

Features

- High input impedance
- Low input capacitance
- Fast switching speeds
- ▶ Low on-resistance
- Free from secondary breakdown
- Low input and output leakage

Applications

- Normally-on switches
- Solid state relays
- Converters
- Constant current sources
- Power supply circuits
- Telecom

General Description

The Supertex DN3145 is a depletion-mode (normally-on) transistor utilizing an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

Part Number	Package Option	Packing
DN3145N8-G	TO-243AA (SOT-89)	2000/Reel

⁻G denotes a lead (Pb)-free / RoHS compliant package. Contact factory for Wafer / Die availablity. Devices in Wafer / Die form are lead (Pb)-free / RoHS compliant.

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	BV_{DSX}
Drain-to-gate voltage	BV_{DGX}
Gate-to-source voltage	±20V
Operating and storage temperature	-55°C to +150°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

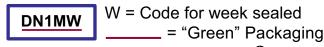
Typical Thermal Resistance

<u> </u>	
Package	$oldsymbol{ heta_{ja}}$
TO-243AA (SOT-89)	133°C/W#

Notes:

‡ Mounted on FR4 board, 25mm x 25mm x 1.57mm.

Product Summary


BV_{DSX}/BV_{DGX}	R _{DS(ON)} (max)	l _{DSS} (min)				
450V	60Ω	120mA				

Pin Configuration

TO-243AA (SOT-89)

Product Marking

Package may or may not include the following marks: Si or

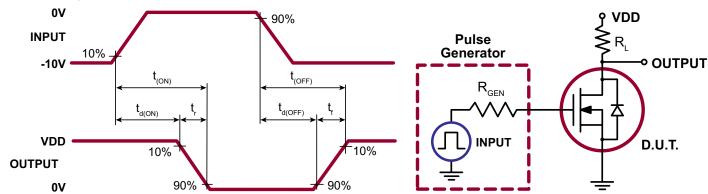
TO-243AA (SOT-89)

Thermal Characteristics

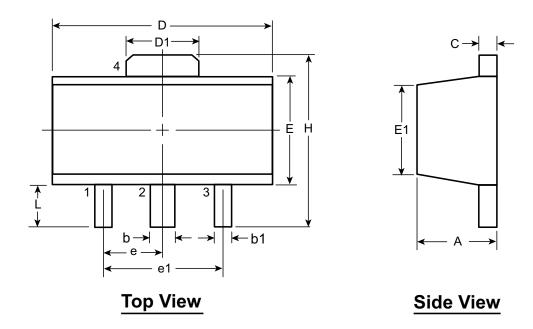
Package	l _D (continuous) [†]	l _D (pulsed)	Power Dissipation @T _A = 25°C	$I_{ m DR}^{t}$	I _{DRM}	
TO-243AA	100mA	300mA	1.3W [‡]	100mA	300mA	

Notes:

- † I_{D} (continuous) is limited by max rated T_{D}
- # Mounted on FR4 board, 25mm x 25mm x 1.57mm.


Electrical Characteristics (T_A = 25°C unless otherwise specified)

Sym	Parameter	Min	Тур	Max	Units	Conditions		
BV _{DSX}	Drain-to-source breakdown voltage	450	-	-	V	$V_{GS} = -5.0V, I_{D} = 100\mu A$		
V _{GS(OFF)}	Gate-to-source off voltage	-1.5	-	-3.5	V	$V_{DS} = 15V, I_{D} = 10\mu A$		
$\Delta V_{GS(OFF)}$	Change in V _{GS(OFF)} with temperature	-	-	-4.5	mV/°C	$V_{DS} = 15V, I_{D} = 10\mu A$		
l _{GSS}	Gate body leakage current	-	-	100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$		
		_	-	1.0	μA	V_{DS} = Max rating, V_{GS} = -5.0V		
I _{D(OFF)}	Drain-to-source leakage current	-	-	1.0	mA	$V_{DS} = 0.8 \text{ Max Rating},$ $V_{GS} = -5.0 \text{V}, T_A = 125^{\circ} \text{C}$		
I _{DSS}	Saturated drain-to-source current	120	_	-	mA	$V_{GS} = 0V, V_{DS} = 15V$		
R _{DS(ON)}	Static drain-to-source on-state resistance	-	-	60	Ω	V _{GS} = 0V, I _D = 100mA		
$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with temperature	-	-	1.1	%/ºC	$V_{GS} = 0V, I_{D} = 100 \text{mA}$		
G _{FS}	Forward transconductance	140	-	-	mmho	$V_{DS} = 10V, I_{D} = 100mA$		
C _{ISS}	Input capacitance	-	-	120		$V_{GS} = -5.0V, V_{DS} = 25V,$		
C _{oss}	Common source output capacitance	-	-	15	pF			
C _{RSS}	Reverse transfer capacitance	-	-	10		f = 1.0MHz		
t _{d(ON)}	Turn-on delay time	-	-	10				
t _r	Rise time	_	-	15	ne	$V_{DD} = 25V,$ $I_{D} = 100\text{mA},$ $R_{GEN} = 25\Omega,$		
t _{d(OFF)}	Turn-off delay time	-	-	20	ns			
t _f	Fall time	-	-	35		GEN ,		
V _{SD}	Diode forward voltage drop	_	-	1.8	V	V _{GS} = -5.0V, I _{SD} = 100mA		
t _{rr}	Reverse recovery time	-	800	-	ns	$V_{GS} = -5.0V, I_{SD} = 100mA$		


Notes:

- 1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.)
- 2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

3-Lead TO-243AA (SOT-89) Package Outline (N8)

Symbo	ol	Α	b	b1	С	D	D1	Е	E1	е	e1	Н	L
Dimensions (mm) NO	MIN	1.40	0.44	0.36	0.35	4.40	1.62	2.29	2.00 [†]	1.50 3.00 BSC BSC		3.94	0.73 [†]
	NOM	-	-	-	-	-	-	-	-			-	-
	MAX	1.60	0.56	0.48	0.44	4.60	1.83	2.60	2.29		4.25	1.20	

JEDEC Registration TO-243, Variation AA, Issue C, July 1986.

Drawings not to scale.

Supertex Doc. #: DSPD-3TO243AAN8, Version F111010.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2013 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

Supertex inc.

[†] This dimension differs from the JEDEC drawing