl bnglrl crS,target equivalent to bclrl 4,BI4,target bnglrl

bnl bnl crS,target equivalent to bc 4,BI3,target bnl

bnla bnla crS,target equivalent to bca 4,BI3,target bnla

bnlctr bnlctr crS,target equivalent to bcctr 4,BI3,target bnlctr

bnlctrl bnlctrl crS,target equivalent to bcctrl 4,BI3,target bnlctrl

bnll bnll crS,target equivalent to bcl 4,BI3,target bnll

bnlla bnlla crS,target equivalent to bcla 4,BI3,target bnlla

bnllr bnllr crS,target equivalent to bclr 4,BI3,target bnllr

bnllrl bnllrl crS,target equivalent to bclrl 4,BI3,target bnllrl

bns bns crS,target equivalent to bc 4,BI(5),target bns

bnsa bnsa crS,target equivalent to bca 4,BI5,target bnsa
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bnsctr bnsctr crS,target equivalent to bcctr 4,BI5,target bnsctr

bnsctrl bnsctrl crS,targetequivalent to bcctrl 4,BI5,target bnsctrl

bnsl bnsl crS,target equivalent to bcl 4,BI5,target bnsl

bnsla bnsla crS,target equivalent to bcla 4,BI5,target bnsla

bnslr bnslr crS,target equivalent to bclr 4,BI5,target bnslr

bnslrl bnslrl crS,target equivalent to bclrl 4,BI5,target bnslrl

bnu bnu crS,target equivalent to bc 4,BI5,target bnu

bnua bnua crS,target equivalent to bca 4,BI5,target bnua

bnuctr bnuctr crS,target equivalent to bcctr 4,BI5,target bnuctr

bnuctrl bnuctrl crS,targetequivalent to bcctrl 4,BI5,target bnuctrl

bnul bnul crS,target equivalent to bcl 4,BI5,target bnul

bnula bnula crS,target equivalent to bcla 4,BI5,target bnula

bnulr bnulr crS,target equivalent to bclr 4,BI5,target bnulr

bnulrl bnulrl crS,target equivalent to bclrl 4,BI5,target bnulrl

brinc 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 1 1 1 1 EVX brinc

bso bso crS,target equivalent to bc 12,BI5,target bso

bsoa bsoa crS,target equivalent to bca 12,BI5,target bsoa

bsoctr bsoctr crS,target equivalent to bcctr 12,BI5,target bsoctr

bsoctrl bsoctrl crS,targetequivalent to bcctrl 12,BI5,target bsoctrl

bsol bsol crS,target equivalent to bcl 12,BI5,target bsol

bsola bsola crS,target equivalent to bcla 12,BI5,target bsola

bsolr bsolr crS,target equivalent to bclr 12,BI5,target bsolr

bsolrl bsolrl crS,target equivalent to bclrl 12,BI5,target bsolrl

bt bt BI,target equivalent to bc 12,BI,target bt

bta bta BI,target equivalent to bca 12,BI,target bta

btctr btctr BI equivalent to bcctr 12,BI btctr

btctrl btctrl BI equivalent to bcctrl 12,BI btctrl

btl btl BI,target equivalent to bcl 12,BI,target btl

btla btla BI,target equivalent to bcla 12,BI,target btla

btlr btlr BI equivalent to bclr 12,BI btlr

btlrl btlrl BI equivalent to bclrl 12,BI btlrl

bun bun crS,target equivalent to bc 12,BI5,target bun

buna buna crS,target equivalent to bca 12,BI5,target buna

bunctr bunctr crS,target equivalent to bcctr 12,BI5,target bunctr

bunctrl bunctrl crS,targetequivalent to bcctrl 12,BI5,target bunctrl

bunl bunl crS,target equivalent to bcl 12,BI5,target bunl

bunla bunla crS,target equivalent to bcla 12,BI5,target bunla

bunlr bunlr crS,target equivalent to bclr 12,BI5,target bunlr

bunlrl bunlrl crS,target equivalent to bclrl 12,BI5,target bunlrl

clrlslwi clrlslwi rA,rS,b,n (n ≤ b ≤ 31) equivalent to rlwinm rA,rS,n,b – n,31 – n clrlslwi
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clrlwi clrlwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,0,n,31 clrlwi

clrrwi clrrwi rA,rS,n (n < 32) equivalent to rlwinm rA,rS,0,0,31 – n clrrwi

cmp 0 1 1 1 1 1 crfD / L rA rB 0 0 0 0 0 0 0 0 0 0 / X cmp

cmpi 0 0 1 0 1 1 crfD / L rA SIMM D cmpi

cmpl 0 1 1 1 1 1 / L rA rB /// 0 0 0 0 1 0 0 0 0 0 / X cmpl

cmpli 0 0 1 0 1 0 crfD / L rA UIMM D cmpli

cmplw cmplw crD,rA,rB equivalent to cmpl crD,0,rA,rB cmplw

cmplwi cmplwi crD,rA,UIMM equivalent to cmpli crD,0,rA,UIMM cmplwi

cmpw cmpw crD,rA,rB equivalent to cmp crD,0,rA,rB cmpw

cmpwi cmpwi crD,rA,SIMM equivalent to cmpi crD,0,rA,SIMM cmpwi

cntlzw 0 1 1 1 1 1 rS rA /// 0 0 0 0 0 1 1 0 1 0 0 X cntlzw

cntlzw. 0 1 1 1 1 1 rS rA /// 0 0 0 0 0 1 1 0 1 0 1 X cntlzw.

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 / XL crand

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 / XL crandc

crclr crclr bx equivalent to crxor bx,bx,bx crclr

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 / XL creqv

crmove crmove bx,by equivalent to cror bx,by,by crmove

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 / XL crnand

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 / XL crnor

crnot crnot bx,by equivalent to crnor bx,by,by crnot

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 / XL cror

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 / XL crorc

crset crset bx equivalent to creqv bx,bx,bx crset

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 / XL crxor

dcba (6) 0 1 1 1 1 1 /// rA rB 1 0 1 1 1 1 0 1 1 0 / X dcba

dcbf 0 1 1 1 1 1 /// rA rB 0 0 0 1 0 1 0 1 1 0 / X dcbf

dcbi (7) 0 1 1 1 1 1 /// rA rB 0 1 1 1 0 1 0 1 1 0 / X dcbi

dcblc 0 1 1 1 1 1 CT rA rB 0 1 1 0 0 0 0 1 1 0 0 X dcblc

dcbst 0 1 1 1 1 1 /// rA rB 0 0 0 0 1 1 0 1 1 0 / X dcbst

dcbt 0 1 1 1 1 1 CT rA rB 0 1 0 0 0 1 0 1 1 0 / X dcbt

dcbtls 0 1 1 1 1 1 CT rA rB 0 0 1 0 1 0 0 1 1 0 0 X dcbtls

dcbtst 0 1 1 1 1 1 CT rA rB 0 0 1 1 1 1 0 1 1 0 / X dcbtst

dcbtstls 0 1 1 1 1 1 CT rA rB 0 0 1 0 0 0 0 1 1 0 0 X dcbtstls

dcbz 0 1 1 1 1 1 /// rA rB 1 1 1 1 1 1 0 1 1 0 / X dcbz

divw 0 1 1 1 1 1 rD rA rB 0 1 1 1 1 0 1 0 1 1 0 X divw

divw. 0 1 1 1 1 1 rD rA rB 0 1 1 1 1 0 1 0 1 1 1 X divw.

divwo 0 1 1 1 1 1 rD rA rB 1 1 1 1 1 0 1 0 1 1 0 X divwo

divwo. 0 1 1 1 1 1 rD rA rB 1 1 1 1 1 0 1 0 1 1 1 X divwo.

divwu 0 1 1 1 1 1 rD rA rB 0 1 1 1 0 0 1 0 1 1 0 X divwu

divwu. 0 1 1 1 1 1 rD rA rB 0 1 1 1 0 0 1 0 1 1 1 X divwu.
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divwuo 0 1 1 1 1 1 rD rA rB 1 1 1 1 0 0 1 0 1 1 0 X divwuo

divwuo. 0 1 1 1 1 1 rD rA rB 1 1 1 1 0 0 1 0 1 1 1 X divwuo.

dss dss STRM equivalent to  dss STRM,0 dss

efdabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 0 0 EFX efdabs

efdadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 0 EFX efdadd

efdcfs 0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 1 1 1 EFX efdcfs

efdcfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 1 1 EFX efdcfsf

efdcfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 0 1 EFX efdcfsi

efdcfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 1 0 EFX efdcfuf

efdcfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 0 0 EFX efdcfui

efdcmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 1 0 EFX efdcmpeq

efdcmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 0 EFX efdcmpgt

efdcmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 1 EFX efdcmplt

efdctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 1 1 EFX efdctsf

efdctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 0 1 EFX efdctsi

efdctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 1 0 1 0 EFX efdctsiz

efdctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 1 0 EFX efdctuf

efdctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 0 0 EFX efdctui

efdctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 1 0 0 0 EFX efdctuiz

efddiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 1 EFX efddiv

efdmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 0 EFX efdmul

efdnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 0 1 EFX efdnabs

efdneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 1 0 EFX efdneg

efdsub 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 1 EFX efdsub

efdtsteq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 1 0 EFX efdtsteq

efdtstgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 0 EFX efdtstgt

efdtstlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 1 EFX efdtstlt

efsabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 0 0 EFX efsabs

efsadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 0 0 0 0 EFX efsadd

efscfd 0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 0 0 1 1 1 1 EFX efscfd

efscfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 1 1 EFX efscfsf

efscfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 0 1 EFX efscfsi

efscfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 1 0 EFX efscfuf

efscfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 0 0 EFX efscfui

efscmpeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 1 0 EFX efscmpeq

efscmpgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 0 EFX efscmpgt

efscmplt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 1 EFX efscmplt

efsctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 1 1 EFX efsctsf

efsctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 0 1 EFX efsctsi

efsctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 1 0 1 0 EFX efsctsiz
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efsctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 1 0 EFX efsctuf

efsctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 0 0 EFX efsctui

efsctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 1 0 0 0 EFX efsctuiz

efsdiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 1 0 0 1 EFX efsdiv

efsmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 1 0 0 0 EFX efsmul

efsnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 0 1 EFX efsnabs

efsneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 1 0 EFX efsneg

efssub 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 0 0 0 1 EFX efssub

efststeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 1 0 EFX efststeq

efststgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 0 EFX efststgt

efststlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 1 EFX efststlt

eqv 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 1 1 0 0 0 X eqv

eqv. 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 1 1 0 0 1 X eqv.

evabs 0 1 1 1 1 1 rD rA /// 0 1 0 0 0 0 0 1 0 0 0 EVX evabs

evaddiw 0 1 1 1 1 1 rD UIMM rB 0 1 0 0 0 0 0 0 0 1 0 EVX evaddiw

evaddsmi
aaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 1 0 0 1 EVX evaddsmi

aaw

evaddssi
aaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 0 0 0 1 EVX evaddssia

aw

evaddumi
aaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 1 0 0 0 EVX evaddumi

aaw

evaddusi
aaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 0 0 0 0 EVX evaddusia

aw

evaddw 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 0 0 0 0 0 EVX evaddw

evand 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 0 0 1 EVX evand

evandc 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 0 1 0 EVX evandc

evcmpeq 0 1 1 1 1 1 crfD / / rA rB 0 1 0 0 0 1 1 0 1 0 0 EVX evcmpeq

evcmpgts 0 1 1 1 1 1 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 1 EVX evcmpgts

evcmpgtu 0 1 1 1 1 1 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 0 EVX evcmpgtu

evcmplts 0 1 1 1 1 1 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 1 EVX evcmplts

evcmpltu 0 1 1 1 1 1 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 0 EVX evcmpltu

evcntlsw 0 1 1 1 1 1 rD rA /// 0 1 0 0 0 0 0 1 1 1 0 EVX evcntlsw

evcntlzw 0 1 1 1 1 1 rD rA /// 0 1 0 0 0 0 0 1 1 0 1 EVX evcntlzw

evdivws 0 1 1 1 1 1 rD rA rB 1 0 0 1 1 0 0 0 1 1 0 EVX evdivws

evdivwu 0 1 1 1 1 1 rD rA rB 1 0 0 1 1 0 0 0 1 1 1 EVX evdivwu

eveqv 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 1 0 0 1 EVX eveqv

evextsb 0 1 1 1 1 1 rD rA /// 0 1 0 0 0 0 0 1 0 1 0 EVX evextsb

evextsh 0 1 1 1 1 1 rD rA /// 0 1 0 0 0 0 0 1 0 1 1 EVX evextsh

evfsabs 0 1 1 1 1 1 rD rA /// 0 1 0 1 0 0 0 0 1 0 0 EVX evfsabs

evfsadd 0 1 1 1 1 1 rD rA rB 0 1 0 1 0 0 0 0 0 0 0 EVX evfsadd

evfscfsf 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 0 1 1 EVX evfscfsf

evfscfsi 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 0 0 1 EVX evfscfsi
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evfscfuf 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 0 1 0 EVX evfscfuf

evfscfui 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 0 0 0 EVX evfscfui

evfscmpeq 0 1 1 1 1 1 crfD / / rA rB 0 1 0 1 0 0 0 1 1 1 0 EVX evfscmpe
q

evfscmpg
t 0 1 1 1 1 1 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 0 EVX evfscmpg

t

evfscmplt 0 1 1 1 1 1 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 1 EVX evfscmplt

evfsctsf 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 1 1 1 EVX evfsctsf

evfsctsi 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 1 0 1 EVX evfsctsi

evfsctsiz 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 1 0 1 0 EVX evfsctsiz

evfsctuf 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 1 1 0 EVX evfsctuf

evfsctui 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 1 0 0 EVX evfsctui

evfsctuiz 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 1 0 0 0 EVX evfsctuiz

evfsdiv 0 1 1 1 1 1 rD rA rB 0 1 0 1 0 0 0 1 0 0 1 EVX evfsdiv

evfsmul 0 1 1 1 1 1 rD rA rB 0 1 0 1 0 0 0 1 0 0 0 EVX evfsmul

evfsnabs 0 1 1 1 1 1 rD rA /// 0 1 0 1 0 0 0 0 1 0 1 EVX evfsnabs

evfsneg 0 1 1 1 1 1 rD rA /// 0 1 0 1 0 0 0 0 1 1 0 EVX evfsneg

evfssub 0 1 1 1 1 1 rD rA rB 0 1 0 1 0 0 0 0 0 0 1 EVX evfssub

evfststeq 0 1 1 1 1 1 crfD / / rA rB 0 1 0 1 0 0 1 1 1 1 0 EVX evfststeq

evfststgt 0 1 1 1 1 1 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 0 EVX evfststgt

evfststlt 0 1 1 1 1 1 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 1 EVX evfststlt

evldd 0 1 1 1 1 1 rD rA UIMM(8) 0 1 1 0 0 0 0 0 0 0 1 EVX evldd

evlddx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 0 0 0 0 0 EVX evlddx

evldh 0 1 1 1 1 1 rD rA UIMM 8 0 1 1 0 0 0 0 0 1 0 1 EVX evldh

evldhx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 0 0 1 0 0 EVX evldhx

evldw 0 1 1 1 1 1 rD rA UIMM 8 0 1 1 0 0 0 0 0 0 1 1 EVX evldw

evldwx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 0 0 0 1 0 EVX evldwx

evlhhespl
at 0 1 1 1 1 1 rD rA UIMM 9 0 1 1 0 0 0 0 1 0 0 1 EVX evlhhespl

at

evlhhespl
atx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 0 1 0 0 0 EVX evlhhespl

atx

evlhhoss
plat 0 1 1 1 1 1 rD rA UIMM 9 0 1 1 0 0 0 0 1 1 1 1 EVX evlhhoss

plat

evlhhoss
platx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 0 1 1 1 0 EVX evlhhoss

platx

evlhhous
plat 0 1 1 1 1 1 rD rA UIMM 9 0 1 1 0 0 0 0 1 1 0 1 EVX evlhhous

plat

evlhhous
platx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 0 1 1 0 0 EVX evlhhous

platx

evlwhe 0 1 1 1 1 1 rD rA UIMM 9 0 1 1 0 0 0 1 0 0 0 1 EVX evlwhe

evlwhex 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 1 0 0 0 0 EVX evlwhex

evlwhos 0 1 1 1 1 1 rD rA UIMM 10 0 1 1 0 0 0 1 0 1 1 1 EVX evlwhos

evlwhosx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 1 0 1 1 0 EVX evlwhosx
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evlwhou 0 1 1 1 1 1 rD rA UIMM 10 0 1 1 0 0 0 1 0 1 0 1 EVX evlwhou

evlwhoux 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 1 0 1 0 0 EVX evlwhoux

evlwhspl
at 0 1 1 1 1 1 rD rA UIMM 10 0 1 1 0 0 0 1 1 1 0 1 EVX evlwhspla

t

evlwhspl
atx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 1 1 1 0 0 EVX evlwhspla

tx

evlwwspl
at 0 1 1 1 1 1 rD rA UIMM 10 0 1 1 0 0 0 1 1 0 0 1 EVX evlwwspl

at

evlwwspl
atx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 1 1 0 0 0 EVX evlwwspl

atx

evmerge
hi 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 1 0 0 EVX evmergeh

i

evmerge
hilo 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 1 1 0 EVX evmergeh

ilo

evmergel
o 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 1 0 1 EVX evmergel

o

evmergel
ohi 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 1 1 1 EVX evmergel

ohi

evmhegs
mfaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 1 0 1 0 1 1 EVX evmhegs

mfaa

evmhegs
mfan 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 1 0 1 0 1 1 EVX evmhegs

mfan

evmhegs
miaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 1 0 1 0 0 1 EVX evmhegs

miaa

evmhegs
mian 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 1 0 1 0 0 1 EVX evmhegs

mian

evmhegu
miaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 1 0 1 0 0 0 EVX evmhegu

miaa

evmhegu
mian 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 1 0 1 0 0 0 EVX evmhegu

mian

evmhesm
f 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 1 0 1 1 EVX evmhesm

f

evmhesm
fa 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 0 1 1 EVX evmhesm

fa

evmhesm
faaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 1 0 1 1 EVX evmhesm

faaw

evmhesm
fanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 1 0 1 1 EVX evmhesm

fanw

evmhesm
i 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 1 0 0 1 EVX evmhesm

i

evmhesm
ia 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 0 0 1 EVX evmhesm

ia

evmhesm
iaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 1 0 0 1 EVX evmhesm

iaaw

evmhesm
ianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 1 0 0 1 EVX evmhesm

ianw

evmhessf 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 0 0 1 1 EVX evmhessf

evmhessf
a 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 0 0 1 1 EVX evmhessf

a

evmhessf
aaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 0 0 1 1 EVX evmhessf

aaw
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evmhessf
anw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 0 0 1 1 EVX evmhessf

anw

evmhessi
aaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 0 0 0 1 EVX evmhessi

aaw

evmhessi
anw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 0 0 0 1 EVX evmhessi

anw

evmheum
i 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 1 0 0 0 EVX evmheum

i

evmheum
ia 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 0 0 0 EVX evmheum

ia

evmheum
iaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 1 0 0 0 EVX evmheum

iaaw

evmheum
ianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 1 0 0 0 EVX evmheum

ianw

evmheusi
aaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 0 0 0 0 EVX evmheusi

aaw

evmheusi
anw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 0 0 0 0 EVX evmheusi

anw

evmhogs
mfaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 1 0 1 1 1 1 EVX evmhogs

mfaa

evmhogs
mfan 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 1 0 1 1 1 1 EVX evmhogs

mfan

evmhogs
miaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 1 0 1 1 0 1 EVX evmhogs

miaa

evmhogs
mian 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 1 0 1 1 0 1 EVX evmhogs

mian

evmhogu
miaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 1 0 1 1 0 0 EVX evmhogu

miaa

evmhogu
mian 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 1 0 1 1 0 0 EVX evmhogu

mian

evmhosm
f 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 1 1 1 1 EVX evmhosm

f

evmhosm
fa 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 1 1 1 EVX evmhosm

fa

evmhosm
faaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 1 1 1 1 EVX evmhosm

faaw

evmhosm
fanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 1 1 1 1 EVX evmhosm

fanw

evmhosm
i 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 1 1 0 1 EVX evmhosm

i

evmhosm
ia 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 1 0 1 EVX evmhosm

ia

evmhosm
iaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 1 1 0 1 EVX evmhosm

iaaw

evmhosm
ianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 1 1 0 1 EVX evmhosm

ianw

evmhossf 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 0 1 1 1 EVX evmhossf

evmhossf
a 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 0 1 1 1 EVX evmhossf

a

evmhossf
aaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 0 1 1 1 EVX evmhossf

aaw
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evmhossf
anw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 0 1 1 1 EVX evmhossf

anw

evmhossi
aaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 0 1 0 1 EVX evmhossi

aaw

evmhossi
anw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 0 1 0 1 EVX evmhossi

anw

evmhou
mi 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 1 1 0 0 EVX evmhoum

i

evmhou
mia 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 1 0 0 EVX evmhoum

ia

evmhou
miaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 1 1 0 0 EVX evmhoum

iaaw

evmhou
mianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 1 1 0 0 EVX evmhoum

ianw

evmhousi
aaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 0 1 0 0 EVX evmhousi

aaw

evmhousi
anw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 0 1 0 0 EVX evmhousi

anw

evmr evmr rD,rA equivalent to evor rD,rA,rA evmr

evmra 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 0 1 0 0 EVX evmra

evmwhgs
mfaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 1 0 1 1 1 1 EVX evmwhgs

mfaa

evmwhgs
mfan 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 1 1 1 1 EVX evmwhgs

mfan

evmwhgs
miaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 1 0 1 1 0 1 EVX evmwhgs

miaa

evmwhgs
mian 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 1 1 0 1 EVX evmwhgs

mian

evmwhgs
sfaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 1 0 0 1 1 1 EVX evmwhgs

sfaa

evmwhgs
sfan 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 0 1 1 1 EVX evmwhgs

sfan

evmwhgu
miaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 1 0 1 1 0 0 EVX evmwhgu

miaa

evmwhgu
mian 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 1 1 0 0 EVX evmwhgu

mian

evmwhs
mf 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 1 1 1 1 EVX evmwhsm

f

evmwhs
mfa 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 1 1 1 1 EVX evmwhsm

fa

evmwhs
mfaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 1 1 1 1 EVX evmwhsm

faaw

evmwhs
mfanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 1 1 1 1 EVX evmwhsm

fanw

evmwhs
mi 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 1 1 0 1 EVX evmwhsm

i

evmwhs
mia 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 1 1 0 1 EVX evmwhsm

ia

evmwhs
miaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 1 1 0 1 EVX evmwhsm

iaaw

evmwhs
mianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 1 1 0 1 EVX evmwhsm

ianw
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evmwhss
f 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 0 1 1 1 EVX evmwhssf

evmwhss
fa 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 0 1 1 1 EVX evmwhssf

a

evmwhss
faaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 0 1 1 1 EVX evmwhssf

aaw

evmwhss
fanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 0 1 1 1 EVX evmwhssf

anw

evmwhss
ianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 0 1 0 1 EVX evmwhssi

anw

evmwhss
maaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 0 1 0 1 EVX evmwhss

maaw

evmwhu
mi 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 1 1 0 0 EVX evmwhu

mi

evmwhu
mia 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 1 1 0 0 EVX evmwhu

mia

evmwhus
iaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 0 1 0 0 EVX evmwhusi

aaw

evmwhus
ianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 0 1 0 0 EVX evmwhusi

anw

evmwlsm
f 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 1 0 1 1 EVX evmwlsmf

evmwlsm
fa 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 1 0 1 1 EVX evmwlsmf

a

evmwlsm
faaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 1 0 1 1 EVX evmwlsmf

aaw

evmwlsm
fanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 1 0 1 1 EVX evmwlsmf

anw

evmwlsm
iaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 1 0 0 1 EVX evmwlsmi

aaw

evmwlsm
ianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 1 0 0 1 EVX evmwlsmi

anw

evmwlssf 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 0 0 1 1 EVX evmwlssf

evmwlssf
a 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 0 0 1 1 EVX evmwlssf

a

evmwlssf
aaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 0 0 1 1 EVX evmwlssf

aaw

evmwlssf
anw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 0 0 1 1 EVX evmwlssf

anw

evmwlssi
aaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 0 0 0 1 EVX evmwlssi

aaw

evmwlssi
anw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 0 0 0 1 EVX evmwlssi

anw

evmwlum
i 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 1 0 0 0 EVX evmwlumi

evmwlum
ia 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 1 0 0 0 EVX evmwlumi

a

evmwlum
iaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 1 0 0 0 EVX evmwlumi

aaw

evmwlum
ianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 1 0 0 0 EVX evmwlumi

anw
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evmwlusi
aaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 0 0 0 0 EVX evmwlusi

aaw

evmwlusi
anw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 0 0 0 0 EVX evmwlusi

anw

evmwsmf 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 1 0 1 1 EVX evmwsmf

evmwsmf
a 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 1 1 0 1 1 EVX evmwsmf

a

evmwsmf
aa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 1 1 0 1 1 EVX evmwsmf

aa

evmwsmf
an 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 1 0 1 1 EVX evmwsmf

an

evmwsmi 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 1 0 0 1 EVX evmwsmi

evmwsmi
a 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 1 1 0 0 1 EVX evmwsmi

a

evmwsmi
aa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 1 1 0 0 1 EVX evmwsmi

aa

evmwsmi
an 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 1 0 0 1 EVX evmwsmi

an

evmwssf 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 0 0 1 1 EVX evmwssf

evmwssf
a 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 1 0 0 1 1 EVX evmwssfa

evmwssf
aa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 1 0 0 1 1 EVX evmwssfa

a

evmwssf
an 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 0 0 1 1 EVX evmwssfa

n

evmwumi 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 1 0 0 0 EVX evmwumi

evmwumi
a 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 1 1 0 0 0 EVX evmwumi

a

evmwumi
aa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 1 1 0 0 0 EVX evmwumi

aa

evmwumi
an 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 1 0 0 0 EVX evmwumi

an

evnand 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 1 1 1 0 EVX evnand

evneg 0 1 1 1 1 1 rD rA /// 0 1 0 0 0 0 0 1 0 0 1 EVX evneg

evnor 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 1 0 0 0 EVX evnor

evnot evnot rD,rA equivalent to evnor rD,rA,rA evnot

evor 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 1 1 1 EVX evor

evorc 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 1 0 1 1 EVX evorc

evrlw 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 0 0 0 EVX evrlw

evrlwi 0 1 1 1 1 1 rD rA UIMM 0 1 0 0 0 1 0 1 0 1 0 EVX evrlwi

evrndw 0 1 1 1 1 1 rD rA UIMM 0 1 0 0 0 0 0 1 1 0 0 EVX evrndw

evsel 0 1 1 1 1 1 rD rA rB 0 1 0 0 1 1 1 1 crfS EVX evsel

evslw 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 0 1 0 0 EVX evslw

evslwi 0 1 1 1 1 1 rD rA UIMM 0 1 0 0 0 1 0 0 1 1 0 EVX evslwi

evsplatfi 0 1 1 1 1 1 rD SIMM /// 0 1 0 0 0 1 0 1 0 1 1 EVX evsplatfi

evsplati 0 1 1 1 1 1 rD SIMM /// 0 1 0 0 0 1 0 1 0 0 1 EVX evsplati

evsrwis 0 1 1 1 1 1 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 1 EVX evsrwis
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evsrwiu 0 1 1 1 1 1 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 0 EVX evsrwiu

evsrws 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 0 0 0 1 EVX evsrws

evsrwu 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 0 0 0 0 EVX evsrwu

evstdd 0 1 1 1 1 1 rD rA UIMM 8 0 1 1 0 0 1 0 0 0 0 1 EVX evstdd

evstddx 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 0 0 0 0 0 EVX evstddx

evstdh 0 1 1 1 1 1 rS rA UIMM 8 0 1 1 0 0 1 0 0 1 0 1 EVX evstdh

evstdhx 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 0 0 1 0 0 EVX evstdhx

evstdw 0 1 1 1 1 1 rS rA UIMM 8 0 1 1 0 0 1 0 0 0 1 1 EVX evstdw

evstdwx 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 0 0 0 1 0 EVX evstdwx

evstwhe 0 1 1 1 1 1 rS rA UIMM 10 0 1 1 0 0 1 1 0 0 0 1 EVX evstwhe

evstwhex 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 0 0 0 0 EVX evstwhex

evstwho 0 1 1 1 1 1 rS rA UIMM 10 0 1 1 0 0 1 1 0 1 0 1 EVX evstwho

evstwhox 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 0 1 0 0 EVX evstwhox

evstwwe 0 1 1 1 1 1 rS rA UIMM 10 0 1 1 0 0 1 1 1 0 0 1 EVX evstwwe

evstwwex 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 0 0 0 EVX evstwwex

evstwwo 0 1 1 1 1 1 rS rA UIMM 10 0 1 1 0 0 1 1 1 1 0 1 EVX evstwwo

evstwwo
x 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 1 0 0 EVX evstwwox

evsubfsm
iaaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 1 0 1 1 EVX evsubfsm

iaaw

evsubfssi
aaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 0 0 1 1 EVX evsubfssi

aaw

evsubfu
miaaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 1 0 1 0 EVX evsubfum

iaaw

evsubfusi
aaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 0 0 1 0 EVX evsubfusi

aaw

evsubfw 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 0 0 1 0 0 EVX evsubfw

evsubifw 0 1 1 1 1 1 rD UIMM rB 0 1 0 0 0 0 0 0 1 1 0 EVX evsubifw

evsubiw evsubiw rD,rB,UIMM equivalent to evsubifw rD,UIMM,rB evsubiw

evsubw evsubw rD,rB,rA equivalent to evsubfw rD,rA,rB evsubw

evxor 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 1 1 0 EVX evxor

extlwi extlwi rA,rS,n,b (n > 0) equivalent to rlwinm rA,rS,b,0,n – 1 extlwi

extrwi extrwi rA,rS,n,b (n > 0) equivalent to rlwinm rA,rS,b + n, 32 – n,31 extrwi

extsb 0 1 1 1 1 1 rS rA /// 1 1 1 0 1 1 1 0 1 0 0 X extsb

extsb. 0 1 1 1 1 1 rS rA /// 1 1 1 0 1 1 1 0 1 0 1 X extsb.

extsh 0 1 1 1 1 1 rS rA /// 1 1 1 0 0 1 1 0 1 0 0 X extsh

extsh. 0 1 1 1 1 1 rS rA /// 1 1 1 0 0 1 1 0 1 0 1 X extsh.

fres 6 1 1 1 0 1 1 frD /// frB /// 1 1 0 0 0 0 A fres

fres. 6 1 1 1 0 1 1 frD /// frB /// 1 1 0 0 0 1 A fres.

fsel 6 1 1 1 1 1 1 frD frA frB frC 1 0 1 1 1 0 A fsel

fsel. 6 1 1 1 1 1 1 frD frA frB frC 1 0 1 1 1 1 A fsel.
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icbi 0 1 1 1 1 1 /// rA rB 1 1 1 1 0 1 0 1 1 0 / X icbi

icblc 0 1 1 1 1 1 CT rA rB 0 0 1 1 1 0 0 1 1 0 0 X icblc

icbt 0 1 1 1 1 1 CT rA rB 0 0 0 0 0 1 0 1 1 0 / X icbt

icbtls 0 1 1 1 1 1 CT rA rB 0 1 1 1 1 0 0 1 1 0 0 X icbtls

inslwi inslwi rA,rS,n,b (n > 0) equivalent to rlwimi rA,rS,32 – b,b,(b + n) – 1 inslwi

insrwi insrwi rA,rS,n,b (n > 0) equivalent to rlwimi rA,rS,32 – (b + n),b,(b + n) – 1 insrwi

isel 0 1 1 1 1 1 rD rA rB crb 0 1 1 1 1 0 X isel

iseleq iseleq rD,rA,rB equivalent to isel rD,rA,rB,2 iseleq

iselgt iselgt rD,rA,rB equivalent to isel rD,rA,rB,1 iselgt

isellt isellt rD,rA,rB equivalent to isel rD,rA,rB,0 isellt

isync 0 1 0 0 1 1 /// 0 0 1 0 0 1 0 1 1 0 / XL isync

la la rD,d(rA) equivalent to addi rD,rA,d la

lbz 1 0 0 0 1 0 rD rA D D lbz

lbzu 1 0 0 0 1 1 rD rA D D lbzu

lbzux 0 1 1 1 1 1 rD rA rB 0 0 0 1 1 1 0 1 1 1 / X lbzux

lbzx 0 1 1 1 1 1 rD rA rB 0 0 0 1 0 1 0 1 1 1 / X lbzx

lha 1 0 1 0 1 0 rD rA D D lha

lhau 1 0 1 0 1 1 rD rA D D lhau

lhaux 0 1 1 1 1 1 rD rA rB 0 1 0 1 1 1 0 1 1 1 / X lhaux

lhax 0 1 1 1 1 1 rD rA rB 0 1 0 1 0 1 0 1 1 1 / X lhax

lhbrx 0 1 1 1 1 1 rD rA rB 1 1 0 0 0 1 0 1 1 0 / X lhbrx

lhz 1 0 1 0 0 0 rD rA D D lhz

lhzu 1 0 1 0 0 1 rD rA D D lhzu

lhzux 0 1 1 1 1 1 rD rA rB 0 1 0 0 1 1 0 1 1 1 / X lhzux

lhzx 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 1 1 / X lhzx

li li rD,value equivalent to addi rD,0,value li

lis lis rD,value equivalent to addis rD,0,value lis

lmw 1 0 1 1 1 0 rD rA D D lmw

lwarx 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 1 0 1 0 0 / X lwarx

lwbrx 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 1 0 / X lwbrx

lwz 1 0 0 0 0 0 rD rA D D lwz

lwzu 1 0 0 0 0 1 rD rA D D lwzu

lwzux 0 1 1 1 1 1 rD rA rB 0 0 0 0 1 1 0 1 1 1 / X lwzux

lwzx 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 1 0 1 1 1 / X lwzx

mbar 0 1 1 1 1 1 MO /// 1 1 0 1 0 1 0 1 1 0 / X mbar

mcrf 0 1 0 0 1 1 crfD // crfS /// 0 0 0 0 0 0 0 0 0 0 / XL mcrf

mcrxr 0 1 1 1 1 1 crfD /// 1 0 0 0 0 0 0 0 0 0 / X mcrxr

mfcr mtcr rS equivalent to mtcrf 0xFF,rS mfcr

mfcr 0 1 1 1 1 1 rD /// 0 0 0 0 0 1 0 0 1 1 / X mfcr

mfdcr 0 1 1 1 1 1 rD DCRN5–9 DCRN0–4 0 1 0 1 0 0 0 0 1 1 / XFX mfdcr
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mfmsr 7 0 1 1 1 1 1 rD /// 0 0 0 1 0 1 0 0 1 1 / X mfmsr

mfpmr 0 1 1 1 1 1 rD PMRN5–9 PMRN0–4 0 1 0 1 0 0 1 1 1 0 0 XFX mfpmr

mfregna
me

mfregname rD equivalent to mfspr rD,SPRn mfregnam
e

mfspr 9 0 1 1 1 1 1 rD SPR[5–9] SPR[0–4] 0 1 0 1 0 1 0 0 1 1 / XFX mfspr

mr mr rA,rS equivalent to or rA,rS,rS mr

msync 0 1 1 1 1 1 /// 1 0 0 1 0 1 0 1 1 0 / X msync

mtcr mtcr rS equivalent to mtcrf 0xFF,rS mtcr

mtcrf 0 1 1 1 1 1 rS / CRM / 0 0 1 0 0 1 0 0 0 0 / XFX mtcrf

mtdcr 0 1 1 1 1 1 rS DCRN5–9 DCRN0–4 0 1 1 1 0 0 0 0 1 1 / XFX mtdcr

mtmsr 7 0 1 1 1 1 1 rS /// 0 0 1 0 0 1 0 0 1 0 / X mtmsr

mtpmr 0 1 1 1 1 1 rS PMRN5–9 PMRN0–4 0 1 1 1 0 0 1 1 1 0 0 XFX mtpmr

mtregna
me

mtregname rS equivalent to mtspr SPRn rS mtregnam
e

mtspr (9) 0 1 1 1 1 1 rS SPR[5–9] SPR[0–4] 0 1 1 1 0 1 0 0 1 1 / XFX mtspr

mulhw 0 1 1 1 1 1 rD rA rB / 0 0 1 0 0 1 0 1 1 0 X mulhw

mulhw. 0 1 1 1 1 1 rD rA rB / 0 0 1 0 0 1 0 1 1 1 X mulhw.

mulhwu 0 1 1 1 1 1 rD rA rB / 0 0 0 0 0 1 0 1 1 0 X mulhwu

mulhwu. 0 1 1 1 1 1 rD rA rB / 0 0 0 0 0 1 0 1 1 1 X mulhwu.

mulli 0 0 0 1 1 1 rD rA SIMM D mulli

mullw 0 1 1 1 1 1 rD rA rB 0 0 1 1 1 0 1 0 1 1 0 X mullw

mullw. 0 1 1 1 1 1 rD rA rB 0 0 1 1 1 0 1 0 1 1 1 X mullw.

mullwo 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 0 1 1 0 X mullwo

mullwo. 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 0 1 1 1 X mullwo.

nand 0 1 1 1 1 1 rS rA rB 0 1 1 1 0 1 1 1 0 0 0 X nand

nand. 0 1 1 1 1 1 rS rA rB 0 1 1 1 0 1 1 1 0 0 1 X nand.

neg 0 1 1 1 1 1 rD rA /// 0 0 0 1 1 0 1 0 0 0 0 X neg

neg. 0 1 1 1 1 1 rD rA /// 0 0 0 1 1 0 1 0 0 0 1 X neg.

nego 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 1 0 0 0 0 X nego

nego. 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 1 0 0 0 1 X nego.

nop nop equivalent to ori 0,0,0 nop

nor 0 1 1 1 1 1 rS rA rB 0 0 0 1 1 1 1 1 0 0 0 X nor

nor. 0 1 1 1 1 1 rS rA rB 0 0 0 1 1 1 1 1 0 0 1 X nor.

not not rA,rS equivalent to nor rA,rS,rS not

or 0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 1 1 0 0 0 X or

or. 0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 1 1 0 0 1 X or.

orc 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 0 0 0 X orc

orc. 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 0 0 1 X orc.

ori 0 1 1 0 0 0 rS rA UIMM D ori

oris 0 1 1 0 0 1 rS rA UIMM D oris

rfci 0 1 0 0 1 1 /// 0 0 0 0 1 1 0 0 1 1 / XL rfci
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rfdi 7 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 X rfdi

rfi 7 0 1 0 0 1 1 /// 0 0 0 0 1 1 0 0 1 0 / XL rfi

rfmci 7 0 1 0 0 1 1 /// 0 0 0 0 1 0 0 1 1 0 / XL rfmci

rlwimi 0 1 0 1 0 0 rS rA SH MB ME 0 M rlwimi

rlwimi. 0 1 0 1 0 0 rS rA SH MB ME 1 M rlwimi.

rlwinm 0 1 0 1 0 1 rS rA SH MB ME 0 M rlwinm

rlwinm. 0 1 0 1 0 1 rS rA SH MB ME 1 M rlwinm.

rlwnm 0 1 0 1 1 1 rS rA rB MB ME 0 M rlwnm

rlwnm. 0 1 0 1 1 1 rS rA rB MB ME 1 M rlwnm.

rotlw rotlw rA,rS,rB equivalent to rlwnm rA,rS,rB,0,31 rotlw

rotlwi rotlwi rA,rS,n equivalent to rlwinm rA,rS,n,0,31 rotlwi

rotrwi rotrwi rA,rS,n equivalent to rlwinm rA,rS,32 – n,0,31 rotrwi

sc 0 1 0 0 0 1 /// 1 / SC sc

slw 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 0 0 0 0 X slw

slw. 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 0 0 0 1 X slw.

slwi slwi rA,rS,n (n < 32)equivalent to rlwinm rA,rS,n,0,31 – n slwi

sraw 0 1 1 1 1 1 rS rA rB 1 1 0 0 0 1 1 0 0 0 0 X sraw

sraw. 0 1 1 1 1 1 rS rA rB 1 1 0 0 0 1 1 0 0 0 1 X sraw.

srawi 0 1 1 1 1 1 rS rA SH 1 1 0 0 1 1 1 0 0 0 0 X srawi

srawi. 0 1 1 1 1 1 rS rA SH 1 1 0 0 1 1 1 0 0 0 1 X srawi.

srw 0 1 1 1 1 1 rS rA rB 1 0 0 0 0 1 1 0 0 0 0 X srw

srw. 0 1 1 1 1 1 rS rA rB 1 0 0 0 0 1 1 0 0 0 1 X srw.

srwi srwi rA,rS,n (n < 32)equivalent to rlwinm rA,rS,32 – n,n,31 srwi

stb 1 0 0 1 1 0 rS rA D D stb

stbu 1 0 0 1 1 1 rS rA D D stbu

stbux 0 1 1 1 1 1 rS rA rB 0 0 1 1 1 1 0 1 1 1 0 X stbux

stbx 0 1 1 1 1 1 rS rA rB 0 0 1 1 0 1 0 1 1 1 0 X stbx

sth 1 0 1 1 0 0 rS rA D D sth

sthbrx 0 1 1 1 1 1 rS rA rB 1 1 1 0 0 1 0 1 1 0 / X sthbrx

sthu 1 0 1 1 0 1 rS rA D D sthu

sthux 0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 0 1 1 1 / X sthux

sthx 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 0 1 1 1 / X sthx

stmw 1 0 1 1 1 1 rS rA D D stmw

stw 1 0 0 1 0 0 rS rA D D stw

stwbrx 0 1 1 1 1 1 rS rA rB 1 0 1 0 0 1 0 1 1 0 / X stwbrx

stwcx. 0 1 1 1 1 1 rS rA rB 0 0 1 0 0 1 0 1 1 0 1 X stwcx.

stwu 1 0 0 1 0 1 rS rA D D stwu

stwux 0 1 1 1 1 1 rS rA rB 0 0 1 0 1 1 0 1 1 1 / D stwux

stwx 0 1 1 1 1 1 rS rA rB 0 0 1 0 0 1 0 1 1 1 / D stwx

sub sub rD,rA,rB equivalent to subf rD,rB,rA sub
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Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic



Instruction set listings RM0004

1081/1176   

subc subc rD,rA,rB equivalent to subfc rD,rB,rA subc

subf 0 1 1 1 1 1 rD rA rB 0 0 0 0 1 0 1 0 0 0 0 X subf

subf. 0 1 1 1 1 1 rD rA rB 0 0 0 0 1 0 1 0 0 0 1 X subf.

subfc 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 0 0 0 X subfc

subfc. 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 0 0 1 X subfc.

subfco 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 0 0 0 X subfco

subfco. 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 0 0 1 X subfco.

subfe 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 0 0 0 X subfe

subfe. 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 0 0 1 X subfe.

subfeo 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 0 0 0 X subfeo

subfeo. 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 0 0 1 X subfeo.

subfic 0 0 1 0 0 0 rD rA SIMM D subfic

subfme 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 0 0 0 X subfme

subfme. 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 0 0 1 X subfme.

subfmeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 0 0 0 X subfmeo

subfmeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 0 0 1 X subfmeo.

subfo 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 0 0 0 0 X subfo

subfo. 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 0 0 0 1 X subfo.

subfze 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 0 0 0 X subfze

subfze. 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 0 0 1 X subfze.

subfzeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 0 0 0 X subfzeo

subfzeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 0 0 1 X subfzeo.

subi subi rD,rA,value equivalent to addi rD,rA,–value subi

subic subic rD,rA,valueequivalent to addic rD,rA,–value subic

subic. subic. rD,rA,valueequivalent to addic. rD,rA,–value subic.

subis subis rD,rA,valueequivalent to addis rD,rA,–value subis

tlbie 6,7 0 1 1 1 1 1 /// /// rB 0 1 0 0 1 1 0 0 1 0 0 X tlbie

tlbivax 0 1 1 1 1 1 /// rA rB 1 1 0 0 0 1 0 0 1 0 / X tlbivax

tlbre 0 1 1 1 1 1 ///10 1 1 1 0 1 1 0 0 1 0 / X tlbre

tlbsx 0 1 1 1 1 1 ///12 rA rB 1 1 1 0 0 1 0 0 1 0 /12 X tlbsx

tlbsync 
6,7

0 1 1 1 1 1 /// /// /// 1 0 0 0 1 1 0 1 1 0 / X tlbsync

tlbwe 0 1 1 1 1 1 ///12 1 1 1 1 0 1 0 0 1 0 / X tlbwe

tw 0 1 1 1 1 1 TO rA rB 0 0 0 0 0 0 0 1 0 0 / X tw

tweq tweq rA,SIMM equivalent to tw 4,rA,SIMM tweq

tweqi tweqi rA,SIMM equivalent to twi 4,rA,SIMM tweqi

twge twge rA,SIMM equivalent to tw 12,rA,SIMM twge

twgei twgei rA,SIMM equivalent to twi 12,rA,SIMM twgei

twgt twgt rA,SIMM equivalent to tw 8,rA,SIMM twgt

twgti twgti rA,SIMM equivalent to twi 8,rA,SIMM twgti
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twi 0 0 0 0 1 1 TO rA SIMM D twi

twle twle rA,SIMM equivalent to tw 20,rA,SIMM twle

twlei twlei rA,SIMM equivalent to twi 20,rA,SIMM twlei

twlge twlge rA,SIMM equivalent to tw 12,rA,SIMM twlge

twlgei twlgei rA,SIMM equivalent to twi 12,rA,SIMM twlgei

twlgt twlgt rA,SIMM equivalent to tw 1,rA,SIMM twlgt

twlgti twlgti rA,SIMM equivalent to twi 1,rA,SIMM twlgti

twlle twlle rA,SIMM equivalent to tw 6,rA,SIMM twlle

twllei twllei rA,SIMM equivalent to twi 6,rA,SIMM twllei

twllt twllt rA,SIMM equivalent to tw 2,rA,SIMM twllt

twllti twllti rA,SIMM equivalent to twi 2,rA,SIMM twllti

twlng twlng rA,SIMM equivalent to tw 6,rA,SIMM twlng

twlngi twlngi rA,SIMM equivalent to twi 6,rA,SIMM twlngi

twlnl twlnl rA,SIMM equivalent to tw 5,rA,SIMM twlnl

twlnli twlnli rA,SIMM equivalent to twi 5,rA,SIMM twlnli

twlt twlt rA,SIMM equivalent to tw 16,rA,SIMM twlt

twlti twlti rA,SIMM equivalent to twi 16,rA,SIMM twlti

twne twne rA,SIMM equivalent to tw 24,rA,SIMM twne

twnei twnei rA,SIMM equivalent to twi 24,rA,SIMM twnei

twng twng rA,SIMM equivalent to tw 20,rA,SIMM twng

twngi twngi rA,SIMM equivalent to twi 20,rA,SIMM twngi

twnl twnl rA,SIMM equivalent to tw 12,rA,SIMM twnl

twnli twnli rA,SIMM equivalent to twi 12,rA,SIMM twnli

wait 0 1 1 1 1 1 /// 0 0 0 0 1 1 1 1 1 0 / wait

wrtee 0 1 1 1 1 1 rS /// 0 0 1 0 0 0 0 0 1 1 / X wrtee

wrteei 0 1 1 1 1 1 /// E /// 0 0 1 0 1 0 0 0 1 1 / X wrteei

xor 0 1 1 1 1 1 rS rA rB 0 1 0 0 1 1 1 1 0 0 0 X xor

xor. 0 1 1 1 1 1 rS rA rB 0 1 0 0 1 1 1 1 0 0 1 X xor.

xori 0 1 1 0 1 0 rS rA UIMM D xori

xoris 0 1 1 0 1 1 rS rA UIMM D xoris

1. Simplified mnemonics for branch instructions that do not test a CR bit should not specify one; a programming error may occur.

2. The value in the BI operand selects CRn[2], the EQ bit. 

3. The value in the BI operand selects CRn[0], the LT bit. 

4. The value in the BI operand selects CRn[1], the GT bit. 

5. The value in the BI operand selects CRn[3], the SO bit. 

6. Optional to the PowerPC classic architecture.

7. Supervisor-level instruction.

8. d = UIMM * 8

9. Access level is detemined by whether the SPR is defined as a user or supervisor level SPR.

Table 271. Instructions sorted by mnemonic (binary) (continued)
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A.4 Instructions sorted by opcode (binary)
Table 272 lists instructions by opcode, shown in binary.

         

Table 272. Instructions sorted by opcode (binary)
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rfdi 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 X rfdi

twi 0 0 0 0 1 1 TO rA SIMM D twi

brinc 0 0 0 1 0 0 rD rA rB 0 1 0 0 0 0 0 1 1 1 1 EVX brinc

efdabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 0 0 EFX efdabs

efdadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 0 EFX efdadd

efdcfs 0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 1 0 1 1 1 1 EFX efdcfs

efdcfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 1 1 EFX efdcfsf

efdcfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 0 1 EFX efdcfsi

efdcfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 1 0 EFX efdcfuf

efdcfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 0 0 0 EFX efdcfui

efdcmp
eq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 1 0 EFX efdcmpe

q

efdcmp
gt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 0 EFX efdcmpg

t

efdcmpl
t 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 0 1 1 0 1 EFX efdcmplt

efdctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 1 1 EFX efdctsf

efdctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 0 1 EFX efdctsi

efdctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 1 0 1 0 EFX efdctsiz

efdctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 1 0 EFX efdctuf

efdctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 0 1 0 0 EFX efdctui

efdctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 1 1 1 0 0 0 EFX efdctuiz

efddiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 1 EFX efddiv

efdmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 1 0 0 0 EFX efdmul

efdnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 0 1 EFX efdnabs

efdneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 1 0 0 1 1 0 EFX efdneg

efdsub 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 1 0 0 0 0 1 EFX efdsub

efdtsteq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 1 0 EFX efdtsteq

efdtstgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 0 EFX efdtstgt

efdtstlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 1 1 1 1 0 1 EFX efdtstlt

efsabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 0 0 EFX efsabs

efsadd 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 0 0 0 0 EFX efsadd

efscfd 0 0 0 1 0 0 rD 0 0 0 0 0 rB 0 1 0 1 1 0 0 1 1 1 1 EFX efscfd

efscfsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 1 1 EFX efscfsf

efscfsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 0 1 EFX efscfsi

efscfuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 1 0 EFX efscfuf

efscfui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 0 0 0 EFX efscfui
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efscmp
eq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 1 0 EFX efscmpe

q

efscmp
gt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 0 EFX efscmpg

t

efscmpl
t 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 0 1 1 0 1 EFX efscmplt

efsctsf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 1 1 EFX efsctsf

efsctsi 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 0 1 EFX efsctsi

efsctsiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 1 0 1 0 EFX efsctsiz

efsctuf 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 1 0 EFX efsctuf

efsctui 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 0 1 0 0 EFX efsctui

efsctuiz 0 0 0 1 0 0 rD /// rB 0 1 0 1 1 0 1 1 0 0 0 EFX efsctuiz

efsdiv 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 1 0 0 1 EFX efsdiv

efsmul 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 1 0 0 0 EFX efsmul

efsnabs 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 0 1 EFX efsnabs

efsneg 0 0 0 1 0 0 rD rA /// 0 1 0 1 1 0 0 0 1 1 0 EFX efsneg

efssub 0 0 0 1 0 0 rD rA rB 0 1 0 1 1 0 0 0 0 0 1 EFX efssub

efststeq 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 1 0 EFX efststeq

efststgt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 0 EFX efststgt

efststlt 0 0 0 1 0 0 crfD / / rA rB 0 1 0 1 1 0 1 1 1 0 1 EFX efststlt

mulli 0 0 0 1 1 1 rD rA SIMM D mulli

subfic 0 0 1 0 0 0 rD rA SIMM D subfic

cmpli 0 0 1 0 1 0 crfD / L rA UIMM D cmpli

cmpi 0 0 1 0 1 1 crfD / L rA SIMM D cmpi

addic 0 0 1 1 0 0 rD rA SIMM D addic

addic. 0 0 1 1 0 1 rD rA SIMM D addic.

addi 0 0 1 1 1 0 rD rA SIMM D addi

addis 0 0 1 1 1 1 rD rA SIMM D addis

bc 0 1 0 0 0 0 BO BI BD 0 0 B bc

bca 0 1 0 0 0 0 BO BI BD 1 0 B bca

bcl 0 1 0 0 0 0 BO BI BD 0 1 B bcl

bcla 0 1 0 0 0 0 BO BI BD 1 1 B bcla

sc 0 1 0 0 0 1 /// 1 / SC sc

b 0 1 0 0 1 0 LI 0 0 I b

ba 0 1 0 0 1 0 LI 1 0 I ba

bl 0 1 0 0 1 0 LI 0 1 I bl

bla 0 1 0 0 1 0 LI 1 1 I bla

rfci 0 1 0 0 1 1 /// 0 0 0 0 1 1 0 0 1 1 / XL rfci

rfmci 1 0 1 0 0 1 1 /// 0 0 0 0 1 0 0 1 1 0 / XL rfmci

mcrf 0 1 0 0 1 1 crfD // crfS /// 0 0 0 0 0 0 0 0 0 0 / XL mcrf

bclr 0 1 0 0 1 1 BO BI /// 0 0 0 0 0 1 0 0 0 0 0 XL bclr

Table 272. Instructions sorted by opcode (binary) (continued)
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bclrl 0 1 0 0 1 1 BO BI /// 0 0 0 0 0 1 0 0 0 0 1 XL bclrl

crnor 0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 / XL crnor

rfi (1) 0 1 0 0 1 1 /// 0 0 0 0 1 1 0 0 1 0 / XL rfi

crandc 0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 / XL crandc

isync 0 1 0 0 1 1 /// 0 0 1 0 0 1 0 1 1 0 / XL isync

crxor 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 / XL crxor

crand 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 / XL crand

crnand 0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 / XL crnand

creqv 0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 / XL creqv

crorc 0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 / XL crorc

cror 0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 / XL cror

bcctr 0 1 0 0 1 1 BO BI /// 1 0 0 0 0 1 0 0 0 0 0 XL bcctr

bcctrl 0 1 0 0 1 1 BO BI /// 1 0 0 0 0 1 0 0 0 0 1 XL bcctrl

rlwimi 0 1 0 1 0 0 rS rA SH MB ME 0 M rlwimi

rlwimi. 0 1 0 1 0 0 rS rA SH MB ME 1 M rlwimi.

rlwinm 0 1 0 1 0 1 rS rA SH MB ME 0 M rlwinm

rlwinm. 0 1 0 1 0 1 rS rA SH MB ME 1 M rlwinm.

rlwnm 0 1 0 1 1 1 rS rA rB MB ME 0 M rlwnm

rlwnm. 0 1 0 1 1 1 rS rA rB MB ME 1 M rlwnm.

ori 0 1 1 0 0 0 rS rA UIMM D ori

oris 0 1 1 0 0 1 rS rA UIMM D oris

xori 0 1 1 0 1 0 rS rA UIMM D xori

xoris 0 1 1 0 1 1 rS rA UIMM D xoris

andi. 0 1 1 1 0 0 rS rA UIMM D andi.

andis. 0 1 1 1 0 1 rS rA UIMM D andis.

dcblc 0 1 1 1 1 1 CT rA rB 0 1 1 0 0 0 0 1 1 0 0 X dcblc

dcbtls 0 1 1 1 1 1 CT rA rB 0 0 1 0 1 0 0 1 1 0 0 X dcbtls

dcbtstls 0 1 1 1 1 1 CT rA rB 0 0 1 0 0 0 0 1 1 0 0 X dcbtstls

evabs 0 1 1 1 1 1 rD rA /// 0 1 0 0 0 0 0 1 0 0 0 EVX evabs

evaddiw 0 1 1 1 1 1 rD UIMM rB 0 1 0 0 0 0 0 0 0 1 0 EVX evaddiw

evadds
miaaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 1 0 0 1 EVX evadds

miaaw

evaddss
iaaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 0 0 0 1 EVX evaddssi

aaw

evaddu
miaaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 1 0 0 0 EVX evaddu

miaaw

evaddus
iaaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 0 0 0 0 EVX evaddus

iaaw

evaddw 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 0 0 0 0 0 EVX evaddw

evand 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 0 0 1 EVX evand

evandc 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 0 1 0 EVX evandc
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evcmpe
q 0 1 1 1 1 1 crfD / / rA rB 0 1 0 0 0 1 1 0 1 0 0 EVX evcmpe

q

evcmpg
ts 0 1 1 1 1 1 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 1 EVX evcmpgt

s

evcmpg
tu 0 1 1 1 1 1 crfD / / rA rB 0 1 0 0 0 1 1 0 0 0 0 EVX evcmpgt

u

evcmplt
s 0 1 1 1 1 1 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 1 EVX evcmplt

s

evcmplt
u 0 1 1 1 1 1 crfD / / rA rB 0 1 0 0 0 1 1 0 0 1 0 EVX evcmplt

u

evcntls
w 0 1 1 1 1 1 rD rA /// 0 1 0 0 0 0 0 1 1 1 0 EVX evcntlsw

evcntlz
w 0 1 1 1 1 1 rD rA /// 0 1 0 0 0 0 0 1 1 0 1 EVX evcntlzw

evdivws 0 1 1 1 1 1 rD rA rB 1 0 0 1 1 0 0 0 1 1 0 EVX evdivws

evdivwu 0 1 1 1 1 1 rD rA rB 1 0 0 1 1 0 0 0 1 1 1 EVX evdivwu

eveqv 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 1 0 0 1 EVX eveqv

evextsb 0 1 1 1 1 1 rD rA /// 0 1 0 0 0 0 0 1 0 1 0 EVX evextsb

evextsh 0 1 1 1 1 1 rD rA /// 0 1 0 0 0 0 0 1 0 1 1 EVX evextsh

evfsabs 0 1 1 1 1 1 rD rA /// 0 1 0 1 0 0 0 0 1 0 0 EVX evfsabs

evfsadd 0 1 1 1 1 1 rD rA rB 0 1 0 1 0 0 0 0 0 0 0 EVX evfsadd

evfscfsf 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 0 1 1 EVX evfscfsf

evfscfsi 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 0 0 1 EVX evfscfsi

evfscfuf 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 0 1 0 EVX evfscfuf

evfscfui 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 0 0 0 EVX evfscfui

evfscm
peq 0 1 1 1 1 1 crfD / / rA rB 0 1 0 1 0 0 0 1 1 1 0 EVX evfscmp

eq

evfscm
pgt 0 1 1 1 1 1 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 0 EVX evfscmp

gt

evfscm
plt 0 1 1 1 1 1 crfD / / rA rB 0 1 0 1 0 0 0 1 1 0 1 EVX evfscmp

lt

evfsctsf 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 1 1 1 EVX evfsctsf

evfsctsi 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 1 0 1 EVX evfsctsi

evfsctsi
z 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 1 0 1 0 EVX evfsctsiz

evfsctuf 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 1 1 0 EVX evfsctuf

evfsctui 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 0 1 0 0 EVX evfsctui

evfsctui
z 0 1 1 1 1 1 rD /// rB 0 1 0 1 0 0 1 1 0 0 0 EVX evfsctui

z

evfsdiv 0 1 1 1 1 1 rD rA rB 0 1 0 1 0 0 0 1 0 0 1 EVX evfsdiv

evfsmul 0 1 1 1 1 1 rD rA rB 0 1 0 1 0 0 0 1 0 0 0 EVX evfsmul

evfsnab
s 0 1 1 1 1 1 rD rA /// 0 1 0 1 0 0 0 0 1 0 1 EVX evfsnab

s

evfsneg 0 1 1 1 1 1 rD rA /// 0 1 0 1 0 0 0 0 1 1 0 EVX evfsneg

evfssub 0 1 1 1 1 1 rD rA rB 0 1 0 1 0 0 0 0 0 0 1 EVX evfssub

Table 272. Instructions sorted by opcode (binary) (continued)
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evfstste
q 0 1 1 1 1 1 crfD / / rA rB 0 1 0 1 0 0 1 1 1 1 0 EVX evfstste

q

evfststg
t 0 1 1 1 1 1 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 0 EVX evfststgt

evfststlt 0 1 1 1 1 1 crfD / / rA rB 0 1 0 1 0 0 1 1 1 0 1 EVX evfststlt

evldd 0 1 1 1 1 1 rD rA UIMM (2) 0 1 1 0 0 0 0 0 0 0 1 EVX evldd

evlddx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 0 0 0 0 0 EVX evlddx

evldh 0 1 1 1 1 1 rD rA UIMM 2 0 1 1 0 0 0 0 0 1 0 1 EVX evldh

evldhx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 0 0 1 0 0 EVX evldhx

evldw 0 1 1 1 1 1 rD rA UIMM 2 0 1 1 0 0 0 0 0 0 1 1 EVX evldw

evldwx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 0 0 0 1 0 EVX evldwx

evlhhes
plat 0 1 1 1 1 1 rD rA UIMM 3 0 1 1 0 0 0 0 1 0 0 1 EVX evlhhes

plat

evlhhes
platx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 0 1 0 0 0 EVX evlhhes

platx

evlhhos
splat 0 1 1 1 1 1 rD rA UIMM 3 0 1 1 0 0 0 0 1 1 1 1 EVX evlhhos

splat

evlhhos
splatx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 0 1 1 1 0 EVX evlhhos

splatx

evlhhou
splat 0 1 1 1 1 1 rD rA UIMM 3 0 1 1 0 0 0 0 1 1 0 1 EVX evlhhou

splat

evlhhou
splatx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 0 1 1 0 0 EVX evlhhou

splatx

evlwhe 0 1 1 1 1 1 rD rA UIMM 3 0 1 1 0 0 0 1 0 0 0 1 EVX evlwhe

evlwhex 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 1 0 0 0 0 EVX evlwhex

evlwhos 0 1 1 1 1 1 rD rA UIMM 4 0 1 1 0 0 0 1 0 1 1 1 EVX evlwhos

evlwhos
x 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 1 0 1 1 0 EVX evlwhos

x

evlwhou 0 1 1 1 1 1 rD rA UIMM 4 0 1 1 0 0 0 1 0 1 0 1 EVX evlwhou

evlwhou
x 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 1 0 1 0 0 EVX evlwhou

x

evlwhsp
lat 0 1 1 1 1 1 rD rA UIMM 4 0 1 1 0 0 0 1 1 1 0 1 EVX evlwhspl

at

evlwhsp
latx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 1 1 1 0 0 EVX evlwhspl

atx

evlwws
plat 0 1 1 1 1 1 rD rA UIMM 4 0 1 1 0 0 0 1 1 0 0 1 EVX evlwwsp

lat

evlwws
platx 0 1 1 1 1 1 rD rA rB 0 1 1 0 0 0 1 1 0 0 0 EVX evlwwsp

latx

evmerg
ehi 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 1 0 0 EVX evmerge

hi

evmerg
ehilo 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 1 1 0 EVX evmerge

hilo

evmerg
elo 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 1 0 1 EVX evmerge

lo

evmerg
elohi 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 1 1 1 EVX evmerge

lohi

Table 272. Instructions sorted by opcode (binary) (continued)
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evmheg
smfaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 1 0 1 0 1 1 EVX evmheg

smfaa

evmheg
smfan 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 1 0 1 0 1 1 EVX evmheg

smfan

evmheg
smiaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 1 0 1 0 0 1 EVX evmheg

smiaa

evmheg
smian 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 1 0 1 0 0 1 EVX evmheg

smian

evmheg
umiaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 1 0 1 0 0 0 EVX evmheg

umiaa

evmheg
umian 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 1 0 1 0 0 0 EVX evmheg

umian

evmhes
mf 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 1 0 1 1 EVX evmhes

mf

evmhes
mfa 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 0 1 1 EVX evmhes

mfa

evmhes
mfaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 1 0 1 1 EVX evmhes

mfaaw

evmhes
mfanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 1 0 1 1 EVX evmhes

mfanw

evmhes
mi 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 1 0 0 1 EVX evmhes

mi

evmhes
mia 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 0 0 1 EVX evmhes

mia

evmhes
miaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 1 0 0 1 EVX evmhes

miaaw

evmhes
mianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 1 0 0 1 EVX evmhes

mianw

evmhes
sf 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 0 0 1 1 EVX evmhes

sf

evmhes
sfa 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 0 0 1 1 EVX evmhes

sfa

evmhes
sfaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 0 0 1 1 EVX evmhes

sfaaw

evmhes
sfanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 0 0 1 1 EVX evmhes

sfanw

evmhes
siaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 0 0 0 1 EVX evmhes

siaaw

evmhes
sianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 0 0 0 1 EVX evmhes

sianw

evmheu
mi 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 1 0 0 0 EVX evmheu

mi

evmheu
mia 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 0 0 0 EVX evmheu

mia

evmheu
miaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 1 0 0 0 EVX evmheu

miaaw

evmheu
mianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 1 0 0 0 EVX evmheu

mianw

evmheu
siaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 0 0 0 0 EVX evmheu

siaaw

evmheu
sianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 0 0 0 0 EVX evmheu

sianw

Table 272. Instructions sorted by opcode (binary) (continued)
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evmhog
smfaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 1 0 1 1 1 1 EVX evmhog

smfaa

evmhog
smfan 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 1 0 1 1 1 1 EVX evmhog

smfan

evmhog
smiaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 1 0 1 1 0 1 EVX evmhog

smiaa

evmhog
smian 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 1 0 1 1 0 1 EVX evmhog

smian

evmhog
umiaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 1 0 1 1 0 0 EVX evmhog

umiaa

evmhog
umian 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 1 0 1 1 0 0 EVX evmhog

umian

evmhos
mf 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 1 1 1 1 EVX evmhos

mf

evmhos
mfa 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 1 1 1 EVX evmhos

mfa

evmhos
mfaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 1 1 1 1 EVX evmhos

mfaaw

evmhos
mfanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 1 1 1 1 EVX evmhos

mfanw

evmhos
mi 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 1 1 0 1 EVX evmhos

mi

evmhos
mia 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 1 0 1 EVX evmhos

mia

evmhos
miaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 1 1 0 1 EVX evmhos

miaaw

evmhos
mianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 1 1 0 1 EVX evmhos

mianw

evmhos
sf 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 0 1 1 1 EVX evmhos

sf

evmhos
sfa 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 0 1 1 1 EVX evmhos

sfa

evmhos
sfaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 0 1 1 1 EVX evmhos

sfaaw

evmhos
sfanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 0 1 1 1 EVX evmhos

sfanw

evmhos
siaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 0 1 0 1 EVX evmhos

siaaw

evmhos
sianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 0 1 0 1 EVX evmhos

sianw

evmhou
mi 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 0 1 1 0 0 EVX evmhou

mi

evmhou
mia 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 1 0 0 EVX evmhou

mia

evmhou
miaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 1 1 0 0 EVX evmhou

miaaw

evmhou
mianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 1 1 0 0 EVX evmhou

mianw

evmhou
siaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 0 0 1 0 0 EVX evmhou

siaaw

evmhou
sianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 0 0 0 0 1 0 0 EVX evmhou

sianw

Table 272. Instructions sorted by opcode (binary) (continued)
Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic



RM0004 Instruction set listings

 1090/1176

evmra 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 0 1 0 0 EVX evmra

evmwhg
smfaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 1 0 1 1 1 1 EVX evmwhg

smfaa

evmwhg
smfan 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 1 1 1 1 EVX evmwhg

smfan

evmwhg
smiaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 1 0 1 1 0 1 EVX evmwhg

smiaa

evmwhg
smian 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 1 1 0 1 EVX evmwhg

smian

evmwhg
ssfaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 1 0 0 1 1 1 EVX evmwhg

ssfaa

evmwhg
ssfan 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 0 1 1 1 EVX evmwhg

ssfan

evmwhg
umiaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 1 0 1 1 0 0 EVX evmwhg

umiaa

evmwhg
umian 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 1 1 0 0 EVX evmwhg

umian

evmwhs
mf 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 1 1 1 1 EVX evmwhs

mf

evmwhs
mfa 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 1 1 1 1 EVX evmwhs

mfa

evmwhs
mfaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 1 1 1 1 EVX evmwhs

mfaaw

evmwhs
mfanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 1 1 1 1 EVX evmwhs

mfanw

evmwhs
mi 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 1 1 0 1 EVX evmwhs

mi

evmwhs
mia 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 1 1 0 1 EVX evmwhs

mia

evmwhs
miaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 1 1 0 1 EVX evmwhs

miaaw

evmwhs
mianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 1 1 0 1 EVX evmwhs

mianw

evmwhs
sf 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 0 1 1 1 EVX evmwhs

sf

evmwhs
sfa 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 0 1 1 1 EVX evmwhs

sfa

evmwhs
sfaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 0 1 1 1 EVX evmwhs

sfaaw

evmwhs
sfanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 0 1 1 1 EVX evmwhs

sfanw

evmwhs
sianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 0 1 0 1 EVX evmwhs

sianw

evmwhs
smaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 0 1 0 1 EVX evmwhs

smaaw

evmwhu
mi 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 1 1 0 0 EVX evmwhu

mi

evmwhu
mia 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 1 1 0 0 EVX evmwhu

mia

evmwhu
siaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 0 1 0 0 EVX evmwhu

siaaw
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evmwhu
sianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 0 1 0 0 EVX evmwhu

sianw

evmwls
mf 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 1 0 1 1 EVX evmwls

mf

evmwls
mfa 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 1 0 1 1 EVX evmwls

mfa

evmwls
mfaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 1 0 1 1 EVX evmwls

mfaaw

evmwls
mfanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 1 0 1 1 EVX evmwls

mfanw

evmwls
miaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 1 0 0 1 EVX evmwls

miaaw

evmwls
mianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 1 0 0 1 EVX evmwls

mianw

evmwls
sf 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 0 0 1 1 EVX evmwlss

f

evmwls
sfa 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 0 0 1 1 EVX evmwlss

fa

evmwls
sfaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 0 0 1 1 EVX evmwlss

faaw

evmwls
sfanw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 0 0 1 1 EVX evmwlss

fanw

evmwls
siaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 0 0 0 1 EVX evmwlss

iaaw

evmwls
sianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 0 0 0 1 EVX evmwlss

ianw

evmwlu
mi 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 0 1 0 0 0 EVX evmwlu

mi

evmwlu
mia 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 0 1 0 0 0 EVX evmwlu

mia

evmwlu
miaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 1 0 0 0 EVX evmwlu

miaaw

evmwlu
mianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 1 0 0 0 EVX evmwlu

mianw

evmwlu
siaaw 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 0 0 0 0 0 EVX evmwlus

iaaw

evmwlu
sianw 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 0 0 0 0 0 EVX evmwlus

ianw

evmws
mf 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 1 0 1 1 EVX evmwsm

f

evmws
mfa 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 1 1 0 1 1 EVX evmwsm

fa

evmws
mfaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 1 1 0 1 1 EVX evmwsm

faa

evmws
mfan 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 1 0 1 1 EVX evmwsm

fan

evmws
mi 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 1 0 0 1 EVX evmwsm

i

evmws
mia 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 1 1 0 0 1 EVX evmwsm

ia

evmws
miaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 1 1 0 0 1 EVX evmwsm

iaa
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evmws
mian 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 1 0 0 1 EVX evmwsm

ian

evmwss
f 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 0 0 1 1 EVX evmwssf

evmwss
fa 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 1 0 0 1 1 EVX evmwssf

a

evmwss
faa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 1 0 0 1 1 EVX evmwssf

aa

evmwss
fan 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 0 0 1 1 EVX evmwssf

an

evmwu
mi 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 1 0 0 0 EVX evmwu

mi

evmwu
mia 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 1 1 1 0 0 0 EVX evmwu

mia

evmwu
miaa 0 1 1 1 1 1 rD rA rB 1 0 1 0 1 0 1 1 0 0 0 EVX evmwu

miaa

evmwu
mian 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 1 0 0 0 EVX evmwu

mian

evnand 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 1 1 1 0 EVX evnand

evneg 0 1 1 1 1 1 rD rA /// 0 1 0 0 0 0 0 1 0 0 1 EVX evneg

evnor 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 1 0 0 0 EVX evnor

evor 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 1 1 1 EVX evor

evorc 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 1 0 1 1 EVX evorc

evrlw 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 0 0 0 EVX evrlw

evrlwi 0 1 1 1 1 1 rD rA UIMM 0 1 0 0 0 1 0 1 0 1 0 EVX evrlwi

evrndw 0 1 1 1 1 1 rD rA UIMM 0 1 0 0 0 0 0 1 1 0 0 EVX evrndw

evsel 0 1 1 1 1 1 rD rA rB 0 1 0 0 1 1 1 1 crfS EVX evsel

evslw 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 0 1 0 0 EVX evslw

evslwi 0 1 1 1 1 1 rD rA UIMM 0 1 0 0 0 1 0 0 1 1 0 EVX evslwi

evsplatf
i 0 1 1 1 1 1 rD SIMM /// 0 1 0 0 0 1 0 1 0 1 1 EVX evsplatfi

evsplati 0 1 1 1 1 1 rD SIMM /// 0 1 0 0 0 1 0 1 0 0 1 EVX evsplati

evsrwis 0 1 1 1 1 1 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 1 EVX evsrwis

evsrwiu 0 1 1 1 1 1 rD rA UIMM 0 1 0 0 0 1 0 0 0 1 0 EVX evsrwiu

evsrws 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 0 0 0 1 EVX evsrws

evsrwu 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 0 0 0 0 EVX evsrwu

evstdd 0 1 1 1 1 1 rD rA UIMM 2 0 1 1 0 0 1 0 0 0 0 1 EVX evstdd

evstddx 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 0 0 0 0 0 EVX evstddx

evstdh 0 1 1 1 1 1 rS rA UIMM 2 0 1 1 0 0 1 0 0 1 0 1 EVX evstdh

evstdhx 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 0 0 1 0 0 EVX evstdhx

evstdw 0 1 1 1 1 1 rS rA UIMM 2 0 1 1 0 0 1 0 0 0 1 1 EVX evstdw

evstdwx 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 0 0 0 1 0 EVX evstdwx

evstwhe 0 1 1 1 1 1 rS rA UIMM 4 0 1 1 0 0 1 1 0 0 0 1 EVX evstwhe
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evstwhe
x 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 0 0 0 0 EVX evstwhe

x

evstwho 0 1 1 1 1 1 rS rA UIMM 4 0 1 1 0 0 1 1 0 1 0 1 EVX evstwho

evstwho
x 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 0 1 0 0 EVX evstwho

x

evstww
e 0 1 1 1 1 1 rS rA UIMM 4 0 1 1 0 0 1 1 1 0 0 1 EVX evstwwe

evstww
ex 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 0 0 0 EVX evstwwe

x

evstww
o 0 1 1 1 1 1 rS rA UIMM 4 0 1 1 0 0 1 1 1 1 0 1 EVX evstwwo

evstww
ox 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 1 0 0 EVX evstwwo

x

evsubfs
miaaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 1 0 1 1 EVX evsubfs

miaaw

evsubfs
siaaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 0 0 1 1 EVX evsubfs

siaaw

evsubfu
miaaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 1 0 1 0 EVX evsubfu

miaaw

evsubfu
siaaw 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 0 0 0 1 0 EVX evsubfu

siaaw

evsubfw 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 0 0 1 0 0 EVX evsubfw

evsubif
w 0 1 1 1 1 1 rD UIMM rB 0 1 0 0 0 0 0 0 1 1 0 EVX evsubif

w

evxor 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 1 1 0 EVX evxor

icblc 0 1 1 1 1 1 CT rA rB 0 0 1 1 1 0 0 1 1 0 0 X icblc

icbt 0 1 1 1 1 1 CT rA rB 0 0 0 0 0 1 0 1 1 0 / X icbt

icbtls 0 1 1 1 1 1 CT rA rB 0 1 1 1 1 0 0 1 1 0 0 X icbtls

isel 0 1 1 1 1 1 rD rA rB crb 0 1 1 1 1 0 X isel

mbar 0 1 1 1 1 1 MO /// 1 1 0 1 0 1 0 1 1 0 / X mbar

mfdcr 0 1 1 1 1 1 rD DCRN5–9 DCRN0–4 0 1 0 1 0 0 0 0 1 1 / XFX mfdcr

mfpmr 0 1 1 1 1 1 rD PMRN5–9 PMRN0–4 0 1 0 1 0 0 1 1 1 0 0 XFX mfpmr

msync 0 1 1 1 1 1 /// 1 0 0 1 0 1 0 1 1 0 / X msync

mtdcr 0 1 1 1 1 1 rS DCRN5–9 DCRN0–4 0 1 1 1 0 0 0 0 1 1 / XFX mtdcr

mtpmr 0 1 1 1 1 1 rS PMRN5–9 PMRN0–4 0 1 1 1 0 0 1 1 1 0 0 XFX mtpmr

tlbivax 0 1 1 1 1 1 /// rA rB 1 1 0 0 0 1 0 0 1 0 / X tlbivax

tlbre 0 1 1 1 1 1 ///3 1 1 1 0 1 1 0 0 1 0 / X tlbre

tlbsx 0 1 1 1 1 1 ///5 rA rB 1 1 1 0 0 1 0 0 1 0 /5 X tlbsx

tlbwe 0 1 1 1 1 1 ///5 1 1 1 1 0 1 0 0 1 0 / X tlbwe

wait 0 1 1 1 1 1 /// 0 0 0 0 1 1 1 1 1 0 / wait

wrtee 0 1 1 1 1 1 rS /// 0 0 1 0 0 0 0 0 1 1 / X wrtee

wrteei 0 1 1 1 1 1 /// E /// 0 0 1 0 1 0 0 0 1 1 / X wrteei

cmp 0 1 1 1 1 1 crfD / L rA rB 0 0 0 0 0 0 0 0 0 0 / X cmp

tw 0 1 1 1 1 1 TO rA rB 0 0 0 0 0 0 0 1 0 0 / X tw
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subfc 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 0 0 0 X subfc

subfc. 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 0 0 1 X subfc.

addc 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 1 0 0 X addc

addc. 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 0 1 0 1 0 1 X addc.

mulhwu 0 1 1 1 1 1 rD rA rB / 0 0 0 0 0 1 0 1 1 0 X mulhwu

mulhwu
. 0 1 1 1 1 1 rD rA rB / 0 0 0 0 0 1 0 1 1 1 X mulhwu.

mfcr 0 1 1 1 1 1 rD /// 0 0 0 0 0 1 0 0 1 1 / X mfcr

lwarx 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 1 0 1 0 0 / X lwarx

lwzx 0 1 1 1 1 1 rD rA rB 0 0 0 0 0 1 0 1 1 1 / X lwzx

slw 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 0 0 0 0 X slw

slw. 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 0 0 0 1 X slw.

cntlzw 0 1 1 1 1 1 rS rA /// 0 0 0 0 0 1 1 0 1 0 0 X cntlzw

cntlzw. 0 1 1 1 1 1 rS rA /// 0 0 0 0 0 1 1 0 1 0 1 X cntlzw.

and 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 1 0 0 0 X and

and. 0 1 1 1 1 1 rS rA rB 0 0 0 0 0 1 1 1 0 0 1 X and.

cmpl 0 1 1 1 1 1 / L rA rB /// 0 0 0 0 1 0 0 0 0 0 / X cmpl

subf 0 1 1 1 1 1 rD rA rB 0 0 0 0 1 0 1 0 0 0 0 X subf

subf. 0 1 1 1 1 1 rD rA rB 0 0 0 0 1 0 1 0 0 0 1 X subf.

dcbst 0 1 1 1 1 1 /// rA rB 0 0 0 0 1 1 0 1 1 0 / X dcbst

lwzux 0 1 1 1 1 1 rD rA rB 0 0 0 0 1 1 0 1 1 1 / X lwzux

andc 0 1 1 1 1 1 rS rA rB 0 0 0 0 1 1 1 1 0 0 0 X andc

andc. 0 1 1 1 1 1 rS rA rB 0 0 0 0 1 1 1 1 0 0 1 X andc.

mulhw 0 1 1 1 1 1 rD rA rB / 0 0 1 0 0 1 0 1 1 0 X mulhw

mulhw. 0 1 1 1 1 1 rD rA rB / 0 0 1 0 0 1 0 1 1 1 X mulhw.

mfmsr 1 0 1 1 1 1 1 rD /// 0 0 0 1 0 1 0 0 1 1 / X mfmsr

dcbf 0 1 1 1 1 1 /// rA rB 0 0 0 1 0 1 0 1 1 0 / X dcbf

lbzx 0 1 1 1 1 1 rD rA rB 0 0 0 1 0 1 0 1 1 1 / X lbzx

neg 0 1 1 1 1 1 rD rA /// 0 0 0 1 1 0 1 0 0 0 0 X neg

neg. 0 1 1 1 1 1 rD rA /// 0 0 0 1 1 0 1 0 0 0 1 X neg.

lbzux 0 1 1 1 1 1 rD rA rB 0 0 0 1 1 1 0 1 1 1 / X lbzux

nor 0 1 1 1 1 1 rS rA rB 0 0 0 1 1 1 1 1 0 0 0 X nor

nor. 0 1 1 1 1 1 rS rA rB 0 0 0 1 1 1 1 1 0 0 1 X nor.

subfe 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 0 0 0 X subfe

subfe. 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 0 0 1 X subfe.

adde 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 1 0 0 X adde

adde. 0 1 1 1 1 1 rD rA rB 0 0 1 0 0 0 1 0 1 0 1 X adde.

mtcrf 0 1 1 1 1 1 rS / CRM / 0 0 1 0 0 1 0 0 0 0 / XFX mtcrf

mtmsr 1 0 1 1 1 1 1 rS /// 0 0 1 0 0 1 0 0 1 0 / X mtmsr

stwcx. 0 1 1 1 1 1 rS rA rB 0 0 1 0 0 1 0 1 1 0 1 X stwcx.
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stwx 0 1 1 1 1 1 rS rA rB 0 0 1 0 0 1 0 1 1 1 / D stwx

stwux 0 1 1 1 1 1 rS rA rB 0 0 1 0 1 1 0 1 1 1 / D stwux

subfze 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 0 0 0 X subfze

subfze. 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 0 0 1 X subfze.

addze 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 1 0 0 X addze

addze. 0 1 1 1 1 1 rD rA /// 0 0 1 1 0 0 1 0 1 0 1 X addze.

stbx 0 1 1 1 1 1 rS rA rB 0 0 1 1 0 1 0 1 1 1 0 X stbx

subfme 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 0 0 0 X subfme

subfme. 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 0 0 1 X subfme.

addme 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 1 0 0 X addme

addme. 0 1 1 1 1 1 rD rA /// 0 0 1 1 1 0 1 0 1 0 1 X addme.

mullw 0 1 1 1 1 1 rD rA rB 0 0 1 1 1 0 1 0 1 1 0 X mullw

mullw. 0 1 1 1 1 1 rD rA rB 0 0 1 1 1 0 1 0 1 1 1 X mullw.

dcbtst 0 1 1 1 1 1 CT rA rB 0 0 1 1 1 1 0 1 1 0 / X dcbtst

stbux 0 1 1 1 1 1 rS rA rB 0 0 1 1 1 1 0 1 1 1 0 X stbux

add 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 1 0 0 X add

add. 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 0 1 0 1 0 1 X add.

dcbt 0 1 1 1 1 1 CT rA rB 0 1 0 0 0 1 0 1 1 0 / X dcbt

lhzx 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 0 1 1 1 / X lhzx

eqv 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 1 1 0 0 0 X eqv

eqv. 0 1 1 1 1 1 rD rA rB 0 1 0 0 0 1 1 1 0 0 1 X eqv.

tlbie 1,3 0 1 1 1 1 1 /// /// rB 0 1 0 0 1 1 0 0 1 0 0 X tlbie

lhzux 0 1 1 1 1 1 rD rA rB 0 1 0 0 1 1 0 1 1 1 / X lhzux

xor 0 1 1 1 1 1 rS rA rB 0 1 0 0 1 1 1 1 0 0 0 X xor

xor. 0 1 1 1 1 1 rS rA rB 0 1 0 0 1 1 1 1 0 0 1 X xor.

mfspr 3 0 1 1 1 1 1 rD SPR[5–9] SPR[0–4] 0 1 0 1 0 1 0 0 1 1 / XFX mfspr

lhax 0 1 1 1 1 1 rD rA rB 0 1 0 1 0 1 0 1 1 1 / X lhax

lhaux 0 1 1 1 1 1 rD rA rB 0 1 0 1 1 1 0 1 1 1 / X lhaux

sthx 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 0 1 1 1 / X sthx

orc 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 0 0 0 X orc

orc. 0 1 1 1 1 1 rS rA rB 0 1 1 0 0 1 1 1 0 0 1 X orc.

sthux 0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 0 1 1 1 / X sthux

or 0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 1 1 0 0 0 X or

or. 0 1 1 1 1 1 rS rA rB 0 1 1 0 1 1 1 1 0 0 1 X or.

divwu 0 1 1 1 1 1 rD rA rB 0 1 1 1 0 0 1 0 1 1 0 X divwu

divwu. 0 1 1 1 1 1 rD rA rB 0 1 1 1 0 0 1 0 1 1 1 X divwu.

mtspr 2 0 1 1 1 1 1 rS SPR[5–9] SPR[0–4] 0 1 1 1 0 1 0 0 1 1 / XFX mtspr

dcbi 1 0 1 1 1 1 1 /// rA rB 0 1 1 1 0 1 0 1 1 0 / X dcbi

nand 0 1 1 1 1 1 rS rA rB 0 1 1 1 0 1 1 1 0 0 0 X nand
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nand. 0 1 1 1 1 1 rS rA rB 0 1 1 1 0 1 1 1 0 0 1 X nand.

divw 0 1 1 1 1 1 rD rA rB 0 1 1 1 1 0 1 0 1 1 0 X divw

divw. 0 1 1 1 1 1 rD rA rB 0 1 1 1 1 0 1 0 1 1 1 X divw.

mcrxr 0 1 1 1 1 1 crfD /// 1 0 0 0 0 0 0 0 0 0 / X mcrxr

subfco 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 0 0 0 X subfco

subfco. 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 0 0 1 X subfco.

addco 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 1 0 0 X addco

addco. 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 0 1 0 1 0 1 X addco.

lwbrx 0 1 1 1 1 1 rD rA rB 1 0 0 0 0 1 0 1 1 0 / X lwbrx

srw 0 1 1 1 1 1 rS rA rB 1 0 0 0 0 1 1 0 0 0 0 X srw

srw. 0 1 1 1 1 1 rS rA rB 1 0 0 0 0 1 1 0 0 0 1 X srw.

subfo 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 0 0 0 0 X subfo

subfo. 0 1 1 1 1 1 rD rA rB 1 0 0 0 1 0 1 0 0 0 1 X subfo.

tlbsync 
1,6

0 1 1 1 1 1 /// /// /// 1 0 0 0 1 1 0 1 1 0 / X tlbsync

nego 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 1 0 0 0 0 X nego

nego. 0 1 1 1 1 1 rD rA /// 1 0 0 1 1 0 1 0 0 0 1 X nego.

subfeo 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 0 0 0 X subfeo

subfeo. 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 0 0 1 X subfeo.

addeo 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 1 0 0 X addeo

addeo. 0 1 1 1 1 1 rD rA rB 1 0 1 0 0 0 1 0 1 0 1 X addeo.

stwbrx 0 1 1 1 1 1 rS rA rB 1 0 1 0 0 1 0 1 1 0 / X stwbrx

subfzeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 0 0 0 X subfzeo

subfzeo
. 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 0 0 1 X subfzeo.

addzeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 1 0 0 X addzeo

addzeo. 0 1 1 1 1 1 rD rA /// 1 0 1 1 0 0 1 0 1 0 1 X addzeo.

subfme
o 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 0 0 0 X subfmeo

subfme
o. 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 0 0 1 X subfmeo

.

addmeo 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 1 0 0 X addmeo

addmeo
. 0 1 1 1 1 1 rD rA /// 1 0 1 1 1 0 1 0 1 0 1 X addmeo.

mullwo 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 0 1 1 0 X mullwo

mullwo. 0 1 1 1 1 1 rD rA rB 1 0 1 1 1 0 1 0 1 1 1 X mullwo.

dcba 6 0 1 1 1 1 1 /// rA rB 1 0 1 1 1 1 0 1 1 0 / X dcba

addo 0 1 1 1 1 1 rD rA rB 1 1 0 0 0 0 1 0 1 0 0 X addo

addo. 0 1 1 1 1 1 rD rA rB 1 1 0 0 0 0 1 0 1 0 1 X addo.

lhbrx 0 1 1 1 1 1 rD rA rB 1 1 0 0 0 1 0 1 1 0 / X lhbrx

sraw 0 1 1 1 1 1 rS rA rB 1 1 0 0 0 1 1 0 0 0 0 X sraw

sraw. 0 1 1 1 1 1 rS rA rB 1 1 0 0 0 1 1 0 0 0 1 X sraw.
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A.5 Instruction set legend
Table 273 provides general information on the instruction set (such as architectural level, 
privilege level, and form).

srawi 0 1 1 1 1 1 rS rA SH 1 1 0 0 1 1 1 0 0 0 0 X srawi

srawi. 0 1 1 1 1 1 rS rA SH 1 1 0 0 1 1 1 0 0 0 1 X srawi.

sthbrx 0 1 1 1 1 1 rS rA rB 1 1 1 0 0 1 0 1 1 0 / X sthbrx

extsh 0 1 1 1 1 1 rS rA /// 1 1 1 0 0 1 1 0 1 0 0 X extsh

extsh. 0 1 1 1 1 1 rS rA /// 1 1 1 0 0 1 1 0 1 0 1 X extsh.

extsb 0 1 1 1 1 1 rS rA /// 1 1 1 0 1 1 1 0 1 0 0 X extsb

extsb. 0 1 1 1 1 1 rS rA /// 1 1 1 0 1 1 1 0 1 0 1 X extsb.

divwuo 0 1 1 1 1 1 rD rA rB 1 1 1 1 0 0 1 0 1 1 0 X divwuo

divwuo. 0 1 1 1 1 1 rD rA rB 1 1 1 1 0 0 1 0 1 1 1 X divwuo.

icbi 0 1 1 1 1 1 /// rA rB 1 1 1 1 0 1 0 1 1 0 / X icbi

divwo 0 1 1 1 1 1 rD rA rB 1 1 1 1 1 0 1 0 1 1 0 X divwo

divwo. 0 1 1 1 1 1 rD rA rB 1 1 1 1 1 0 1 0 1 1 1 X divwo.

dcbz 0 1 1 1 1 1 /// rA rB 1 1 1 1 1 1 0 1 1 0 / X dcbz

lwz 1 0 0 0 0 0 rD rA D D lwz

lwzu 1 0 0 0 0 1 rD rA D D lwzu

lbz 1 0 0 0 1 0 rD rA D D lbz

lbzu 1 0 0 0 1 1 rD rA D D lbzu

stw 1 0 0 1 0 0 rS rA D D stw

stwu 1 0 0 1 0 1 rS rA D D stwu

stb 1 0 0 1 1 0 rS rA D D stb

stbu 1 0 0 1 1 1 rS rA D D stbu

lhz 1 0 1 0 0 0 rD rA D D lhz

lhzu 1 0 1 0 0 1 rD rA D D lhzu

lha 1 0 1 0 1 0 rD rA D D lha

lhau 1 0 1 0 1 1 rD rA D D lhau

sth 1 0 1 1 0 0 rS rA D D sth

sthu 1 0 1 1 0 1 rS rA D D sthu

lmw 1 0 1 1 1 0 rD rA D D lmw

stmw 1 0 1 1 1 1 rS rA D D stmw

fres 6 1 1 1 0 1 1 frD /// frB /// 1 1 0 0 0 0 A fres

fres. 6 1 1 1 0 1 1 frD /// frB /// 1 1 0 0 0 1 A fres.

fsel 6 1 1 1 1 1 1 frD frA frB frC 1 0 1 1 1 0 A fsel

fsel. 6 1 1 1 1 1 1 frD frA frB frC 1 0 1 1 1 1 A fsel.

1. Supervisor-level instruction

2. d = UIMM * 8

Table 272. Instructions sorted by opcode (binary) (continued)
Mnemonic 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Form Mnemonic
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Table 273. PowerPC instruction set legend 

UISA VEA OEA Supervisor level Optional Form 

addx √ XO addx 

addcx √ XO addcx 

addex √ XO addex 

addi √ D addi 

addic √ D addic 

addic. √ D addic. 

addis √ D addis 

addmex √ XO addmex 

addzex √ XO addzex 

andx √ X andx 

andcx √ X andcx 

andi. √ D andi. 

andis. √ D andis. 

bx √ I bx 

bcx √ B bcx 

bcctrx √ XL bcctrx 

bclrx √ XL bclrx 

cmp √ X cmp 

cmpi √ D cmpi 

cmpl √ X cmpl 

cmpli √ D cmpli 

cntlzwx √ X cntlzwx 

crand √ XL crand 

crandc √ XL crandc 

creqv √ XL creqv 

crnand √ XL crnand 

crnor √ XL crnor 

cror √ XL cror 

crorc √ XL crorc 

crxor √ XL crxor 

dcba √ √ X dcba 

dcbf √ X dcbf 

dcbi √ √ X dcbi 
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dcbst √ X dcbst 

dcbt √ X dcbt 

dcbtst √ X dcbtst 

dcbz √ X dcbz 

divwx √ XO divwx 

divwux √ XO divwux 

eciwx √ √ X eciwx 

ecowx √ √ X ecowx 

eieio √ X eieio 

eqvx √ X eqvx 

extsbx √ X extsbx 

extshx √ X extshx 

fabsx √ X fabsx 

faddx √ A faddx 

faddsx √ A faddsx 

fcmpo √ X fcmpo 

fcmpu √ X fcmpu 

fctiwx √ X fctiwx 

fctiwzx √ X fctiwzx 

fdivx √ A fdivx 

fdivsx √ A fdivsx 

fmaddx √ A fmaddx 

fmaddsx √ A fmaddsx 

fmrx √ X fmrx 

fmsubx √ A fmsubx 

fmsubsx √ A fmsubsx 

fmulx √ A fmulx 

fmulsx √ A fmulsx 

fnabsx √ X fnabsx 

fnegx √ X fnegx 

fnmaddx √ A fnmaddx 

fnmaddsx √ A fnmaddsx 

fnmsubx √ A fnmsubx 

Table 273. PowerPC instruction set legend  (continued)

UISA VEA OEA Supervisor level Optional Form 
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fnmsubsx √ A fnmsubsx 

fresx √ √ A fresx 

frspx √ X frspx 

frsqrtex √ √ A frsqrtex 

fselx √ √ A fselx 

fsqrtx √ √ A fsqrtx 

fsqrtsx √ √ A fsqrtsx 

fsubx √ A fsubx 

fsubsx √ A fsubsx 

icbi √ X icbi 

isync √ XL isync 

lbz √ D lbz 

lbzu √ D lbzu 

lbzux √ X lbzux 

lbzx √ X lbzx 

lfd √ D lfd 

lfdu √ D lfdu 

lfdux √ X lfdux 

lfdx √ X lfdx 

lfs √ D lfs 

lfsu √ D lfsu 

lfsux √ X lfsux 

lfsx √ X lfsx 

lha √ D lha 

lhau √ D lhau 

lhaux √ X lhaux 

lhax √ X lhax 

lhbrx √ X lhbrx 

lhz √ D lhz 

lhzu √ D lhzu 

lhzux √ X lhzux 

lhzx √ X lhzx 

lmw (1) √ D lmw (2) 

Table 273. PowerPC instruction set legend  (continued)

UISA VEA OEA Supervisor level Optional Form 
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lswi (1) √ X lswi (1) 

lswx (1) √ X lswx (1) 

lwarx √ X lwarx 

lwbrx √ X lwbrx 

lwz √ D lwz 

lwzu √ D lwzu 

lwzux √ X lwzux 

lwzx √ X lwzx 

mcrf √ XL mcrf 

mcrfs √ X mcrfs

 mcrxr √ X  mcrxr 

mfcr √ X mfcr 

mffs √ X mffs 

mfmsr √ √ X mfmsr 

mfspr (3) √ √ √ XFX mfspr (3)

mfsr √ √ X mfsr 

mfsrin √ √ X mfsrin 

mftb √ XFX mftb 

mtcrf √ XFX mtcrf 

mtfsb0x √ X mtfsb0x 

mtfsb1x √ X mtfsb1x 

mtfsfx √ XFL mtfsfx 

mtfsfix √ X mtfsfix 

mtmsr √ √ X mtmsr 

mtspr (3) √ √ √ XFX mtspr (4) 

mtsr √ √ X mtsr 

mtsrin √ √ X mtsrin 

mulhwx √ XO mulhwx 

mulhwux √ XO mulhwux 

mulli √ D mulli 

nandx √ X nandx 

negx √ XO negx 

norx √ X norx 

Table 273. PowerPC instruction set legend  (continued)

UISA VEA OEA Supervisor level Optional Form 
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orx √ X orx 

orcx √ X orcx 

ori √ D ori 

oris √ D oris 

rfi √ √ XL rfi 

rlwimix √ M rlwimix 

rlwinmx √ M rlwinmx 

rlwnmx √ M rlwnmx 

sc √ √ SC sc 

slwx √ X slwx 

srawx √ X srawx 

srawix √ X srawix 

srwx √ X srwx 

stb √ D stb 

stbu √ D stbu 

stbux √ X stbux 

stbx √ X stbx 

stfd √ D stfd 

stfdu √ D stfdu 

stfdux √ X stfdux 

stfdx √ X stfdx 

stfiwx √ X stfiwx 

stfs √ D stfs 

stfsu √ D stfsu 

stfsux √ X stfsux 

stfsx √ X stfsx 

sth √ D sth 

sthbrx √ X sthbrx 

sthu √ D sthu 

sthux √ X sthux 

sthx √ X sthx 

stmw (1) √ D stmw (1)

stswi (1) √ X stswi (1)

Table 273. PowerPC instruction set legend  (continued)

UISA VEA OEA Supervisor level Optional Form 
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stswx (1) √ X stswx (1)

stw √ D stw 

stwbrx √ X stwbrx 

stwcx. √ X stwcx. 

stwu √ D stwu 

stwux √ X stwux 

stwx √ X stwx 

subfx √ XO subfx 

subfcx √ XO subfcx 

subfex √ XO subfex 

subfic √ D subfic 

subfmex √ XO subfmex 

subfzex √ XO subfzex 

sync √ X sync 

tlbiax √ √ √ X tlbiax 

tlbiex √ √ √ X tlbiex 

tlbsync √ √ √ X tlbsync 

tw √ X tw 

twi √ D twi 

xorx √ X xorx 

xori √ D xori 

xoris √ D xoris 

1. Load/Store string or multiple.

2. Load/Store string or multiple.

3. Supervisor and user level instruction.

4. Supervisor and user level instruction.

Table 273. PowerPC instruction set legend  (continued)

UISA VEA OEA Supervisor level Optional Form 

Table 274. PowerPC instruction set legend 

UISA VEA OEA Supervisor Level Optional Form

addx √ XO addx

addcx √ XO addcx

addex √ XO addex

addi √ D addi

addic √ D addic
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addic. √ D addic. 

addis √ D addis 

addmex √ XO addmex

addzex √ XO addzex

andx √ X andx

andcx √ X andcx

andi. √ D andi.

andis. √ D andis.

bx √ I bx

bcx √ B bcx

bcctrx √ XL bcctrx

bclrx √ XL bclrx

cmp √ X cmp

cmpi √ D cmpi

cmpl √ X cmpl

cmpli √ D cmpli 

cntlzwx √ X cntlzwx

crand √ XL crand

crandc √ XL crandc

creqv √ XL creqv

crnand √ XL crnand

crnor √ XL crnor

cror √ XL cror

crorc √ XL crorc

crxor √ XL crxor

dcba √ √ X dcba

dcbf √ X dcbf

dcbi √ √ X dcbi 

dcbst √ X dcbst

dcbt √ X dcbt

dcbtst √ X dcbtst

dcbz √ X dcbz

divwx √ XO divwx

divwux √ XO divwux

eciwx √ √ X eciwx

Table 274. PowerPC instruction set legend  (continued)

UISA VEA OEA Supervisor Level Optional Form
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ecowx √ √ X ecowx

eieio √ X eieio

eqvx √ X eqvx

extsbx √ X extsbx

extshx √ X extshx

fabsx √ X fabsx

faddx √ A faddx

faddsx √ A faddsx

fcmpo √ X fcmpo 

fcmpu √ X fcmpu 

fctiwx √ X fctiwx

fctiwzx √ X fctiwzx

fdivx √ A fdivx

fdivsx √ A fdivsx

fmaddx √ A fmaddx

fmaddsx √ A fmaddsx

fmrx √ X fmrx

fmsubx √ A fmsubx

fmsubsx √ A fmsubsx

fmulx √ A fmulx

fmulsx √ A fmulsx

fnabsx √ X fnabsx

fnegx √ X fnegx

fnmaddx √ A fnmaddx 

fnmadds
x

√ A fnmaddsx

fnmsubx √ A fnmsubx

fnmsubs
x

√ A fnmsubsx

fresx √ √ A fresx 

frspx √ X frspx

frsqrtex √ √ A frsqrtex 

fselx √ √ A fselx 

fsqrtx √ √ A fsqrtx 

fsqrtsx √ √ A fsqrtsx 

Table 274. PowerPC instruction set legend  (continued)

UISA VEA OEA Supervisor Level Optional Form
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fsubx √ A fsubx

fsubsx √ A fsubsx

icbi √ X icbi

isync √ XL isync

lbz √ D lbz

lbzu √ D lbzu

lbzux √ X lbzux

lbzx √ X lbzx

lfd √ D lfd

lfdu √ D lfdu 

lfdux √ X lfdux

lfdx √ X lfdx

lfs √ D lfs

lfsu √ D lfsu

lfsux √ X lfsux

lfsx √ X lfsx

lha √ D lha 

lhau √ D lhau

lhaux √ X lhaux

lhax √ X lhax

lhbrx √ X lhbrx

lhz √ D lhz

lhzu √ D lhzu

lhzux √ X lhzux

lhzx √ X lhzx

lmw 1 √ D lmw 1

lswi 1 √ X lswi 1

lswx1 √ X lswx1 

lwarx √ X lwarx

lwbrx √ X lwbrx

lwz √ D lwz

lwzu √ D lwzu

lwzux √ X lwzux

lwzx √ X lwzx

mcrf √ XL mcrf

Table 274. PowerPC instruction set legend  (continued)

UISA VEA OEA Supervisor Level Optional Form
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mcrfs √ X mcrfs

 mcrxr √ X  mcrxr

mfcr √ X mfcr

mffs √ X mffs

mfmsr √ √ X mfmsr 

mfspr3 √ √ √ XFX mfspr1

mfsr √ √ X mfsr 

mfsrin √ √ X mfsrin

mftb √ XFX mftb

mtcrf √ XFX mtcrf

mtfsb0x √ X mtfsb0x

mtfsb1x √ X mtfsb1x

mtfsfx √ XFL mtfsfx

mtfsfix √ X mtfsfix

mtmsr √ √ X mtmsr

mtspr1 √ √ √ XFX mtspr1

mtsr √ √ X mtsr

mtsrin √ √ X mtsrin

mulhwx √ XO mulhwx

mulhwux √ XO mulhwux

mulli √ D mulli

mullwx √ XO mullwx

nandx √ X nandx

negx √ XO negx

norx √ X norx

orx √ X orx

orcx √ X orcx

ori √ D ori

oris √ D oris

rfi √ √ XL rfi

rlwimix √ M rlwimix

rlwinmx √ M rlwinmx

rlwnmx √ M rlwnmx

sc √ √ SC sc

slwx √ X slwx

Table 274. PowerPC instruction set legend  (continued)

UISA VEA OEA Supervisor Level Optional Form
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srawx √ X srawx

srawix √ X srawix

srwx √ X srwx

stb √ D stb

stbu √ D stbu

stbux √ X stbux

stbx √ X stbx

stfd √ D stfd

stfdu √ D stfdu

stfdux √ X stfdux

stfdx √ X stfdx

stfiwx √ X stfiwx

 stfs √ D  stfs

stfsu √ D stfsu

stfsux √ X stfsux

stfsx √ X stfsx

sth √ D sth

sthbrx √ X sthbrx

sthu √ D sthu

sthux √ X sthux

sthx √ X sthx

stmw 1 √ D stmw 1

stswi 1 √ X stswi 1

stswx 1 √ X stswx 1

stw √ D stw

stwbrx √ X stwbrx

stwcx. √ X stwcx.

stwu √ D stwu

stwux √ X stwux

stwx √ X stwx

subfx √ XO subfx

subfcx √ XO subfcx

subfex √ XO subfex

subfic √ D subfic

subfmex √ XO subfmex

Table 274. PowerPC instruction set legend  (continued)

UISA VEA OEA Supervisor Level Optional Form
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subfzex √ XO subfzex

sync √ X sync

tlbiax √ √ √ X tlbiax

tlbiex √ √ √ X tlbiex

tlbsync √ √ √ X tlbsync

tw √ X tw

twi √ D twi

xorx √ X xorx

xori √ D xori

xoris √ D xoris

Table 274. PowerPC instruction set legend  (continued)

UISA VEA OEA Supervisor Level Optional Form
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Appendix B Simplified mnemonics for PowerPC 

instructions

This chapter describes simplified mnemonics, which are provided for easier coding of 
assembly language programs. Simplified mnemonics are defined for the most frequently 
used forms of branch conditional, compare, trap, rotate and shift, and certain other 
instructions defined by the PowerPC™ architecture and by implementations of and 
extensions to the PowerPC architecture. 

Chapter B.11: Comprehensive list of simplified mnemonics on page 1133,” provides an 
alphabetical listing of simplified mnemonics. Some assemblers may define additional 
simplified mnemonics not included here. The simplified mnemonics listed here should be 
supported by all compilers. 

B.1 Overview
Simplified (or extended) mnemonics allow an assembly-language programmer to program 
using more intuitive mnemonics and symbols than the instructions and syntax defined by the 
instruction set architecture. For example, to code the conditional call “branch to an absolute 
target if CR4 specifies a greater than condition, setting the LR without simplified 
mnemonics, the programmer would write the branch conditional instruction, bc 12,17,target. 
The simplified mnemonic, branch if greater than, bgt cr4, target, incorporates the 
conditions. Not only is it easier to remember the symbols than the numbers when 
programming, it is also easier to interpret simplified mnemonics when reading existing code. 

Although the original PowerPC architecture documents include a set of simplified 
mnemonics, these are not a formal part of the architecture, but rather a recommendation for 
assemblers that support the instruction set. 

Many simplified mnemonics have been added to those originally included in the architecture 
documentation. Some assemblers created their own, and others have been added to 
support extensions to the instruction set (for example, AltiVec instructions and Book E 
auxiliary processing units (APUs)). Simplified mnemonics have been added for new 
architecturally defined and new implementation-specific special-purpose registers (SPRs). 
These simplified mnemonics are described only in a very general way. 

B.2 Subtract simplified mnemonics 
This section describes simplified mnemonics for subtract instructions.

B.2.1 Subtract immediate

There is no subtract immediate instruction, however, its effect is achieved by negating the 
immediate operand of an Add Immediate instruction, addi. Simplified mnemonics include 
this negation, making the intent of the computation more clear. These are listed in 
Table 275.
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B.2.2 Subtract

Subtract from instructions subtract the second operand (rA) from the third (rB). The 
simplified mnemonics in Table 276 use the common order in which the third operand is 
subtracted from the second. 

         

B.3 Rotate and shift simplified mnemonics
Rotate and shift instructions provide powerful, general ways to manipulate register contents, 
but can be difficult to understand. Simplified mnemonics are provided for the following 
operations:

● Extract—Select a field of n bits starting at bit position b in the source register; left or 
right justify this field in the target register; clear all other bits of the target register.

● Insert—Select a left- or right-justified field of n bits in the source register; insert this 
field starting at bit position b of the target register; leave other bits of the target register 
unchanged. 

● Rotate—Rotate the contents of a register right or left n bits without masking.

● Shift—Shift the contents of a register right or left n bits, clearing vacated bits (logical 
shift).

● Clear—Clear the leftmost or rightmost n bits of a register.

● Clear left and shift left—Clear the leftmost b bits of a register, then shift the register left 
by n bits. This operation can be used to scale a (known non-negative) array index by 
the width of an element. 

B.3.1 Operations on words

The simplified mnemonics in Table 277 can be coded with a dot (.) suffix to cause the Rc bit 
to be set in the underlying instruction.

         

Table 275. Subtract immediate simplified mnemonics

Simplified mnemonic Standard mnemonic

subi rD,rA,value addi rD,rA,–value

subis rD,rA,value addis rD,rA,–value

subic rD,rA,value addic rD,rA,–value

subic. rD,rA,value addic. rD,rA,–value

Table 276. Subtract simplified mnemonics

Simplified mnemonic Standard mnemonic(1)

1. rD,rB,rA is not the standard order for the operands. The order of rB and rA is reversed to show the 
equivalent behavior of the simplified mnemonic.

sub[o][.] rD,rA,rB subf[o][.] rD,rB,rA

subc[o][.] rD,rA,rB subfc[o][.] rD,rB,rA



RM0004 Simplified mnemonics for PowerPC instructions

 1112/1176

Examples using word mnemonics follow:

1. Extract the sign bit (bit 0) of rS and place the result right-justified into rA.
extrwi rA,rS,1,0 equivalent to rlwinm rA,rS,1,31,31

2. Insert the bit extracted in (1) into the sign bit (bit 0) of rB.
insrwi rB,rA,1,0 equivalent to rlwimi rB,rA,31,0,0

3. Shift the contents of rA left 8 bits.
slwi rA,rA,8 equivalent to rlwinm rA,rA,8,0,23

4. Clear the high-order 16 bits of rS and place the result into rA.
clrlwi rA,rS,16 equivalent to rlwinm rA,rS,0,16,31

B.4 Branch instruction simplified mnemonics 
Branch conditional instructions can be coded with the operations, a condition to be tested, 
and a prediction, as part of the mnemonic rather than as numeric BO and BI operands. 
Table 278 shows the four general types of branch instructions. Simplified mnemonics are 
defined only for branch instructions that include BO and BI operands; there is no need to 
simplify unconditional branch mnemonics. 

         

Table 277. Word rotate and shift simplified mnemonics

Operation Simplified mnemonic Equivalent to:

Extract and left justify word 
immediate

extlwi rA,rS,n,b (n > 0) rlwinm rA,rS,b,0,n – 1

Extract and right justify word 
immediate

extrwi rA,rS,n,b (n > 0) rlwinm rA,rS,b + n, 32 – n,31

Insert from left word immediate inslwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – b,b,(b + n) – 1

Insert from right word immediate insrwi rA,rS,n,b (n > 0)
rlwimi rA,rS,32 – (b + n),b,(b + n) 
– 1

Rotate left word immediate rotlwi rA,rS,n rlwinm rA,rS,n,0,31

Rotate right word immediate rotrwi rA,rS,n rlwinm rA,rS,32 – n,0,31

Rotate word left rotlw rA,rS,rB rlwnm rA,rS,rB,0,31

Shift left word immediate slwi rA,rS,n (n < 32) rlwinm rA,rS,n,0,31 – n

Shift right word immediate srwi rA,rS,n (n < 32) rlwinm rA,rS,32 – n,n,31

Clear left word immediate clrlwi rA,rS,n (n < 32) rlwinm rA,rS,0,n,31

Clear right word immediate clrrwi rA,rS,n (n < 32) rlwinm rA,rS,0,0,31 – n

Clear left and shift left word 
immediate

clrlslwi rA,rS,b,n (n ≤ b ≤ 
31)

rlwinm rA,rS,n,b – n,31 – n

Table 278. Branch instructions 

Instruction name Mnemonic Syntax 

Branch b (ba bl bla) target_addr 

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr 

Branch Conditional to Link Register bclr (bclrl) BO,BI 

Branch Conditional to Count Register bcctr (bcctrl) BO,BI 
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The BO and BI operands correspond to two fields in the instruction opcode, as figure below 
shows for Branch Conditional (bc, bca, bcl, and bcla) instructions. 

         

The BO operand specifies branch operations that involve decrementing CTR. It is also used 
to determine whether testing a CR bit causes a branch to occur if the condition is true or 
false. 

The BI operand identifies a CR bit to test (whether a comparison is less than or greater than, 
for example). The simplified mnemonics avoid the need to memorize the numerical values 
for BO and BI. 

For example, bc 16,0,target is a conditional branch that, as a BO value of 16 (0b1_0000) 
indicates, decrements CTR, then branches if the decremented CTR is not zero. The 
operation specified by BO is abbreviated as d (for decrement) and nz (for not zero), which 
replace the c in the original mnemonic; so the simplified mnemonic for bc becomes bdnz. 
The branch does not depend on a condition in the CR, so BI can be eliminated, reducing the 
expression to bdnz target. 

In addition to CTR operations, the BO operand provides an optional prediction bit and a true 
or false indicator can be added. For example, if the previous instruction should branch only 
on an equal condition in CR0, the instruction becomes bc 8,2,target. To incorporate a true 
condition, the BO value becomes 8 (as shown in Table 280); the CR0 equal field is indicated 
by a BI value of 2 (as shown in Table 281). Incorporating the branch-if-true condition adds a 
‘t’ to the simplified mnemonic, bdnzt. The equal condition, that is specified by a BI value of 2 
(indicating the EQ bit in CR0) is replaced by the eq symbol. Using the simplified mnemonic 
and the eq operand, the expression becomes bdnzt eq,target. 

This example tests CR0[EQ]; however, to test the equal condition in CR5 (CR bit 22), the 
expression becomes bc 8,22,target. The BI operand of 22 indicates CR[22] (CR5[2], or BI 
field 0b10110), as shown in Table 281. This can be expressed as the simplified mnemonic. 
bdnzt 4 * cr5 + eq,target. 

The notation, 4 * cr5 + eq may at first seem awkward, but it eliminates computing the value 
of the CR bit. It can be seen that (4 * 5) + 2 = 22. Note that although 32-bit registers in Book 
E processors are numbered 32–63, only values 0–31 are valid (or possible) for BI operands. 
As shown in Table 282, a Book E–compliant processor automatically translates the bit 
values; specifying a BI value of 22 selects bit 55 on a Book E processor, or 
CR5[2] = CR5[EQ]. 

0 5 6 10 11 15 16 29 30 31

0 0 1 0 0 0 BO BI BD AA LK
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B.4.1 Key facts about simplified branch mnemonics

The following key points are helpful in understanding how to use simplified branch 
mnemonics:

● All simplified branch mnemonics eliminate the BO operand, so if any operand is 
present in a branch simplified mnemonic, it is the BI operand (or a reduced form of it). 

● If the CR is not involved in the branch, the BI operand can be deleted.

● If the CR is involved in the branch, the BI operand can be treated in the following ways:

– It can be specified as a numeric value, just as it is in the architecturally defined 
instruction, or it can be indicated with an easier to remember formula, 4 * crn + 
[test bit symbol], where n indicates the CR field number.

– The condition of the test bit (eq, lt, gt, and so) can be incorporated into the 
mnemonic, leaving the need for an operand that defines only the CR field. 

- If the test bit is in CR0, no operand is needed.

- If the test bit is in CR1–CR7, the BI operand can be replaced with a crS operand 
(that is, cr1, cr2, cr3, and so forth). 

B.4.2 Eliminating the BO operand

The 5-bit BO field, shown below, encodes the following operations in conditional branch 
instructions:

● Decrement count register (CTR) 

– And test if result is equal to zero

– And test if result is not equal to zero

● Test condition register (CR)

– Test condition true

– Test condition false

● Branch prediction (taken, fall through). If the prediction bit, y, is needed, it is signified by 
appending a plus or minus sign as described in Chapter B.4.3: Incorporating the BO 
branch prediction on page 1116.”
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BO bits can be interpreted individually as described in Table 279.

         

Thus, a BO encoding of 10100 (decimal 20) means ignore the CR bit comparison and do not 
decrement the CTR—in other words, branch unconditionally. Encodings for the BO operand 
are shown in Table 280. A z bit indicates that the bit is ignored. However, these bits should 
be cleared, as they may be assigned a meaning in a future version of the architecture. 

As shown in Table 280, the ‘c’ in the standard mnemonic is replaced with the operations 
otherwise specified in the BO field, (d for decrement, z for zero, nz for non-zero, t for true, 
and f for false). 

         

0 1 2 3 4

Table 279. BO bit encodings

BO 
Bit

Description

0 If set, ignore the CR bit comparison.

1 If set, the CR bit comparison is against true, if not set the CR bit comparison is against false

2 If set, the CTR is not decremented. 

3
If BO[2] is set, this bit determines whether the CTR comparison is for equal to zero or not 
equal to zero.

4

The y bit. If set, reverses the static prediction. Use of this bit is optional and independent from 
the interpretation of other BO bits. Because simplified branch mnemonics eliminate the BO 
operand, this bit is programmed by adding a plus or minus sign to the simplified mnemonic, 
as described in Chapter B.4.3.”

Table 280. BO operand encodings

BO field
Value(1)

(decimal)
Description Symbol

0000y 0 Decrement the CTR, then branch if the decremented CTR ≠ 0; condition is FALSE. dnzf

0001y 2 Decrement the CTR, then branch if the decremented CTR = 0; condition is FALSE. dzf

001zy 4 Branch if the condition is FALSE.(2) Note that ‘false’ and ‘four’ both start with ‘f’. f

0100y 8 Decrement the CTR, then branch if the decremented CTR ≠ 0; condition is TRUE. dnzt 

0101y 10 Decrement the CTR, then branch if the decremented CTR = 0; condition is TRUE. dzt 

011z(3)y 12 Branch if the condition is TRUE. 2 Note that ‘true’ and ‘twelve’ both start with ‘t’. t

1z00y(4) 16 Decrement the CTR, then branch if the decremented CTR ≠ 0. dnz(5)

1z01y 4 18 Decrement the CTR, then branch if the decremented CTR = 0. dz 5

1z1zz 4 20 Branch always. —

1. Assumes y = z = 0. Chapter B.4.3: Incorporating the BO branch prediction,” describes how to use simplified mnemonics to 
program the y bit for static prediction. 

2. Instructions for which B0 is 12 (branch if condition true) or 4 (branch if condition false) do not depend on the CTR value and 
can be alternately coded by incorporating the condition specified by the BI field, as described in Chapter B.4.6.”

3.  A z bit indicates a bit that is ignored. However, these bits should be cleared, as they may be assigned a meaning in a 
future version of the architecture.
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B.4.3 Incorporating the BO branch prediction 

As shown in Table 280, the low-order bit (y bit) of the BO field provides a hint about whether 
the branch is likely to be taken (static branch prediction). Assemblers should clear this bit 
unless otherwise directed. This default action indicates the following:

● A branch conditional with a negative displacement field is predicted to be taken.

● A branch conditional with a non-negative displacement field is predicted not to be taken 
(fall through).

● A branch conditional to an address in the LR or CTR is predicted not to be taken (fall 
through).

If the likely outcome (branch or fall through) of a given branch conditional instruction is 
known, a suffix can be added to the mnemonic that tells the assembler how to set the y bit. 
That is, ‘+’ indicates that the branch is to be taken and ‘–’ indicates that the branch is not to 
be taken. This suffix can be added to any branch conditional mnemonic, standard or 
simplified.

For relative and absolute branches (bc[l][a]), the setting of the y bit depends on whether the 
displacement field is negative or non-negative. For negative displacement fields, coding the 
suffix ‘+’ causes the bit to be cleared, and coding the suffix ‘–’ causes the bit to be set. For 
non-negative displacement fields, coding the suffix ‘+’ causes the bit to be set, and coding 
the suffix ‘–’ causes the bit to be cleared.

For branches to an address in the LR or CTR (bclr[l] or bcctr[l]), coding the suffix ‘+’ causes 
the y bit to be set, and coding the suffix ‘–’ causes the bit to be cleared.

Examples of branch prediction follow:

1. Branch if CR0 reflects less than condition, specifying that the branch should be 
predicted as taken.

blt+ target 

2. Same as (1), but target address is in the LR and the branch should be predicted as not 
taken.

bltlr–

4. Simplified mnemonics for branch instructions that do not test CR bits (BO = 16, 18, and 20) should specify only a target. 
Otherwise a programming error may occur. 

5. Notice that these instructions do not use the branch if condition true or false operations. For that reason, simplified 
mnemonics for these should not specify a BI operand. 
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B.4.4 The BI operand—CR bit and field representations

With standard branch mnemonics, the BI operand is used when it is necessary to test a CR 
bit, as shown in the example in Chapter B.4: Branch instruction simplified mnemonics.” 

With simplified mnemonics, the BI operand is handled differently depending on whether the 
simplified mnemonic incorporates a CR condition to test, as follows:

● Some branch simplified mnemonics incorporate only the BO operand. These simplified 
mnemonics can use the architecturally defined BI operand to specify the CR bit, as 
follows:

– The BI operand can be presented exactly as it is with standard mnemonics—as a 
decimal number, 0–31.

– Symbols can be used to replace the decimal operand, as shown in the example in 
Chapter B.4: Branch instruction simplified mnemonics,” where bdnzt 4 * cr5 + 
eq,target could be used instead of bdnzt 22,target. This is described in Specifying 
a CR bit on page 1118.”

The simplified mnemonics in Chapter B.4.5: Simplified mnemonics that 
incorporate the BO operand,” use one of these two methods to specify a CR bit. 

– Additional simplified mnemonics are specified that incorporate CR conditions that 
would otherwise be specified by the BI operand, so the BI operand is replaced by 
the crS operand to specify the CR field, CR0–CR7. See BI operand instruction 
encoding on page 1117.” 
These mnemonics are described in Chapter B.4.6: Simplified mnemonics that 
incorporate CR conditions (eliminates BO and replaces BI with crS).”

BI operand instruction encoding

The entire 5-bit BI field, shown in Figure 180, represents the bit number for the CR bit to be 
tested. For standard branch mnemonics and for branch simplified mnemonics that do not 
incorporate a CR condition, the BI operand provides all 5 bits. 

For simplified branch mnemonics described in Chapter B.4.6,” the BI operand is replaced by 
a crS operand. To understand this, it is useful to view the BI operand as comprised of two 
parts. As Figure 180 shows, BI[0–2] indicates the CR field and BI[3–4] represents the 
condition to test.
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Figure 180. BI field (Bits 11–14 of the instruction encoding)

Integer record-form instructions update CR0 as described in Table 281. 

Specifying a CR bit

Note that the AIM version the PowerPC architecture numbers CR bits 0–31 and Book E 
numbers them 32–63. However, no adjustment is necessary to the code; in Book E devices, 
32 is automatically added to the BI value, as shown in Table 281 and Table 282.

         

Some simplified mnemonics incorporate only the BO field (as described Chapter B.4.2: 
Eliminating the BO operand”). If one of these simplified mnemonics is used and the CR must 
be accessed, the BI operand can be specified either as a numeric value or by using the 
symbols in Table 282. 

Compare word instructions (described in Chapter B.5: Compare word simplified 
mnemonics”), move to CR instructions, and others can also modify CR fields, so CR0 and 
CR1 may hold values that do not adhere to the meanings described in Table 281. CR logical 
instructions, described in Chapter B.6: Condition register logical simplified mnemonics,” can 
update individual CR bits. 

         

Table 281. CR0 and CR1 fields as updated by integer instructions

 CRn 
bit

CR bits BI

Description
AIM

Book 
E

0–2 3–4

CR0[0] 0 32 000 00 Negative (LT)—Set when the result is negative.

CR0[1] 1 33 000 01 Positive (GT)—Set when the result is positive (and not zero).

CR0[2] 2 34 000 10 Zero (EQ)—Set when the result is zero.

CR0[3] 3 35 000 11
Summary overflow (SO). Copy of XER[SO] at the instruction’s 
completion.

0 1 2 3 4

BI[0–2] specifies CR field, CR0–CR7.

Simplified mnemonics based on
CR conditions but not CTR

values—BO = 12 (branch if true)
and BO = 4 branch if false)

Specified by a separate,
reduced BI operand (crS)

Incorporated into the 
simplified mnemonic.

Standard branch mnemonics and
simplified mnemonics based on

CTR values

The BI operand specifies the entire 5-bit field. If CR0 is 
used, the bit can be identified by LT, GT, EQ, or SO. If 
CR1–CR7 are used, the form 4 * crS + LT|GT|EQ|SO can 
be used. 

BI Opcode Field

BI[3–4] specifies one of the 
4 bits in a CR field. (LT, GT, 
EQ,SO) 



Simplified mnemonics for PowerPC instructions RM0004

1119/1176   

To provide simplified mnemonics for every possible combination of BO and BI (that is, 
including bits that identified the CR field) would require 210 = 1024 mnemonics, most of that 
would be only marginally useful. The abbreviated set in Chapter B.4.5: Simplified 
mnemonics that incorporate the BO operand,” covers useful cases. Unusual cases can be 
coded using a standard branch conditional syntax.

The crS operand 

The crS symbols are shown in Table 283. Note that either the symbol or the operand value 
can be used in the syntax used with the simplified mnemonic. 

         

Table 282. BI operand settings for CR fields for branch comparisons

 CRn 
bit

Bit expression 

CR Bits BI

DescriptionAIM (BI 
operand)

Book E 0–2 3–4

CRn[0]

4 * cr0 + lt (or lt)
4 * cr1 + lt
4 * cr2 + lt
4 * cr3+ lt
4 * cr4 + lt
4 * cr5 + lt
4 * cr6 + lt
4 * cr7 + lt

0

4
8

12

16
20

24

28

32

36
40

44

48
52

56

60

000
001
010
011

100

101
110

111

00

Less than (LT).

For integer compare instructions: 
rA < SIMM or rB (signed 
comparison) or rA < UIMM or rB 
(unsigned comparison).

CRn[1]

4 * cr0 + gt (or gt)
4 * cr1 + gt
4 * cr2 + gt
4 * cr3+ gt
4 * cr4 + gt
4 * cr5 + gt
4 * cr6 + gt
4 * cr7 + gt

1

5
9

13

17

21
25

29

33

37
41

45

49

53
57

61

000

001
010

011

100

101
110

111

01

Greater than (GT).

For integer compare instructions: 
rA > SIMM or rB (signed 
comparison) or rA > UIMM or rB 
(unsigned comparison).

CRn[2]

4 * cr0 + eq (or eq)

4 * cr1 + eq
4 * cr2 + eq 
4 * cr3+ eq
4 * cr4 + eq
4 * cr5 + eq
4 * cr6 + eq
4 * cr7 + eq

2

6

10
14

18

22
26

30

34

38

42
46

50

54
58

62

000

001

010
011

100

101
110

111

10
Equal (EQ).
For integer compare instructions: 
rA = SIMM, UIMM, or rB.

CRn[3]

4 * cr0 + so (or so)

4 * cr1 + so
4* cr2 + so
4* cr3 + so
4* cr4 + so
4* cr5 + so
4* cr6 + so
4* cr7 + so

3

7

11
15

19

23
27

31

35

39

43
47

51

55
59

63

000

001

010
011

100

101
110

111

11

Summary overflow (SO).

For integer compare instructions, 
this is a copy of XER[SO] at 
instruction completion.
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To identify a CR bit, an expression in which a CR field symbol is multiplied by 4 and then 
added to a bit-number-within-CR-field symbol can be used, (for example, cr0 * 4 + eq). 

B.4.5 Simplified mnemonics that incorporate the BO operand

The mnemonics in Table 284 allow common BO operand encodings to be specified as part 
of the mnemonic, along with the absolute address (AA) and set link register bits (LK). There 
are no simplified mnemonics for relative and absolute unconditional branches. For these, 
the basic mnemonics b, ba, bl, and bla are used. 

         

Table 284 shows the syntax for basic simplified branch mnemonics

         

Table 283. CR field identification symbols

Symbol BI[0–2] CR bits

cr0 (default, can be eliminated from syntax) 000 32–35

cr1 001 36–39

cr2 010 40–43

cr3 011 44–47

cr4 100 48–51

cr5 101 52–55

cr6 110 56–59

cr7 111 60–63

Table 284. Branch simplified mnemonics

Branch semantics
LR update not enabled LR update enabled

bc bca bclr bcctr bcl bcla bclrl bcctrl

Branch unconditionally (1) — — blr bctr — — blrl bctrl 

Branch if condition true bt bta btlr btctr btl btla btlrl btctrl

Branch if condition false bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR, branch if CTR ≠ 0 1 bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR, branch if CTR ≠ 0 and 
condition true

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR, branch if CTR ≠ 0 and 
condition false

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —

Decrement CTR, branch if CTR = 0 1 bdz bdza bdzlr — bdzl bdzla bdzlrl —

Decrement CTR, branch if CTR = 0 and 
condition true

bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR, branch if CTR = 0 and 
condition false

bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —

1. Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. Otherwise a 
programming error may occur. 
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The simplified mnemonics in Table 284 that test a condition require a corresponding CR bit 
as the first operand (as examples 2–5 below show). The symbols in Table 283 can be 
substituted for numeric values.

Examples that eliminate the BO operand

The simplified mnemonics in Table 284 are used in the following examples: 

1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a count 
loaded into CTR) (note that no CR bits are tested).
bdnz target  equivalent tobc 16,0,target

Because this instruction does not test a CR bit, the simplified mnemonic should specify 
only a target operand. Specifying a CR (for example, bdnz 0,target or bdnz cr0,target) 
may be considered a programming error. Subsequent examples test conditions).

2. Same as (1) but branch only if CTR is nonzero and equal condition in CR0.
bdnzt eq,target  equivalent tobc 8,2,target
Other equivalents include bdnzt 2,target or the unlikely bdnzt 4*cr0+eq,target

3. Same as (2), but equal condition is in CR5.
bdnzt 4 * cr5 + eq,target equivalent tobc 8,22,target
bdnzt 22,target would also work

4. Branch if bit 59 of CR is false.
bf 27,target  equivalent tobc 4,27,target
bf 4*cr6+so,target would also work

5. Same as (4), but set the link register. This is a form of conditional call.
bfl 27,target  equivalent tobcl 4,27,target

Table 286 lists simplified mnemonics and syntax for bc and bca without LR updating. 

         

Table 285. Branch instructions 

Instruction
Standard 

mnemonic
Syntax Simplified mnemonic Syntax 

Branch b (ba bl bla) target_addr N/A, syntax does not include BO

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr bx(1)(bxa bxl bxla) BI(2)target_addr

Branch Conditional to Link 
Register 

bclr (bclrl) BO,BI bxlr (bxlrl) BI

Branch Conditional to 
Count Register 

bcctr (bcctrl) BO,BI bxctr (bxctrl) BI

1. x stands for one of the symbols in Table 280, where applicable.

2. BI can be a numeric value or an expression as shown in Table 283.

Table 286. Simplified mnemonics for bc and bca without LR update

Branch semantics bc
Simplified 
mnemonic

bca
Simplified 
mnemonic

Branch unconditionally — — — —

Branch if condition true(1) bc 12,BI,target  bt BI,target bca 12,BI,target bta BI,target

Branch if condition false 1 bc 4,BI,target bf BI,target bca 4,BI,target bfa BI,target

Decrement CTR, branch if CTR ≠ 0 bc 16,0,target bdnz target(2) bca 16,0,target bdnza target 2
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Table 287 lists simplified mnemonics and syntax for bclr and bcctr without LR updating. 

         

Table 288 provides simplified mnemonics and syntax for bcl and bcla.

         

Decrement CTR, branch if CTR ≠ 0 
and condition true

bc 8,BI,target bdnzt BI,target bca 8,BI,target bdnzta BI,target

Decrement CTR, branch if CTR ≠ 0 
and condition false

bc 0,BI,target bdnzf BI,target bca 0,BI,target bdnzfa BI,target

Decrement CTR, branch if CTR = 0 bc 18,0,target bdz target 2 bca 18,0,target bdza target 2

Decrement CTR, branch if CTR = 0 
and condition true

bc 10,BI,target bdzt BI,target bca 10,BI,target bdzta BI,target

Decrement CTR, branch if CTR = 0 
and condition false

bc 2,BI,target bdzf BI,target bca 2,BI,target bdzfa BI,target

1. Instructions for which B0 is either 12 (branch if condition true) or 4 (branch if condition false) do not depend on the CTR 
value and can be alternately coded by incorporating the condition specified by the BI field, as described in Chapter B.4.6: 
Simplified mnemonics that incorporate CR conditions (eliminates BO and replaces BI with crS).”

2. Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. Otherwise a 
programming error may occur. 

Table 286. Simplified mnemonics for bc and bca without LR update (continued)

Branch semantics bc
Simplified 
mnemonic

bca
Simplified 
mnemonic

Table 287. Simplified mnemonics for bclr and bcctr without LR update

Branch Semantics bclr
Simplified 
mnemonic

bcctr
Simplified
mnemonic

Branch unconditionally bclr 20,0 blr (1) bcctr 20,0 bctr 1

Branch if condition true (2) bclr 12,BI btlr BI bcctr 12,BI btctr BI 

Branch if condition false 2 bclr 4,BI bflr BI bcctr 4,BI bfctr BI 

Decrement CTR, branch if CTR ≠ 0 bclr 16,BI bdnzlr BI — —

Decrement CTR, branch if CTR ≠ 0 and condition true bclr 8,BI bdnztlr BI — —

Decrement CTR, branch if CTR ≠ 0 and condition false bclr 0,BI bdnzflr BI — —

Decrement CTR, branch if CTR = 0 bclr 18,0 bdzlr 1 — —

Decrement CTR, branch if CTR = 0 and condition true bclr 8,BI bdnztlr BI — —

Decrement CTR, branch if CTR = 0 and condition false bclr 2,BI bdzflr BI — —

1. Simplified mnemonics for branch instructions that do not test a CR bit should not specify one; a programming error may 
occur.

2. Instructions for which B0 is 12 (branch if condition true) or 4 (branch if condition false) do not depend on a CTR value and 
can be alternately coded by incorporating the condition specified by the BI field. See Chapter B.4.6: Simplified mnemonics 
that incorporate CR conditions (eliminates BO and replaces BI with crS).”

Table 288. Simplified mnemonics for bcl and bcla with LR update

Branch semantics bcl
Simplified
mnemonic

bcla
Simplified
mnemonic

Branch unconditionally — — — —

Branch if condition true (1) bcl 12,BI,target  btl BI,target
bcla 
12,BI,target

btla BI,target 
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Table 289 provides simplified mnemonics and syntax for bclrl and bcctrl with LR updating. 

         

B.4.6 Simplified mnemonics that incorporate CR conditions (eliminates BO 
and replaces BI with crS)

The mnemonics in Table 292 are variations of the branch-if-condition-true (BO = 12) and 
branch-if-condition-false (BO = 4) encodings. Because these instructions do not depend on 
the CTR, the true/false conditions specified by BO can be combined with the CR test bit 
specified by BI to create a different set of simplified mnemonics that eliminates the BO 
operand and the portion of the BI operand (BI[3–4]) that specifies one of the four possible 

Branch if condition false 1 bcl 4,BI,target bfl BI,target bcla 4,BI,target bfla BI,target 

Decrement CTR, branch if CTR ≠ 0 bcl 16,0,target bdnzl target (2) bcla 16,0,target bdnzla target 2

Decrement CTR, branch if CTR ≠ 0 and 
condition true

bcl 8,0,target
bdnztl 
BI,target 

bcla 8,BI,target bdnztla BI,target 

Decrement CTR, branch if CTR ≠ 0 and 
condition false

bcl 0,BI,target
bdnzfl 
BI,target 

bcla 0,BI,target bdnzfla BI,target 

Decrement CTR, branch if CTR = 0 bcl 18,BI,target bdzl target 2
bcla 
18,BI,target

bdzla target 2

Decrement CTR, branch if CTR = 0 and 
condition true

bcl 10,BI,target bdztl BI,target 
bcla 
10,BI,target

bdztla BI,target 

Decrement CTR, branch if CTR = 0 and 
condition false

bcl 2,BI,target bdzfl BI,target bcla 2,BI,target bdzfla BI,target 

1. Instructions for which B0 is either 12 (branch if condition true) or 4 (branch if condition false) do not depend on the CTR 
value and can be alternately coded by incorporating the condition specified by the BI field. See Chapter B.4.6: Simplified 
mnemonics that incorporate CR conditions (eliminates BO and replaces BI with crS).”

2. Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. A programming error 
may occur. 

Table 288. Simplified mnemonics for bcl and bcla with LR update (continued)

Branch semantics bcl
Simplified
mnemonic

bcla
Simplified
mnemonic

Table 289. Simplified mnemonics for bclrl and bcctrl with LR update

Branch semantics bclrl
Simplified 
mnemonic

bcctrl
simplified
mnemonic

Branch unconditionally bclrl 20,0 blrl (1) bcctrl 20,0 bctrl 1

Branch if condition true bclrl 12,BI btlrl BI bcctrl 12,BI btctrl BI 

Branch if condition false bclrl 4,BI bflrl BI bcctrl 4,BI bfctrl BI 

Decrement CTR, branch if CTR ≠ 0 bclrl 16,0 bdnzlrl 1 — —

Decrement CTR, branch if CTR ≠ 0, condition true bclrl 8,BI bdnztlrl BI — —

Decrement CTR, branch if CTR ≠ 0, condition false bclrl 0,BI bdnzflrl BI — —

Decrement CTR, branch if CTR = 0 bclrl 18,0 bdzlrl 1 — —

Decrement CTR, branch if CTR = 0, condition true bclrl 10, BI bdztlrl BI — —

Decrement CTR, branch if CTR = 0, condition false bclrl 2,BI bdzflrl BI — —

1. Simplified mnemonics for branch instructions that do not test a CR bit should not specify one. A programming error may 
occur.
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test bits. However, the simplified mnemonic cannot specify in which of the eight CR fields 
the test bit falls, so the BI operand is replaced by a crS operand. 

The standard codes shown in Table 290 are used for the most common combinations of 
branch conditions. Note that for ease of programming, these codes include synonyms; for 
example, less than or equal (le) and not greater than (ng) achieve the same result. 

Note: A CR field symbol, cr0–cr7, is used as the first operand after the simplified mnemonic. If 
CR0 is used, no crS is necessary. 

         

Table 291 shows the syntax for simplified branch mnemonics that incorporate CR 
conditions. Here, crS replaces a BI operand to specify only a CR field (because the specific 
CR bit within the field is now part of the simplified mnemonic. Note that the default is CR0; if 
no crS is specified, CR0 is used.

         

Table 292 shows the simplified branch mnemonics incorporating conditions.

         

Table 290. Standard coding for branch conditions

Code Description Equivalent Bit tested

lt Less than — LT

le Less than or equal (equivalent to ng) ng GT

eq Equal — EQ

ge Greater than or equal (equivalent to nl) nl LT

gt Greater than — GT

nl Not less than (equivalent to ge) ge LT

ne Not equal — EQ

ng Not greater than (equivalent to le) le GT

so Summary overflow — SO

ns Not summary overflow — SO

Table 291. Branch instructions and simplified mnemonics that incorporate CR conditions

Instruction
Standard 

mnemonic
Syntax 

Simplified 
mnemonic 

Syntax 

Branch b (ba bl bla) target_addr —

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr bx (1)(bxa bxl bxla) crS(2),target_addr 

Branch Conditional to Link 
Register 

bclr (bclrl) BO,BI bxlr (bxlrl) crS 

Branch Conditional to Count 
Register 

bcctr (bcctrl) BO,BI bxctr (bxctrl) crS 

1. x stands for one of the symbols in Table 290, where applicable.

2. BI can be a numeric value or an expression as shown in Table 283.



Simplified mnemonics for PowerPC instructions RM0004

1125/1176   

Instructions using the mnemonics in Table 292 indicate the condition bit, but not the CR 
field. If no field is specified, CR0 is used. The CR field symbols defined in Table 283 (cr0–
cr7) are used for this operand, as shown in examples 2–4 below. 

Branch simplified mnemonics that incorporate CR conditions:
examples

The following examples use the simplified mnemonics shown in Table 292:

1. Branch if CR0 reflects not-equal condition.
bne target equivalent to bc 4,2,target

2. Same as (1) but condition is in CR3.
bne cr3,target equivalent to bc 4,14,target

3. Branch to an absolute target if CR4 specifies greater than condition, setting the LR. 
This is a form of conditional call.
bgtla cr4,target equivalent to bcla 12,17,target

4. Same as (3), but target address is in the CTR.
bgtctrl cr4 equivalent to bcctrl 12,17

Branch simplified mnemonics that incorporate CR conditions: 
listings

Table 293 shows simplified branch mnemonics and syntax for bc and bca without LR 
updating. 

         

Table 292. Simplified mnemonics with comparison conditions

Branch semantics
LR update not enabled LR update enabled

bc bca bclr bcctr bcl bcla bclrl bcctrl

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than or equal bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary overflow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl
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Table 294 shows simplified branch mnemonics and syntax for bclr and bcctr without LR 
updating. 

         

Table 293. Simplified mnemonics for bc and bca without comparison conditions or LR Update

Branch Semantics bc
Simplified 
mnemonic

bca Simplified mnemonic

Branch if less than
bc 
12,BI(1),target

blt crS target bca 12,BI1,target blta crS target

Branch if less than or equal
bc 4,BI(2),target

ble crS target
bca 4,BI2,target

blea crS target

Branch if not greater than bng crS target bnga crS target

Branch if equal
bc 
12,BI(3),target

beq crS target bca 12,BI3,target beqa crS target

Branch if greater than or equal
bc 4,BI1,target

bge crS target
bca 4,BI1,target

bgea crS target

Branch if not less than bnl crS target bnla crS target

Branch if greater than bc 12,BI2,target bgt crS target bca 12,BI2,target bgta crS target

Branch if not equal bc 4,BI3,target bne crS target bca 4,BI3,target bnea crS target

Branch if summary overflow bc 
12,BI(4),target

bso crS target
bca 12,BI4,target

bsoa crS target

Branch if unordered bun crS target buna crS target

Branch if not summary overflow
bc 4,BI4,target

bns crS target
bca 4,BI4,target

bnsa crS target

Branch if not unordered bnu crS target bnua crS target

1. The value in the BI operand selects CRn[0], the LT bit. 

2. The value in the BI operand selects CRn[1], the GT bit. 

3. The value in the BI operand selects CRn[2], the EQ bit. 

4. The value in the BI operand selects CRn[3], the SO bit. 

Table 294. Simplified mnemonics for bclr and bcctr without comparison conditions or LR 
update

Branch semantics bclr
Simplified 
mnemonic

bcctr
Simplified 
mnemonic

Branch if less than bclr 12,BI(1),target bltlr crS target bcctr 12,BI1,target bltctr crS target

Branch if less than or equal
bclr 4,BI(2),target

blelr crS target
bcctr 4,BI2,target

blectr crS target

Branch if not greater than bnglr crS target bngctr crS target

Branch if equal bclr 12,BI(3),target beqlr crS target bcctr 12,BI3,target beqctr crS target

Branch if greater than or equal
bclr 4,BI1,target

bgelr crS target
bcctr 4,BI1,target

bgectr crS target

Branch if not less than bnllr crS target bnlctr crS target

Branch if greater than bclr 12,BI2,target bgtlr crS target bcctr 12,BI2,target bgtctr crS target

Branch if not equal bclr 4,BI3,target bnelr crS target bcctr 4,BI3,target bnectr crS target

Branch if summary overflow bclr 12,BI(4),target bsolr crS target bcctr 12,BI4,target bsoctr crS target

Branch if not summary overflow bclr 4,BI4,target bnslr crS target bcctr 4,BI4,target bnsctr crS target

1. The value in the BI operand selects CRn[0], the LT bit. 

2. The value in the BI operand selects CRn[1], the GT bit. 

3. The value in the BI operand selects CRn[2], the EQ bit. 

4. The value in the BI operand selects CRn[3], the SO bit. 
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Table 295 shows simplified branch mnemonics and syntax for bcl and bcla. 

         

Table 296 shows the simplified branch mnemonics and syntax for bclrl and bcctrl with LR 
updating. 

         

Table 295. Simplified mnemonics for bcl and bcla with comparison conditions, LR update

Branch semantics bcl
Simplified 
mnemonic

bcla
Simplified 
mnemonic

Branch if less than bcl 12,BI(1),target bltl crS target bcla 12,BI1,target bltla crS target

Branch if less than or equal
bcl 4,BI(2),target

blel crS target
bcla 4,BI2,target

blela crS target

Branch if not greater than bngl crS target bngla crS target

Branch if equal bcl 12,BI(3),target beql crS target bcla 12,BI3,target beqla crS target

Branch if greater than or equal
bcl 4,BI1,target

bgel crS target
bcla 4,BI1,target

bgela crS target

Branch if not less than bnll crS target bnlla crS target

Branch if greater than bcl 12,BI2,target bgtl crS target bcla 12,BI2,target bgtla crS target

Branch if not equal bcl 4,BI3,target bnel crS target bcla 4,BI3,target bnela crS target

Branch if summary overflow bcl 12,BI(4),target bsol crS target bcla 12,BI4,target bsola crS target

Branch if not summary overflow bcl 4,BI4,target bnsl crS target bcla 4,BI4,target bnsla crS target

1. The value in the BI operand selects CRn[0], the LT bit. 

2. The value in the BI operand selects CRn[1], the GT bit. 

3. The value in the BI operand selects CRn[2], the EQ bit. 

4. The value in the BI operand selects CRn[3], the SO bit. 

Table 296. Simplified mnemonics for bclrl and bcctrl with comparison conditions, LR update

Branch semantics bclrl
Simplified 
mnemonic

bcctrl
Simplified 
mnemonic

Branch if less than bclrl 12,BI(1),target bltlrl crS target bcctrl 12,BI1,target bltctrl crS target

Branch if less than or equal
bclrl 4,BI(2),target

blelrl crS target
bcctrl 4,BI2,target

blectrl crS target

Branch if not greater than bnglrl crS target bngctrl crS target

Branch if equal bclrl 12,BI(3),target beqlrl crS target bcctrl 12,BI3,target beqctrl crS target

Branch if greater than or equal
bclrl 4,BI1,target

bgelrl crS target
bcctrl 4,BI1,target

bgectrl crS target

Branch if not less than bnllrl crS target bnlctrl crS target

Branch if greater than bclrl 12,BI2,target bgtlrl crS target bcctrl 12,BI2,target bgtctrl crS target

Branch if not equal bclrl 4,BI3,target bnelrl crS target bcctrl 4,BI3,target bnectrl crS target

Branch if summary overflow bclrl 12,B(4),target bsolrl crS target bcctrl 12,BI4,target bsoctrl crS target

Branch if not summary 
overflow

bclrl 4,BI4,target bnslrl crS target bcctrl 4,BI4,target bnsctrl crS target

1. The value in the BI operand selects CRn[0], the LT bit. 

2. The value in the BI operand selects CRn[1], the GT bit. 

3. The value in the BI operand selects CRn[2], the EQ bit. 

4. The value in the BI operand selects CRn[3], the SO bit. 
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B.5 Compare word simplified mnemonics
In compare word instructions, the L operand indicates a word (L = 0) or a double-word 
(L = 1). Simplified mnemonics in Table 297 eliminate the L operand for word comparisons. 

         

As with branch mnemonics, the crD field of a compare instruction can be omitted if CR0 is 
used, as shown in examples 1 and 3 below. Otherwise, the target CR field must be specified 
as the first operand. The following examples use word compare mnemonics: 

1. Compare rA with immediate value 100 as signed 32-bit integers and place result in 
CR0.
cmpwi rA,100 equivalent to cmpi 0,0,rA,100

2. Same as (1), but place results in CR4.
cmpwi cr4,rA,100equivalent to cmpi 4,0,rA,100

3. Compare rA and rB as unsigned 32-bit integers and place result in CR0.
cmplw rA,rB equivalent to cmpl 0,0,rA,rB

B.6 Condition register logical simplified mnemonics 
The CR logical instructions, shown in Table 298, can be used to set, clear, copy, or invert a 
given CR bit. Simplified mnemonics allow these operations to be coded easily. Note that the 
symbols defined in Table 282 can be used to identify the CR bit.

         

Examples using the CR logical mnemonics follow:

Table 297. Word compare simplified mnemonics

Operation Simplified mnemonic Equivalent to:

Compare Word Immediate cmpwi crD,rA,SIMM cmpi crD,0,rA,SIMM

Compare Word cmpw crD,rA,rB cmp crD,0,rA,rB

Compare Logical Word Immediate cmplwi crD,rA,UIMM cmpli crD,0,rA,UIMM

Compare Logical Word cmplw crD,rA,rB cmpl crD,0,rA,rB

Table 298. Condition register logical simplified mnemonics

Operation Simplified mnemonic Equivalent to

Condition register set crset bx creqv bx,bx,bx

Condition register clear crclr bx crxor bx,bx,bx

Condition register move crmove bx,by cror bx,by,by

Condition register not crnot bx,by crnor bx,by,by
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1. Set CR[57].
crset 25 equivalent to creqv 25,25,25

2. Clear CR0[SO].
crclr so equivalent to crxor 3,3,3

3. Same as (2), but clear CR3[SO].
crclr 4 * cr3 + so equivalent to crxor 15,15,15

4. Invert the CR0[EQ].
crnot eq,eq equivalent to crnor 2,2,2

5. Same as (4), but CR4[EQ] is inverted and the result is placed into CR5[EQ].
crnot 4 * cr5 + eq, 4 * cr4 + eq equivalent to crnor 22,18,18

B.7 Trap instructions simplified mnemonics 
The codes in Table 299 are for the most common combinations of trap conditions. 

         

The mnemonics in Table 300 are variations of trap instructions, with the most useful TO 
values represented in the mnemonic rather than specified as a numeric operand.

         

Table 299. Standard codes for trap instructions

Code Description TO encoding < > = <U(1) >U (2)

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1

1. The symbol ‘<U’ indicates an unsigned less-than evaluation is performed. 

2. The symbol ‘>U’ indicates an unsigned greater-than evaluation is performed.
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The following examples use the trap mnemonics shown in Table 300:

1. Trap if rA is not zero.
twnei rA,0 equivalent to twi 24,rA,0

2. Trap if rA is not equal to rB.
twne rA, rB equivalent to tw 24,rA,rB

3. Trap if rA is logically greater than 0x7FF.
twlgti rA, 0x7FF equivalent to twi 1,rA, 0x7FF

4. Trap unconditionally.
trap equivalent to  tw 31,0,0

Trap instructions evaluate a trap condition as follows: The contents of rA are compared with 
either the sign-extended SIMM field or the contents of rB, depending on the trap instruction. 

The comparison results in five conditions that are ANDed with operand TO. If the result is 
not 0, the trap exception handler is invoked. See Table 301 for these conditions.

         

Table 300. Trap simplified mnemonics

Trap semantics
32-Bit Comparison 

twi Immediate tw Register

Trap unconditionally — trap

Trap if less than twlti twlt

Trap if less than or equal twlei twle

Trap if equal tweqi tweq

Trap if greater than or equal twgei twge

Trap if greater than twgti twgt

Trap if not less than twnli twnl

Trap if not equal twnei twne

Trap if not greater than twngi twng

Trap if logically less than twllti twllt

Trap if logically less than or equal twllei twlle

Trap if logically greater than or equal twlgei twlge

Trap if logically greater than twlgti twlgt

Trap if logically not less than twlnli twlnl

Trap if logically not greater than twlngi twlng

Table 301. TO operand bit encoding

TO bit ANDed with condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison
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B.8 Simplified mnemonics for accessing SPRs
The mtspr and mfspr instructions specify a special-purpose register (SPR) as a numeric 
operand. Simplified mnemonics are provided that represent the SPR in the mnemonic rather 
than requiring it to be coded as a numeric operand. The pattern for mtspr and mfspr 
simplified mnemonics is straightforward: replace the -spr portion of the mnemonic with the 
abbreviation for the spr (for example XER, SRR0, or LR), eliminate the SPRN operand, 
leaving the source or destination GPR operand, rS or rD. 

Following are examples using the SPR simplified mnemonics:

1. Copy the contents of rS to the XER.
mtxer rS  equivalent to mtspr 1,rS

2. Copy the contents of the LR to rD.
mflr rD  equivalent to mfspr rD,8

3. Copy the contents of rS to the CTR.
mtctr rS  equivalent to mtspr 9,rS

The examples above show simplified mnemonics for accessing SPRs defined by the AIM 
version of the PowerPC architecture; however, the same formula is used for Book E, EIS, 
and implementation-specific SPRs, as shown in the following examples:

1. Copy the contents of rS to CSRR0.
mtcsrr0 rS  equivalent to mtspr 58,rS

2. Copy the contents of IVOR0 to rD.
mfivor0 rD  equivalent to mfspr rD,400

3. Copy the contents of rS to the MAS1.
mtmas1 rS  equivalent to mtspr 625,rS

There is an additional simplified mnemonic formula for accessing SPRGs, although not all of 
these more complicated simplified mnemonics are supported by all assemblers. These are 
shown in Table 302 along with the equivalent simplified mnemonic using the formula 
described above.

         

B.9 Recommended simplified mnemonics
This section describes commonly-used operations (such as no-op, load immediate, load 
address, move register, and complement register). 

B.9.1 No-op (nop)

Many instructions can be coded so that, effectively, no operation is performed. A mnemonic 
is provided for the preferred form of no-op. If an implementation performs any type of run-
time optimization related to no-ops, the preferred form is the following:

nop  equivalent to ori 0,0,0

Table 302. Additional simplified mnemonics for accessing SPRGs

SPR
Move to SPR Move from SPR

Simplified mnemonic Equivalent to Simplified mnemonic Equivalent to

SPRGs
mtsprg n, rS

mtspr 272 + n,rS
mfsprg rD, n

mfspr rD,272 + n
mtsprgn, rS mfsprgn rD
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B.9.2 Load immediate (li)

The addi and addis instructions can be used to load an immediate value into a register. 
Additional mnemonics are provided to convey the idea that no addition is being performed 
but that data is being moved from the immediate operand of the instruction to a register.

1. Load a 16-bit signed immediate value into rD.
li rD,value equivalent to addi rD,0,value

2. Load a 16-bit signed immediate value, shifted left by 16 bits, into rD. 
lis rD,value equivalent to addis rD,0,value

B.9.3 Load address (la) 

This mnemonic permits computing the value of a base-displacement operand, using the 
addi instruction that normally requires a separate register and immediate operands.

la rD,d(rA) equivalent to addi rD,rA,d

The la mnemonic is useful for obtaining the address of a variable specified by name, 
allowing the assembler to supply the base register number and compute the displacement. 
If the variable v is located at offset dv bytes from the address in rv, and the assembler has 
been told to use rv as a base for references to the data structure containing v, the following 
line causes the address of v to be loaded into rD:

la rD,v equivalent to addi rD,rv,dv

B.9.4 Move register (mr)

Several instructions can be coded to copy the contents of one register to another. A 
simplified mnemonic is provided that signifies that no computation is being performed, but 
merely that data is being moved from one register to another.

The following instruction copies the contents of rS into rA. This mnemonic can be coded 
with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

mr rA,rS equivalent to or rA,rS,rS

B.9.5 Complement register (not)

Several instructions can be coded in a way that they complement the contents of one 
register and place the result into another register. Simplified mnemonics allows this 
operation to be coded easily.

The following instruction complements the contents of rS and places the result into rA. This 
mnemonic can be coded with a dot (.) suffix to cause the Rc bit to be set in the underlying 
instruction.

not rA,rS equivalent to nor rA,rS,rS

B.9.6 Move to condition register (mtcr)

This mnemonic permits copying GPR contents to the CR, using the same syntax as the 
mfcr instruction.

mtcr rS equivalent to mtcrf 0xFF,rS
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B.10 EIS-specific simplified mnemonics
This section describes simplified mnemonics for instructions defines by auxiliary processing 
units (APUs) defined as part of the Motorola Book E implementation standards. 

B.10.1 Integer select (isel)

The following mnemonics simplify the most common variants of the isel instruction that 
access CR0:

Integer Select Less Than 
isellt rD,rA,rB equivalent to isel rD,rA,rB,0 

Integer Select Greater Than 
iselgt rD,rA,rB equivalent to isel rD,rA,rB,1 

Integer Select Equal 
iseleq rD,rA,rB equivalent to isel rD,rA,rB,2

B.10.2 SPE mnemonics

The following mnemonic handles moving of the full 64-bit SPE GPR:
Vector Move
evmr rD,rA equivalent to evor rD,rA,rA

The following mnemonic performs a complement register:
Vector Not
evnot rD,rA equivalent to evnor rD,rA,rA

B.11 Comprehensive list of simplified mnemonics
Table 303 lists simplified mnemonics. Note that compiler designers may implement 
additional simplified mnemonics not listed here.

         

Table 303. Simplified mnemonics

Simplified 
mnemonic

Mnemonic Instruction

bctr(1) bcctr 20,0 Branch unconditionally (bcctr without LR update)

bctrl 1 bcctrl 20,0 Branch unconditionally (bcctrl with LR Update)

bdnz target 1 bc 16,0,target Decrement CTR, branch if CTR ≠ 0 (bc without LR update)

bdnza target 1 bca 16,0,target Decrement CTR, branch if CTR ≠ 0 (bca without LR update)

bdnzf BI,target bc 0,BI,target
Decrement CTR, branch if CTR ≠ 0 and condition false (bc 
without LR update)

bdnzfa BI,target bca 0,BI,target
Decrement CTR, branch if CTR ≠ 0 and condition false (bca 
without LR update)

bdnzfl BI,target bcl 0,BI,target
Decrement CTR, branch if CTR ≠ 0 and condition false (bcl 
with LR update)

bdnzfla BI,target bcla 0,BI,target
Decrement CTR, branch if CTR ≠ 0 and condition false 
(bcla with LR update)
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bdnzflr BI bclr 0,BI
Decrement CTR, branch if CTR ≠ 0 and condition false (bclr 
without LR update)

bdnzflrl BI bclrl 0,BI
Decrement CTR, branch if CTR ≠ 0 and condition false 
(bclrl with LR Update)

bdnzl target 1 bcl 16,0,target Decrement CTR, branch if CTR ≠ 0 (bcl with LR update)

bdnzla target 1 bcla 16,0,target Decrement CTR, branch if CTR ≠ 0 (bcla with LR update)

bdnzlr BI bclr 16,BI
Decrement CTR, branch if CTR ≠ 0 (bclr without LR 
update)

bdnzlrl 1 bclrl 16,0 Decrement CTR, branch if CTR ≠ 0 (bclrl with LR Update)

bdnzt BI,target bc 8,BI,target
Decrement CTR, branch if CTR ≠ 0 and condition true (bc 
without LR update)

bdnzta BI,target bca 8,BI,target
Decrement CTR, branch if CTR ≠ 0 and condition true (bca 
without LR update)

bdnztl BI,target bcl 8,0,target
Decrement CTR, branch if CTR ≠ 0 and condition true (bcl 
with LR update)

bdnztla BI,target bcla 8,BI,target
Decrement CTR, branch if CTR ≠ 0 and condition true (bcla 
with LR update)

bdnztlr BI bclr 8,BI
Decrement CTR, branch if CTR ≠ 0 and condition true (bclr 
without LR update)

bdnztlr BI bclr 8,BI
Decrement CTR, branch if CTR = 0 and condition true (bclr 
without LR update)

bdnztlrl BI bclrl 8,BI
Decrement CTR, branch if CTR ≠ 0 and condition true (bclrl 
with LR Update)

bdz target 1 bc 18,0,target Decrement CTR, branch if CTR = 0 (bc without LR update)

bdza target 1 bca 18,0,target
Decrement CTR, branch if CTR = 0 (bca without LR 
update)

bdzf BI,target bc 2,BI,target
Decrement CTR, branch if CTR = 0 and condition false (bc 
without LR update)

bdzfa BI,target bca 2,BI,target
Decrement CTR, branch if CTR = 0 and condition false (bca 
without LR update)

bdzfl BI,target bcl 2,BI,target
Decrement CTR, branch if CTR = 0 and condition false (bcl 
with LR update)

bdzfla BI,target bcla 2,BI,target
Decrement CTR, branch if CTR = 0 and condition false 
(bcla with LR update)

bdzflr BI bclr 2,BI
Decrement CTR, branch if CTR = 0 and condition false 
(bclr without LR update)

bdzflrl BI bclrl 2,BI
Decrement CTR, branch if CTR = 0 and condition false 
(bclrl with LR Update)

bdzl target 1 bcl 18,BI,target Decrement CTR, branch if CTR = 0 (bcl with LR update)

bdzla target 1 bcla 18,BI,target Decrement CTR, branch if CTR = 0 (bcla with LR update)

Table 303. Simplified mnemonics (continued)

Simplified 
mnemonic

Mnemonic Instruction
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bdzlr 1 bclr 18,0
Decrement CTR, branch if CTR = 0 (bclr without LR 
update)

bdzlrl 1 bclrl 18,0 Decrement CTR, branch if CTR = 0 (bclrl with LR Update)

bdzt BI,target bc 10,BI,target
Decrement CTR, branch if CTR = 0 and condition true (bc 
without LR update)

bdzta BI,target bca 10,BI,target
Decrement CTR, branch if CTR = 0 and condition true (bca 
without LR update)

bdztl BI,target bcl 10,BI,target
Decrement CTR, branch if CTR = 0 and condition true (bcl 
with LR update)

bdztla BI,target bcla 10,BI,target
Decrement CTR, branch if CTR = 0 and condition true (bcla 
with LR update)

bdztlrl BI bclrl 10, BI
Decrement CTR, branch if CTR = 0 and condition true (bclrl 
with LR Update)

beq crS target bc 12,BI(2),target
Branch if equal (bc without comparison conditions or LR 
updating)

beqa crS target bca 12,BI2,target
Branch if equal (bca without comparison conditions or LR 
updating)

beqctr crS target bcctr 12,BI2,target
Branch if equal (bcctr without comparison conditions and 
LR updating)

beqctrl crS target
bcctrl 
12,BI2,target

Branch if equal (bcctrl with comparison conditions and LR 
update)

beql crS target bcl 12,BI2,target
Branch if equal (bcl with comparison conditions and LR 
updating)

beqla crS target bcla 12,BI2,target
Branch if equal (bcla with comparison conditions and LR 
updating)

beqlr crS target bclr 12,BI2,target
Branch if equal (bclr without comparison conditions and LR 
updating)

beqlrl crS target bclrl 12,BI2,target
Branch if equal (bclrl with comparison conditions and LR 
update)

bf BI,target bc 4,BI,target Branch if condition false (3) (bc without LR update)

bfa BI,target bca 4,BI,target Branch if condition false 3 (bca without LR update)

bfctr BI bcctr 4,BI Branch if condition false 3 (bcctr without LR update)

bfctrl BI bcctrl 4,BI Branch if condition false 3(bcctrl with LR Update)

bfl BI,target bcl 4,BI,target Branch if condition false 3 (bcl with LR update)

bfla BI,target bcla 4,BI,target Branch if condition false 3 (bcla with LR update)

bflr BI bclr 4,BI Branch if condition false 3 (bclr without LR update)

bflrl BI bclrl 4,BI Branch if condition false 3(bclrl with LR Update)

bge crS target bc 4,BI(4),target
Branch if greater than or equal (bc without comparison 
conditions or LR updating)
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bgea crS target bca 4,BI4,target
Branch if greater than or equal (bca without comparison 
conditions or LR updating)

bgectr crS target bcctr 4,BI4,target
Branch if greater than or equal (bcctr without comparison 
conditions and LR updating)

bgectrl crS target bcctrl 4,BI4,target
Branch if greater than or equal (bcctrl with comparison 
conditions and LR update)

bgel crS target bcl 4,BI4,target
Branch if greater than or equal (bcl with comparison 
conditions and LR updating)

bgela crS target bcla 4,BI4,target
Branch if greater than or equal (bcla with comparison 
conditions and LR updating)

bgelr crS target bclr 4,BI4,target
Branch if greater than or equal (bclr without comparison 
conditions and LR updating)

bgelrl crS target bclrl 4,BI4,target
Branch if greater than or equal (bclrl with comparison 
conditions and LR update)

bgt crS target bc 12,BI(5),target
Branch if greater than (bc without comparison conditions or 
LR updating)

bgta crS target bca 12,BI5,target
Branch if greater than (bca without comparison conditions 
or LR updating)

bgtctr crS target bcctr 12,BI5,target
Branch if greater than (bcctr without comparison conditions 
and LR updating)

bgtctrl crS target
bcctrl 
12,BI5,target

Branch if greater than (bcctrl with comparison conditions 
and LR update)

bgtl crS target bcl 12,BI5,target
Branch if greater than (bcl with comparison conditions and 
LR updating)

bgtla crS target bcla 12,BI5,target
Branch if greater than (bcla with comparison conditions and 
LR updating)

bgtlr crS target bclr 12,BI5,target
Branch if greater than (bclr without comparison conditions 
and LR updating)

bgtlrl crS target bclrl 12,BI5,target
Branch if greater than (bclrl with comparison conditions and 
LR update)

ble crS target bc 4,BI5,target
Branch if less than or equal (bc without comparison 
conditions or LR updating)

blea crS target bca 4,BI5,target
Branch if less than or equal (bca without comparison 
conditions or LR updating)

blectr crS target bcctr 4,BI5,target
Branch if less than or equal (bcctr without comparison 
conditions and LR updating)

blectrl crS target bcctrl 4,BI5,target
Branch if less than or equal (bcctrl with comparison 
conditions and LR update)

blel crS target bcl 4,BI5,target
Branch if less than or equal (bcl with comparison conditions 
and LR updating)
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blela crS target bcla 4,BI5,target
Branch if less than or equal (bcla with comparison 
conditions and LR updating)

blelr crS target bclr 4,BI5,target
Branch if less than or equal (bclr without comparison 
conditions and LR updating)

blelrl crS target bclrl 4,BI5,target
Branch if less than or equal (bclrl with comparison 
conditions and LR update)

blr 1 bclr 20,0 Branch unconditionally (bclr without LR update)

blrl 1 bclrl 20,0 Branch unconditionally (bclrl with LR Update)

blt crS target bc 12,BI,target
Branch if less than (bc without comparison conditions or LR 
updating)

blta crS target bca 12,BI4,target
Branch if less than (bca without comparison conditions or 
LR updating)

bltctr crS target bcctr 12,BI4,target
Branch if less than (bcctr without comparison conditions 
and LR updating)

bltctrl crS target
bcctrl 
12,BI4,target

Branch if less than (bcctrl with comparison conditions and 
LR update)

bltl crS target bcl 12,BI4,target
Branch if less than (bcl with comparison conditions and LR 
updating)

bltla crS target bcla 12,BI4,target
Branch if less than (bcla with comparison conditions and 
LR updating)

bltlr crS target bclr 12,BI4,target
Branch if less than (bclr without comparison conditions and 
LR updating)

bltlrl crS target bclrl 12,BI4,target
Branch if less than (bclrl with comparison conditions and 
LR update)

bne crS target bc 4,BI3,target
Branch if not equal (bc without comparison conditions or LR 
updating)

bnea crS target bca 4,BI3,target
Branch if not equal (bca without comparison conditions or 
LR updating)

bnectr crS target bcctr 4,BI3,target
Branch if not equal (bcctr without comparison conditions 
and LR updating)

bnectrl crS target bcctrl 4,BI3,target
Branch if not equal (bcctrl with comparison conditions and 
LR update)

bnel crS target bcl 4,BI3,target
Branch if not equal (bcl with comparison conditions and LR 
updating)

bnela crS target bcla 4,BI3,target
Branch if not equal (bcla with comparison conditions and 
LR updating)

bnelr crS target bclr 4,BI3,target
Branch if not equal (bclr without comparison conditions and 
LR updating)

bnelrl crS target bclrl 4,BI3,target
Branch if not equal (bclrl with comparison conditions and 
LR update)
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bng crS target bc 4,BI5,target
Branch if not greater than (bc without comparison 
conditions or LR updating)

bnga crS target bca 4,BI5,target
Branch if not greater than (bca without comparison 
conditions or LR updating)

bngctr crS target bcctr 4,BI5,target
Branch if not greater than (bcctr without comparison 
conditions and LR updating)

bngctrl crS target bcctrl 4,BI5,target
Branch if not greater than (bcctrl with comparison 
conditions and LR update)

bngl crS target bcl 4,BI5,target
Branch if not greater than (bcl with comparison conditions 
and LR updating)

bngla crS target bcla 4,BI5,target
Branch if not greater than (bcla with comparison conditions 
and LR updating)

bnglr crS target bclr 4,BI5,target
Branch if not greater than (bclr without comparison 
conditions and LR updating)

bnglrl crS target bclrl 4,BI5,target
Branch if not greater than (bclrl with comparison conditions 
and LR update)

bnl crS target bc 4,BI4,target
Branch if not less than (bc without comparison conditions or 
LR updating)

bnla crS target bca 4,BI4,target
Branch if not less than (bca without comparison conditions 
or LR updating)

bnlctr crS target bcctr 4,BI4,target
Branch if not less than (bcctr without comparison 
conditions and LR updating)

bnlctrl crS target bcctrl 4,BI4,target
Branch if not less than (bcctrl with comparison conditions 
and LR update)

bnll crS target bcl 4,BI4,target
Branch if not less than (bcl with comparison conditions and 
LR updating)

bnlla crS target bcla 4,BI4,target
Branch if not less than (bcla with comparison conditions 
and LR updating)

bnllr crS target bclr 4,BI4,target
Branch if not less than (bclr without comparison conditions 
and LR updating)

bnllrl crS target bclrl 4,BI4,target
Branch if not less than (bclrl with comparison conditions 
and LR update)

bns crS target bc 4,BI(6),target
Branch if not summary overflow (bc without comparison 
conditions or LR updating)

bnsa crS target bca 4,BI6,target
Branch if not summary overflow (bca without comparison 
conditions or LR updating)

bnsctr crS target bcctr 4,BI6,target
Branch if not summary overflow (bcctr without comparison 
conditions and LR updating)

bnsctrl crS target bcctrl 4,BI6,target
Branch if not summary overflow (bcctrl with comparison 
conditions and LR update)
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bnsl crS target bcl 4,BI6,target
Branch if not summary overflow (bcl with comparison 
conditions and LR updating)

bnsla crS target bcla 4,BI6,target
Branch if not summary overflow (bcla with comparison 
conditions and LR updating)

bnslr crS target bclr 4,BI6,target
Branch if not summary overflow (bclr without comparison 
conditions and LR updating)

bnslrl crS target bclrl 4,BI6,target
Branch if not summary overflow (bclrl with comparison 
conditions and LR update)

bso crS target bc 12,BI6,target
Branch if summary overflow (bc without comparison 
conditions or LR updating)

bsoa crS target bca 12,BI6,target
Branch if summary overflow (bca without comparison 
conditions or LR updating)

bsoctr crS target bcctr 12,BI6,target
Branch if summary overflow (bcctr without comparison 
conditions and LR updating)

bsoctrl crS target
bcctrl 
12,BI6,target

Branch if summary overflow (bcctrl with comparison 
conditions and LR update)

bsol crS target bcl 12,BI6,target
Branch if summary overflow (bcl with comparison 
conditions and LR updating)

bsola crS target bcla 12,BI6,target
Branch if summary overflow (bcla with comparison 
conditions and LR updating)

bsolr crS target bclr 12,BI6,target
Branch if summary overflow (bclr without comparison 
conditions and LR updating)

bsolrl crS target bclrl 12,BI6,target
Branch if summary overflow (bclrl with comparison 
conditions and LR update)

bt BI,target bc 12,BI,target Branch if condition true3 (bc without LR update)

bta BI,target bca 12,BI,target Branch if condition true3 (bca without LR update)

btctr BI bcctr 12,BI Branch if condition true 3 (bcctr without LR update)

btctrl BI bcctrl 12,BI Branch if condition true 3 (bcctrl with LR Update)

btl BI,target bcl 12,BI,target Branch if condition true 3 (bcl with LR update)

btla BI,target bcla 12,BI,target Branch if condition true 3 (bcla with LR update)

btlr BI bclr 12,BI Branch if condition true 3 (bclr without LR update)

btlrl BI bclrl 12,BI Branch if condition true 3 (bclrl with LR Update)

clrlslwi rA,rS,b,n 
(n ≤ b ≤ 31)

rlwinm rA,rS,n,b – 
n,31 – n

Clear left and shift left word immediate

clrlwi rA,rS,n (n < 
32)

rlwinm 
rA,rS,0,n,31

Clear left word immediate

clrrwi rA,rS,n (n 
< 32)

rlwinm 
rA,rS,0,0,31 – n

Clear right word immediate

cmplw crD,rA,rB cmpl crD,0,rA,rB Compare logical word
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cmplwi 
crD,rA,UIMM

cmpli 
crD,0,rA,UIMM

Compare logical word immediate

cmpw crD,rA,rB cmp crD,0,rA,rB Compare word

cmpwi 
crD,rA,SIMM

cmpi 
crD,0,rA,SIMM

Compare word immediate

crclr bx crxor bx,bx,bx Condition register clear

crmove bx,by cror bx,by,by Condition register move

crnot bx,by crnor bx,by,by Condition register not

crset bx creqv bx,bx,bx Condition register set

evmr rD,rA evor rD,rA,rA Vector Move Register

evnot rD,rA evnor rD,rA,rA Vector Complement Register

evsubiw 
rD,rB,UIMM

evsubifw 
rD,UIMM,rB

Vector subtract word immediate

evsubw rD,rB,rA evsubfw rD,rA,rB Vector subtract word

extlwi rA,rS,n,b 
(n > 0)

rlwinm rA,rS,b,0,n 
– 1

Extract and left justify word immediate

extrwi rA,rS,n,b 
(n > 0)

rlwinm rA,rS,b + 
n, 32 – n,31

Extract and right justify word immediate

inslwi rA,rS,n,b 
(n > 0)

rlwimi rA,rS,32 – 
b,b,(b + n) – 1

Insert from left word immediate

insrwi rA,rS,n,b 
(n > 0)

rlwimi rA,rS,32 – 
(b + n),b,(b + n) – 1

Insert from right word immediate

iseleq rD,rA,rB isel rD,rA,rB,2 Integer Select Equal 

iselgt rD,rA,rB isel rD,rA,rB,1 Integer Select Greater Than 

isellt rD,rA,rB isel rD,rA,rB,0 Integer Select Less Than 

la rD,d(rA) addi rD,rA,d Load address

li rD,value addi rD,0,value Load immediate

lis rD,value addis rD,0,value Load immediate signed

mfspr rD mfspr rD,SPRN
Move from SPR (see Chapter B.8: Simplified mnemonics for 
accessing SPRs on page 1131.”)

mr rA,rS or rA,rS,rS Move register

mtcr rS mtcrf 0xFF,rS Move to Condition Register 

mtspr rS mfspr SPRN,rS
Move to SPR (see Chapter B.8: Simplified mnemonics for 
accessing SPRs on page 1131.”)

nop ori 0,0,0 No-op

not rA,rS nor rA,rS,rS NOT

not rA,rS nor rA,rS,rS Complement register

Table 303. Simplified mnemonics (continued)

Simplified 
mnemonic

Mnemonic Instruction



Simplified mnemonics for PowerPC instructions RM0004

1141/1176   

rotlw rA,rS,rB
rlwnm 
rA,rS,rB,0,31

Rotate left word 

rotlwi rA,rS,n
rlwinm 
rA,rS,n,0,31

Rotate left word immediate

rotrwi rA,rS,n
rlwinm rA,rS,32 – 
n,0,31

Rotate right word immediate

slwi rA,rS,n (n < 
32)

rlwinm 
rA,rS,n,0,31 – n

Shift left word immediate

srwi rA,rS,n (n < 
32)

rlwinm rA,rS,32 – 
n,n,31

Shift right word immediate

sub rD,rA,rB subf rD,rB,rA Subtract from

subc rD,rA,rB subfc rD,rB,rA Subtract from carrying

subi rD,rA,value addi rD,rA,–value Subtract immediate

subic rD,rA,value addic rD,rA,–value Subtract immediate carrying

subic. 
rD,rA,value

addic. rD,rA,–
value

Subtract immediate carrying

subis rD,rA,value addis rD,rA,–value Subtract immediate signed

tweq rA,SIMM tw 4,rA,SIMM Trap if equal

tweqi rA,SIMM twi 4,rA,SIMM Trap immediate if equal

twge rA,SIMM tw 12,rA,SIMM Trap if greater than or equal

twgei rA,SIMM twi 12,rA,SIMM Trap immediate if greater than or equal

twgt rA,SIMM tw 8,rA,SIMM Trap if greater than

twgti rA,SIMM twi 8,rA,SIMM Trap immediate if greater than

twle rA,SIMM tw 20,rA,SIMM Trap if less than or equal

twlei rA,SIMM twi 20,rA,SIMM Trap immediate if less than or equal

twlge rA,SIMM tw 12,rA,SIMM Trap if logically greater than or equal

twlgei rA,SIMM twi 12,rA,SIMM Trap immediate if logically greater than or equal

twlgt rA,SIMM tw 1,rA,SIMM Trap if logically greater than

twlgti rA,SIMM twi 1,rA,SIMM Trap immediate if logically greater than

twlle rA,SIMM tw 6,rA,SIMM Trap if logically less than or equal

twllei rA,SIMM twi 6,rA,SIMM Trap immediate if logically less than or equal

twllt rA,SIMM tw 2,rA,SIMM Trap if logically less than

twllti rA,SIMM twi 2,rA,SIMM Trap immediate if logically less than

twlng rA,SIMM tw 6,rA,SIMM Trap if logically not greater than

twlngi rA,SIMM twi 6,rA,SIMM Trap immediate if logically not greater than

twlnl rA,SIMM tw 5,rA,SIMM Trap if logically not less than
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twlnli rA,SIMM twi 5,rA,SIMM Trap immediate if logically not less than

twlt rA,SIMM tw 16,rA,SIMM Trap if less than

twlti rA,SIMM twi 16,rA,SIMM Trap immediate if less than

twne rA,SIMM tw 24,rA,SIMM Trap if not equal

twnei rA,SIMM twi 24,rA,SIMM Trap immediate if not equal

twng rA,SIMM tw 20,rA,SIMM Trap if not greater than

twngi rA,SIMM twi 20,rA,SIMM Trap immediate if not greater than

twnl rA,SIMM tw 12,rA,SIMM Trap if not less than

twnli rA,SIMM twi 12,rA,SIMM Trap immediate if not less than

1. Simplified mnemonics for branch instructions that do not test a CR bit should not specify one; a 
programming error may occur.

2. The value in the BI operand selects CRn[2], the EQ bit. 

3. Instructions for which B0 is either 12 (branch if condition true) or 4 (branch if condition false) do not depend 
on the CTR value and can be alternately coded by incorporating the condition specified by the BI field, as 
described in Chapter B.4.6: Simplified mnemonics that incorporate CR conditions (eliminates BO and 
replaces BI with crS) on page 1123.”

4. The value in the BI operand selects CRn[0], the LT bit. 

5. The value in the BI operand selects CRn[1], the GT bit. 

6. The value in the BI operand selects CRn[3], the SO bit. 

Table 303. Simplified mnemonics (continued)
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Appendix C Programming examples

This appendix gives examples of how memory synchronization instructions can be used to 
emulate various synchronization primitives and to provide more complex forms of 
synchronization. It also describes multiple precision shifts.

C.1 Synchronization
Examples in this appendix have a common form. After possible initialization, a conditional 
sequence begins with a load and reserve instruction that may be followed by memory 
accesses and computations that include neither a load and reserve nor a store conditional. 
The sequence ends with a store conditional with the same target address as the initial load 
and reserve. In most of the examples, failure of the store conditional causes a branch back 
to the load and reserve for a repeated attempt. On the assumption that contention is low, the 
conditional branch in the examples is optimized for the case in which the store conditional 
succeeds, by setting the branch-prediction bit appropriately. These examples focus on 
techniques for the correct modification of shared memory locations: see note 4 in 
Chapter C.1.4: Synchronization notes on page 1147,” for a discussion of how the retry 
strategy can affect performance.

Load and reserve and store conditional instructions depend on the coherence mechanism 
of the system. Stores to a given location are coherent if they are serialized in some order, 
and no processor is able to observe a subset of those stores as occurring in a conflicting 
order.

Each load operation, whether ordinary or load and reserve, returns a value that has a well-
defined source. The source can be the store or store conditional instruction that wrote the 
value, an operation by some other mechanism that accesses memory (for example, an I/O 
device), or the initial state of memory.

The function of an atomic read/modify/write operation is to read a location and write its next 
value, possibly as a function of its current value, all as a single atomic operation. We 
assume that locations accessed by read/modify/write operations are accessed coherently, 
so the concept of a value being the next in the sequence of values for a location is well 
defined. The conditional sequence, as defined above, provides the effect of an atomic 
read/modify/write operation, but not with a single atomic instruction. Let addr be the location 
that is the common target of the load and reserve and store conditional instructions. Then 
the guarantee the architecture makes for the successful execution of the conditional 
sequence is that no store into addr by another processor or mechanism has intervened 
between the source of the load and reserve and the store conditional.

For each of these examples, it is assumed that a similar sequence of instructions is used by 
all processes requiring synchronization on the accessed data.

Note: Because memory synchronization instructions have implementation dependencies (for 
example, the granularity at which reservations are managed), they must be used with care. 
The operating system should provide system library programs that use these instructions to 
implement the high-level synchronization functions (such as, test and set or compare and 
swap) needed by application programs. Application programs should use these library 
programs, rather than use memory synchronization instructions directly.
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C.1.1 Synchronization primitives

The following examples show how the lwarx and stwcx. instructions can be used to 
implement various synchronization primitives.

The sequences used to emulate the various primitives consist primarily of a loop using 
lwarx and stwcx.. No additional synchronization is necessary, because the stwcx. will fail, 
clearing EQ, if the word loaded by lwarx has changed before the stwcx. is executed: 
see : Atomic update primitives using lwarx and stwcx. on page 176 for details.

Fetch and No-op

The fetch and no-op primitive atomically loads the current value in a word in memory.

In this example it is assumed that the address of the word to be loaded is in GPR3 and the 
data loaded are returned in GPR4.

loop: lwarx r4,0,r3 #load and reserve
stwcx. r4,0,r3 #store old value if still reserved
bc 4,2,loop #loop if lost reservation

If the stwcx. succeeds, it stores to the target location the same value that was loaded by the 
preceding lwarx. While the store is redundant with respect to the value in the location, its 
success ensures that the value loaded by the lwarx was the current value, that is, that the 
source of the value loaded by the lwarx was the last store to the location that preceded the 
stwcx. in the coherence order for the location.

Fetch and store

The fetch and store primitive atomically loads and replaces a word in memory. In this 
example it is assumed that the address of the word to be loaded and replaced is in GPR3, 
the new value is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
stwcx. r4,0,r3 #store new value if still reserved
bc 4,2,loop #loop if lost reservation

Fetch and add

The fetch and add primitive atomically increments a word in memory. In this example it is 
assumed that the address of the word to be incremented is in GPR3, the increment is in 
GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
add r0,r4,r5 #increment word
stwcx. r0,0,r3 #store new value if still reserved
bc 4,2,loop #loop if lost reservation

Fetch and AND

The Fetch and AND primitive atomically ANDs a value into a word in memory.

In this example it is assumed that the address of the word to be ANDed is in GPR3, the 
value to AND into it is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
and r0,r4,r5 #AND word
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stwcx. r0,0,r3 #store new value if still reserved
bc 4,2,loop #loop if lost reservation

This sequence can be changed to perform another Boolean operation atomically on a word 
in memory by changing the and to the desired Boolean instruction (or, xor, etc.).

Test and set

This version of the test and set primitive atomically loads a word from memory, sets the word 
in memory to a nonzero value if the value loaded is zero, and sets the EQ bit of CR Field 0 
to indicate whether the value loaded is zero.

In this example it is assumed that the address of the word to be tested is in GPR3, the new 
value (nonzero) is in GPR4, and the old value is returned in GPR5.

loop: lwarx r5,0,r3 #load and reserve
cmpwi r5,0 #done if word
bc 4,2,done #not equal to 0
stwcx. r4,0,r3 #try to store non-0
bc 4,2,loop #loop if lost reservation

done:

Compare and swap

The compare and swap primitive atomically compares a value in a register with a word in 
memory, if they are equal stores the value from a second register into the word in memory, if 
they are unequal loads the word from memory into the first register, and sets CR0[EQ] to 
indicate the result of the comparison.

In this example it is assumed that the address of the word to be tested is in GPR3, the 
comparand is in GPR4 and the old value is returned there, and the new value is in GPR5.

loop: lwarx r6,0,r3   #load and reserve
cmpw r4,r6     #1st 2 operands equal?
bc 4,2,exit  #skip if not
stwcx. r5,0,r3   #store new value if still reserved
bc     4,2,loop  #loop if lost reservation

exit: or     r4,r6,r6  #return value from memory

Note: 1 The semantics given for compare and swap above are based on those of the IBM 
System/370 compare and swap instruction. Other architectures may define a compare and 
swap instruction differently.

2 Compare and swap is shown primarily for pedagogical reasons. It is useful on machines that 
lack the better synchronization facilities provided by lwarx and stwcx.. A major weakness of 
a System/370-style compare and swap instruction is that, although the instruction itself is 
atomic, it checks only that the old and current values of the word being tested are equal, 
with the result that programs that use such a compare and swap to control a shared 
resource can err if the word has been modified and the old value subsequently restored. 
The sequence shown above has the same weakness.

3 In some applications the second bc and/or the or can be omitted. The bc is needed only if 
the application requires that if CR0[EQ] on exit indicates not equal then GPR4 and GPR6 
are not equal. The or is needed only if the application requires that if the comparands are 
not equal then the word from memory is loaded into the register with which it was compared 
(rather than into a third register). If any of these instructions is omitted, the resulting 
compare and swap does not obey System/370 semantics.
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C.1.2 Lock acquisition and release

This example gives an algorithm for locking that demonstrates the use of synchronization 
with an atomic read/modify/write operation. A shared memory location, the address of which 
is an argument of the lock and unlock procedures, given by GPR3, is used as a lock, to 
control access to some shared resource such as a shared data structure. The lock is open 
when its value is 0 and closed (locked) when its value is 1. Before accessing the shared 
resource the program executes the lock procedure, which sets the lock by changing its value 
from 0 to 1. To do this, the lock procedure calls test_and_set, which executes the code 
sequence shown in the test and set example of Chapter C.1.1 on page 1144,” thereby 
atomically loading the old value of the lock, writing to the lock the new value (1) given in 
GPR4, returning the old value in GPR5 (not used below), and setting the EQ bit of CR Field 
0 according to whether the value loaded is 0. The lock procedure repeats the test_and_set 
until it succeeds in changing the value of the lock from 0 to 1.

Because the shared resource must not be accessed until the lock has been set, the lock 
procedure contains an isync after the bc that checks for the success of test_and_set. The 
isync delays all subsequent instructions until all preceding instructions have completed.

lock: mfspr r6,LR #save Link Register
addi r4,r0,1 #obtain lock:

loop: bl test_and_set#  test-and-set
bc 4,2,loop #  retry til old = 0

# Delay subsequent instructions til prior instructions finish
isync
mtspr LR,r6 #restore Link Register
blr #return

The unlock procedure stores a 0 to the lock location. Most applications that use locking 
require, for correctness, that if the access to the shared resource includes stores, the 
program must execute an msync before releasing the lock. The msync ensures that the 
program’s modifications are performed with respect to other processors before the store that 
releases the lock is performed with respect to those processors. In this example, the unlock 
procedure begins with an msync for this purpose.

unlock: msync #order prior stores
addi r1,r0,0 #before lock release
stw  r1,0(r3) #store 0 to lock location
blr #return

C.1.3 List insertion

This example shows how lwarx and stwcx. can be used to implement simple insertion into 
a singly linked list. (Complicated list insertion, in which multiple values must be changed 
atomically, or in which the correct order of insertion depends on the contents of the 
elements, cannot be implemented in the manner shown below and requires a more 
complicated strategy such as using locks.)

The next element pointer from the list element after which the new element is to be inserted, 
here called the parent element, is stored into the new element, so that the new element 
points to the next element in the list: this store is performed unconditionally. Then the 
address of the new element is conditionally stored into the parent element, thereby adding 
the new element to the list.

In this example it is assumed that the address of the parent element is in GPR3, the address 
of the new element is in GPR4, and the next element pointer is at offset 0 from the start of 
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the element. It is also assumed that the next element pointer of each list element is in a 
reservation granule separate from that of the next element pointer of all other list elements: 
see: Atomic update primitives using lwarx and stwcx. on page 176

loop: lwarx r2,0,r3 #get next pointer
stw r2,0(r4) #store in new element
msync #order stw before stwcx.(can omit if not MP)
stwcx. r4,0,r3 #add new element to list
bc 4,2,loop #loop if stwcx. failed

In the preceding example, if two list elements have next element pointers in the same 
reservation granule then, in a multiprocessor, livelock can occur. (Livelock is a state in which 
processors interact in a way such that no processor makes progress.)

If list elements cannot be allocated such that each element’s next element pointer is in a 
different reservation granule, livelock can be avoided with this more complicated sequence:

lwz r2,0(r3) #get next pointer
loop1: or r5,r2,r2 #keep a copy

stw r2,0(r4) #store in new element
msync #order stw before stwcx.

loop2: lwarx r2,0,r3 #get it again
cmpw r2,r5 #loop if changed (someone
bc 4,2,loop1 #  else progressed)
stwcx. r4,0,r3 #add new element to list
bc 4,2,loop #loop if failed

C.1.4 Synchronization notes

1. In general, lwarx and stwcx. should be paired, with the same effective address used 
for both. The only exception is that an unpaired stwcx. to any (scratch) effective 
address can be used to clear any reservation held by the processor.

2. It is acceptable to execute a lwarx for which no stwcx. is executed. For example, this 
occurs in the test and set sequence shown above if the value loaded is not zero.

3. To increase the likelihood that forward progress is made, it is important that looping on 
lwarx/stwcx. pairs be minimized. For example, in the sequence shown above for test 
and set, this is achieved by testing the old value before attempting the store: were the 
order reversed, more stwcx. instructions might be executed, and reservations might 
more often be lost between the lwarx and the stwcx..

4. The manner in which lwarx and stwcx. are communicated to other processors and 
mechanisms, and between levels of the memory subsystem within a given processor is 
implementation-dependent (see: Atomic update primitives using lwarx and stwcx. on 
page 176). In some implementations performance may be improved by minimizing 
looping on a lwarx instruction that fails to return a desired value. For example, in the 
test and set example shown above, to stay in the loop until the word loaded is zero, 
bne- $+12 can be changed to bne- loop. However, in some implementations better 
performance may be obtained by using an ordinary load instruction to do the initial 
checking of the value, as follows.

loop: lwz r5,0(r3) #load the word
cmpi cr0,0,r5,0 #loop back if word 
bc 4,2,loop #  not equal to 0
lwarx r5,0,r3 #try again, reserving
cmpi cr0,0,r5,0 #  (likely to succeed)
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bc 4,2,loop
stwcx. r4,0,r3 #try to store non-0
bc 4,2,loop #loop if lost reservation

5. In a multiprocessor, livelock is possible if a loop containing a lwarx/stwcx. pair also 
contains an ordinary store instruction for which any byte of the affected memory area is 
in the reservation granule: see: Atomic update primitives using lwarx and stwcx. on 
page 176. For example, the first code sequence shown in Chapter C.1.3 on 
page 1146,” can cause livelock if two list elements have next element pointers in the 
same reservation granule.

C.2 Multiple-precision shifts
This section gives examples of how multiple-precision shifts can be programmed.

A multiple-precision shift is defined to be a shift of an N-word quantity (32-bit 
implementations), where N>1. The quantity to be shifted is contained in N registers. The 
shift amount is specified either by an immediate value in the instruction or by a value in a 
register.

The examples shown below distinguish between the cases N=2 and N>2. If N=2, the shift 
amount may be in the range 0–63, which are the maximum ranges supported by the Shift 
instructions used. However if N>2, the shift amount must be in the range 0–31 for the 
examples to yield the desired result. The specific instance shown for N>2 is N=3: extending 
those code sequences to larger N is straightforward, as is reducing them to the case N=2 
when the more stringent restriction on shift amount is met. For shifts with immediate shift 
amounts only the case N=3 is shown, because the more stringent restriction on shift amount 
is always met.

In the examples it is assumed that GPRs 2 and 3 (and 4) contain the quantity to be shifted, 
and that the result is to be placed into the same registers. In all cases, for both input and 
result, the lowest-numbered register contains the highest-order part of the data and highest-
numbered register contains the lowest-order part. For non-immediate shifts, the shift 
amount is assumed to be in GPR6. For immediate shifts, the shift amount is assumed to be 
greater than 0. GPRs 0 and 31 are used as scratch registers.

For N>2, the number of instructions required is 2N–1 (immediate shifts) or 3N–1 (non-
immediate shifts).
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Table 304. Shifts 

Left shifts Right shifts

Shift Left Immediate, N=3 (shift amount < 32) 
rlwinm     r2,r2,sh,0,31-sh 

rlwimi     r2,r3,sh,32-sh,31 

rlwinm     r3,r3,sh,0,31-sh 
rlwimi     r3,r4,sh,32-sh,31 

rlwinm     r4,r4,sh,0,31-sh 

Shift Right Immediate, N=3 (shift amount < 32) 
rlwinm     r4,r4,32-sh,sh,31

rlwimi     r4,r3,32-sh,0,sh-1

rlwinm     r3,r3,32-sh,sh,31
rlwimi     r3,r2,32-sh,0,sh-1

rlwinm     r2,r2,32-sh,sh,31 

Shift Left, N=2 (shift amount < 64) 

subfic     r31,r6,32 

slw        r2,r2,r6 
srw        r0,r3,r31 

or         r2,r2,r0 

addi       r31,r6,-32 
slw        r0,r3,r31 

or         r2,r2,r0 

slw        r3,r3,r6 

Shift Right, N=2 (shift amount < 64) 

subfic     r31,r6,32

srw        r3,r3,r6
slw        r0,r2,r31

or         r3,r3,r0

addi       r31,r6,-32
srw        r0,r2,r31

or         r3,r3,r0

srw        r2,r2,r6 

Shift Left, N=3 (shift amount < 32) 

subfic     r31,r6,32 

slw        r2,r2,r6 
srw        r0,r3,r31 

or         r2,r2,r0 

slw        r3,r3,r6 
srw        r0,r4,r31 

or         r3,r3,r0 

slw        r4,r4,r6

Shift Right, N=3 (shift amount < 32) 

subfic     r31,r6,32

srw        r4,r4,r6 
slw        r0,r3,r31 

or         r4,r4,r0 

srw        r3,r3,r6 
slw        r0,r2,r31 

or         r3,r3,r0 

srw        r2,r2,r6 

Shift Right Algebraic Immediate, N=3 (shift amnt 
< 32) 

rlwinm     r4,r4,32-sh,sh,31 

rlwimi     r4,r3,32-sh,0,sh-1 
rlwinm     r3,r3,32-sh,sh,31 

rlwimi     r3,r2,32-sh,0,sh-1 

srawi      r2,r2,sh 
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C.3 Floating point conversions
This section gives examples of how floating-point conversion instructions can be used to 
perform various conversions.

Note: Some of the examples use the optional fsel instruction. Care must be taken in using fsel if 
IEEE compatibility is required, or if the values being tested can be NaNs or infinities.

C.3.1 Conversion from floating-point number to signed integer word

The full convert to signed integer word function can be implemented with the sequence 
shown below, assuming the floating-point value to be converted is in FPR1, the result is 
returned in GPR3, and a double word at displacement ‘disp’ from the address in GPR1 can 
be used as scratch space.

         

Shift Right Algebraic, N=2 (shift amount < 64) 

subfic     r31,r6,32 

srw        r3,r3,r6 
slw        r0,r2,r31 

or         r3,r3,r0 

addic.     r31,r6,-32 
sraw       r0,r2,r31 

bc         4,1,$+8 

ori        r3,r0,0 
sraw       r2,r2,r6 

Shift Right Algebraic, N=3 (shift amount < 32) 
subfic     r31,r6,32 
srw        r4,r4,r6 
slw        r0,r3,r31 
or         r4,r4,r0 
srw        r3,r3,r6 
slw        r0,r2,r31 
or         r3,r3,r0 
sraw       r2,r2,r6

Table 304. Shifts  (continued)

Left shifts Right shifts

fctiw[z] f2,f1 #convert to integer

stfd f2,disp(r1) #store float 

lwa r3,disp+4(r1) #load word algebraic

#(use lwz on a 32-bit implementation)
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C.3.2 Conversion from floating-point number to unsigned integer word

In a 32-bit implementation

The full convert to unsigned integer word function can be implemented with the sequence 
shown below, assuming the floating-point value to be converted is in FPR1, the value 0 is in 
FPR0, the value 232–1 is in FPR3, the value 231 is in FPR4, the result is returned in GPR3, 
and a double word at displacement ‘disp’ from the address in GPR1 can be used as scratch 
space.

         

C.4 Floating point selection
This section gives examples of how the optional floating select instruction (fsel) can be used 
to implement floating-point minimum and maximum functions, and certain simple forms of if-
then-else constructions, without branching.

The examples show program fragments in an imaginary, C-like, high-level programming 
language, and the corresponding program fragment using fsel and other Book E 
instructions. In the examples, a, b, x, y, and z are floating-point variables, which are 
assumed to be in FPRs fa, fb, fx, fy, and fz. FPR fs is assumed to be available for scratch 
space.

Warning: Care must be taken in using fsel if IEEE compatibility is 
required, or if the values being tested can be NaNs or 
infinities: see Section C.4.1, “Notes.”

fsel f2,f1,f1,f0 #use 0 if < 0

fsub f5,f3,f1 #use max if > max

fsel f2,f5,f2,f3

fsub f5,f2,f4 #subtract 231

fcmpu cr2,f2,f4 #use diff if ≥ 231

fsel f2,f5,f5,f2

fctiw[z] f2,f2 #convert to integer

stfd f2,disp(r1) #store float

lwz r3,disp+4(r1) #load word

bc 12,8,$+8 #add 231 if input

xoris r3,r3,0x8000 #  was ≥ 231
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C.4.1 Notes

The following notes apply to the preceding examples and to the corresponding cases using 
the other three arithmetic relations (<, ≤, and ≠). They should also be considered when any 
other use of fsel is contemplated.

Table 305. Comparison to zero 

High-Level Language: Book E: Notes

if a Š 0.0 then x ¨ y

           else x ¨ z fsel  fx,fa,fy,fz (1) 

if a > 0.0 then x ¨ y

           else x ¨ z fneg  fs,fa

fsel  fx,fs,fz,fy (1,2) 

if a = 0.0 then x ¨ y

           else x ¨ z fsel  fx,fa,fy,fz

fneg  fs,fa

fsel  fx,fs,fx,fz (1) 

Table 306. Minimum and maximum

High-Level Language: Book E: Notes

x ¨ min(a,b) fsub  fs,fa,fb

fsel  fx,fs,fb,fa (3,4,5)

x ¨ max(a,b) fsub  fs,fa,fb

fsel  fx,fs,fa,fb (3,4,5)

Table 307. Simple if-then-else constructions

High-Level Language: Book E: Notes

if a Š b then x ¨ y

         else x ¨ z fsub  fs,fa,fb

fsel  fx,fs,fy,fz (4,5)

if a > b then x ¨ y

         else x ¨ z fsub  fs,fb,fa

fsel  fx,fs,fz,fy (3,4,5)

if a = b then x ¨ y

         else x ¨ z fsub  fs,fa,fb

fsel  fx,fs,fy,fz

fneg  fs,fs

fsel  fx,fs,fx,fz (4,5)
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In these notes, the optimized program is the Book E program shown, and the unoptimized 
program (not shown) is the corresponding Book E program that uses fcmpu and branch 
conditional instructions instead of fsel.

1. The unoptimized program affects FPSCR[VXSNAN] and therefore may cause the 
system error handler to be invoked if the corresponding exception is enabled; the 
optimized program does not affect this bit. This property of the optimized program is 
incompatible with the IEEE standard.

2. The optimized program gives the incorrect result if a is a NaN.

3. The optimized program gives the incorrect result if a and/or b is a NaN (except that it 
may give the correct result in some cases for the minimum and maximum functions, 
depending on how those functions are defined to operate on NaNs).

4. The optimized program gives the incorrect result if a and b are infinities of the same 
sign. (Here it is assumed that invalid operation exceptions are disabled, in which case 
the result of the subtraction is a NaN. The analysis is more complicated if invalid 
operation exceptions are enabled, because in that case the target register of the 
subtraction is unchanged.)

5. The optimized program affects FPSCR[OX, UX, XX,VXISI], and therefore may cause 
the system error handler to be invoked if the corresponding exceptions are enabled; the 
unoptimized program does not affect these bits. This property of the optimized program 
is incompatible with the IEEE standard. 
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Appendix D Guidelines for 32-bit book E

This appendix provides guidelines used by 32-bit Book E implementations; a set of 
guidelines is also outlined for software developers. Application software written to these 
guidelines can be labeled 32-bit Book E applications and can be expected to execute 
properly on all implementations of Book E, both 32-bit and 64-bit implementations.

32-bit Book E implementations execute applications that adhere to the software guidelines 
for 32-bit Book E software outlined in this appendix and are not expected to properly 
execute 64-bit Book E applications or any applications not adhering to these guidelines (that 
is, 64-bit Book E applications).

D.1 Registers on 32-bit book E implementations
Book E defines 32- and 64-bit registers. All 32-bit registers are supported as defined in 
Book E. However, except for the 64-bit FPRs, only bits 32–63 of Book E’s 64-bit registers 
are required to be implemented in hardware in 32-bit Book E implementation. Such 64-bit 
registers include LR, CTR, 32 GPRs, SRR0, and CSRR0. Book E makes no restrictions 
regarding implementing a subset of the 64-bit floating-point architecture.

Likewise, other than floating-point instructions, all instructions defined to return a 64-bit 
result return only bits 32–63 of the result on a 32-bit Book E implementation.

D.2 Addressing on 32-bit book E implementations
Only bits 32–63 of the 64-bit Book E instruction and data memory effective addresses need 
to be calculated and presented to main memory, so a 32-bit implementation can bypass 
prepending the 32 zeros when implementing these instructions. For branch to LR and 
branch to CR instructions, given that LR and CTR are implemented as 32-bit registers, only 
2 zeros need to be concatenated to the right of bits 32–61 of these registers to form the 32-
bit branch target address.

The simplest implementation of next sequential instruction address computation suggests 
allowing effective address computations to wrap from 0xFFFF_FFFC to 0x0000_0000. This 
wrapping is required of PowerPC implementations. For 32-bit Book E applications, there 
appears little if any benefit to allowing this wrapping behavior. Book E specifies that the 
situation where the computation of the next sequential instruction address after address 
0xFFFF_FFFC is undefined. (Note that the next sequential instruction address after address 
0xFFFF_FFFC on a 64-bit Book E implementation is 0x0000_0001_0000_0000.)

D.3 TLB fields on 32-bit book E implementations
32-bit Book E implementations should support bits 32–53 of the effective page number 
(EPN) field in the TLB. This size provides support for a 32-bit effective address, which 
PowerPC ABIs may have come to expect to be available. 32-bit Book E implementations 
may support greater than 32-bit real addresses by supporting more than bits 32–53 of the 
real page number (RPN) field in the TLB.
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D.4 32-bit book E software guidelines

D.4.1 32-bit instruction selection

Generally speaking, 32-bit software should avoid instructions that depend on any particular 
setting of bits 0–31 of any 64-bit application-accessible system register, including GPRs, for 
producing the correct 32-bit results. Context switching is not required to preserve the upper 
32 bits of application-accessible 64-bit system registers and insertion of arbitrary settings of 
those upper 32 bits at arbitrary times during the execution of the 32-bit application must not 
affect the final result.

D.4.2 32-bit addressing

Book E provides a complete set of data memory access instructions that perform a modulo 
232 on the computed effective address and then prepend 32 zeros to produce the full 64-bit 
address. Book E also provides a complete set of branch instructions that perform a modulo 
232 on the computed branch target effective address and then prepend 32 zeros to produce 
the full 64-bit branch target address. On a 32-bit Book E implementation, these instructions 
are executed as defined, but without prepending the 32 zeros (only the low-order 32 bits of 
the address are calculated). On a 64-bit implementation, executing these instructions as 
defined provides the effect of restricting the application to the lowest 32-bit address space.

However, there is one exception. Next sequential instruction address computations (not a 
taken branch) are not defined for 32-bit Book E applications when the current instruction 
address is 0xFFFF_FFFC. On a 32-bit Book E implementation, the instruction address 
could simply wrap to 0x0000_0000, providing the same effect that is required in the 
PowerPC Architecture. However, when the 32-bit Book E application is executed on a 64-bit 
Book E implementation, the next sequential instruction address calculated will be 
0x0000_0001_0000_0000 and not 0x0000_0000_0000_0000. To avoid this problem the 32-
bit Book E application must either avoid this situation by not allowing code to span this 
address boundary, or requiring a branch absolute to address 0 be placed at address 
0xFFFF_FFFC to emulate the wrap. Either of these approaches allows the application to 
execute on 32-bit and 64-bit Book E implementations.
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Appendix E Embedded floating-point results

This appendix summarizes results of various types of floating-point operations on various 
combinations of input operands. Flag settings are performed on appropriate element flags. 

E.1 Notation conventions and general rules
For all tables in this appendix, the annotation and general rules in Table 308 apply.

         

Table 308. Notation conventions and general rules 

Notation Description

* Denotes that this status flag is set based on the results of the calculation

_Calc_ Denotes that the result is updated with the results of the computation

max
Denotes the maximum normalized number with the sign set to the computation [sign(operand A) 
XOR sign(operand B)]

amax Denotes the maximum normalized number with the sign set to the sign of Operand A

bmax Denotes the maximum normalized number with the sign set to the sign of Operand B

pmax
Denotes the maximum normalized positive number. The encoding for single-precision is 
0x7F7_FFFFF. The encoding for double-precision is 0x7FEF_FFFF_FFFF_FFFF.

nmax
Denotes the maximum normalized negative number. The encoding for single-precision is 
0xFF7F_FFFF. The encoding for double-precision is 0xFFEF_FFFF_FFFF_FFFF.

pmin
Denotes the minimum normalized positive number. The encoding for single-precision is 
0x00800000. The encoding for double-precision is 0x0010_0000_0000_0000.

nmin
Denotes the minimum normalized negative number. The encoding for single-precision is 
0x8080_0000. The encoding for double-precision is 0x8010_0000_0000_0000.

Calculations
that overflow 
or underflow 

saturate. 

Overflow for operations that have a floating-point result force the result to max. Underflow for 
operations that have a floating-point result force the result to zero. Overflow for operations that have 
a signed integer result force the result to 0x7FFF_FFFF (positive) or 0x8000_0000 (negative). 
Overflow for operations that have an unsigned integer result force the result to 0xFFFF_FFFF 
(positive) or 0x0000_0000 (negative).

1 

(superscript)

Denotes that the sign of the result is positive when the signs of Operand A and Operand B are 
different, for all rounding modes except round to minus infinity, where the sign of the result is then 
negative

2 

(superscript)

Denotes that the sign of the result is positive when the signs of Operand A and Operand B are the 
same, for all rounding modes except round to minus infinity, where the sign of the result is then 
negative

3 
(superscript)

Denotes that the sign for any multiply or divide is always the result of the operation [sign(Operand A) 
XOR sign(Operand B)]

4 

(superscript)
Denotes that if an overflow is detected, the result may be saturated
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E.2 Add, subtract, multiply, and divide results
Table 309 lists results for add, subtract, multiply, and divide operations. 

         

Table 309. Floating-point results summary—add, sub, mul, div

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX

Add

Add ∞ ∞ amax 1 0 0 0 0

Add ∞ NaN amax 1 0 0 0 0

Add ∞ denorm amax 1 0 0 0 0

Add ∞ zero amax 1 0 0 0 0

Add ∞ Norm amax 1 0 0 0 0

Add NaN ∞ amax 1 0 0 0 0

Add NaN NaN amax 1 0 0 0 0

Add NaN denorm amax 1 0 0 0 0

Add NaN zero amax 1 0 0 0 0

Add NaN norm amax 1 0 0 0 0

Add denorm ∞ bmax 1 0 0 0 0

Add denorm NaN bmax 1 0 0 0 0

Add denorm denorm zero1 1 0 0 0 0

Add denorm zero zero1 1 0 0 0 0

Add denorm norm operand_b4 1 0 0 0 0

Add zero ∞ bmax 1 0 0 0 0

Add zero NaN bmax 1 0 0 0 0

Add zero denorm zero1 1 0 0 0 0

Add zero zero zero1 0 0 0 0 0

Add zero norm operand_b4 0 0 0 0 0

Add norm ∞ bmax 1 0 0 0 0

Add norm NaN bmax 1 0 0 0 0

Add norm denorm operand_a4 1 0 0 0 0

Add norm zero operand_a4 0 0 0 0 0

Add norm norm _Calc_ 0 * * 0 *

Subtract

Sub ∞ ∞ amax 1 0 0 0 0

Sub ∞ NaN amax 1 0 0 0 0

Sub ∞ denorm amax 1 0 0 0 0

Sub ∞ zero amax 1 0 0 0 0
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Sub ∞ Norm amax 1 0 0 0 0

Sub NaN ∞ amax 1 0 0 0 0

Sub NaN NaN amax 1 0 0 0 0

Sub NaN denorm amax 1 0 0 0 0

Sub NaN zero amax 1 0 0 0 0

Sub NaN norm amax 1 0 0 0 0

Sub denorm ∞ –bmax 1 0 0 0 0

Sub denorm NaN –bmax 1 0 0 0 0

Sub denorm denorm zero2 1 0 0 0 0

Sub denorm zero zero2 1 0 0 0 0

Sub denorm norm –operand_b4 1 0 0 0 0

Sub zero ∞ –bmax 1 0 0 0 0

Sub zero NaN –bmax 1 0 0 0 0

Sub zero denorm zero2 1 0 0 0 0

Sub zero zero zero2 0 0 0 0 0

Sub zero norm –operand_b4 0 0 0 0 0

Sub norm ∞ –bmax 1 0 0 0 0

Sub norm NaN –bmax 1 0 0 0 0

Sub norm denorm operand_a4 1 0 0 0 0

Sub norm zero operand_a4 0 0 0 0 0

Sub norm norm _Calc_ 0 * * 0 *

Multiply3

Mul ∞ ∞ max 1 0 0 0 0

Mul ∞ NaN max 1 0 0 0 0

Mul ∞ denorm zero 1 0 0 0 0

Mul ∞ zero zero 1 0 0 0 0

Mul ∞ Norm max 1 0 0 0 0

Mul NaN ∞ max 1 0 0 0 0

Mul NaN NaN max 1 0 0 0 0

Mul NaN denorm zero 1 0 0 0 0

Mul NaN zero zero 1 0 0 0 0

Mul NaN norm max 1 0 0 0 0

Mul denorm ∞ zero 1 0 0 0 0

Mul denorm NaN zero 1 0 0 0 0

Table 309. Floating-point results summary—add, sub, mul, div (continued)

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX
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Mul denorm denorm zero 1 0 0 0 0

Mul denorm zero zero 1 0 0 0 0

Mul denorm norm zero 1 0 0 0 0

Mul zero ∞ zero 1 0 0 0 0

Mul zero NaN zero 1 0 0 0 0

Mul zero denorm zero 1 0 0 0 0

Mul zero zero zero 0 0 0 0 0

Mul zero norm zero 0 0 0 0 0

Mul norm ∞ max 1 0 0 0 0

Mul norm NaN max 1 0 0 0 0

Mul norm denorm zero 1 0 0 0 0

Mul norm zero zero 0 0 0 0 0

Mul norm norm _Calc_ 0 * * 0 *

Divide3

Div ∞ ∞ zero 1 0 0 0 0

Div ∞ NaN zero 1 0 0 0 0

Div ∞ denorm max 1 0 0 0 0

Div ∞ zero max 1 0 0 0 0

Div ∞ Norm max 1 0 0 0 0

Div NaN ∞ zero 1 0 0 0 0

Div NaN NaN zero 1 0 0 0 0

Div NaN denorm max 1 0 0 0 0

Div NaN zero max 1 0 0 0 0

Div NaN norm max 1 0 0 0 0

Div denorm ∞ zero 1 0 0 0 0

Div denorm NaN zero 1 0 0 0 0

Div denorm denorm max 1 0 0 0 0

Div denorm zero max 1 0 0 0 0

Div denorm norm zero 1 0 0 0 0

Div zero ∞ zero 1 0 0 0 0

Div zero NaN zero 1 0 0 0 0

Div zero denorm max 1 0 0 0 0

Div zero zero max 1 0 0 0 0

Div zero norm zero 0 0 0 0 0

Table 309. Floating-point results summary—add, sub, mul, div (continued)

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX
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E.3 Double- to single-precision conversion
Table 310 lists results for double- to single-precision conversion.

         

Div norm ∞ zero 1 0 0 0 0

Div norm NaN zero 1 0 0 0 0

Div norm denorm max 1 0 0 0 0

Div norm zero max 0 0 0 1 0

Div norm norm _Calc_ 0 * * 0 *

Table 309. Floating-point results summary—add, sub, mul, div (continued)

Operation Operand A Operand B Result FINV FOVF FUNF FDBZ FINX

Table 310. Floating-point results summary—single convert from double

Operand B efscfd result FINV FOVF FUNF FDBZ FINX

+∞ pmax 1 0 0 0 0

–∞ nmax 1 0 0 0 0

+NaN pmax 1 0 0 0 0

–NaN nmax 1 0 0 0 0

+denorm +zero 1 0 0 0 0

–denorm –zero 1 0 0 0 0

+zero +zero 0 0 0 0 0

–zero –zero 0 0 0 0 0

norm _Calc_ 0 * * 0 *
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E.4 Single- to double-precision conversion
Table 311 lists results for single- to double-precision conversion.

         

E.5 Conversion to unsigned
Table 312 lists results for conversion to unsigned operations.

         

Table 311. Floating-point results summary—double convert from single

Operand B efdcfs result FINV FOVF FUNF FDBZ FINX

+∞ pmax 1 0 0 0 0

–∞ nmax 1 0 0 0 0

+NaN pmax 1 0 0 0 0

–NaN nmax 1 0 0 0 0

+denorm +zero 1 0 0 0 0

–denorm –zero 1 0 0 0 0

+zero +zero 0 0 0 0 0

–zero –zero 0 0 0 0 0

norm _Calc_ 0 0 0 0 0

Table 312. Floating-point results summary—convert to unsigned

Operand B
Integer result

ctui[d][z]

Fractional result

ctuf
FINV FOVF FUNF FDBZ FINX

+∞ 0xFFFF_FFFF 0x7FFF_FFFF 1 0 0 0 0

–∞ 0 0 1 0 0 0 0

+NaN 0 0 1 0 0 0 0

–NaN 0 0 1 0 0 0 0

denorm 0 0 1 0 0 0 0

zero 0 0 0 0 0 0 0

+norm _Calc_ _Calc_ * 0 0 0 *

–norm _Calc_ _Calc_ * 0 0 0 *
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E.6 Conversion to signed
Table 313 lists results for conversion to signed operations.

         

E.7 Conversion from unsigned
Table 314 lists results for conversion from unsigned operations.

         

E.8 Conversion from signed 
Table 315 lists results for conversion from signed operations.

         

Table 313. Floating-point results summary—convert to signed

Operand B
Integer result

ctsi[d][z]

Fractional result

ctsf
FINV FOVF FUNF FDBZ FINX

+∞ 0x7FFF_FFFF 0x7FFF_FFFF 1 0 0 0 0

–∞ 0x8000_0000 0x8000_0000 1 0 0 0 0

+NaN 0 0 1 0 0 0 0

–NaN 0 0 1 0 0 0 0

denorm 0 0 1 0 0 0 0

zero 0 0 0 0 0 0 0

+norm _Calc_ _Calc_ * 0 0 0 *

–norm _Calc_ _Calc_ * 0 0 0 *

Table 314. Floating-point results summary—convert from unsigned

Operand B
Integer source

cfui

Fractional source

cfuf
FINV FOVF FUNF FDBZ FINX

zero zero zero 0 0 0 0 0

norm _Calc_ _Calc_ 0 0 0 0 *

Table 315. Floating-point results summary—convert from signed

Operand B
Integer source

cfsi

Fractional source

cfsf
FINV FOVF FUNF FDBZ FINX

zero zero zero 0 0 0 0 0

norm _Calc_ _Calc_ 0 0 0 0 *
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E.9 *abs, *nabs, and *neg operations
Table 316 lists results for *abs, *nabs, and *neg operations.

         

Table 316. Floating-point results summary—*abs, *nabs, *neg

Operand A *abs *nabs *neg FINV FOVF FUNF FDBZ FINX

+∞ pmax | +∞ nmax | –∞ –amax | –∞ 1 0 0 0 0

–∞ pmax | +∞ nmax | –∞ –amax | +∞ 1 0 0 0 0

+NaN pmax | NaN nmax | –NaN –amax | –NaN 1 0 0 0 0

–NaN pmax | NaN nmax | –NaN –amax | +NaN 1 0 0 0 0

+denorm +zero | +denorm –zero | –denorm –zero | –denorm 1 0 0 0 0

–denorm +zero | +denorm –zero | –denorm +zero | +denorm 1 0 0 0 0

+zero +zero –zero –zero 0 0 0 0 0

–zero +zero –zero +zero 0 0 0 0 0

+norm +norm –norm –norm 0 0 0 0 0

–norm +norm –norm +norm 0 0 0 0 0
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15 Glossary

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this 
book. Some of the terms and definitions included in the glossary are reprinted from IEEE 
Standard 754-1985, IEEE Standard for Binary Floating-Point Arithmetic, copyright ©1985 by 
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

A

Architecture.

A detailed specification of requirements for a processor or computer system. It does not 
specify details of how the processor or computer system must be implemented; instead it 
provides a template for a family of compatible implementations.

Asynchronous interrupt.

interrupts that are caused by events external to the processor’s execution. In this document, 
the term asynchronous interrupt is used interchangeably with the word interrupt.

Atomic access.

A bus access that attempts to be part of a read-write operation to the same address 
uninterrupted by any other access to that address (the term refers to the fact that the 
transactions are indivisible). The PowerPC architecture implements atomic accesses 
through the lwarx/stwcx. instruction pair.

B

Biased exponent.

An exponent whose range of values is shifted by a constant (bias). Typically a bias is 
provided to allow a range of positive values to express a range that includes both positive 
and negative values.

Big-endian.

A byte-ordering method in memory where the address n of a word corresponds to the most-
significant byte. In an addressed memory word, the bytes are ordered (left to right) 0, 1, 2, 3, 
with 0 being the most-significant byte. See Little-endian.

Boundedly undefined.

A characteristic of certain operation results that are not rigidly prescribed by the PowerPC 
architecture. Boundedly-undefined results for a given operation may vary among 
implementations and between execution attempts in the same implementation. 

Although the architecture does not prescribe the exact behavior for when results are allowed 
to be boundedly undefined, the results of executing instructions in contexts where results 
are allowed to be boundedly undefined are constrained to ones that could have been 
achieved by executing an arbitrary sequence of defined instructions, in valid form, starting in 
the state the machine was in before attempting to execute the given instruction.

Branch prediction.

The process of guessing whether a branch will be taken. Such predictions can be correct or 
incorrect; the term ‘predicted’ as it is used here does not imply that the prediction is correct 
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(successful). The PowerPC architecture defines a means for static branch prediction as part 
of the instruction encoding.

Branch resolution.

The determination of whether a branch is taken or not taken. A branch is said to be resolved 
when the processor can determine which instruction path to take. If the branch is resolved 
as predicted, the instructions following the predicted branch that may have been 
speculatively executed can complete (see Completion). If the branch is not resolved as 
predicted, instructions on the mispredicted path, and any results of speculative execution, 
are purged from the pipeline and fetching continues from the nonpredicted path. 

C

Cache. High-speed memory containing recently accessed data or instructions (subset of 
main memory).

Cache block. A small region of contiguous memory that is copied from memory into a 
cache. The size of a cache block may vary among processors; the maximum block size is 
one page. In PowerPC processors, cache coherency is maintained on a cache-block basis. 
Note that the term cache block is often used interchangeably with ‘cache line.’

Cache coherency. An attribute wherein an accurate and common view of memory is 
provided to all devices that share the same memory system. Caches are coherent if a 
processor performing a read from its cache is supplied with data corresponding to the most 
recent value written to memory or to another processor’s cache.

Cache flush. An operation that removes from a cache any data from a specified address 
range. This operation ensures that any modified data within the specified address range is 
written back to main memory. This operation is generated typically by a Data Cache Block 
Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which the cache is bypassed and the load 
or store is performed to or from main memory. 

Cast out. A cache block that must be written to memory when a cache miss causes a 
cache block to be replaced.

Changed bit. One of two page history bits found in each page table entry (PTE). The 
processor sets the changed bit if any store is performed into the page. See also Page 
access history bits and Referenced bit. 

Clean. An operation that causes a cache block to be written to memory, if modified, and 
then left in a valid, unmodified state in the cache.

Clear. To cause a bit or bit field to register a value of zero. See also Set.

Completion. Completion occurs when an instruction has finished executing, written back 
any results, and is removed from the completion queue (CQ). When an instruction 
completes, it is guaranteed that this instruction and all previous instructions can cause no 
interrupts. 

Context synchronization. An operation that ensures that all instructions in execution 
complete past the point where they can produce an interrupt, that all instructions in 
execution complete in the context in which they began execution, and that all subsequent 
instructions are fetched and executed in the new context. Context synchronization may 
result from executing specific instructions (such as isync or rfi) or when certain events 
occur (such as an interrupt). 
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D

Denormalized number.

A nonzero floating-point number whose exponent has a reserved value, usually the format's 
minimum, and whose explicit or implicit leading significand bit is zero. 

E

Effective address (EA). The 32-bit address specified for a load, store, or an instruction 
fetch. This address is then submitted to the MMU for translation to either a physical memory 
address or an I/O address.

Exception. A condition that, if enabled, generates an interrupt.

Execution synchronization. A mechanism by which all instructions in execution are 
architecturally complete before beginning execution (appearing to begin execution) of the 
next instruction. Similar to context synchronization but doesn't force the contents of the 
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, the exponent is the 
component that normally signifies the integer power to which the value two is raised in 
determining the value of the represented number. See also Biased exponent.

F

Fetch. Instruction retrieval from either the cache or main memory and placing them into the 
instruction queue.

Finish. Finishing occurs in the last cycle of execution. In this cycle, the CQ entry is updated 
to indicate that the instruction has finished executing. 

Floating-point register (FPR). Any of the 32 registers in the floating-point register file. 
These registers provide the source operands and destination results for floating-point 
instructions. Load instructions move data from memory to FPRs and store instructions move 
data from FPRs to memory. The FPRs are 64 bits wide and store floating-point values in 
double-precision format.

Floating-point unit. The functional unit in a processor responsible for executing all floating-
point instructions.

Flush. An operation that causes a cache block to be invalidated and the data, if modified, to 
be written to memory.

Fraction. In the binary representation of a floating-point number, the field of the significand 
that lies to the right of its implied binary point.

G

General-purpose register (GPR). Any of the 32 registers in the general-purpose register 
file. These registers provide the source operands and destination results for all integer data 
manipulation instructions. Integer load instructions move data from memory to GPRs and 
store instructions move data from GPRs to memory.

Guarded. The guarded attribute pertains to out-of-order execution. When a page is 
designated as guarded, instructions and data cannot be accessed out-of-order.
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H

Harvard architecture. An architectural model featuring separate caches and other memory 
management resources for instructions and data.

I

IEEE 754.

A standard written by the Institute of Electrical and Electronics Engineers that defines 
operations and representations of binary floating-point numbers.

Illegal instructions.

A class of instructions that are not implemented for a particular PowerPC processor. These 
include instructions not defined by the PowerPC architecture. In addition, for 32-bit 
implementations, instructions that are defined only for 64-bit implementations are 
considered to be illegal instructions. For 64-bit implementations instructions that are defined 
only for 32-bit implementations are considered to be illegal instructions.

Implementation.

A particular processor that conforms to the PowerPC architecture, but may differ from other 
architecture-compliant implementations for example in design, feature set, and 
implementation of optional features. The PowerPC architecture has many different 
implementations. 

Imprecise interrupt.

A type of synchronous interrupt that is allowed not to adhere to the precise interrupt model 
(see Precise interrupt). The PowerPC architecture allows only floating-point exceptions to 
be handled imprecisely.

Integer unit.

The functional unit responsible for executing all integer instructions.

In order.

An aspect of an operation that adheres to a sequential model. An operation is said to be 
performed in-order if, at the time that it is performed, it is known to be required by the 
sequential execution model. See Out-of-order.

Instruction latency.

The total number of clock cycles necessary to execute an instruction and make ready the 
results of that instruction.

Interrupt.

A condition encountered by the processor that requires special, supervisor-level processing.

Interrupt handler.

A software routine that executes when an interrupt is taken. Normally, the interrupt handler 
corrects the condition that caused the interrupt, or performs some other meaningful task 
(that may include aborting the program that caused the interrupt). 
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K

Kill.

An operation that causes a cache block to be invalidated without writing any modified data to 
memory.

L

Latency.

The number of clock cycles necessary to execute an instruction and make ready the results 
of that execution for a subsequent instruction.

L2 cache.

See Secondary cache.

Least-significant bit (lsb).

The bit of least value in an address, register, field, data element, or instruction encoding. 

Least-significant byte (LSB).

The byte of least value in an address, register, data element, or instruction encoding.

Little-endian.

A byte-ordering method in memory where the address n of a word corresponds to the least-
significant byte. In an addressed memory word, the bytes are ordered (left to right) 3, 2, 1, 0, 
with 3 being the most-significant byte. See Big-endian.

M

Mantissa.

The decimal part of logarithm.

Memory access ordering.

The specific order in which the processor performs load and store memory accesses and 
the order in which those accesses complete.

Memory-mapped accesses.

Accesses whose addresses use the page or block address translation mechanisms 
provided by the MMU and that occur externally with the bus protocol defined for memory.

Memory coherency.

An aspect of caching in which it is ensured that an accurate view of memory is provided to 
all devices that share system memory.

Memory consistency.

Refers to agreement of levels of memory with respect to a single processor and system 
memory (for example, on-chip cache, secondary cache, and system memory).

Memory management unit (MMU).

The functional unit that is capable of translating an effective (logical) address to a physical 
address, providing protection mechanisms, and defining caching methods.

Most-significant bit (msb).
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The highest-order bit in an address, registers, data element, or instruction encoding. 

Most-significant byte (MSB).

The highest-order byte in an address, registers, data element, or instruction encoding.

N

NaN.

An abbreviation for not a number; a symbolic entity encoded in floating-point format. There 
are two types of NaNs—signaling NaNs and quiet NaNs.

No-op.

No-operation. A single-cycle operation that does not affect registers or generate bus activity. 

Normalization.

A process by which a floating-point value is manipulated such that it can be represented in 
the format for the appropriate precision (single- or double-precision). For a floating-point 
value to be representable in the single- or double-precision format, the leading implied bit 
must be a 1.

O

OEA (operating environment architecture).

The level of the architecture that describes PowerPC memory management model, 
supervisor-level registers, synchronization requirements, and the interrupt model. It also 
defines the time-base feature from a supervisor-level perspective. Implementations that 
conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

Optional.

A feature, such as an instruction, a register, or an interrupt, that is defined by the PowerPC 
architecture but not required to be implemented. 

Out-of-order.

An aspect of an operation that allows it to be performed ahead of one that may have 
preceded it in the sequential model, for example, speculative operations. An operation is 
said to be performed out-of-order if, at the time that it is performed, it is not known to be 
required by the sequential execution model. See In-order.

Out-of-order execution.

A technique that allows instructions to be issued and completed in an order that differs from 
their sequence in the instruction stream.

Overflow.

An condition that occurs during arithmetic operations when the result cannot be stored 
accurately in the destination register(s). For example, if two 32-bit numbers are multiplied, 
the result may not be representable in 32 bits. Since 32-bit registers cannot represent this 
sum, an overflow condition occurs.
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P

Page.

A region in memory. The OEA defines a page as a 4-Kbyte area of memory, aligned on a 4-
Kbyte boundary. 

Page fault.

A page fault is a condition that occurs when the processor attempts to access a memory 
location that does not reside within a page not currently resident in physical memory. On 
PowerPC processors, a page fault interrupt condition occurs when a matching, valid page 
table entry (PTE[V] = 1) cannot be located.

Physical memory.

The actual memory that can be accessed through the system’s memory bus.

Pipelining.

A technique that breaks operations, such as instruction processing or bus transactions, into 
smaller distinct stages or tenures (respectively) so that a subsequent operation can begin 
before the previous one has completed. 

Precise interrupts.

A category of interrupt for which the pipeline can be stopped so instructions that preceded 
the faulting instruction can complete and subsequent instructions can be flushed and 
redispatched after interrupt handling has completed. See Imprecise interrupts.

Primary opcode.

The most-significant 6 bits (bits 0–5) of the instruction encoding that identifies the type of 
instruction.

Program order.

The order of instructions in an executing program. More specifically, this term is used to 
refer to the original order in which program instructions are fetched into the instruction 
queue from the cache.

Protection boundary.

A boundary between protection domains.

Q

Quiet NaN.

A type of NaN that can propagate through most arithmetic operations without signaling 
interrupts. A quiet NaN is used to represent the results of certain invalid operations, such as 
invalid arithmetic operations on infinities or on NaNs, when invalid. See Signaling NaN.

R

Record bit.

Bit 31 (or the Rc bit) in the instruction encoding. When it is set, updates the condition 
register (CR) to reflect the result of the operation.

Referenced bit.
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One of two page history bits found in each page table entry. The processor sets the 
referenced bit whenever the page is accessed for a read or write. See also Page access 
history bits.

Register indirect addressing.

A form of addressing that specifies one GPR that contains the address for the load or store.

Register indirect with immediate index addressing.

A form of addressing that specifies an immediate value to be added to the contents of a 
specified GPR to form the target address for the load or store.

Register indirect with index addressing.

A form of addressing that specifies that the contents of two GPRs be added together to yield 
the target address for the load or store.

Rename register.

Temporary buffers used by instructions that have finished execution but have not completed.

Reservation.

The processor establishes a reservation on a cache block of memory space when it 
executes an lwarx instruction to read a memory semaphore into a GPR.

Reservation station.

A buffer between the dispatch and execute stages that allows instructions to be dispatched 
even though the results of instructions on which the dispatched instruction may depend are 
not available. 

RISC (reduced instruction set computing).

An architecture characterized by fixed-length instructions with nonoverlapping functionality 
and by a separate set of load and store instructions that perform memory accesses. 

S

Secondary cache.

A cache memory that is typically larger and has a longer access time than the primary 
cache. A secondary cache may be shared by multiple devices. Also referred to as L2, or 
level-2, cache. 

Set (v).

To write a nonzero value to a bit or bit field; the opposite of clear. The term ‘set’ may also be 
used to generally describe the updating of a bit or bit field. 

Set (n).

A subdivision of a cache. Cacheable data can be stored in a given location in one of the 
sets, typically corresponding to its lower-order address bits. Because several memory 
locations can map to the same location, cached data is typically placed in the set whose 
cache block corresponding to that address was used least recently. See Set-associative. 

Set-associative.

Aspect of cache organization in which the cache space is divided into sections, called sets. 
The cache controller associates a particular main memory address with the contents of a 
particular set, or region, within the cache.
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Signaling NaN.

A type of NaN that generates an invalid operation program interrupt when it is specified as 
arithmetic operands. See Quiet NaN. 

Significand.

The component of a binary floating-point number that consists of an explicit or implicit 
leading bit to the left of its implied binary point and a fraction field to the right.

Simplified mnemonics.

Assembler mnemonics that represent a more complex form of a common operation.

Snooping.

Monitoring addresses driven by a bus master to detect the need for coherency actions.

Split-transaction.

A transaction with independent request and response tenures.

Stall.

An occurrence when an instruction cannot proceed to the next stage.

Static branch prediction.

Mechanism by which software (for example, compilers) can hint to the machine hardware 
about the direction a branch is likely to take. 

Superscalar.

A superscalar processor is one that can dispatch multiple instructions concurrently from a 
conventional linear instruction stream. In a superscalar implementation, multiple instructions 
can be in the same stage at the same time. 

Supervisor mode.

The privileged operation state of a processor. In supervisor mode, software, typically the 
operating system, can access all control registers and can access the supervisor memory 
space, among other privileged operations. 

Synchronization. 

A process to ensure that operations occur strictly in order. See Context synchronization and 
Execution synchronization. 

Synchronous interrupt.

An interrupt that is generated by the execution of a particular instruction or instruction 
sequence. There are two types of synchronous interrupts, precise and imprecise.

System memory.

The physical memory available to a processor. 
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T

TLB (translation lookaside buffer).

A cache that holds recently-used page table entries.

Throughput.

The measure of the number of instructions that are processed per clock cycle.

U

UISA (user instruction set architecture).

The level of the architecture to which user-level software should conform. The UISA defines 
the base user-level instruction set, user-level registers, data types, floating-point memory 
conventions and interrupt model as seen by user programs, and the memory and 
programming models.

Underflow.

A condition that occurs during arithmetic operations when the result cannot be represented 
accurately in the destination register. For example, underflow can happen if two floating-
point fractions are multiplied and the result requires a smaller exponent and/or mantissa 
than the single-precision format can provide. In other words, the result is too small to be 
represented accurately.

User mode.

The operating state of a processor used typically by application software. In user mode, 
software can access only certain control registers and can access only user memory space. 
No privileged operations can be performed. Also referred to as problem state.

V

VEA (virtual environment architecture).

The level of the architecture that describes the memory model for an environment in which 
multiple devices can access memory, defines aspects of the cache model, defines cache 
control instructions, and defines the time-base facility from a user-level perspective. 
Implementations that conform to the PowerPC VEA also adhere to the UISA, but may not 
necessarily adhere to the OEA.

Virtual address.

An intermediate address used in the translation of an effective address to a physical 
address.

Virtual memory.

The address space created using the memory management facilities of the processor. 
Program access to virtual memory is possible only when it coinc
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W

Way.

A location in the cache that holds a cache block, its tags and status bits.

Word.

A 32-bit data element.

Write-back.

A cache memory update policy in which processor write cycles are directly written only to 
the cache. External memory is updated only indirectly, for example, when a modified cache 
block is cast out to make room for newer data. 

Write-through.

A cache memory update policy in which all processor write cycles are written to both the 
cache and memory.



Revision history RM0004

1175/1176   
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29-Nov-2007 1 Initial release.



RM0004

 1176/1176

         

 

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - 
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com


