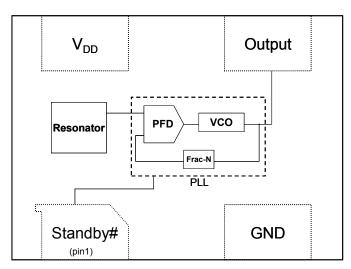


1.8~3.3V

Low-Power Precision CMOS Oscillator


General Description

The DSC1001 is a silicon MEMS based CMOS oscillator offering excellent jitter and stability performance over a wide range of supply voltages and temperatures. The device operates from 1 to 150MHz with supply voltages between 1.8 to 3.3 Volts and temperature ranges up to -40°C to 105°C.

The DSC1001 incorporates an all silicon resonator that is extremely robust and nearly immune to stress related fractures, common to crystal based oscillators. Without sacrificing the performance and stability required of today's systems, a crystal-less design allows for a higher level of reliability, making the DSC1001 ideal for rugged, industrial, and portable applications where stress, shock, and vibration can damage quartz crystal based systems.

Available in industry standard packages, the DSC1001 can be "dropped-in" to the same PCB footprint as standard crystal oscillators.

Block Diagram

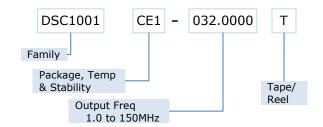
Features

- Frequency Range: 1 to 150MHz
- Exceptional Stability over Temperature
 - ±10 PPM, ±25 PPM, ±50 PPM
- Operating voltage
 - o 1.7 to 3.6V
- Operating Temperature Range
 - o Ext. Industrial -40°C to 105°C
 - o Industrial -40°C to 85°C
 - o Ext. Commercial -20°C to 70°C
 - Commercial 0°C to 70°C
- Low Operating and Standby Current
 - 5mA Operating (40MHz)
 - 15uA Standby
- Ultra Miniature Footprint
 - o 2.5 x 2.0 x 0.85 mm
 - o 3.2 x 2.5 x 0.85 mm
 - o 5.0 x 3.2 x 0.85 mm
 - o 7.0 x 5.0 x 0.85 mm
- MIL-STD 883 Shock and Vibration Resistant
- Pb Free, RoHS, Reach SVHC Compliant
- AEC-Q100 Reliability Qualified

Benefits

- Pin for pin "drop in" replacement for industry standard oscillators
- Semiconductor level reliability, significantly higher than quartz
- Short mass production lead-times
- Longer Battery Life / Reduced Power
- Compact Plastic package
- Cost Effective

Applications


- Mobile Applications
- Consumer Electronics
- Portable Electronics
- DVR, CCTV, Surveillance Cameras
- Low Profile Applications
- Industrial Applications

Page 1 MK-Q-B-P-D-050610-01-8

Absolute Maximum Ratings¹

believe Maximum Ratings							
Item	Min	Max	Unit	Condition			
Input Voltage	-0.3	VDD+0.3	V				
Junction Temp	-	+150	°C				
Storage Temp	-55	+150	°C				
Soldering Temp	-	+260	°C	40 sec max.			
ESD	-		V				
НВМ		4000					
ММ		200					
CDM		1500					

^{*} See Ordering Information for details

Ordering Code

Recommended Operating Conditions

Parameter	Symbol	Range
Supply Voltage	V_{DD}	1.7 - 3.6V
Output Load	Z_L	R>10KΩ, C≤15pF
Operating Temperature Option 1 Option 2 Option 3 Option 4	Т	-40 to +105 °C -40 to +85 °C -20 to +70 °C 0 to +70 °C

Specifications (VDD = 1.8 to 3.3 v) $T_A = 85^{\circ}\text{C}$ unless otherwise specified

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Frequency	f_0	f ₀ Single Frequency			150	MHz
Frequency Tolerance	Δf	Includes frequency variations due to initial tolerance, temperature and power supply voltage			±10,±25,±50	ppm
Aging	Δf	1 year @25°C			±5	ppm
Supply Current, standby	I_{DD}	T=25°C			15	uA
Output Logic Levels Output logic high Output logic low	V _{OH} V _{OL}	-4mA 4mA	0.8*V _{DD}		- 0.2*V _{DD}	Volts
Output Startup Time ²	t _{su}	T=25°C		1.0	1.3	ms
Output Disable Time	t _{DA}			20	100	ns
Output Duty Cycle	SYM	SYM			55	%
Input Logic Levels Input logic high Input logic low	V _{IH} V _{IL}		0.75*V _{DD} -		- 0.25* V _{DD}	Volts

Page 2 MK-Q-B-P-D-050610-01-8

VDD = 1.8v

Parameter	Symbol	Condition		Min	Тур	Max	Unit		
		C _L =0p	1MHz		6.0	6.3			
Supply Current, no load	I_{DD}	R _L =∞	27MHz		6.5	6.9			
Supply Current, no load		₁ DD		T=25°C	70MHz		7.2	7.5	mA
		1-23 C	150MHz		8.3	9.1	IIIA		
Output Transition time									
Rise Time	t_R	$C_L=1$	5pF; T=25°C		1.8	3	ne		
Fall Time	$t_{\scriptscriptstyle{F}}$	20%/80%*V _{DD}			1.0	3	ns		
Jitter, Max Cycle to Cycle	J_{CC}	F = 100MHz ³			60		Ps		

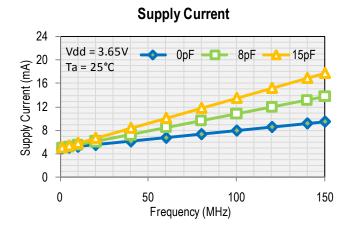
VDD = 2.5v

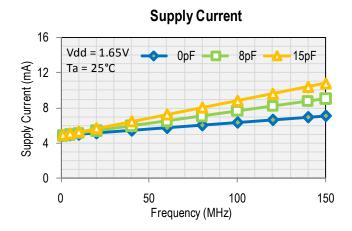
Parameter	Symbol	Condition		Min	Тур	Max	Unit
		C -0n	1MHz		6.0	6.3	
Summly Current no load	I_{DD}	C _L =0p R _L =∞	27MHz		6.7	7.0	
Supply Current, no load		T=25°C	70MHz		7.7	8.1	mA
		1=25°C	150MHz		9.6	10.6	IIIA
Output Transition time							
Rise Time	t_R	$C_L=1$	5pF; T=25°C		1.0	2	
Fall Time	$t_{\scriptscriptstyle{F}}^{\scriptscriptstyle{C}}$	20%/80%*V _{DD}			0.9	2	ns
Jitter, Max Cycle to Cycle	J _{CC}	$F = 100MHz^3$			50		ps

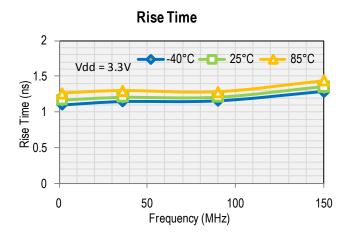
VDD = 3.3v

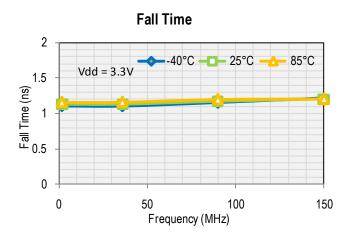
Parameter	Symbol	Condition		Min	Тур	Max	Unit
Supply Current, no load	${ m I}_{ m DD}$	$C_L=0p$ $R_L=\infty$	1MHz 27MHz		6.0 6.8	6.3 7.2	
,		T=25°C	70MHz 150MHz		8.2 10.8	8.7 12.2	mA
Output Transition time							
Rise Time	t_R	$C_L=1$	5pF; T=25°C		1.0	2	
Fall Time	$t_{\scriptscriptstyle{F}}$	20%	%/80%*V _{DD}		0.9	2	ns
Jitter, Max Cycle to Cycle	J_{CC}	$F = 100MHz^3$			50		ps

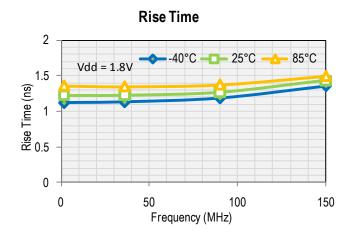
Notes:

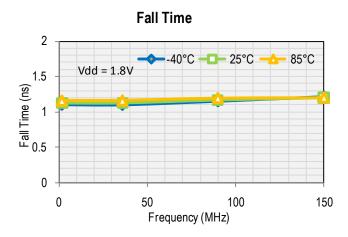

- Absolute maximum ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated beyond these limits.
- 2. t_{SU} is time to stable output frequency after V_{DD} is applied. t_{SU} and t_{EN} (after EN is asserted) are identical values.

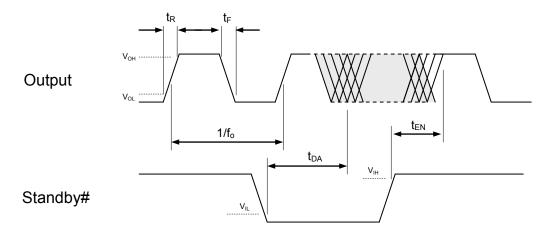

3. Measured over 50k clock cycles.


Page 3 MK-Q-B-P-D-050610-01-8

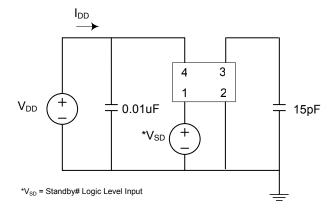



Nominal Performance Characteristics



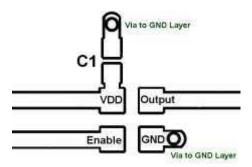


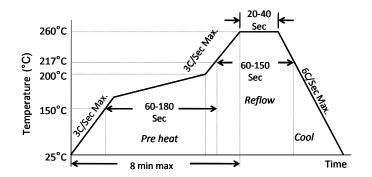
Page 4 MK-Q-B-P-D-050610-01-8


Output Waveform

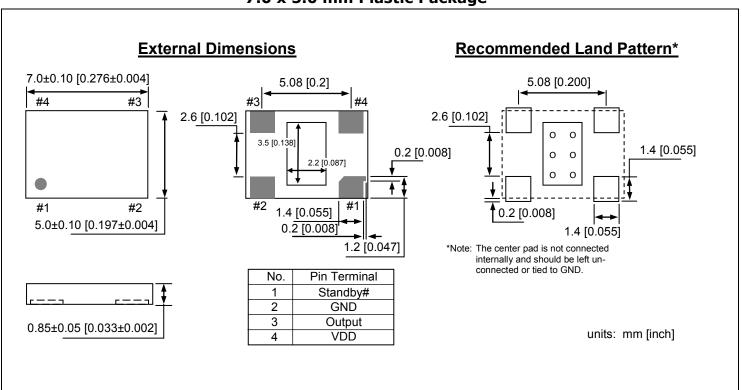
Standby Function

Standby# (pin 1)	Output (pin 3)
Hi Level	Output ON
Open (no connect)	Output ON
Low Level	High Impedance


Test Circuit

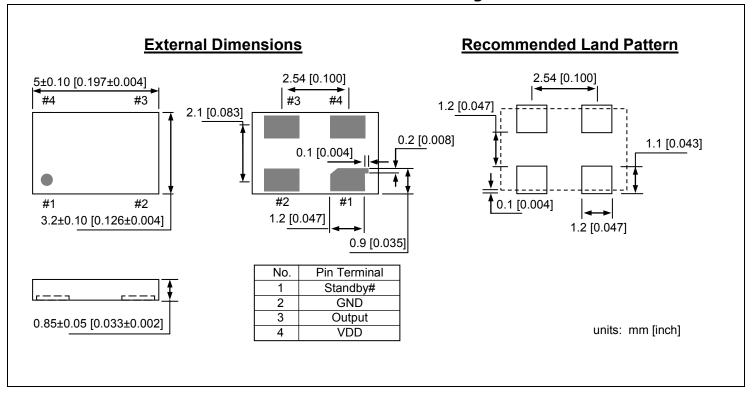

Page 5 MK-Q-B-P-D-050610-01-8

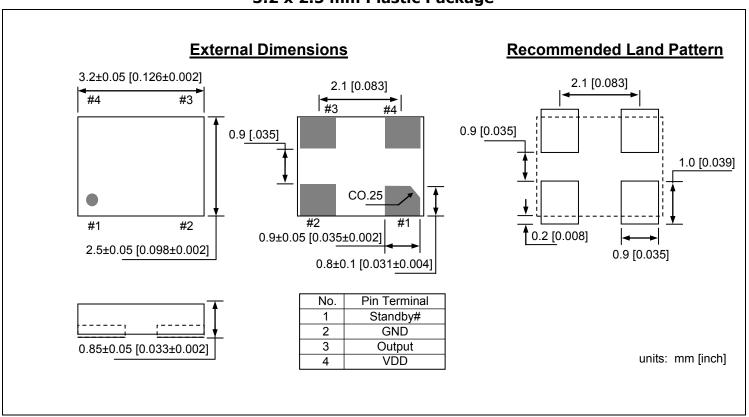
Board Layout (recommended)


Solder Reflow Profile

MSL 1 @ 260°C refer to JSTD-020C					
Ramp-Up Rate (200°C to Peak Temp)	3°C/Sec Max.				
Preheat Time 150°C to 200°C	60-180 Sec				
Time maintained above 217°C	60-150 Sec				
Peak Temperature	255-260°C				
Time within 5°C of actual Peak	20-40 Sec				
Ramp-Down Rate	6°C/Sec Max.				
Time 25°C to Peak Temperature	8 min Max.				

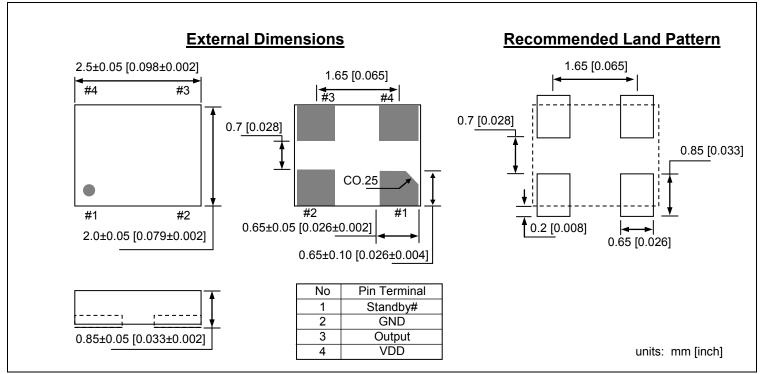
Package Dimensions


7.0 x 5.0 mm Plastic Package


Page 6 MK-Q-B-P-D-050610-01-8

5.0 x 3.2 mm Plastic Package

3.2 x 2.5 mm Plastic Package



Page 7 MK-Q-B-P-D-050610-01-8

1.8~3.3V

2.5 x 2.0 mm Plastic Package

Ordering Information

DSC1001 PTS - xxx.xxxx T

PART NUMBERING GUIDE							
Package (Plastic QFN) Temperature Stability Frequency Packing Option							
P=A: 7.0x5.0mm P=B: 5.0x3.2mm P=C: 3.2x2.5mm P=D: 2.5x2.0mm	T=C: $0^{\circ} \sim +70^{\circ} \text{ C}$ T=E: $-20^{\circ} \sim +70^{\circ} \text{ C}$ T=I: $-40^{\circ} \sim +85^{\circ} \text{ C}$ T=L: $-40^{\circ} \sim +105^{\circ} \text{ C}$	S=1: ±50ppm S=2: ±25ppm S=5: ±10ppm	xxx.xxx	Blank: Tubes T: Tape & Reel			

Example: DSC1001CE1-123.0000T

The example part number above is a 123.0000MHz oscillator in Plastic 3.2x2.5mm package, with ±50ppm stability over an operating temperature of -20 to +70°C, shipped in Tape and Reel.

Disclaimer:

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

MICREL, Inc. 2180 Fortune Drive, San Jose, California 95131 Phone: +1 (408) 944-0800 Fax: +1 (408) 474-1000 • Email: hbwhelp@micrel.com www.micrel.com

MK-Q-B-P-D-050610-01-8 Page 8