

GaAs SP6T 2.5 V High Power Switch Dual / Tri / Quad-Band GSM Applications

V6

Features

- · Supplied as Known Good Die
- Dual/tri/quad-band GSM/GPRS/EDGE
- Low Voltage: 2.5V Operation
- Low Harmonics: -72 dBc at +35 dBm & 1 GHz
- Low Insertion Loss: 0.5 dB at 1 GHz
 High Tx-Rx Isolation: 38 dB at 2 GHz

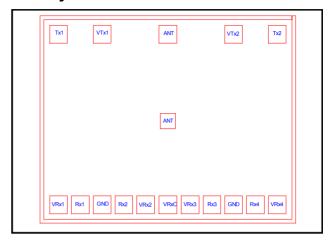
Description

M/A-COM's MASWSS0091 is a GaAs PHEMT MMIC single pole six throw (SP6T) high power switch die. The MASWSS0091 is ideally suited for applications where high power, low control voltage, low insertion loss, high isolation, small size and low cost are required. The MASWSS0091 is designed for dual-, tri-, and quad-band GSM and DCS/PCS handset systems that connect separate transmit and receive functions to a common antenna, and can be used in all systems operating up to 2.5 GHz requiring high power at low control voltage.

The MASWSS0091 is fabricated using a 0.5 micron gate length GaAs PHEMT process. The process features full passivation for performance and reliability.

Ordering Information ¹

Part Number	Package			
MASWSS0091SMB	Sample Test Board			
MASWSS0091-DIE	Separated die on Grip Ring			


^{1.} Die quantity varies.

Absolute Maximum Ratings ²

Parameter	Absolute Maximum				
Input Power (0.5 - 2.5 GHz, 2.5V Control)	+38 dBm				
Voltage	±8.5 volts				
Operating Temperature	-40°C to +85°C				
Storage Temperature	-65°C to +150°C				

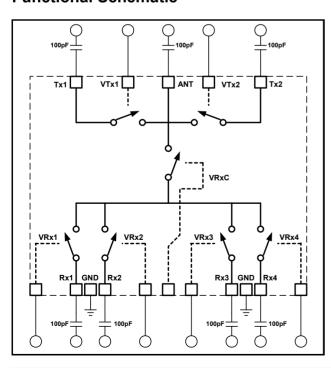
Exceeding any one or combination of these limits may cause permanent damage to the device.

Die Layout

Pad Layout

PAD Name	Description				
Tx1	Tx1 Port				
VTx1	Tx1 Control				
ANT	Antenna Port				
VTx2	Tx2 Control				
Tx2	Tx2 Port				
VRx4	Rx4 Control				
Rx4	Rx4 Port Ground				
GND					
Rx3	Rx3 Port				
VRx3	Rx3 Control Rx Common Control				
VRxC					
VRx2	Rx2 Control				
Rx2	Rx2 Port				
GND	Ground				
Rx1	Rx1 Port				
VRx1	Rx1 Control				
ANT	Redundant ANT Pad				

GaAs SP6T 2.5 V High Power Switch Dual / Tri / Quad-Band GSM Applications


V6

Electrical Specifications: $T_A = 25$ °C, Vc = 0V/2.5V, $Z_0 = 50$ Ohms³

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Tx Insertion Loss ³	0.5 - 1 GHz 1 - 2 GHz	dB dB	=	0.5 0.65	0.7 0.9
Rx Insertion Loss ³	0.5 - 1 GHz 1 - 2 GHz	dB dB	_	1.0 1.3	1.2 1.6
Tx to Rx Isolation	0.5 - 1 GHz 1 - 2 GHz	dB dB	40 —	45 38	_
Tx to Tx Isolation	0.5 - 1 GHz 1 - 2 GHz	dB dB	22 —	26 17	_
Return Loss	0.5 - 2.5 GHz	dB	_	20	_
Tx P0.1dB	1 GHz	dBm	_	41	_
Rx P1dB	1 GHz	dBm	_	25	_
2nd Harmonic	1 GHz, P _{IN} = +35 dBm, 100% Duty Cycle	dBc	_	-78	-67
3rd Harmonic	1 GHz, P _{IN} = +35 dBm, 100% Duty Cycle	dBc	_	-72	-67
Trise, Tfall	10% to 90% RF, 90% to 10% RF	μS	_	0.2	_
Ton, Toff	50% control to 90% RF, and 50% control to 10% RF	μS	_	0.2	_
Transients	In Band	mV	_	70	_
Control Current	_	μΑ	_	20	80

- 3. External DC blocking capacitors are required on all RF ports.
- 4. Insertion loss can be optimized by varying the DC blocking capacitor value, e.g. 100 pF for 0.5 GHz 2.0 GHz.

Functional Schematic

Qualification

Qualified to MACOM specification REL-201, Process Flow –2.

Handling Procedures

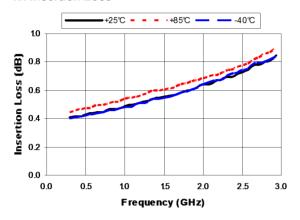
Please observe the following precautions to avoid damage:

Static Sensitivity

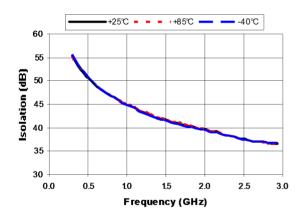
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

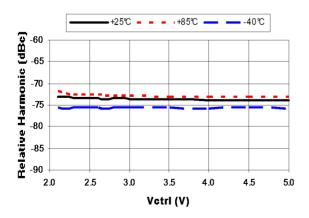
Visit www.macom.com for additional data sheets and product information.

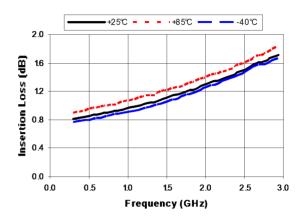

MACOM

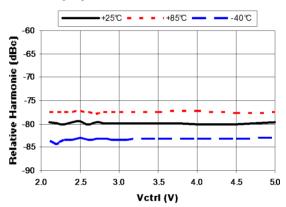
GaAs SP6T 2.5 V High Power Switch Dual / Tri / Quad-Band GSM Applications


V6

Typical Performance Curves


TX Insertion Loss


TX - RX Isolation


3rd Harmonic vs. Vctrl @ 1 GHz, Pin = +35 dBm, 100% Duty Cycle

RX Insertion Loss

2nd Harmonic vs. Vctrl @ 1 GHz, Pin = +35 dBm, 100% Duty Cycle

MASWSS009

GaAs SP6T 2.5 V High Power Switch Dual / Tri / Quad-Band GSM Applications

V6

Truth Table 5,6

VTx1	VTx2	VRxC	VRx1	VRx2	VRx3	VRx4	ANT-Tx1	ANT-Tx2	ANT-Rx1	ANT-Rx2	ANT-Rx3	ANT-Rx4
1	0	0	0	0	0	0	On	Off	Off	Off	Off	Off
0	1	0	0	0	0	0	Off	On	Off	Off	Off	Off
0	0	1	1	0	0	0	Off	Off	On	Off	Off	Off
0	0	1	0	1	0	0	Off	Off	Off	On	Off	Off
0	0	1	0	0	1	0	Off	Off	Off	Off	On	Off
0	0	1	0	0	0	1	Off	Off	Off	Off	Off	On

^{5.} Differential voltage, V (state 1) -V (state 0), must be 2.5 V minimum.

^{6.} State 0 = 0 V to +0.2 V, State 1 = 2.5 V to 5 V.

MASWSS009

GaAs SP6T 2.5 V High Power Switch Dual / Tri / Quad-Band GSM Applications

V6

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.