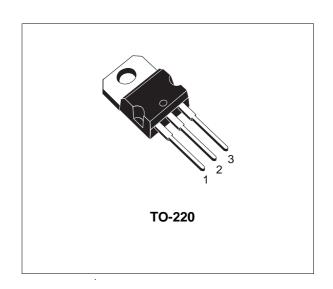
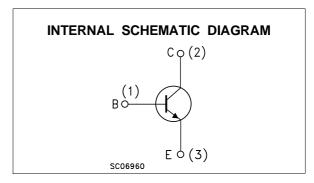


BUL67

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- HIGH RUGGEDNESS
- NPN TRANSISTOR
- HIGH VOLTAGE CAPABILITY
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- FULLY CHARACTERIZED AT 125°C


APPLICATIONS


- ELECTRONICS TRANFORMER FOR HALOGEN LAMPS
- SWITCH MODE POWER SUPPLIES

The BUL67 is manufactured using high voltage Multiepitaxial Mesa technology for cost-effective high performance. It uses a Hollow Emitter structure to enhance switching speeds.

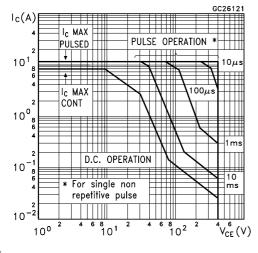
The BUL series is designed for use in lighting applications and in low cost switch-mode power supplies.

ABSOLUTE MAXIMUM RATINGS

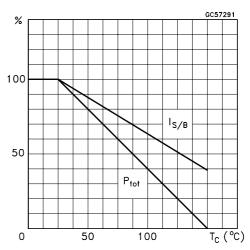
Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	700	V
V_{CEO}	Collector-Emitter Voltage (I _B = 0)	400	V
V _В	Emitter-Base Voltage (Ic = 0)	9	V
Ic	Collector Current	10	Α
I _{CM}	Collector Peak Current (t _p < 5 ms)	18	Α
I _B	Base Current	3.5	Α
I _{BM}	Base Peak Current (t _p < 5 ms)	7	Α
P _{tot}	Total Dissipation at T _c = 25 °C	100	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

February 2003 1/6

THERMAL DATA

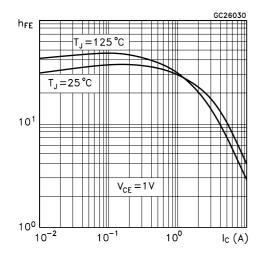

R _{thj-case}	Thermal Resistance Ju	ınction-Case	Max	1.25	°C/W	ĺ
R _{thj-amb}	Thermal Resistance Ju	unction-Ambient	Max	62.5	°C/W	l

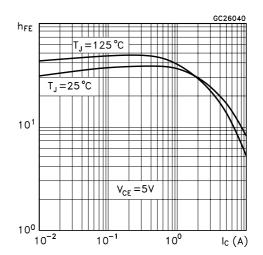
ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)


Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 700 V V _{CE} = 700 V	T _c = 125 °C			100 500	μΑ μΑ
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = 400 V				250	μΑ
$V_{\text{CEO(sus)}}$	Collector-Emitter Sustaining Voltage	I _C = 100 mA	L = 25 mH	400			V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 10 mA		9			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 3 A I _C = 4 A I _C = 6 A	$I_B = 0.6 A$ $I_B = 0.8 A$ $I_B = 1.5 A$			0.8 1 1.5	V V V
V _{BE(sat)*}	Base-Emitter Saturation Voltage	I _C = 3 A I _C = 4 A I _C = 6 A	I _B = 0.6 A I _B = 0.8 A I _B = 1.5 A			1.2 1.3 1.5	V V V
h _{FE} *	DC Current Gain	I _C = 1.5 A I _C = 10 mA	V _{CE} = 3 V V _{CE} = 5 V	15 10		50	
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	I _C = 3 A I _{B1} = 0.6 A L = 200 μH	V _{CL} = 250 V I _{B2} = -1.2 A		2.1 100	3.2 180	μs ns
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	I _C = 3 A I _{B1} = 0.6 A L = 200 μH	$V_{CL} = 250 \text{ V}$ $I_{B2} = -1.2 \text{ A}$ $T_{c} = 125 ^{\circ}\text{C}$		3 180		μs ns

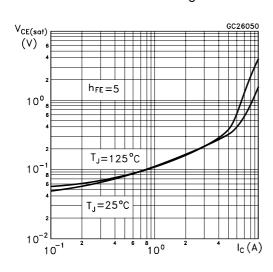
^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

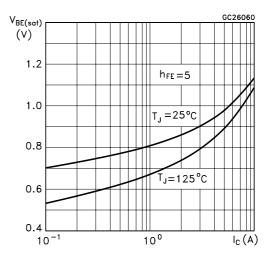
Safe Operating Areas

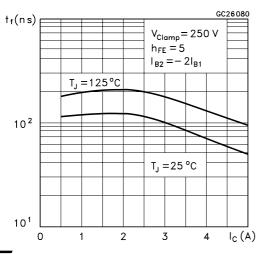

Derating Curve

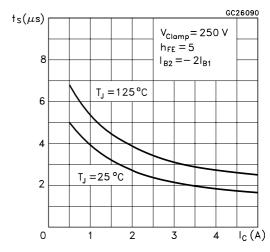

47

2/6

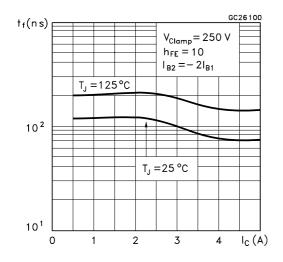

DC Current Gain


DC Current Gain

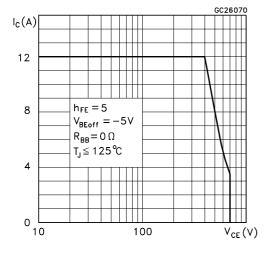

Collector Emitter Saturation Voltage


Base Emitter Saturation Voltage

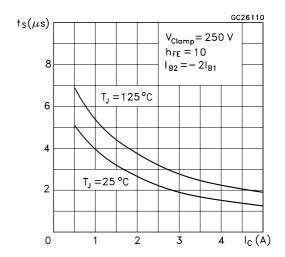
Inductive Fall Time

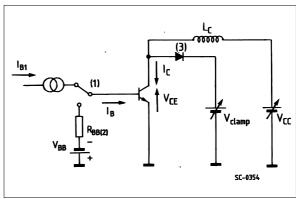


Inductive Storage Time



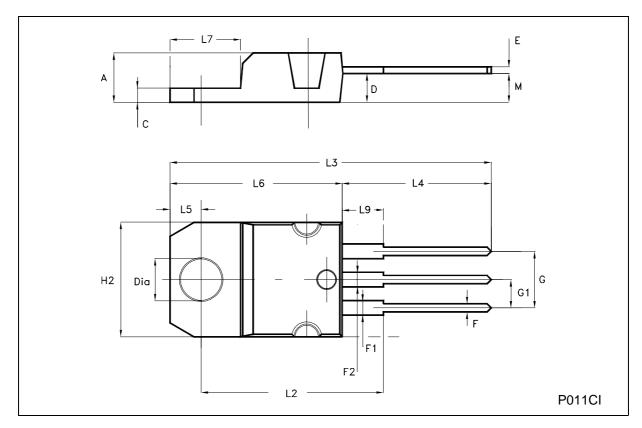
477


Inductive Fall Time


Reverse Biased SOA

Inductive Storage Time

RBSOA and Inductive Load Switching Test Circuits



- (1) Fast electronic switch (2) Non-inductive Resistor
- (3) Fast recovery rectifier

4/6

TO-220 MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.052
D	2.40		2.72	0.094		0.107
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.202
G1	2.40		2.70	0.094		0.106
H2	10.00		10.40	0.394		0.409
L2		16.40			0.645	
L4	13.00		14.00	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.20		6.60	0.244		0.260
L9	3.50		3.93	0.137		0.154
M		2.60			0.102	
DIA.	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

47/