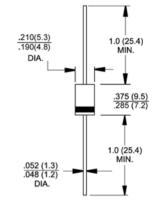


Reverse Voltage 200 Volts

Ultrafast Plastic Rectifier Forward Current 4.0 Amperes

Features


- Plastic package has Underwriters Laboratories Flammability Classification 94V-0
- Ideally suited for use in very high frequency switching power supplies, inverters and as a free wheeling diode
- ◆ Ultrafast recovery time for high efficiency
- ◆ Glass passivated junction
- High temperature soldering guaranteed: 250°C/10seconds, 0.375" (9.5mm) lead length, 5 lbs. (2.3Kg) tension

DO-201AD

Mechanical Data

- Cases: JEDEC DO-201AD, molded plastic body over passivated chip
- Terminals: Plated axial leads, solderable per MIL-STD-750, Method 2026
- ◆ Polarity: Color band denotes cathode end
- ◆ Mounting position: Any
- ♦ Weight: 0.045 ounce, 1.2 grams

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Rating at 25°C ambient temperature unless otherwise specified.

Parameter	Symbols	MUR420	Units
Maximum repetitive peak reverse voltage	V _{RRM}	200	Volts
Working peak reverse voltage	V _{RWM}	200	Volts
Maximum DC blocking voltage	V _{DC}	400	Volts
Maximum average forward rectified current at T _A =80°C (See figure 1)	I _{F(AV)}	4.0	Amps
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load (JEDEC Method)	I _{FSM}	125.0	Amps
Maximum instantaneous forward voltage (Note 1) at 3.0A, T_j=150°C at 3.0A, T_j=25°C at 4.0A, T_j=25°C	V _F	0.710 0.875 0.890	Volts
Maximum instantaneous reverse current T _j =25°C at rated DC blocking voltage (Note 1) T _j =150°C	I _R	5.0 150	uA uA
Maximum reverse recovery time at I_F =0.5A, I_R =1.0A, I_R =0.25A	t,,	25	nS
Maximum reverse recovery time at I_F =1.0A, di/dt=50A/us, V_R =30V, I_T =10% I_{RM}	t,,	35	nS
Maximum forward recovery time at I _F =1.0A, di/dt=100A/us, recovery to 1.0V	t _r	25	nS
Typical thermal resistance junction to ambient (Note 2)	R _{eJA}	28	°C/W
Operating junction and storage temperature range	T _J , T _{STG}	-55 to +150	°C

Notes: 1. Pulse test: t_a=300us, duty cycle ≤ 2%

2. Lead length = 1/2" on P.C. Board with 1.2" x 1.2" copper surface

RATINGS AND CHARACTERISTIC CURVES

(T_A = 25°C unless otherwise noted)

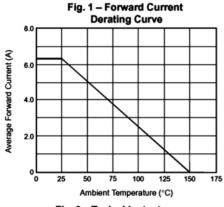


Fig. 3 - Typical Instantaneous

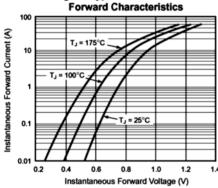


Fig. 5 - Typical Junction Capacitance

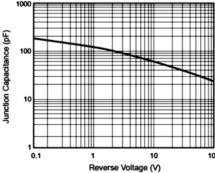


Fig. 2 - Maximum Non-Repetitive Peak

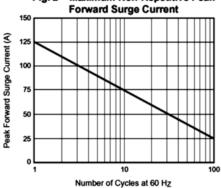
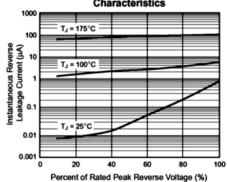



Fig. 4 - Typical Reverse Leakage Characteristics

