

GaAs MMIC CGY 181

Data Sheet

• Power amplifier for PCN/PCS applications

- Fully integrated 2 stage amplifier
- Operating voltage range: 2.7 to 6 V
- Overall power added efficiency 35%
- Input matched to 50 Ω , simple output match

ESD: **E**lectro**s**tatic **d**ischarge sensitive device, observe handling precautions!

Туре	Marking	Ordering Code (8-mm taped)	Package ¹⁾
CGY 181	CGY 181	Q68000-A8883	MW-12

¹⁾ Plastic body identical to P-SOT-223, dimensions see **Page 14**.

Maximum Ratings	Symbol	Value	Unit
Positive supply voltage	V_{D}	9	V
Negative supply voltage ¹⁾	V_{G}	-8	V
Supply current	I_{D}	2	А
Channel temperature	T_{Ch}	150	°C
Storage temperature	$T_{ m stg}$	- 55 + 150	°C
RF input power	P_{in}	25	dBm
Total power dissipation ($T_s \le 81$ °C) T_s : Temperature at soldering point	P_{tot}	5	W

¹⁾ $V_{\rm G}$ = -8 V only in combination with $V_{\rm TR}$ = 0 V; $V_{\rm G}$ = -6 V while $V_{\rm TR}$ \neq 0 V

Thermal Resistance	Symbol	Value	Unit
Channel-soldering point	R_{thChS}	≤ 14	K/W

Figure 1 Functional Block Diagram

Short Description of CGY 181 Operation

A negative voltage between -4 V to -6 V (stabilization not necessary) has to be connected to the VG-pin, a positive supply voltage has to be applied to the VD-pins.

The VTR-pin has to switched to 0 V (GND) during transmit operation. The MMIC CGY 181 is self-biased, the operating current is adjusted by the internal control circuit.

In receive mode the VTR-pin is not connected (shut off mode).

Pin #	Symbol	Configuration
1	VG	Negative voltage at control circuit (- 4 V 8 V)
2	VTR	Control voltage for transmit mode (0 V) or receive mode (open)
3, 4, 5, 10	GND 2	RF and DC ground of the 2 nd stage
6, 9	GND 1	RF and DC ground of the 1st stage
7	VD1	Positive drain voltage of the 1 st stage
8	RFin	RF input power
11	VD2, RFout	Positive drain voltage of the 2 nd stage, RF output power
12	_	not connected

DC Characteristics

Characteristics	Symbol	Limit Values			Unit	Test
		min.	typ.	max.		Conditions
Drain current	I_{DSS1}	0.6	0.9	1.2	А	V_{D} = 3 V,
(stage 1 and 2)	$I_{ m DSS2}$	2.4	3.5	4.8	А	$V_{\rm G}$ = 0 V, $V_{\rm TR}$ n.c.
Drain current with active current control	I_{D}	_	1.0	_	A	$\begin{split} V_{\mathrm{D}} &= 3 \text{ V}, \\ V_{\mathrm{G}} &= -4 \text{ V}, \\ V_{\mathrm{TR}} &= 0 \text{ V} \end{split}$
Transconductance (stage 1 and 2)	G_{fs1}	0.28	0.32	_	S	$V_{\rm D} = 3 \text{ V},$ $I_{\rm D} = 350 \text{ mA}$
	G_{fs2}	1.1	1.3	_	S	$V_{\rm D} = 3 \text{ V},$ $I_{\rm D} = 700 \text{ mA}$
Pinch off voltage	V_{p}	- 3.8	- 2.8	- 1.8	V	$V_{\rm D}$ = 3 V, $I_{\rm D}$ < 500 μ A (all stages)

Electrical Characteristics

 $T_{\rm A}$ = 25 °C, f = 1.75 GHz, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 $\Omega,~V_{\rm D}$ = 3.6 V, $V_{\rm g}$ = - 4 V, VTR pin connected to ground; unless otherwise specified

Characteristics	Symbol	Limit Values			Unit	Test
		min.	typ.	max.		Conditions
Supply current	I_{DD}	_	1.2	_	Α	$P_{\rm in}$ = 0 dBm
Negative supply current	I_{G}	_	2	3	mA	(normal operation)
Shut-off current	I_{D}	_	400	_	μΑ	VTR n.c.
Negative supply current	I_{G}	_	10	_	μΑ	(shut off mode, VTR pin n.c.)
Small signal gain	G	_	20.5	_	dB	$P_{\rm in} = -5 \mathrm{dBm}$
Power Gain	G	14.5	15.5	_	dB	$V_{\rm D} = 3.6 \text{ V},$ $P_{\rm in} = 16 \text{ dBm}$
Power Gain	G	17.5	18.5	_	dB	$V_{\rm D}$ = 5 V, $P_{\rm in}$ = 16 dBm

Electrical Characteristics (cont'd)

 $T_{\rm A}$ = 25 °C, f = 1.75 GHz, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω , $V_{\rm D}$ = 3.6 V, $V_{\rm g}$ = – 4 V, VTR pin connected to ground; unless otherwise specified

Characteristics	Symbol	L	Limit Values			Test
		min.	typ.	max.		Conditions
Output Power	P_0	30.5	31.5	_	dBm	$V_{\rm D}$ = 3.6 V, $P_{\rm in}$ = 16 dBm
Output Power	P_0	33.5	34.5	_	dBm	$V_{\rm D}$ = 5 V, $P_{\rm in}$ = 16 dBm
Overall Power Added Efficiency	η	_	37	_	%	$V_{\rm D}$ = 3.6 V, $P_{\rm in}$ = 16 dBm
Overall Power Added Efficiency	η	_	35	_	%	$V_{\rm D}$ = 5 V, $P_{\rm in}$ = 16 dBm
Harmonics $2f_0$ $3f_0$	_	_	- 44.8 - 70	_	dBc	$P_{\rm in} = 16 \text{ dBm},$ $V_{\rm D} = 3.6 \text{ V},$ $P_{\rm out} = 31.85 \text{ dBm}$
Harmonics $2f_0$ $3f_0$	_	_	- 45.1 - 75	_	dBc	$P_{\rm in}$ = 16 dBm, $V_{\rm D}$ = 5 V, $P_{\rm out}$ = 31.85 dBm
Input VSWR	_	_	1.9:1	_	_	$V_{\rm D}$ = 3.6 V
Third order intercept point	IP ₃	_	41	_	dBm	f_1 = 1.7500 GHz; f_2 = 1.7502 GHz; $V_{\rm D}$ = 3.6V
Third order intercept point	IP ₃	_	44	_	dBm	f_1 = 1.7500 GHz; f_2 = 1.7502 GHz; V_D = 5 V

All RF-measurements were done in a pulsed mode with a duty cycle of 10% $(t_{on} = 0.33 \text{ ms})!$

$ext{DC-}I_{ ext{D}}\left(V_{ ext{G}}\right)$ Characteristics - Typical Values of Stage 1, $V_{ ext{D}}$ = 3 V

DC-Output Characteristics - Typical Values of Stage 1*

$\mathrm{DC} ext{-}I_\mathrm{D}$ (V_G) Characteristics - Typical Values of Stage 2, V_D = 3 V

DC-Output Characteristics - Typical Values of Stage 2*

*Pin 2 ($V_{\rm TR}$) has to be open during measuring DC-characteristics!

 $P_{\rm out}$ and PAE vs. $P_{\rm in}$, $V_{\rm D}$ = 3.6 V, $V_{\rm G}$ = -4 V, f = 1.75 GHz, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

Output Power at Different Temperatures, $V_{\rm D}$ = 3.6 V, $V_{\rm G}$ = -4 V, f = 1.75 GHz, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

 $P_{\rm out}$ and PAE vs. $P_{\rm in}$, $V_{\rm D}$ = 5 V, $V_{\rm G}$ = -4 V, f = 1.75 GHz, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

Power Added Efficiency at Different Temperatures, $V_D = 3.6 \text{ V}$, $V_D = 4.7 \text{ CHz}$ pulsed with a

 $V_{\rm G}$ = -4 V, f = 1.75 GHz, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

Output Power at Different Temperatures, $V_D = 5 \text{ V}$,

 $V_{\rm G}$ = -4 V, f = 1.75 GHz, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

Measured S-Parameter at $V_{\rm D}$ = 3.6 V and $P_{\rm in}$ = 16 dBm, $V_{\rm G}$ = - 4 V, VTR connected to ground, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

Power Added Efficiency at Different Temperatures, $V_D = 5 \text{ V}$,

 $V_{\rm G}$ = - 4 V, f = 1.75 GHz, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

Measured S-Parameter at $V_{\rm D}$ = 5 V and $P_{\rm in}$ = 16 dBm, $V_{\rm G}$ = -4 V, VTR connected to ground, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

 $P_{\rm out}$ vs. $V_{\rm D}$, $V_{\rm G}$ = - 4 V, f = 1.75 GHz, $P_{\rm in}$ = 16 dBm, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

Performance of Internal Bias Control Circuit @ $V_{\rm D}$ = 3 V, $V_{\rm TR}$ = 0 V, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

Performance of Internal Bias Control Circuit @ $V_{\rm D}$ = 5 V, $V_{\rm TR}$ = 0 V, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

Total Power Dissipation

$$P_{\text{tot}} = f(T_{\text{S}})$$

Permissible Pulse Load

$$P_{\text{tot_max}}/P_{\text{tot_DC}} = f(t_P)$$

Figure 2 CGY 181 Application Board

Layout size is 30 mm \times 26 mm.

Part Type	Description
CGY 181	Infineon GaAs-MMIC
1 nF	Capacitor SMD 0805
1 nF	Capacitor SMD 0805
1 nF	Capacitor SMD 0805
1 p2	Capacitor SMD 0805
4 μ7	Capacitor SMD Tantal
43 nH	Coilcraft SMD Spring Inductor B10T (distributed by Ginsbury Electronic GmbH, Am Moosfeld 85, D-81829 München Tel.: 089/45170-223)

Figure 3 Principal Circuit

Figure 4 Original Size

Figure 5 Emissions due to GMSK Modulation

Figure 6 Measurement was Done with the Following Equipment

Application Hints

1. CW - Capability of the CGY 181

Proving the possibility of CW - operations there must be known the total power dissipation of the device. This value can be found as a function of temperature in the data sheet (**Page 9**). The CGY 181 has a maximum total power dissipation of $P_{\text{tot}} = 5 \text{ W}$.

As an example we take the operating point with a drain voltage $V_{\rm D}$ = 3.6 V and a typical drain current of $I_{\rm D}$ = 1.2 A. So the maximum DC - power can be calculated to:

$$P_{\rm DC} = V_{\rm D} \times I_{\rm D} = 4.32 \; {\rm W}$$

This value is smaller than 5 W and CW - operation is possible.

By decoupling RF power out of the CGY 181 the power dissipation of the device can be further reduced. Assuming a power added efficiency PAE of 35% the total power dissipation P_{tot} can be calculated using the following formula:

$$P_{\text{tot}} = P_{\text{DC}} \times (1 - \text{PAE}) = 4.32 \text{ W} \times (1 - 0.35) = 2.808 \text{ W}$$

2. Operation without Using the Internal Current Control

If you don't want to use the internal current control, it is recommended to connect the negative gate voltage at pin 2 $(V_{\rm TR})$ instead of pin 1 $(V_{\rm G})$. In that case $V_{\rm G}$ is not connected.

3. Biasing and Use Considerations

Biasing should be timed in such a way that the gate voltage ($V_{\rm G}$) is always applied before the drain voltages ($V_{\rm D}$), and when returning to the standby mode, the drain voltages have to be removed before the gate voltage.

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm