
N-Channel 80-V (D-S) MOSFET

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low $r_{DS(on)}$ and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

•	Low $r_{DS(on)}$ provides higher efficiency and
	extends battery life

- Low thermal impedance copper leadframe SOIC-8PP saves board space
- Fast switching speed
- High performance trench technology

PRODUCT SUMMARY				
V _{DS} (V)	$r_{DS(on)} m(\Omega)$	$I_{D}(A)$		
80	$11 @ V_{GS} = 10V$	18		
	13 @ V _{GS} = 4.5V	17		

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C UNLESS OTHERWISE NOTED)						
Parameter			Maximum	Units		
Drain-Source Voltage			80	V		
Gate-Source Voltage			20	V		
Continuous Drain Current ^a	$T_A=25^{\circ}C$		18			
Continuous Drain Current	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	ъ	15	A		
Pulsed Drain Current ^b			50			
Continuous Source Current (Diode Conduction) ^a		I_S	2.3	A		
Paragraphic and a second a second and a second a second and a second a	$T_A=25^{\circ}C$	D_	5.0	w		
Power Dissipation ^a	$T_A=25^{\circ}C$ $T_A=70^{\circ}C$	L D	3.2	**		
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150	°C		

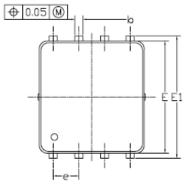
THERMAL RESISTANCE RATINGS						
Parameter	Symbol	Maximum	Units			
a	$t \ll 10 \sec$	$R_{ heta JA}$	25	°C/W		
Maximum Junction-to-Ambient ^a	Steady State		65	°C/W		

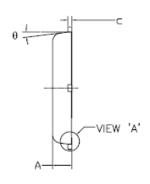
1

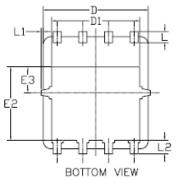
Notes

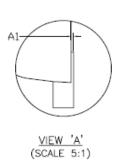
- a. Surface Mounted on 1" x 1" FR4 Board.
- b. Pulse width limited by maximum junction temperature

Analog Power AM7482N


SPECIFICATIONS (T _A = 25°C UNLESS OTHERWISE NOTED)							
D	C11	T. 4 C. 122	Limits			TT •4	
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
Static							
Gate-Threshold Voltage	$V_{GS(th)}$	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 250{\rm uA}$	1			V	
Gate-Body Leakage	I_{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = 12 \text{ V}$			100	nA	
Zara Cata Valtaga Prain Current	I _{DSS}	$V_{DS} = 64 \text{ V}, V_{GS} = 0 \text{ V}$			1	uA	
Zero Gate Voltage Drain Current	IDSS	$V_{DS} = 64 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			5		
On-State Drain Current ^A	I _{D(on)}	$V_{DS} = 5 \text{ V}, V_{GS} = 10 \text{ V}$	40			A	
D : G . C . D : A		$V_{GS} = 10 \text{ V}, I_D = 2 \text{ A}$			11	mΩ	
Drain-Source On-Resistance ^A	fDS(on)	$V_{GS} = 4.5 \text{ V}, I_D = 2 \text{ A}$			13		
Forward Tranconductance ^A	gfs	$V_{DS} = 15 \text{ V}, I_{D} = 6 \text{ A}$		40		S	
Diode Forward Voltage	V_{SD}	$I_S = 2.3 \text{ A}, V_{GS} = 0 \text{ V}$		0.7		V	
Dynamic ^b							
Total Gate Charge	Qg	V- 15 V V- 45 V		60		nC	
Gate-Source Charge	Qgs	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V},$ $I_{D} = 6 \text{ A}$		20			
Gate-Drain Charge	Q_{gd}	ID = 0 A		30		1	
Turn-On Delay Time	t _{d(on)}			17			
Rise Time	t _r	$V_{\rm DD} = 15 \; \text{V}, R_{\rm L} = 6 \; \Omega \; \; , \text{ID} = 1 \; \text{A},$		50		nS	
Turn-Off Delay Time	t _{d(off)}	VGEN = 10 V		200			
Fall-Time	t_{f}			70			


Notes


- a. Pulse test: $PW \le 300$ us duty cycle $\le 2\%$.
- b. Guaranteed by design, not subject to production testing.


Analog Power (APL) reserves the right to make changes without further notice to any products herein. APL makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does APL assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in APL data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. APL does not convey any license under its patent rights nor the rights of others. APL products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the APL product could create a situation where personal injury or death may occur. Should Buyer purchase or use APL products for any such unintended or unauthorized application, Buyer shall indemnify and hold APL and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that APL was negligent regarding the design or manufacture of the part. APL is an Equal Opportunity/Affirmative Action Employer.

Package Information

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
SIMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.85	0.95	1.00	0.033	0.037	0.039	
A1	0.00		0.05	0.000	0.002		
b	0.30	0.40	0.50	0.012	0.016	0.020	
С	0. 15	0. 20	0. 25	0.006 0.008 0.01			
D		5. 20 BSC			0.205 BSC		
D1	4.35 BSC			0.171 BSC			
Е	5. 55 BSC				0.219 BSC		
E1	6.05 BSC				0.238 BSC		
E2	3. 625 BSC			0.143 BSC			
E3	1. 275 BSC				0.050 BSC		
e	1. 27 BSC				0.050 BSC		
L	0.45	0. 55	0.65	0.018	0.022	0.026	
L1	0		0. 15	0		0.006	
L2	0.68 REF			0.027 REF			
θ	0°		10°	0°		10°	