HERMETIC SILICON PHOTOTRANSISTOR

L14G1 L14G2 L14G3

DESCRIPTION

The L14G1/L14G2/L14G3 are silicon phototransistors mounted in a narrow angle, TO-18 package.

FEATURES

- · Hermetically sealed package
- · Narrow reception angle

HERMETIC SILICON PHOTOTRANSISTOR

L14G1 L14G2 L14G3

Parameter	eter Symbol Rating		Unit
Operating Temperature	T _{OPR}	-65 to +125	°C
Storage Temperature	T _{STG}	-65 to +150	°C
Soldering Temperature (Iron)(3,4,5 and 6)	T _{SOL-I}	240 for 5 sec	°C
Soldering Temperature (Flow)(3,4 and 6)	T _{SOL-F}	260 for 10 sec	°C
Collector to Emitter Breakdown Voltage	V _{CEO}	45	V
Collector to Base Breakdown Voltage	V _{CBO}	45	V
Emitter to Base Breakdwon Voltage	V _{EBO}	5	V
Power Dissipation (T _A = 25°C) ⁽¹⁾	P _D	300	mW
Power Dissipation (T _C = 25°C) ⁽²⁾	P _D	600	mW

NOTE:

- 1. Derate power dissipation linearly 3.00 mW/°C above 25°C ambient.
- 2. Derate power dissipation linearly 6.00 mW/°C above 25°C case.
- 3. RMA flux is recommended.
- 4. Methanol or isopropyl alcohols are recommended as cleaning agents.
- 5. Soldering iron tip 1/16" (1.6mm) minimum from housing.
- 6. As long as leads are not under any stress or spring tension.
- 7. Light source is a GaAs LED emitting light at a peak wavelength of 940 nm.
- 8. Figure 1 and figure 2 use light source of tungsten lamp at 2870°K color temperature. A GaAs source of 3.0 mW/cm² is approximately equivalent to a tungsten source, at 2870°K, of 10 mW/cm².

ELECTRICAL / OPTICAL CHARACTERISTICS (TA =25°C) (All measurements made under pulse conditions)								
PARAMETER	TEST CONDITIONS	SYMBOL	MIN	TYP	MAX	UNITS		
Collector-Emitter Breakdown	$I_{\rm C}$ = 10 mA, Ee = 0	BV _{CEO}	45		_	V		
Emitter-Base Breakdown	I _E = 100 μA, Ee = 0	BV _{EBO}	5.0		_	V		
Collector-Base Breakdown	I _C = 100 μA, Ee = 0	BV _{CBO}	45		_	V		
Collector-Emitter Leakage	V _{CE} = 10 V, Ee = 0	I _{CEO}	_		100	nA		
Reception Angle at 1/2 Sensitivity		θ		±10		Degrees		
On-State Collector Current L14G1	Ee = 0.5 mW/cm ² , $V_{CE} = 5 V^{(7,8)}$	I _{C(ON)}	1.0		_	mA		
On-State Collector Current L14G2	Ee = 0.5 mW/cm ² , $V_{CE} = 5 V^{(7,8)}$	I _{C(ON)}	0.5			mA		
On-State Collector Current L14G3	Ee = 0.5 mW/cm ² , $V_{CE} = 5 V^{(7,8)}$	I _{C(ON)}	2.0			mA		
Turn-On Time	$I_C = 2 \text{ mA}, V_{CC} = 10 \text{ V}, R_L = 100 \Omega$	t _{on}		8		μs		
Turn-Off Time	$I_C = 2 \text{ mA}, V_{CC} = 10 \text{ V}, R_L = 100 \Omega$	t _{off}		7		μS		
Saturation Voltage	$I_C = 1.0 \text{ mA}, Ee = 3.0 \text{ mW/cm}^{2(7,8)}$	V _{CE(SAT)}	_		0.40	V		

HERMETIC SILICON PHOTOTRANSISTOR

L14G1 L14G2 L14G3

Figure 6. Normalized Light Current vs. Temperature Both Emitter (LED 55B) and Detector