Eight-Channel, High Speed, $\pm 60 \mathrm{~V}, \pm 1.0 \mathrm{~A}$, Ultrasound RTZ Pulser

Features

- HVCMOS technology for high performance
- High density integrated ultrasound transmitter
- 0 to $\pm 60 \mathrm{~V}$ output voltage
- $\pm 1.0 \mathrm{~A}$ source and sink current in pulse mode
- $\pm 1.0 \mathrm{~A}$ source and sink current in RTZ mode
- Up to 20 MHz operating frequency
- Matched delay times
- Optional clock re-alignment
- 3.3V CMOS logic interface and reference
- +3.3V low voltage supply for V_{DD}
- Built-in linear regulators for floating gate driver
- Built-in output drain diodes \& bleed resistors

Application

- Portable medical ultrasound imaging
- Piezoelectric transducer drivers
- Pulse waveform generator

General Description

The Supertex HV7350 is an eight channel monolithic high voltage highspeed pulse generator with built-in fast return to zero damping FETs. This high voltage and high-speed integrated circuit is designed for portable medical ultrasound image devices.

HV7350 consists of a controller logic interface circuit, level translators, MOSFET gate drives, and high current power P-channel and N-channel MOSFETs as the output stage for each channel.

The output peak currents of each channel are guaranteed to be over $\pm 1.0 \mathrm{~A}$ with up to $\pm 60 \mathrm{~V}$ pulse swings as well as return-to-zero (RTZ) mode. The gate drivers for the output MOSFETs are powered by built-in linear 5.0 V regulators referenced to V_{PP} and V_{NN}. This direct coupling topology of the gate drivers not only saves four floating voltage supplies or AC coupling capacitors per channel, but also makes the PCB layout smaller and easier.

An input clock pin is available to realign all the logic input control lines to a master clock. Precise logic timing is always essential in any ultrasound systems.

Typical Application Circuit

Ordering Information

Part Number	Package	Packing
HV7350K6-G	56-Lead (8x8) QFN	$250 /$ Tray
HV7350K6-G M937	56-Lead (8x8) QFN	2000/Reel

-G denotes a lead (Pb)-free / RoHS compliant package
Absolute Maximum Ratings

Parameter	Value
VSUB, substrate voltage is GND	OV
V_{LL}, Positive logic supply	-0.5 V to +5.5 V
V_{DD}, Positive logic and level translator supply	-0.5 V to +5.5 V
$\mathrm{C}_{\text {POS }}$ to GND, Positive level translator circuit	-0.5 V to +5.5 V
$\mathrm{C}_{\text {NEG }}$ to GND, Negative level translator circuit	+0.5 V to -5.5V
$\left(\mathrm{V}_{\mathrm{PP}}-\mathrm{C}_{\mathrm{PF}}\right)$, Positive gate driver circuit	-0.5 V to +5.5 V
$\left(\mathrm{C}_{\mathrm{NF}}-\mathrm{V}_{\text {NN }}\right)$, Negative gate driver circuit	-0.5V to +5.5 V
$\left(\mathrm{V}_{\mathrm{PP}}-\mathrm{V}_{\mathrm{NN}}\right)$ Differential high voltage supply	+130V
V_{Pp}, High voltage positive supply	-0.5 V to +65 V
$\mathrm{V}_{\text {NN }}$, High voltage negative supply	+0.5 V to -65V
All logic input PIN $^{\text {x }}$, IIN $_{\mathrm{x}}$, OEN and REN voltages	-0.5 V to +5.5 V
Operating temperature	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

56-Lead QFN (top view)

Package Marking

| HV7350K6 | L = Lot Number |
| :--- | :--- | :--- |
| YYLLLLLLL | WW Year Sealed |
| WYWeek Sealed | |
| YYWW | A = Assembler ID |
| AAA CCC | C = Country of Origin |

Package may or may not include the following marks: Si or

56-Lead QFN

Typical Thermal Resistance
Package
56-Lead (8x8) QFN

$21^{\circ} \mathrm{C} / \mathrm{W}$

Output Current \& R_{on}

$\mathbf{I}_{\text {sc }}$	$\mathbf{R}_{\text {onP }}$	$\mathbf{R}_{\text {onN }}$	$\mathbf{I}_{\text {DMP }}$	$\boldsymbol{R}_{\text {onDP }}$	$\mathbf{R}_{\text {onDN }}$
$1.5 A$	13Ω	6.5Ω	$1.5 A$	13Ω	8.0Ω

Notes:

1. $V_{P P} V_{N N}=+/-60 \mathrm{~V}, V_{D D}=+3.3 V ; R E N=1$
2. I_{sc} is current into 1.0Ω to GND;

Power-Up Sequence

Step	Description
1	$\mathrm{~V}_{\mathrm{LL}}$ with logic signal low
2	$\mathrm{~V}_{\mathrm{DD}}$
3	REN $=1$ (external supplies on)
4	$\mathrm{~V}_{\mathrm{PP}}$ and V_{NN}
5	Logic control signals active

3. $I_{D M P}$ is current from $+/-30 \mathrm{~V}$ connected to T_{x} pin.
4. Max pulse width for current measurement on T_{x} pin is 100 ns .

Power-Down Sequence

Step	Description
1	All logic signals go to low
2	$\mathrm{~V}_{\mathrm{PP}}$ and V_{NN}
3	REN $=0$ (external supplies off)
4	$\mathrm{~V}_{\mathrm{DD}}$
5	$\mathrm{~V}_{\mathrm{LL}}$

Note:

Powering up/down in any arbitrary sequence will not cause any damage to the device. The powering up/down sequence is only recommended in order to minimize possible inrush current.

Operating Supply Voltages and Current (Eight Active Channels)
(Operating conditions, unless otherwise specified, $V_{L L}=+3.3 \mathrm{~V}, V_{D D}=+3.3 \mathrm{~V}, V_{P P}=+60 \mathrm{~V}, V_{N N}=-60 \mathrm{~V}, V_{C L K}=+3.3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$V_{D D}$	V_{DD} voltage supply	2.97	3.30	5.20	V	---
UVLO ${ }_{\text {D }}$	$\mathrm{V}_{\text {DD }}$ UVLO	2.30	2.60	2.80	V	---
V_{LL}	Logic voltage reference	2.50	3.30	5.00	V	---
$\mathrm{UVLO}_{\mathrm{LL}}$	V_{LL} UVLO	1.30	1.55	1.70	V	---
$V_{\text {PP }}$	Positive high voltage supply	+10	-	+60	V	---
$V_{N N}$	Negative high voltage supply	-60	-	-10	V	---
$\mathrm{I}_{\text {LLQ }}$	$\mathrm{V}_{\text {LL }}$ current	-	8.0	-	$\mu \mathrm{A}$	$\mathrm{OEN}=\mathrm{REN}=0$
$\mathrm{I}_{\text {DDQ }}$	V_{DD} current	-	1.0	-		
$\mathrm{I}_{\text {PPQ }}$	$\mathrm{V}_{\text {PP }}$ current	-	5.0	10		
$\mathrm{I}_{\mathrm{NNQ}}$	$\mathrm{V}_{\text {NN }}$ current	-	5.0	10		
$\mathrm{I}_{\text {LLEN }}$	$\mathrm{V}_{\text {LL }}$ current	-	13	20	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{OEN}=\mathrm{REN}=1 \\ & 5.0 \mathrm{~ms} \text { after } \mathrm{f}=0 \mathrm{MHz} \end{aligned}$
$\mathrm{I}_{\text {dDEN }}$	V_{DD} current	-	480	700		
$I_{\text {PPEN }}$	$\mathrm{V}_{\text {PP }}$ current	-	220	350		
$\mathrm{I}_{\text {NNEN }}$	$\mathrm{V}_{\text {NN }}$ current	-	300	400		
$\mathrm{I}_{\text {DDCW }}$	V_{DD} current	-	2.3	-	mA	$\mathrm{f}=5.0 \mathrm{MHz}$, Continuous, no loads, for calculation reference only.
$\mathrm{I}_{\text {PPCW }}$	V_{PP} current	-	80	-		
$\mathrm{I}_{\text {NNCW }}$	$\mathrm{V}_{\text {NN }}$ current	-	80	-		
$\mathrm{I}_{\text {LL,CLK }}$	$\mathrm{V}_{\text {LL }}$ current	-	33	-	$\mu \mathrm{A}$	$\mathrm{f}_{\mathrm{CLK}}=10 \mathrm{MHz}, \mathrm{PIN}=\mathrm{NIN}=0$

Electrical Characteristics

(Operating conditions, unless otherwise specified, $V_{L L}=+3.3 \mathrm{~V}, V_{D D}=+3.3 \mathrm{~V}, V_{P P}=+60 \mathrm{~V}, V_{N N}=-60 \mathrm{~V}, V_{C L K}=+3.3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$)

Pulser P-Channel MOSFET

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{I}_{\text {OUT }}$	Output saturation current	1.0	1.5	-	A	---
$\mathrm{R}_{\text {ON }}$	Channel resistance	-	13.2	-	Ω	$\mathrm{I}_{\mathrm{SD}}=100 \mathrm{~mA}$

Pulser N-Channel MOSFET

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{I}_{\text {OUT }}$	Output saturation current	1.0	1.5	-	A	---
$\mathrm{R}_{\text {ON }}$	Channel resistance	-	8.0	-	Ω	$\mathrm{I}_{\text {SD }}=100 \mathrm{~mA}$

Damping P-Channel MOSFET

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{I}_{\text {OUT }}$	Output saturation current	1.0	1.5	-	A	---
$R_{\text {ON }}$	Channel resistance	-	13	-	Ω	$\mathrm{I}_{\mathrm{SD}}=100 \mathrm{~mA}$

Damping N-Channel MOSFET

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{I}_{\text {OUT }}$	Output saturation current	1.0	1.5	-	A	---
$\mathrm{R}_{\text {ON }}$	Channel resistance	-	9.0	-	Ω	$\mathrm{I}_{\mathrm{SD}}=100 \mathrm{~mA}$

Logic Inputs

Sym	Parameter	Min	Typ	Max	Units	Conditions
V_{IH}	Input logic high voltage	$0.7 \cdot \mathrm{~V}_{\mathrm{LL}}$	-	V_{LL}	V	$\mathrm{V}_{\mathrm{LL}}=2.5$ to 3.3 V
$\mathrm{~V}_{\mathrm{IL}}$	Input logic low voltage	0	-	$0.3 \cdot \mathrm{~V}_{\mathrm{LL}}$	V	
V_{IH}	Input logic high voltage	$0.8 \cdot \mathrm{~V}_{\mathrm{LL}}$	-	V_{LL}	V	$\mathrm{V}_{\mathrm{LL}}=5.0 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{LL}}$	Input logic low voltage	0	-	$0.2 \cdot \mathrm{~V}_{\mathrm{LL}}$	V	
I_{HH}	Input logic high current	-	-	10	$\mu \mathrm{~A}$	---
I_{IL}	Input logic low current	-10	-	-	$\mu \mathrm{A}$	---
C_{IN}	Input logic capacitance	-	-	5.0	pF	---

MOSFET Drain Bleed Resistor

Sym	Parameter	Min	Typ	Max	Units	Conditions
$R_{B 1 \sim 8}$	Output Bleed Resistance	12	17	25	$\mathrm{k} \Omega$	---
$\mathrm{P}_{\mathrm{RB} 1 \sim 8}$	Bleed Resistors Power Limit	-	-	50	mW	---

AC Electrical Characteristics

(Operating conditions, unless otherwise specified, $V_{L L}=+3.3 \mathrm{~V}, V_{D D}=+3.3 \mathrm{~V}, V_{P P}=+60 \mathrm{~V}, V_{N N}=-60 \mathrm{~V}, V_{C L K}=+3.3 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$)

Sym	Parameter	Min	Typ	Max	Units	Conditions
t_{r}	Output rise time	-	30	-	ns	$330 \mathrm{pF} / / 2.5 \mathrm{k} \Omega$ load 10-90\%
t_{f}	Output fall time	-	30	-	ns	
$\mathrm{t}_{\text {EN }}$	Enable time	-	300	500	$\mu \mathrm{s}$	Cap value see page 1 diagram.OEN = REN
$\mathrm{t}_{\text {DIS }}$	Disable time	-	2.8	10	$\mu \mathrm{s}$	
$\mathrm{t}_{\mathrm{d} 1}$	Delay time on $\mathrm{PIN}_{\mathrm{x}}$ rise	-	12	-	ns	1.0Ω resistor load, $D \%<1 \%$ (See timing diagram) 50% inputs to $50 \% \mathrm{~T}_{\mathrm{x}}$ current
$\mathrm{t}_{\mathrm{d} 2}$	Delay time on $\mathrm{NIN}_{\mathrm{x}}$ rise	-	12	-		
$\mathrm{t}_{\mathrm{d} 3}$	Delay time on damping rise	-	12	-		
$\mathrm{t}_{\mathrm{d} 4}$	Delay time on damping fall	-	12	-		
t_{dc}	Delay time on CLK rise	-	9.0	-		
$\Delta t_{\text {deLar }}$	Delay time matching	-	± 3.0	-	ns	P to N , channel to channel
t_{j}	Delay jitter on rise or fall	-	TBD	-	ps	$\mathrm{V}_{\mathrm{PP}} \mathrm{~N}_{\mathrm{NN}}=+/-25 \mathrm{~V} \text {, input tr } 50 \% \text { to } \mathrm{HV}_{\text {OUT }}$ t_{r} or $\mathrm{t}_{\mathrm{f}} 50 \%$, with $330 \mathrm{pF} / / 2.5 \mathrm{k} \Omega$ load
$\mathrm{t}_{\text {r }}$	RTZ FETs drain diode $\mathrm{t}_{\text {r }}$	-	25	-	ns	$\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=1.0 \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=10 \Omega$
$\mathrm{f}_{\text {CLK }}$	Re-timing clock frequency	10	220	-	MHz	---
$\mathrm{t}_{\mathrm{RC}}, \mathrm{t}_{\mathrm{FC}}$	Re-timing clock rise \& fall times	-	0.5	5.0	ns	---
$\mathrm{t}_{\text {su }}$	Set-up time, PIN/NIN to CLK	2.0	-	-	ns	---
t_{H}	Hold time, CLK to PIN/NIN	1.0	-	-	ns	---
$\mathrm{t}_{\text {CLK }}$	Clock time low	2.0	-	100	ns	CLK input must have at least one pulse before PIN and NIN inputs are not zero. Be sure to return inputs to zero before stopping clock.
$\mathrm{t}_{\text {CLK_HI }}$	Clock time high	2.0	-	100	ns	
$\mathrm{t}_{\text {LLK_REC }}$	Clock recognition time	-	2.0	-	ns	
$\mathrm{t}_{\text {CLK_RLS }}$	Clock release time	150	300	800	ns	
$\mathrm{f}_{\text {OUT }}$	Output frequency range	-	-	20	MHz	100Ω resistor load
HD2	Second harmonic distortion	-	-40	-	dB	
$\mathrm{C}_{\text {oss }}$	Output capacitance	-	50	-	pF	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$, of T_{x} pin total

Truth Table

Logic Inputs				TX ${ }_{n}$ Output			
OEN	CLK	$\mathrm{PIN}_{\mathrm{x}}$	$\mathrm{NIN}_{\mathrm{x}}$	VPP	VNN	RGND	Note
1	VLL	0	0	OFF	OFF	ON	Asynchronous Mode Output change on PIN/NIN
1	VLL	1	0	ON	OFF	OFF	
1	VLL	0	1	OFF	ON	OFF	
1	VLL	1	1	OFF	OFF	OFF	
1	\uparrow	0	0	OFF	OFF	ON	Synchronous Mode Output change at retiming clock(CLK) rising edge, registered by PIN/NIN
1	5	1	0	ON	OFF	OFF	
1	\checkmark	0	1	OFF	ON	OFF	
1	\checkmark	1	1	OFF	OFF	OFF	
0	X	X	X	OFF	OFF	OFF	Disabled

Switching Time Diagram

Asynchronous Mode

Synchronous Mode

Pin Description

Pin	Name	Description
1	PIN2	Input logic control of high voltage output P-FET for channel $2, \mathrm{Hi}=$ on, Low = off. (see logic table)
2	NIN2	Input logic control of high voltage output N-FET for channel $2, \mathrm{Hi}=$ on, Low = off. (see logic table)
3	PIN3	Input logic control of high voltage output P-FET for channel 3, $\mathrm{Hi}=$ on, Low = off. (see logic table)
4	NIN3	Input logic control of high voltage output N-FET for channel $3, \mathrm{Hi}=$ on, Low $=$ off. (see logic table)
5	PIN4	Input logic control of high voltage output P-FET for channel 4, $\mathrm{Hi}=$ on, Low = off. (see logic table)
6	NIN4	Input logic control of high voltage output N-FET for channel 4, $\mathrm{Hi}=$ on, Low $=$ off. (see logic table)
7	OEN	Output enable $\mathrm{Hi}=$ on, Low = off. See logic truth table
8	REN	Built-in positive and negative 5 V voltage regulators enable. $\mathrm{Hi}=$ on, Low $=$ off. If $\mathrm{REN}=0$, external floating 5 V power supplies may be supplied across CPF, CNF CPOS and CNEG capacitors
9	PIN5	Input logic control of high voltage output P-FET for channel $5, \mathrm{Hi}=$ on, Low = off. (see logic table)
10	NIN5	Input logic control of high voltage output N-FET for channel $5, \mathrm{Hi}=$ on, Low $=$ off. (see logic table)
11	PIN6	Input logic control of high voltage output P-FET for channel 6, $\mathrm{Hi}=$ on, Low = off. (see logic table)
12	NIN6	Input logic control of high voltage output N-FET for channel $6, \mathrm{Hi}=$ on, Low $=$ off. (see logic table)
13	PIN7	Input logic control of high voltage output P-FET for channel $7, \mathrm{Hi}=$ on, Low = off. (see logic table)
14	NIN7	Input logic control of high voltage output N-FET for channel $7, \mathrm{Hi}=$ on, Low = off. (see logic table)
15	PIN8	Input logic control of high voltage output P-FET for channel $8, \mathrm{Hi}=$ on, Low = off. (see logic table)
16	NIN8	Input logic control of high voltage output N-FET for channel $8, \mathrm{Hi}=$ on, Low $=$ off. (see logic table)
17	VLL	Logic supply voltage and reference input (+3.3V)
18	GND	Logic and circuit return ground (0V)
19	VDD	Positive voltage power supply (+3.3V)
20	VPP	
21	VPP	Positive high voltage power supply (+10 to +60 V)
22	VPP	
23	CPF	Built-in linear voltage VPF regulator output decoupling capacitor pin, 1uF from VPP to CPF per each
24	CNF	Built-in linear voltage VNF regulator output decoupling capacitor pin, 1uF from CNF to VNN per each
25	VNN	
26	VNN	Negative high voltage power supply (-10 to -60V)
27	VNN	
28	TX8	T_{x} pulser channel 8 output
29	RGND	Damping ground and bleed resistors common return ground
30	TX7	T_{x} pulser channel 7 output
31	RGND	Damping ground and bleed resistors common return ground
32	TX6	T_{x} pulser channel 6 output

Pin Description (cont.)

Pin	Name	Description
33	RGND	Damping ground and bleed resistors common return ground
34	TX5	T_{x} pulser channel 5 output
35	CNEG	Built-in linear voltage -5V regulator output decoupling capacitor pin, 1.0uF from CNEG to GND
36	CPOS	Built-in linear voltage +5 V regulator output decoupling capacitor pin, 1.0uF from CPOS to GND
37	TX4	T_{x} pulser channel 4 output
38	RGND	Damping ground and bleed resistors common return ground
39	TX3	T_{x} pulser channel 3 output
40	RGND	Damping ground and bleed resistors common return ground
41	TX2	T_{x} pulser channel 2 output
42	RGND	Damping ground and bleed resistors common return ground
43	TX1	T_{x} pulser channel 1 output
44	VNN	
45	VNN	Negative high voltage power supply (-10 to -60V)
46	VNN	
47	CNF	Built-in linear voltage VNF regulator output decoupling capacitor pin, 1uF from CNF to VNN per each
48	CPF	Built-in linear voltage VPF regulator output decoupling capacitor pin, 1uF from VPP to CPF per each
49	VPP	
50	VPP	Positive high voltage power supply (+10 to +60 V)
51	VPP	
52	VDD	Positive voltage power supply (+3.3V)
53	GND	Logic and circuit return ground (0V)
54	CLK	Re-timing register clock input. Connect to V_{LL} to disable the re-timing function
55	PIN1	Input logic control of high voltage output P-FET for channel 1, $\mathrm{Hi}=$ on, Low $=$ off. (see logic table)
56	NIN1	Input logic control of high voltage output N-FET for channel $1, \mathrm{Hi}=$ on, Low $=$ off. (see logic table)
VSUB (Thermal Pad)		Substrate bottom is internally connected to the central thermal pad on the bottom of package. It must be connected to GND (0V) externally

56-Lead QFN Package Outline (K6)

8.00x8.00mm body, 1.00 mm height (max), 0.50 mm pitch

Notes:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded marklidentifier; an embedded metal marker; or a printed indicator.
2. Depending on the method of manufacturing, a maximum of 0.15 mm pullback (L1) may be present.
3. The inner tip of the lead may be either rounded or square.

Symbol		A	A1	A3	b	D	D2	E	E2	e	L	L1	θ
Dimension (mm)	MIN	0.80	0.00	$\begin{aligned} & 0.20 \\ & \text { REF } \end{aligned}$	0.18	7.85*	2.75	7.85*	2.75	$\begin{aligned} & 0.50 \\ & \text { BSC } \end{aligned}$	0.30	0.00	0°
	NOM	0.90	0.02		0.25	8.00	5.70	8.00	5.70		0.40	-	-
	MAX	1.00	0.05		0.30	8.15*	6.70^{+}	8.15*	$6.70{ }^{+}$		0.50	0.15	14°

JEDEC Registration MO-220, Variation VLLD-2, Issue K, June 2006.

* This dimension is not specified in the JEDEC drawing.
\dagger This dimension differs from the JEDEC drawing.
Drawings are not to scale.
Supertex Doc.\#: DSPD-56QFNK68X8P050, Version A031010.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. (website: http//www.supertex.com)

