

PRELIMINARY

MB95F613H/F613K/F614H MB95F614K/F616H/F616K

New 8FX MB95610H Series 8-bit Microcontrollers

The MB95610H Series is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of these series contain a variety of peripheral resources.

Features

F²MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instructions
- Bit manipulation instructions, etc.

Clock

- Selectable main clock source
 - □ Main oscillation clock (up to 16.25 MHz, maximum machine clock frequency: 8.125 MHz)
 - □ External clock (up to 32.5 MHz, maximum machine clock frequency: 16.25 MHz)
 - □ Main CR clock (4 MHz ±2%)
 - ☐ Main PLL clock / Main CR PLL clock (Main oscillation clock = 4 MHz, Main CR clock = 4 MHz)
 - Both main oscillation clock and main CR clock can be multiplied by a PLL multiplication rate.
 - The frequency of the main PLL clock / main CR PLL clock becomes 8 MHz when the PLL multiplication rate is 2.
 - he frequency of the main PLL clock / main CR PLL clock becomes 10 MHz when the PLL multiplication rate is 2.5.
 - he frequency of the main PLL clock / main CR PLL clock becomes 12 MHz when the PLL multiplication rate is 3.
 - he frequency of the main PLL clock / main CR PLL clock becomes 16 MHz when the PLL multiplication rate is 4.
- Selectable subclock source
 - □ Suboscillation clock (32.768 kHz)
 - □ External clock (32.768 kHz)
 - □ Sub-CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 150 kHz)

Timer

- 8/16-bit composite timer × 2 channels
- 8/16-bit PPG × 2 channels
- 16-bit reload timer × 1 channel
- Event counter × 1 channel
- Time-base timer × 1 channel
- Watch counter × 1 channel
- Watch prescaler × 1 channel

UART/SIO × 2 channels

■ Full duplex double buffer

■ Capable of clock asynchronous (UART) serial data transfer and clock synchronous (SIO) serial data transfer

I²C bus interface × 1 channel

Built-in wake-up function

External interrupt × 8 channels

- Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)
- Can be used to wake up the device from different low power consumption (standby) modes

8/10-bit A/D converter × 4 channels

8-bit or 10-bit resolution can be selected.

LCD controller (LCDC)

- LCD output can be selected from 52 SEG × 4 COM or 48 SEG × 8 COM.
- Internal divider resistor whose resistance value can be selected from 10 $k\Omega$ or 100 $k\Omega$ through software
- Interrupt in sync with the LCD module frame frequency
- Blinking function
- Inverted display function

Low power consumption (standby) modes

There are four standby modes as follows:

- Stop mode
- Sleep mode
- Watch mode
- Time-base timer mode

In standby mode, two further options can be selected: normal standby mode and deep standby mode.

I/O port

- MB95F613H/F614H/F616H (no. of I/O ports: 40)
- ☐ General-purpose I/O ports (CMOS I/O): 39
- □ General-purpose I/O ports (N-ch open drain): 1
- MB95F613K/F614K/F616K (no. of I/O ports: 41)
- ☐ General-purpose I/O ports (CMOS I/O): 39
- ☐ General-purpose I/O ports (N-ch open drain): 2

On-chip debug

- 1-wire serial control
- Serial writing supported (asynchronous mode)

Cypress Semiconductor CorporationDocument Number: 002-04698 Rev. *A

Hardware/software watchdog timer

- Built-in hardware watchdog timer
- Built-in software watchdog timer

Power-on reset

A power-on reset is generated when the power is switched on.

Low-voltage detection (LVD) reset circuit (only available on MB95F613K/F614K/F616K)

Built-in low-voltage detection function (The combination of detection voltage and release voltage can be selected from four options.)

Clock supervisor counter

Built-in clock supervisor counter

Dual operation Flash memory

The program/erase operation and the read operation can be executed in different banks (upper bank/lower bank) simultaneously.

Flash memory security function

Protects the content of the Flash memory.

Contents

Product Line-up	
Packages and Corresponding Products	8
Differences Among Products and Notes	
On Product Selection	8
Pin Assignment	9
Pin Functions	
I/O Circuit Type	
Handling Precautions	
Precautions for Product Design	
Precautions for Package Mounting	
Precautions for Use Environment	
Notes on Device Handling	
Pin Connection	
Block Diagram	
CPU Core	
Memory Space	
Areas for Specific Applications	
I/O Map	
I/O Ports	34
Port 0	_
Port 0 configuration	
Block diagrams of port 0	
Port 0 registers	
Port 0 operations	
Port 1	
Port 1 configuration	
Block diagrams of port 1	
Port 1 registers	
Port 1 operations	
Port 2	
Port 2 configuration	
Block diagrams of port 2	
Port 2 registers	
Port 2 operations	50
Port 3	
Port 3 configuration	
Block diagrams of port 3	
Port 3 registers	
Port 3 operations	
Port 5	
Port 5 configuration	
Block diagrams of port 5	57

Port 5 registers	59
Port 5 operations	
Port 9	
Port 9 configuration	
Block diagrams of port 9	61
Port 9 registers	
Port 9 operations	63
Port F	
Port F configuration	
Block diagrams of port F	64
Port F registers	66
Port F operations	67
Port G	68
Port G configuration	
Block diagram of port G	
Port G registers	
Port G operations	
Interrupt Source Table	
Pin States in Each Mode	
Electrical Characteristics	
Absolute Maximum Ratings	76
Recommended Operating Conditions	
DC Characteristics	
AC Characteristics	
Clock Timing	83
Source Clock/Machine Clock	89
External Reset	
Power-on Reset	
Peripheral Input Timing	
Low-voltage Detection	
I2C Bus Interface TimingUART/SIO, Serial I/O Timing	95
A/D Converter	
A/D Converter Electrical Characteristics	
Notes on Using A/D Converter	
Definitions of A/D Converter Terms	
Flash Memory Program/Erase Characteristics	106
MASK Options	
Ordering Information	
Package Dimension	
Major Changes	
wajur unanges	1 10

1. Product Line-up

Part number								
	MB95F613H	MB95F614H	MB95F616H	MB95F613K	MB95F614K	MB95F616K		
Parameter								
Туре			Flash mem	ory product				
Clock supervisor counter	It supervises the m	ain clock oscillation	and the subclock of	oscillation.				
Flash memory capacity	12 Kbyte	20 Kbyte	36 Kbyte	12 Kbyte	20 Kbyte	36 Kbyte		
RAM capacity	512 bytes	1024 bytes	1024 bytes	512 bytes	1024 bytes	1024 bytes		
Power-on reset			Y	es				
Low-voltage detection reset		No			Yes			
Reset input	Wit	h dedicated reset ir	put	Sel	ected through softw	/are		
CPU functions								
General-purpose I/O	I/O portCMOS I/ON-ch open drain	: 40 : 39 : 1		I/O portCMOS I/ON-ch open drain	: 41 : 39 : 2			
Time-base timer	Interval time: 0.256	ms to 8.3 s (extern	nal clock frequency	= 4 MHz)				
Hardware/ software watchdog timer		n cycle n clock at 10 MHz: ´ k can be used as th		he software watchd	og timer.			
Wild register	It can be used to re	eplace 3 bytes of da	ta.					
8/10-bit	4 channels							
A/D converter	8-bit or 10-bit resol	ution can be selecte	ed.					
	2 channels							
 8/16-bit composite timer The timer can be configured as an "8-bit timer × 2 channels" or a "16-bit timer × 1 channel". It has the following functions: interval timer function, PWC function, PWM function and input capture Count clock: it can be selected from internal clocks (seven types) and external clocks. It can output square wave. 					apture function.			
	8 channels							
External interrupt	 Interrupt by edge detection (The rising edge, falling edge, and both edges can be selected.) It can be used to wake up the device from different standby modes. 							
On-chip debug		1-wire serial control tsupports serial writing (asynchronous mode).						

Part number								
	MB95F613H	MB95F614H	MB95F616H	MB95F613K	MB95F614K	MB95F616K		
Parameter								
	2 channels							
UART/SIO	 Data transfer with UART/SIO is enabled. It has a full duplex double buffer, variable data length (5/6/7/8 bits), an internal baud rate generator and an erro detection function. It uses the NRZ type transfer format. LSB-first data transfer and MSB-first data transfer are available to use. Both clock asynchronous (UART) serial data transfer and clock synchronous (SIO) serial data transfer are enabled 							
_	1 channel							
I ² C bus interface	 It has the follow 				nsmission direction ART conditions.	detection function,		
	2 channels							
8/16-bit PPG			-bit timer × 2 chann selected from eight		er × 1 channel".			
	1 channel							
16-bit reload timer	It can output squCount clock: it ca	are wave. an be selected from	pperating modes are internal clocks (se ad mode and one-sl	ven types) and exte	ernal clocks.			
	By configuring the implemented. When become unavailable	n the event counter						
LCDC controller	 SEG output: 48 of a lifthe number of pixels that can If the number of the	be displayed 208 (able) 4, the maximum nur (4 \times 52). 3, the maximum nur	•	ts is 52, and the ma			
 (LCDC) Duty LCD mode LCD standby mode Blinking function Internal divider resistor whose resistance value can be selected from 10 kΩ or 100 kΩ through software Interrupt in sync with the LCD module frame frequency Inverted display function 						n software		
Watch counter	 Count clock: four selectable clock sources (125 ms, 250 ms, 500 ms or 1 s) The counter value can be selected from 0 to 63. (The watch counter can count for one minute when the clock source is one second and the counter value is set to 60.) 							
Watch prescaler	Eight different time	intervals can be se	elected.					

Part number Parameter	MB95F613H	MB95F614H	MB95F61	16H	MB95F	613K	MB95	5F614K	MB95F616K
It supports automatic programming (Embedded Algorithm), and program/erase/erase-suspendent commands. It has a flag indicating the completion of the operation of Embedded Algorithm. Flash memory								end/erase-resume	
	Number of pro			000 vears	10000 10 year		100000 5 years		
Standby mode	There are four standby modes as follows: • Stop mode • Sleep mode • Watch mode • Time-base timer mode In standby mode, two further options can be selected: normal standby mode and deep standby mode.								
Package			F	PT-80	P-M37				

2. Packages and Corresponding Products

Part number Package	MB95F613H	MB95F614H	MB95F616H	MB95F613K	MB95F614K	MB95F616K
FPT-80P-M37	О	О	О	О	О	O

O: Available

3. Differences Among Products and Notes On Product Selection

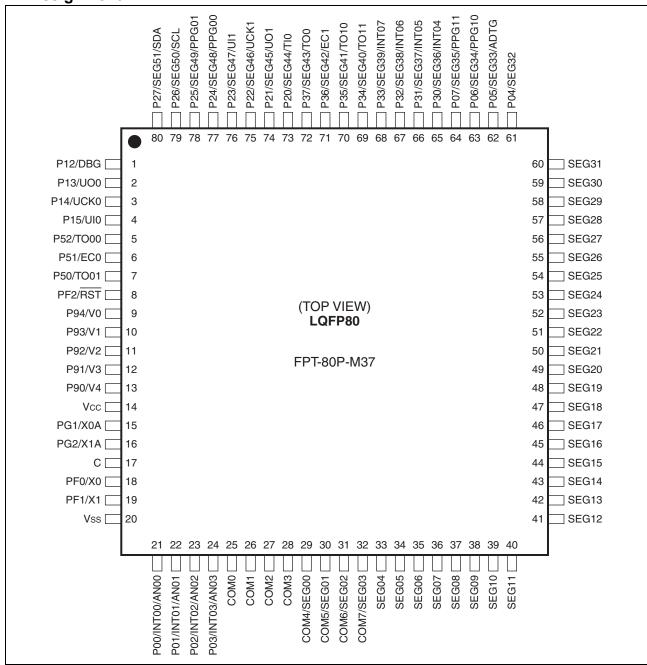
■ Current consumption

When using the on-chip debug function, take account of the current consumption of Flash program/erase. For details of current consumption, see "Electrical Characteristics".

■ Package

For details of information on each package, see "Packages and Corresponding Products" and "Package Dimension".

■ Operating voltage


The operating voltage varies, depending on whether the on-chip debug function is used or not. For details of operating voltage, see "Electrical Characteristics".

■ On-chip debug function

The on-chip debug function requires that V_{CC} , V_{SS} and one serial wire be connected to an evaluation tool. For details of the connection method, refer to "CHAPTER 25 EXAMPLE OF SERIAL PROGRAMMING CONNECTION" in "New 8FX MB95610H Series Hardware Manual".

4. Pin Assignment

5. Pin Functions

			_		I/O type			
Pin no.	Pin name	I/O circuit type*1	Function	Input	Output	OD*2	PU*3	
4	P12	^	General-purpose I/O port	Llustanasia	CMOC	0		
1	DBG	Α	DBG input pin	Hysteresis	CMOS		_	
0	P13	Б	General-purpose I/O port	Llustanasia	01400		_	
2	UO0	В	UART/SIO ch. 0 data output pin	Hysteresis	CMOS	_	О	
2	P14	В	General-purpose I/O port	Lluotoropio	CMOS		0	
3	UCK0	В	UART/SIO ch. 0 clock I/O pin	Hysteresis	CMOS	_	О	
4	P15	В	General-purpose I/O port	Lluotoropio	CMOS		0	
4	UI0	В	UART/SIO ch. 0 data input pin	Hysteresis	CMOS	_	О	
5	P52	В	General-purpose I/O port	Lluotoropio	CMOS		0	
5	TO00	В	8/16-bit composite timer ch. 0 output pin	Hysteresis	CMOS	_	О	
6	P51	В	General-purpose I/O port	Lluotoropio	CMOS		0	
6	EC0	В	8/16-bit composite timer ch. 0 clock input pin	Hysteresis	CMOS	_	О	
7	P50	Б	General-purpose I/O port	I bostonosio	CMOS			
7	TO01	В	8/16-bit composite timer ch. 0 output pin	Hysteresis		_	О	
	PF2		General-purpose I/O port	Hysteresis				
8	RST	С	Reset pin Dedicated reset pin on MB95F613H/F614H/F616H		CMOS	О	_	
•	P94	-	General-purpose I/O port		01400			
9	V0	D	LCD drive power supply pin	Hysteresis	CMOS	_	_	
40	P93	6	General-purpose I/O port	I books as also	CMOS			
10	V1	D	LCD drive power supply pin	Hysteresis	CMOS	_	_	
44	P92	6	General-purpose I/O port	Hyotoroojo	01400			
11	V2	D	LCD drive power supply pin	Hysteresis	CMOS	_	_	
40	P91	D	General-purpose I/O port	I livete menie	CMOC			
12	V3	D	LCD drive power supply pin	Hysteresis	CMOS	_	_	
13	P90	D	General-purpose I/O port	Hyatoronia	CMOS			
13	V4		LCD drive power supply pin	Hysteresis	CIVIOS		_	
14	V _{CC}	_	Power supply pin	_	_	_	_	
15	PG1	E	General-purpose I/O port	Hysteresis	CMOS		0	
15	X0A		Subclock input oscillation pin (32 kHz)	пуѕістеѕіѕ	CIVIOS		О	
16	PG2	E	General-purpose I/O port	Lluotoropio	CMOS		0	
16	X1A	<u> </u>	Subclock I/O oscillation pin (32 kHz)	Hysteresis	CMOS		О	
17	С	_	Decoupling capacitor connection pin	_	_	_	_	
10	PF0	F	General-purpose I/O port	Hyetorosia	CMOS			
18	X0	٦	Main clock input oscillation pin	Hysteresis	CIVIUS	_		
10	PF1	F	General-purpose I/O port	Lluotoroois	CMOS	· -		
19	X1		Main clock I/O oscillation pin	Hysteresis	CMOS		-	
20	V _{SS}	_	Power supply pin (GND)	_	_	_	_	

		4			I/O type		
Pin no.	Pin name	I/O circuit type*1	Function	Input	Output	OD*2	PU*3
	P00		General-purpose I/O port				
21	INT00	G	External interrupt input pin	Hysteresis/ analog	CMOS	_	_
	AN00		8/10-bit A/D converter analog input pin	analog			
	P01		General-purpose I/O port				
22	INT01	G	External interrupt input pin	Hysteresis/ analog	CMOS	_	_
	AN01		8/10-bit A/D converter analog input pin	arialog			
	P02		General-purpose I/O port				
23	INT02	G	External interrupt input pin	Hysteresis/ analog	CMOS	_	_
	AN02		8/10-bit A/D converter analog input pin	arialog			
	P03		General-purpose I/O port				
24	INT03	G	External interrupt input pin	Hysteresis/ analog	CMOS	_	_
	AN03		8/10-bit A/D converter analog input pin	analog			
25	COM0	Н	LCDC COM0 output pin	Hysteresis	LCD	_	_
26	COM1	Н	LCDC COM1 output pin	Hysteresis	LCD	_	_
27	COM2	Н	LCDC COM2 output pin	Hysteresis	LCD	_	_
28	COM3	Н	LCDC COM3 output pin	Hysteresis	LCD	_	_
	COM4		LCDC COM4 output pin		LCD		
29	SEG00	Н	LCDC SEG00 output pin	Hysteresis		_	_
	COM5		LCDC COM5 output pin				
30	SEG01	Н	LCDC SEG01 output pin	Hysteresis	LCD		_
0.1	COM6		LCDC COM6 output pin		LCD		
31	SEG02	Н	LCDC SEG02 output pin	Hysteresis		_	_
00	COM7		LCDC COM7 output pin		1.00		
32	SEG03	Н	LCDC SEG03 output pin	Hysteresis	LCD	_	_
33	SEG04	Н	LCDC SEG04 output pin	Hysteresis	LCD	_	_
34	SEG05	Н	LCDC SEG05 output pin	Hysteresis	LCD	_	_
35	SEG06	Н	LCDC SEG06 output pin	Hysteresis	LCD	_	_
36	SEG07	Н	LCDC SEG07 output pin	Hysteresis	LCD	_	_
37	SEG08	Н	LCDC SEG08 output pin	Hysteresis	LCD	_	_
38	SEG09	Н	LCDC SEG09 output pin	Hysteresis	LCD	_	_
39	SEG10	Н	LCDC SEG10 output pin	Hysteresis	LCD	_	_
40	SEG11	Н	LCDC SEG11 output pin	Hysteresis	LCD	_	_
41	SEG12	Н	LCDC SEG12 output pin	Hysteresis	LCD	_	_
42	SEG13	Н	LCDC SEG13 output pin	Hysteresis	LCD	_	_
43	SEG14	Н	LCDC SEG14 output pin	Hysteresis	LCD	_	_
44	SEG15	Н	LCDC SEG15 output pin	Hysteresis	LCD	_	_
45	SEG16	Н	LCDC SEG16 output pin	Hysteresis	LCD	_	_
46	SEG17	Н	LCDC SEG17 output pin	Hysteresis	LCD	_	_
47	SEG18	Н	LCDC SEG18 output pin	Hysteresis	LCD	_	_
48	SEG19	Н	LCDC SEG19 output pin	Hysteresis	LCD	_	_

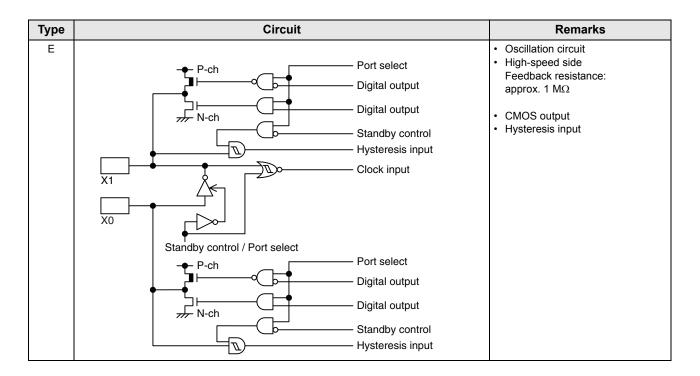
			_ ,,		I/O type		
Pin no.	Pin name	I/O circuit type*1	Function	Input	Output	OD*2	PU*3
49	SEG20	Н	LCDC SEG20 output pin	Hysteresis	LCD	_	_
50	SEG21	Н	LCDC SEG21 output pin	Hysteresis	LCD	_	_
51	SEG22	Н	LCDC SEG22 output pin	Hysteresis	LCD	_	_
52	SEG23	Н	LCDC SEG23 output pin	Hysteresis	LCD	_	_
53	SEG24	Н	LCDC SEG24 output pin	Hysteresis	LCD	_	_
54	SEG25	Н	LCDC SEG25 output pin	Hysteresis	LCD	_	_
55	SEG26	Н	LCDC SEG26 output pin	Hysteresis	LCD	_	_
56	SEG27	Н	LCDC SEG27 output pin	Hysteresis	LCD	_	_
57	SEG28	Н	LCDC SEG28 output pin	Hysteresis	LCD	_	_
58	SEG29	Н	LCDC SEG29 output pin	Hysteresis	LCD	_	_
59	SEG30	Н	LCDC SEG30 output pin	Hysteresis	LCD	_	_
60	SEG31	Н	LCDC SEG31 output pin	Hysteresis	LCD	_	_
	P04		General-purpose I/O port		CMOS/LC D	_	
61	SEG32	I	LCDC SEG32 output pin	Hysteresis			_
	P05		General-purpose I/O port				
62	SEG33	I	LCDC SEG33 output pin	Hysteresis	CMOS/LC D	_	_
	ADTG		8/10-bit A/D converter trigger input pin				
	P06		General-purpose I/O port		CMOS/LC D	_	
63	SEG34	I	LCDC SEG34 output pin	Hysteresis			_
	PPG10		8/16-bit PPG ch. 1 output pin				
	P07		General-purpose I/O port				
64	SEG35	I	LCDC SEG35 output pin	Hysteresis	CMOS/LC D	_	_
	PPG11		8/16-bit PPG ch. 1 output pin				
	P30		General-purpose I/O port				
65	SEG36	I	LCDC SEG36 output pin	Hysteresis	CMOS/LC D	_	_
	INT04		External interrupt input pin				
	P31		General-purpose I/O port				
66	SEG37	I	LCDC SEG37 output pin	Hysteresis	CMOS/LC D	_	_
	INT05		External interrupt input pin				
	P32		General-purpose I/O port				
67	SEG38	I	LCDC SEG38 output pin	Hysteresis	CMOS/LC D	_	_
	INT06		External interrupt input pin				
	P33		General-purpose I/O port				
68	SEG39	I	LCDC SEG39 output pin	Hysteresis	CMOS/LC D	—	_
	INT07		External interrupt input pin				
	P34		General-purpose I/O port				
69	SEG40	I	LCDC SEG40 output pin	Hysteresis	esis CMOS/LC D	—	_
	TO11		8/16-bit composite timer ch. 1 output pin				

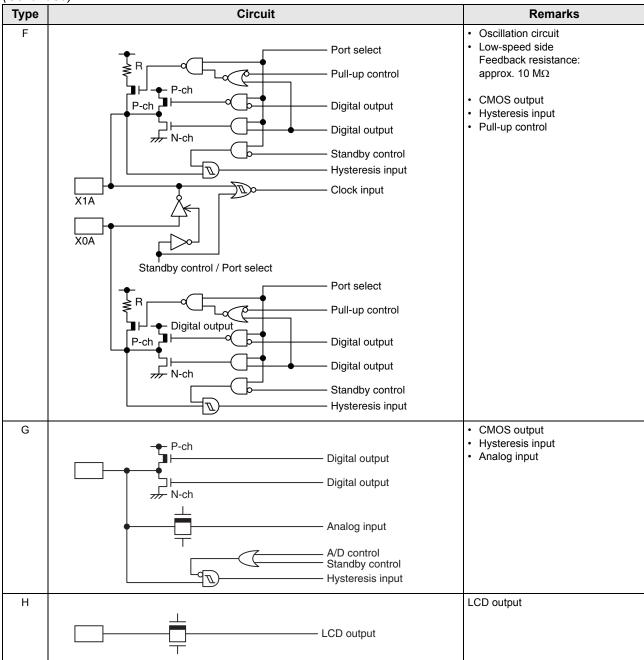
Dia	Dim w	n nama 1/0 .: .: .:	F4!	I/O type														
Pin no.	Pin name	I/O circuit type*1	Function	Input	Output	OD*2	PU*3											
	P35		General-purpose I/O port															
70	SEG41	1	LCDC SEG41 output pin	Hysteresis	CMOS/LC D	—	_											
	TO10		8/16-bit composite timer ch. 1 output pin															
	P36		General-purpose I/O port															
71	SEG42	1	LCDC SEG42 output pin	Hysteresis	CMOS/LC D	_	_											
	EC1		8/16-bit composite timer ch. 1 clock input pin															
	P37		General-purpose I/O port															
72	SEG43	1	LCDC SEG43 output pin	Hysteresis	CMOS/LC D	_	_											
	TO0		16-bit reload timer ch. 0 output pin	7														
	P20		General-purpose I/O port															
73	SEG44	1	LCDC SEG44 output pin	Hysteresis	CMOS/LC D	_	_											
	TI0		16-bit reload timer ch. 0 input pin															
	P21		General-purpose I/O port		CMOS/LC D													
74	SEG45	1	LCDC SEG45 output pin	Hysteresis		_	_											
	UO1		UART/SIO ch. 1 data output pin															
	P22		General-purpose I/O port		CMOS/LC D	_												
75	SEG46	1	LCDC SEG46 output pin	Hysteresis			_											
	UCK1		UART/SIO ch. 1 clock I/O pin	7														
	P23		General-purpose I/O port															
76	SEG47	1	LCDC SEG47 output pin	Hysteresis	Hysteresis	Hysteresis	Hysteresis	Hysteresis	Hysteresis	Hysteresis	Hysteresis	HVStArASIS	Hysteresis	CMOS/LC	is CMOS/LC	HVStArASIS	_	_
	UI1		UART/SIO ch. 1 data input pin	7														
	P24		General-purpose I/O port															
77	SEG48	1	LCDC SEG48 output pin	Hysteresis	CMOS/LC D	_	_											
	PPG00		8/16-bit PPG ch. 0 output pin															
	P25		General-purpose I/O port															
78	SEG49	1	LCDC SEG49 output pin	Hysteresis	CMOS/LC D	_	_											
	PPG01	•	8/16-bit PPG ch. 0 output pin															
	P26		General-purpose I/O port		01400# 0													
79	SEG50	1	LCDC SEG50 output pin	Hysteresis	CMOS/LC D	_	_											
	SCL		I ² C bus interface ch. 0 clock I/O pin															
	P27		General-purpose I/O port		01400# 0													
80	SEG51	1	LCDC SEG51 output pin	Hysteresis	CMOS/LC D	_	_											
	SDA		I ² C bus interface ch. 0 data I/O pin		ا ا													

O: Available

3:Pull-up

^{1:}For the I/O circuit types, see "I/O Circuit Type".


^{2:}N-ch open drain


6. I/O Circuit Type

Type	Circuit	Remarks
A	Standby control Hysteresis input N-ch	N-ch open drain output Hysteresis input
В	Pull-up control P-ch Digital output N-ch Standby control Hysteresis input	CMOS output Hysteresis input Pull-up control
С	Reset input / Hysteresis input Reset output / Digital output	N-ch open drain output Hysteresis input Reset output
D	P-ch Digital output Digital output LCD internal divider resistor I/O LCD control Standby control Hysteresis input	CMOS output LCD power supply Hysteresis input

Туре	Circuit	Remarks
ı	P-ch Digital output Digital output	CMOS output LCD output Hysteresis input
	LCD output LCD control Standby control Hysteresis input	

7. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

7.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

■ Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

■ Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

■ Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.

Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■ Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- (2) Be sure that abnormal current flows do not occur during the power-on sequence.
- Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■ Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

■ Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

7.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

■ Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

■ Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with FUJITSU SEMICONDUCTOR ranking of recommended conditions.

■ Lead-Free Packaging

When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

■ Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5 °C and 30°C.
 - When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- (3) When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

■ Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the FUJITSU SEMICONDUCTOR recommended conditions for baking.

Condition: 125°C/24 h

■ Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 $M\Omega$). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- (4) Ground all fixtures and instruments, or protect with anti-static measures.
- (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

Document Number: 002-04698 Rev. *A

7.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

8. Notes on Device Handling

■ Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating.

In a CMOS IC, if a voltage higher than V_{CC} or a voltage lower than V_{SS} is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "18.1 Absolute Maximum Ratings" of "Electrical Characteristics" is applied to the V_{CC} pin or the V_{SS} pin, a latch-up may occur.

When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

Stabilizing supply voltage

Supply voltage must be stabilized.

A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the V_{CC} power supply voltage.

As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in V_{CC} ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard V_{CC} value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply.

Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

9. Pin Connection

■ Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least $2 \text{ k}\Omega$. Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

■ Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the V_{CC} pin and the V_{SS} pin to the power supply and ground outside the device. In addition, connect the current supply source to the V_{CC} pin and the V_{SS} pin with low impedance.

It is also advisable to connect a ceramic capacitor of approximately 0.1 μF as a decoupling capacitor between the V_{CC} pin and the V_{SS} pin at a location close to this device.

■ DBG pin

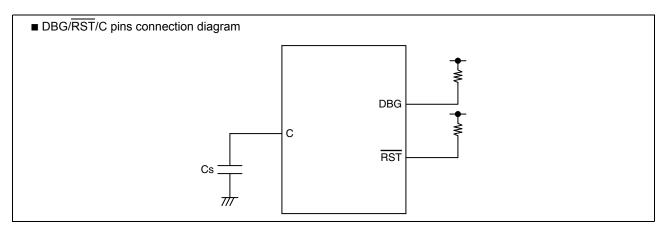
Connect the DBG pin to an external pull-up resistor of 2 k Ω or above.

After power-on, ensure that the DBG pin does not stay at "L" level until the reset output is released.

The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor.

■ RST pin

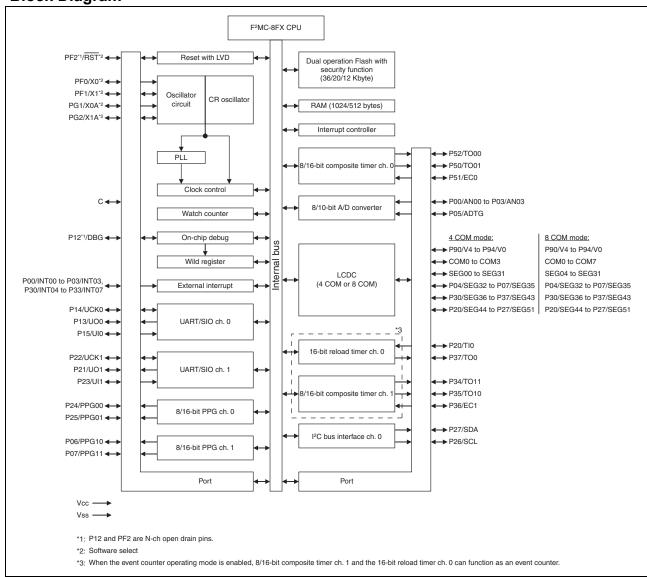
Connect the $\overline{\mathsf{RST}}$ pin to an external pull-up resistor of 2 k Ω or above.


To prevent the device from unintentionally entering the reset mode due to noise, minimize the interconnection length between a pull-up resistor and the $\overline{\text{RST}}$ pin and that between a pull-up resistor and the V_{CC} pin when designing the layout of the printed circuit board.

The PF2/RST pin functions as the reset input/output pin after power-on. In addition, the reset output of the PF2/RST pin can be enabled by the RSTOE bit in the SYSC register, and the reset input function and the general purpose I/O function can be selected by the RSTEN bit in the SYSC register.

■ C pin

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the V_{CC} pin must have a capacitance equal to or larger than the capacitance of C_S . For the connection to a decoupling capacitor C_S , see the diagram below. To prevent the device from unintentionally entering a mode to which the device is not set to transit due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board.



■ Note on serial communication

In serial communication, reception of wrong data may occur due to noise or other causes. Therefore, design a printed circuit board to prevent noise from occurring. Taking account of the reception of wrong data, take measures such as adding a checksum to the end of data in order to detect errors. If an error is detected, retransmit the data.

10. Block Diagram

11. CPU Core

■ Memory space

The memory space of the MB95610H Series is 64 Kbyte in size, and consists of an I/O area, an extended I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95610H Series are shown below.

■ Memory maps

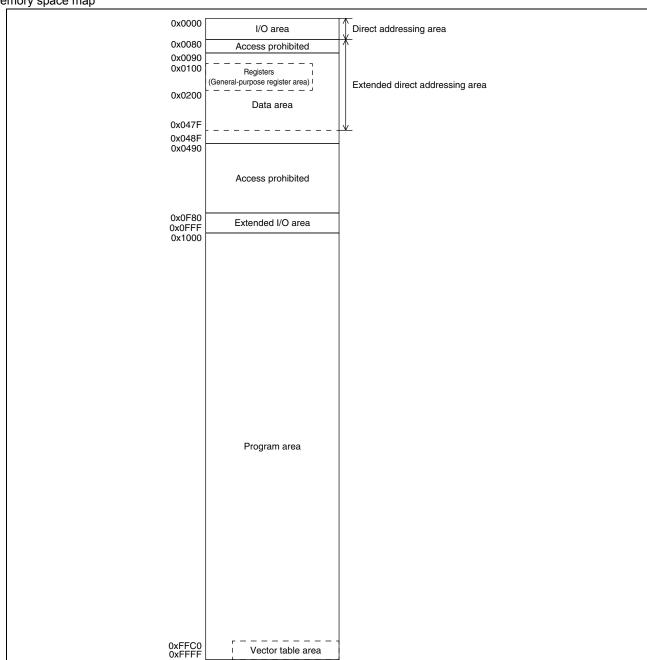
	MB95F613H/F613K		MB95F614H/F614K		MB95F616H/F616K
0x0000	I/O area	0x0000	I/O area	0x0000	I/O area
0x0080	Access prohibited	0x0080	Access prohibited	0x0080	Access prohibited
0x0090		0x0090		0x0090	
0x0100	RAM 512 bytes Registers	0x0100	RAM 1024 bytes Registers	0x0100	RAM 1024 bytes Registers
0x0200	Registers	0x0200	Registers	0x0200	Registers
0x0290					
	Access prohibited	0x0490 -	Access prohibited	- 0x0490 -	Access prohibited
0x0F80		0x0F80		0x0F80	
0x1000	Extended I/O area	0x1000	Extended I/O area	0x1000	Extended I/O area
0x2000 —	Flash memory 4 Kbyte	0x2000 -	Flash memory 4 Kbyte	0x2000 -	Flash memory 4 Kbyte
	Access prohibited		Access prohibited	0×8000 -	Access prohibited
0xE000		0xC000 -	Flash memory 16 Kbyte		Flash memory 32 Kbyte
	Flash memory 8 Kbyte				
	riasirinemory o Royle				
0xFFFF		0xFFFF		0xFFFF	

12. Memory Space

The memory space of the MB95610H Series is 64 Kbyte in size, and consists of an I/O area, an extended I/O area, a data area, and a program area. The memory space includes areas for specific applications such as general-purpose registers and a vector table.

- I/O area (addresses: 0x0000 to 0x007F)
 - ☐ This area contains the control registers and data registers for built-in peripheral functions.
 - □ As the I/O area forms part of the memory space, it can be accessed in the same way as the memory. It can also be accessed at high-speed by using direct addressing instructions.
- Extended I/O area (addresses: 0x0F80 to 0x0FFF)
 - □ This area contains the control registers and data registers for built-in peripheral functions.
 - ☐ As the extended I/O area forms part of the memory space, it can be accessed in the same way as the memory.

■ Data area


- Static RAM is incorporated in the data area as the internal data area.
- ☐ The internal RAM size varies according to product.
- ☐ The RAM area from 0x0090 to 0x00FF can be accessed at high-speed by using direct addressing instructions.
- □ In MB95F614H/F614K/F616H/F616K, the area from 0x0090 to 0x047F is an extended direct addressing area. It can be accessed at high-speed by direct addressing instructions with a direct bank pointer set.
- □ In MB95F613H/F613K, the area from 0x0090 to 0x028F is an extended direct addressing area. It can be accessed at high-speed by direct addressing instructions with a direct bank pointer set.
- ☐ The area from 0x0100 to 0x01FF can be used as a general-purpose register area.

■ Program area

- ☐ The Flash memory is incorporated in the program area as the internal program area.
- ☐ The Flash memory size varies according to product.
- ☐ The area from 0xFFC0 to 0xFFFF is used as the vector table.
- ☐ The area from 0xFFBB to 0xFFBF is used to store data of the non-volatile register.

13. Areas for Specific Applications

The general-purpose register area and vector table area are used for the specific applications.

- General-purpose register area (Addresses: 0x0100 to 0x01FF*)
 - ☐ This area contains the auxiliary registers used for 8-bit arithmetic operations, transfer, etc.
 - ☐ As this area forms part of the RAM area, it can also be used as conventional RAM.
 - □ When the area is used as general-purpose registers, general-purpose register addressing enables high-speed access with short instructions.
- Non-volatile register data area (Addresses: 0xFFBB to 0xFFBF)
 - □ The area from 0xFFBB to 0xFFBF is used to store data of the non-volatile register. For details, refer to "CHAPTER 27 NON-VOL-ATILE REGISTER (NVR) INTERFACE" in "New 8FX MB95610H Series Hardware Manual".
- Vector table area (Addresses: 0xFFC0 to 0xFFFF)
 - $\ \square$ This area is used as the vector table for vector call instructions (CALLV), interrupts, and resets.
 - □ The top of the Flash memory area is allocated to the vector table area. The start address of a service routine is set to an address in the vector table in the form of data.
- "■ Interrupt Source Table" lists the vector table addresses corresponding to vector call instructions, interrupts, and resets.

 For details, refer to "CHAPTER 4 RESET", "CHAPTER 5 INTERRUPTS", and "A.2 Special Instruction Special Instruction CALLV #vct" in "APPENDIX" in "New 8FX MB95610H Series Hardware Manual".

■ Direct bank pointer and access area

Direct bank pointer (DP[2:0])	Operand-specified dir	Access area
0bXXX (It does not affect mapping.)	0x0000 to 0x007F	0x0000 to 0x007F
0b000 (initial value)	0x0090 to 0x00FF	0x0090 to 0x00FF
0b001		0x0100 to 0x017F
0b010		0x0180 to 0x01FF
0b011		0x0200 to 0x027F
0b100	0x0080 to 0x00FF	0x0280 to 0x02FF*
0b101		0x0300 to 0x037F
0b110		0x0380 to 0x03FF
0b111		0x0400 to 0x047F

^{*:} Due to the memory size limit, the available access area is up to "0x028F" in MB95F613H/F613K.

Document Number: 002-04698 Rev. *A Page 27 of 110

14. I/O Map

0x0000 0x0001 0x0002 0x0003	PDR0 DDR0 PDR1 DDR1 —	Port 0 data register Port 0 direction register Port 1 data register	R/W R/W	0b0000000 0b00000000
0x0002 0x0003	PDR1		R/W	იგიიიიიიი
0x0003		Port 1 data register		000000000
	DDR1		R/W	0b00000000
0.0004	_	Port 1 direction register	R/W	0b00000000
0x0004		(Disabled)	_	_
0x0005	WATR	Oscillation stabilization wait time setting register	R/W	0b11111111
0x0006	PLLC	PLL control register	R/W	0b000X0000
0x0007	SYCC	System clock control register	R/W	0bXXX11011
0x0008	STBC	Standby control register	R/W	0b00000000
0x0009	RSRR	Reset source register	R/W	0b000XXXXX
0x000A	TBTC	Time-base timer control register	R/W	0b00000000
0x000B	WPCR	Watch prescaler control register	R/W	0b00000000
0x000C	WDTC	Watchdog timer control register	R/W	0b00XX0000
0x000D	SYCC2	System clock control register 2	R/W	0bXXXX0011
0x000E	PDR2	Port 2 data register	R/W	0b00000000
0x000F	DDR2	Port 2 direction register	R/W	0b00000000
0x0010	PDR3	Port 3 data register	R/W	0b00000000
0x0011	DDR3	Port 3 direction register	R/W	0b00000000
0x0012, 0x0013	_	(Disabled)		_
0x0014	PDR5	Port 5 data register	R/W	0b00000000
0x0015	DDR5	Port 5 direction register		0b00000000
0x0016 to 0x001B	_	(Disabled)		_
0x001C	PDR9	Port 9 data register	R/W	0b00000000
0x001D	DDR9	Port 9 direction register	R/W	0b00000000
0x001E	STBC2	Standby control register 2		0b00000000
0x001F to 0x0027	_	(Disabled)		_
0x0028	PDRF	Port F data register		0b00000000
0x0029	DDRF	Port F direction register		0b00000000
0x002A	PDRG	Port G data register		0b00000000
0x002B	DDRG	Port G direction register		0b00000000
0x002C	_	(Disabled)		_
0x002D	PUL1	Port 1 pull-up register		0b00000000
0x002E to 0x0030	_	(Disabled)		_
0x0031	PUL5	Port 5 pull-up register	R/W	0b00000000

Address	Register abbreviation	Register name		Initial value
0x0032 to	_	(Disabled)		_
0x0034				
0x0035	PULG	Port G pull-up register	R/W	0b0000000
0x0036	T01CR1	8/16-bit composite timer 01 status control register 1	R/W	0b0000000
0x0037	T00CR1	8/16-bit composite timer 00 status control register 1	R/W	0b0000000
0x0038	T11CR1	8/16-bit composite timer 11 status control register 1	R/W	0b0000000
0x0039	T10CR1	8/16-bit composite timer 10 status control register 1	R/W	0b0000000
0x003A	PC01	8/16-bit PPG timer 01 control register	R/W	0b0000000
0x003B	PC00	8/16-bit PPG timer 00 control register	R/W	0b0000000
0x003C	PC11	8/16-bit PPG timer 11 control register	R/W	0b00000000
0x003D	PC10	8/16-bit PPG timer 10 control register	R/W	0b00000000
0x003E	TMCSRH0	16-bit reload timer control status register (upper) ch. 0	R/W	0b00000000
0x003F	TMCSRL0	16-bit reload timer control status register (lower) ch. 0	R/W	0b0000000
0x0040				
to	_	(Disabled)	-	_
0x0047	=1000		5.04	01.0000000
0x0048	EIC00	External interrupt circuit control register ch. 0/ch. 1	R/W	0b00000000
0x0049	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	0b0000000
0x004A	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W R/W	0b0000000
0x004B	EIC30	External interrupt circuit control register ch. 6/ch. 7		0b0000000
0x004C, 0x004D	_	(Disabled)	_	_
0x004E	LVDR	LVD reset voltage selection ID register		0b0000000
0x004F	LCDCC2	LCDC control register 2		0b00010100
0x0050 to	_	(Disabled)		
0x0055		(Disabled)		
0x0056	SMC10	UART/SIO serial mode control register 1 ch. 0	R/W	0b00000000
0x0057	SMC20	UART/SIO serial mode control register 2 ch. 0	R/W	0b00100000
0x0058	SSR0	UART/SIO serial status and data register ch. 0	R/W	0b0000001
0x0059	TDR0	UART/SIO serial output data register ch. 0	R/W	0b00000000
0x005A	RDR0	UART/SIO serial input data register ch. 0		0b0000000
0x005B	SMC11	UART/SIO serial mode control register 1 ch. 1		0b0000000
0x005C	SMC21	UART/SIO serial mode control register 2 ch. 1		0b00100000
0x005D	SSR1	UART/SIO serial status and data register ch. 1		0b0000001
0x005E	TDR1	UART/SIO serial output data register ch. 1		0b00000000
0x005F	RDR1	UART/SIO serial input data register ch. 1		0b00000000
0x0060	IBCR00	I ² C bus control register 0 ch. 0		0b00000000
0x0061	IBCR10	I ² C bus control register 0 ch. 0		0b00000000

Address	Register abbreviation	Register name		Initial value
0x0062	IBSR0	I ² C bus status register ch. 0		0b00000000
0x0063	IDDR0	I ² C data register ch. 0		0b00000000
0x0064	IAAR0	I ² C address register ch. 0	R/W	0b00000000
0x0065	ICCR0	I ² C clock control register ch. 0	R/W	0b00000000
0x0066 to 0x006B	_	(Disabled)	_	_
0x006C	ADC1	8/10-bit A/D converter control register 1	R/W	0b00000000
0x006D	ADC2	8/10-bit A/D converter control register 2	R/W	0b00000000
0x006E	ADDH	8/10-bit A/D converter data register (upper)	R/W	0b00000000
0x006F	ADDL	8/10-bit A/D converter data register (lower)	R/W	0b0000000
0x0070	WCSR	Watch counter status register	R/W	0b0000000
0x0071	FSR2	Flash memory status register 2	R/W	0b0000000
0x0072	FSR	Flash memory status register	R/W	0b000X0000
0x0073	SWRE0	Flash memory sector write control register 0	R/W	0b00000000
0x0074	FSR3	Flash memory status register 3	R	0b000XXXXX
0x0075	FSR4	Flash memory status register 4	R/W	0b00000000
0x0076	WREN	Wild register address compare enable register	R/W	0b00000000
0x0077	WROR	Wild register data test setting register	R/W	0b00000000
0x0078	_	Mirror of register bank pointer (RP) and direct bank pointer (DP)		_
0x0079	ILR0	Interrupt level setting register 0		0b11111111
0x007A	ILR1	Interrupt level setting register 1		0b11111111
0x007B	ILR2	Interrupt level setting register 2		0b11111111
0x007C	ILR3	Interrupt level setting register 3	R/W	0b11111111
0x007D	ILR4	Interrupt level setting register 4	R/W	0b11111111
0x007E	ILR5	Interrupt level setting register 5	R/W	0b11111111
0x007F	_	(Disabled)	_	_
0x0F80	WRARH0	Wild register address setting register (upper) ch. 0	R/W	0b0000000
0x0F81	WRARL0	Wild register address setting register (lower) ch. 0	R/W	0b00000000
0x0F82	WRDR0	Wild register data setting register ch. 0	R/W	0b00000000
0x0F83	WRARH1	Wild register address setting register (upper) ch. 1	R/W	0b00000000
0x0F84	WRARL1	Wild register address setting register (lower) ch. 1	R/W	0b00000000
0x0F85	WRDR1	Wild register data setting register ch. 1		0b00000000
0x0F86	WRARH2	Wild register address setting register (upper) ch. 2		0b00000000
0x0F87	WRARL2	Wild register address setting register (lower) ch. 2	R/W	0b00000000
0x0F88	WRDR2	Wild register data setting register ch. 2	R/W	0b00000000
0x0F89				
to 0x0F91	_	(Disabled)	_	<u> </u>
0x0F92	T01CR0	8/16-bit composite timer 01 status control register 0	R/W	0b00000000
0x0F93	T00CR0	8/16-bit composite timer 00 status control register 0	R/W	0b00000000

Address	Register abbreviation	Register name		Initial value
0x0F94	T01DR	8/16-bit composite timer 01 data register		0b00000000
0x0F95	T00DR	8/16-bit composite timer 00 data register		0b00000000
0x0F96	TMCR0	8/16-bit composite timer 00/01 timer mode control register	R/W	0b00000000
0x0F97	T11CR0	8/16-bit composite timer 11 status control register 0	R/W	0b00000000
0x0F98	T10CR0	8/16-bit composite timer 10 status control register 0	R/W	0b00000000
0x0F99	T11DR	8/16-bit composite timer 11 data register	R/W	0b00000000
0x0F9A	T10DR	8/16-bit composite timer 10 data register	R/W	0b00000000
0x0F9B	TMCR1	8/16-bit composite timer 10/11 timer mode control register	R/W	0b00000000
0x0F9C	PPS01	8/16-bit PPG01 cycle setting buffer register	R/W	0b11111111
0x0F9D	PPS00	8/16-bit PPG00 cycle setting buffer register	R/W	0b11111111
0x0F9E	PDS01	8/16-bit PPG01 duty setting buffer register	R/W	0b11111111
0x0F9F	PDS00	8/16-bit PPG00 duty setting buffer register	R/W	0b11111111
0x0FA0	PPS11	8/16-bit PPG11 cycle setting buffer register	R/W	0b11111111
0x0FA1	PPS10	8/16-bit PPG10 cycle setting buffer register	R/W	0b11111111
0x0FA2	PDS11	8/16-bit PPG11 duty setting buffer register	R/W	0b11111111
0x0FA3	PDS10	8/16-bit PPG10 duty setting buffer register	R/W	0b11111111
0x0FA4	PPGS	8/16-bit PPG start register		0b00000000
0x0FA5	REVC	8/16-bit PPG output inversion register		0b00000000
TMRH0		16-bit reload timer timer register (upper) ch. 0	5.044	0b0000000
0x0FA6	TMRLRH0	16-bit reload timer reload register (upper) ch. 0	R/W	
0.0547	TMRL0	16-bit reload timer timer register (lower) ch. 0	R/W	01.0000000
0x0FA7	TMRLRL0	16-bit reload timer reload register (lower) ch. 0		0b00000000
0x0FA8	PSSR0	UART/SIO dedicated baud rate generator prescaler select register ch. 0	R/W	0b00000000
0x0FA9	BRSR0	UART/SIO dedicated baud rate generator baud rate setting register ch. 0	R/W	0b00000000
0x0FAA	PSSR1	UART/SIO dedicated baud rate generator prescaler select register ch. 1	R/W	0b00000000
0x0FAB	BRSR1	UART/SIO dedicated baud rate generator baud rate setting register ch.	R/W	0b00000000
0x0FAC to 0x0FAE	_	(Disabled)		_
0x0FAF	AIDRL	A/D input disable register (lower)		0b00000000
0x0FB0	LCDCC1	LCDC control register 1		0b00000000
0x0FB1	_	(Disabled)		_
0x0FB2	LCDCE1	LCDC enable register 1		0b00111110
0x0FB3	LCDCE2	LCDC enable register 2		0b00000000
0x0FB4	LCDCE3	LCDC enable register 3		0b00000000
0x0FB5	LCDCE4	LCDC enable register 4		0b00000000
0x0FB6	LCDCE5	LCDC enable register 5		0b0000000

Address	Register abbreviation	Register name	R/W	Initial value
0x0FB7	LCDCE6	LCDC enable register 6		0b00000000
0x0FB8	LCDCE7	LCDC enable register 7	R/W	0b0000000
0x0FB9	LCDCE8	LCDC enable register 8	R/W	0b00000000
0x0FBA	LCDCE9	LCDC enable register 9	R/W	0b0000000
0x0FBB	LCDCB1	LCDC blinking setting register 1	R/W	0b00000000
0x0FBC	LCDCB2	LCDC blinking setting register 2	R/W	0b00000000
0x0FBD to 0x0FE0	LCDRAM	LCDC display RAM 4 COM mode: 0x0FBD to 0x0FD6 (26 bytes) 8 COM mode: 0x0FC1 to 0x0FE0 (32 bytes)	R/W	0b0000000
0x0FE1	_	(Disabled)	-	_
0x0FE2	EVCR	Event counter control register	R/W	0bXXXXXXX0
0x0FE3	WCDR	Watch counter data register		0b00111111
0x0FE4	CRTH	Main CR clock trimming register (upper)	R/W	0b000XXXXX
0x0FE5	CRTL	Main CR clock trimming register (lower)	R/W	0b000XXXXX
0x0FE6	_	(Disabled)		_
0x0FE7	CRTDA	Main CR clock temperature dependent adjustment register		0b000XXXXX
0x0FE8	SYSC	System configuration register	R/W	0b11000011
0x0FE9	CMCR	Clock monitoring control register	R/W	0b00000000
0x0FEA	CMDR	Clock monitoring data register	R	0b00000000
0x0FEB	WDTH	Watchdog timer selection ID register (upper)	R	0bXXXXXXXX
0x0FEC	WDTL	Watchdog timer selection ID register (lower)		0bXXXXXXXX
0x0FED, 0x0FEE	_	(Disabled)		_
0x0FEF	WICR	Interrupt pin selection circuit control register	R/W	0b01000000
0x0FF0 to 0x0FFF	LCDRAM	LCDC display RAM 4 COM mode: Unused 8 COM mode: 0x0FF0 to 0x0FFF (16 bytes)	R/W	0b0000000

■ R/W access symbols

R/W : Readable/Writable

R : Read only

■ Initial value symbols

0 : The initial value of this bit is "0".
1 : The initial value of this bit is "1".
X : The initial value of this bit is undefined.

Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an indeterminate value is returned.

15. I/O Ports

■ List of port registers

Register name		Read/Write	Initial value
Port 0 data register	PDR0	R, RM/W	0b0000000
Port 0 direction register	DDR0	R/W	0b0000000
Port 1 data register	PDR1	R, RM/W	0b0000000
Port 1 direction register	DDR1	R/W	0b0000000
Port 2 data register	PDR2	R, RM/W	0b0000000
Port 2 direction register	DDR2	R/W	0b0000000
Port 3 data register	PDR3	R, RM/W	0b0000000
Port 3 direction register	DDR3	R/W	0b0000000
Port 5 data register	PDR5	R, RM/W	0b0000000
Port 5 direction register	DDR5	R/W	0b0000000
Port 9 data register	PDR9	R, RM/W	0b0000000
Port 9 direction register	DDR9	R/W	0b0000000
Port F data register	PDRF	R, RM/W	0b0000000
Port F direction register	DDRF	R/W	0b0000000
Port G data register	PDRG	R, RM/W	0b0000000
Port G direction register	DDRG	R/W	0b0000000
Port 1 pull-up register	PUL1	R/W	0b0000000
Port 5 pull-up register	PUL5	R/W	0b0000000
Port G pull-up register	PULG	R/W	0b0000000
A/D input disable register (lower)	AIDRL	R/W	0b0000000

R/W : Readable/writable (The read value is the same as the write value.)

R, RM/W : Readable/writable (The read value is different from the write value. The write value is read by the read-modify-write

(RMW) type of instruction.)

15.1 Port 0

Port 0 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95610H Series Hardware Manual".

15.1.1 Port 0 configuration

Port 0 is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port 0 data register (PDR0)
- Port 0 direction register (DDR0)
- A/D input disable register (lower) (AIDRL)

15.1.2 Block diagrams of port 0

■ P00/INT00/AN00 pin

This pin has the following peripheral functions:

- ☐ External interrupt circuit input pin (INT00)
- □ 8/10-bit A/D converter analog input pin (AN00)

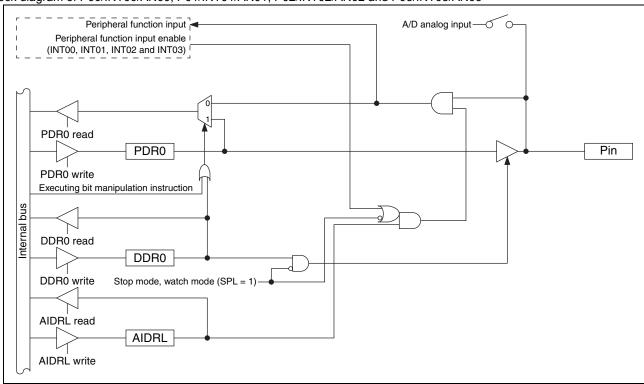
■ P01/INT01/AN01 pin

This pin has the following peripheral functions:

- ☐ External interrupt circuit input pin (INT01)
- □ 8/10-bit A/D converter analog input pin (AN01)

■ P02/INT02/AN02 pin

This pin has the following peripheral functions:

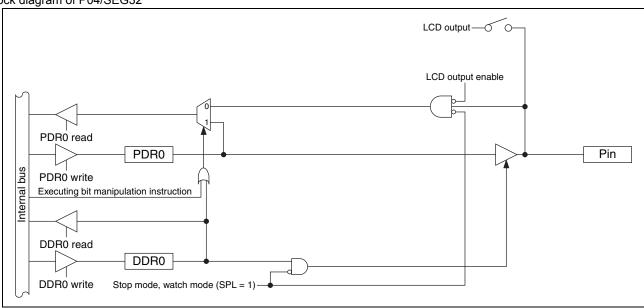

- ☐ External interrupt circuit input pin (INT02)
- □ 8/10-bit A/D converter analog input pin (AN02)

■ P03/INT03/AN03 pin

This pin has the following peripheral functions:

- ☐ External interrupt circuit input pin (INT03)
- □ 8/10-bit A/D converter analog input pin (AN03)

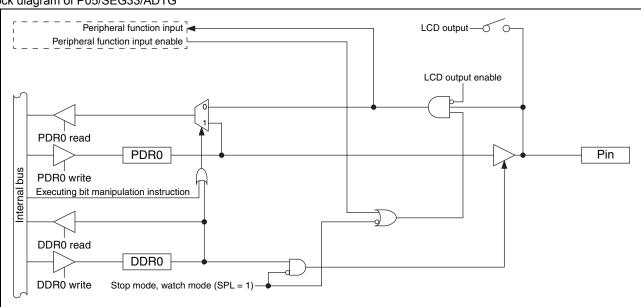
■ Block diagram of P00/INT00/AN00, P01/INT01/AN01, P02/INT02/AN02 and P03/INT03/AN03


■ P04/SEG32 pin

This pin has the following peripheral function:

□ LCDC SEG32 output pin (SEG32)

■ Block diagram of P04/SEG32



■ P05/SEG33/ADTG pin

This pin has the following peripheral functions:

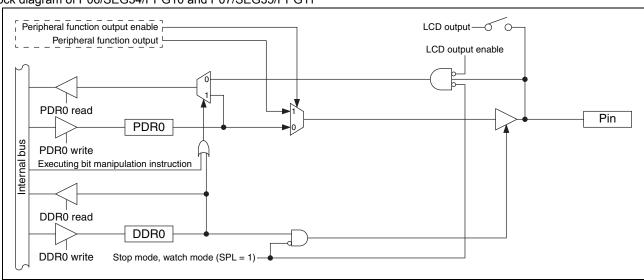
- □ LCDC SEG33 output pin (SEG33)
- □ 8/10-bit A/D converter trigger input pin (ADTG)

■ Block diagram of P05/SEG33/ADTG

■ P06/SEG34/PPG10 pin

This pin has the following peripheral functions:

- □ LCDC SEG34 output pin (SEG34)
- □ 8/16-bit PPG ch. 1 output pin (PPG10)



■ P07/SEG35/PPG11 pin

This pin has the following peripheral functions:

- □ LCDC SEG35 output pin (SEG35)
- □ 8/16-bit PPG ch. 1 output pin (PPG11)

■ Block diagram of P06/SEG34/PPG10 and P07/SEG35/PPG11

15.1.3 Port 0 registers

■ Port 0 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write				
PDR0	0	Pin state is "L" level.	PDR0 value is "0".	As output port, outputs "L" level.				
PDRU	1	Pin state is "H" level.	PDR0 value is "1".	As output port, outputs "H" level.				
DDR0	0		Port input enabled					
DDRU	1	Port output enabled						
AIDRL	0		Analog input enabled					
AIDINE	1	Port input enabled						

■ Correspondence between registers and pins for port 0

		Correspondence between related register bits and pins								
Pin name	P07	P06	P05	P04	P03	P02	P01	P00		
PDR0	bit7	bit6	bit5	bit4						
DDR0	DILI	DILO	טונט	DIL4	bit3	bit2	bit1	bit0		
AIDRL	-	-	-	-						

15.1.4 Port 0 operations

■ Operation as an output port

- □ A pin becomes an output port if the bit in the DDR0 register corresponding to that pin is set to "1".
- □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- □ When a pin is used as an output port, it outputs the value of the PDR0 register to external pins.
- □ If data is written to the PDR0 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
- □ Reading the PDR0 register returns the PDR0 register value.
- □ To use a pin shared with the LCDC as an output port, set a corresponding function select bit (SEG[35:32]) in the LCDC enable register 7 (LCDCE7) to "0" to select the general-purpose I/O port function, and then set the port input control bit (PICTL) in the LCDC enable register 1 (LCDCE1) to "1".

■ Operation as an input port

- □ A pin becomes an input port if the bit in the DDR0 register corresponding to that pin is set to "0".
- □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- □ When using an analog input shared pin as an input port, set the corresponding bit in the A/D input disable register (lower) (AIDRL) to "1".
- □ If data is written to the PDR0 register, the value is stored in the output latch but is not output to the pin set as an input port.
- □ Reading the PDR0 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR0 register, the PDR0 register value is returned.
- □ To use a pin shared with the LCDC as an input port, set a corresponding function select bit (SEG[35:32]) in the LCDCE7 register to "0" to select the general-purpose I/O port function, and then set the PICTL bit in the LCDCE1 register to "1".

■ Operation as a peripheral function output pin

- □ A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
- □ The pin value can be read from the PDR0 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR0 register. However, if the read-modify-write (RMW) type of instruction is used to read the PDR0 register, the PDR0 register value is returned.

■ Operation as a peripheral function input pin

- ☐ To set a pin as an input port, set the bit in the DDR0 register corresponding to the input pin of a peripheral function to "0".
- □ When using the analog input shared pin as another peripheral function input pin, configure it as an input port, which is the same as the operation as an input port.
- Reading the PDR0 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR0 register, the PDR0 register value is returned.

■ Operation as an LCDC segment output pin

- □ Set the bit in the DDR0 register corresponding to a desired LCDC segment output pin to "0".
- □ Select the segment pin by setting a corresponding function select bit (SEG[35:32]) in the LCDCE7 register to "1", and then set the PICTL bit in the LCDCE1 register to "1".

■ Operation at reset

If the CPU is reset, all bits in the DDR0 register are initialized to "0" and port input is enabled. As for a pin shared with analog input, its port input is disabled because the AIDRL register is initialized to "0".

■ Operation in stop mode and watch mode

- □ If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR0 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input is enabled for the external interrupt (INT00 to INT03), the input is enabled and not blocked.
- □ If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

■ Operation as an analog input pin

- Set the bit in the DDR0 register bit corresponding to the analog input pin to "0" and the bit corresponding to that pin in the AIDRL register to "0".
- □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.

■ Operation as an external interrupt input pin

- □ Set the bit in the DDR0 register corresponding to the external interrupt input pin to "0".
- $\ensuremath{\square}$ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- □ The pin value is always input to the external interrupt circuit. When using a pin for a function other than the interrupt, disable the external interrupt function corresponding to that pin.

Document Number: 002-04698 Rev. *A Page 38 of 110

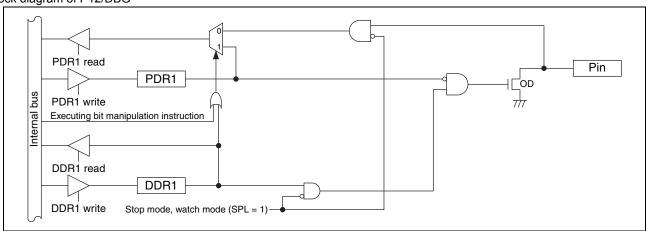
15.2 Port 1

Port 1 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95610H Series Hardware Manual".

15.2.1 Port 1 configuration

Port 1 is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port 1 data register (PDR1)
- Port 1 direction register (DDR1)
- Port 1 pull-up register (PUL1)

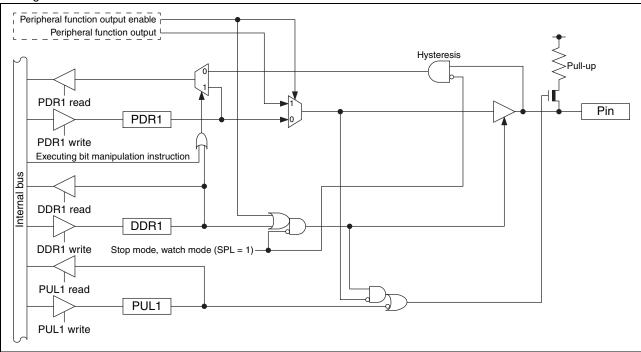

15.2.2 Block diagrams of port 1

■ P12/DBG pin

This pin has the following peripheral function:

□ DBG input pin (DBG)

■ Block diagram of P12/DBG

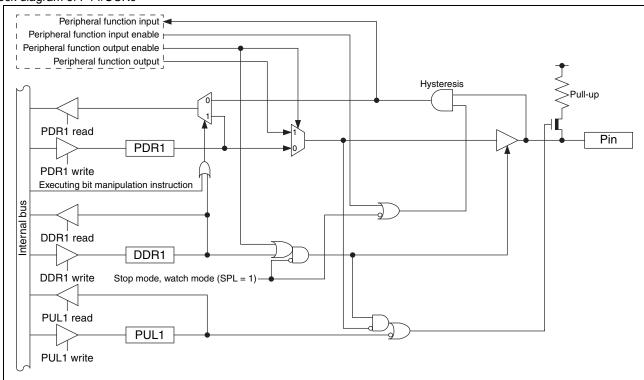


■ P13/UO0 pin

This pin has the following peripheral function:

□ UART/SIO ch. 0 data output pin (UO0)

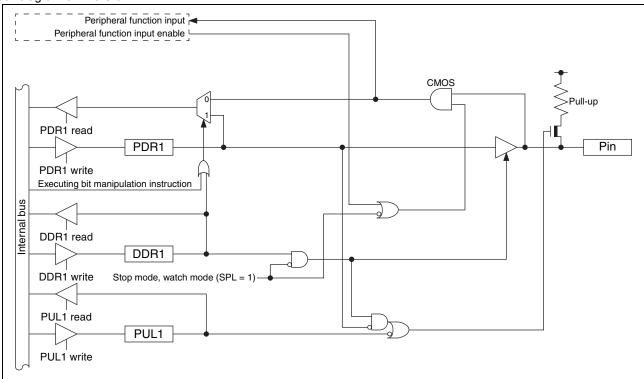
■ Block diagram of P13/UO0


■ P14/UCK0 pin

This pin has the following peripheral function:

□ UART/SIO ch. 0 clock I/O pin (UCK0)

■ Block diagram of P14/UCK0



■ P15/UI0 pin

This pin has the following peripheral function:

□ UART/SIO ch. 0 data input pin (UI0)

■ Block diagram of P15/UI0

15.2.3 Port 1 registers

■ Port 1 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write		
DDD1	0	Pin state is "L" level.	PDR1 value is "0".	As output port, outputs "L" level.		
PDR1 1		Pin state is "H" level. PDR1 value is "1".		As output port, outputs "H" level.*		
DDR1	0		Port input enabled			
DDK1	1	Port output enabled				
PUL1	0		Pull-up disabled			
FULI	1	Pull-up enabled				

^{*:} If the pin is an N-ch open drain pin, the pin state becomes Hi-Z.

■ Correspondence between registers and pins for port 1

		Correspondence between related register bits and pins								
Pin name	-	-	P15	P14	P13	P12	-	-		
PDR1										
DDR1	-	-	bit5	bit4	bit3	bit2*	-	-		
PUL1										

^{*:} Though P12 has no pull-up function, bit2 in the PUL1 register can still be accessed. The operation of P12 is not affected by the setting of bit2 in the PUL1 register.

15.2.4 Port 1 operations

■ Operation as an output port

- □ A pin becomes an output port if the bit in the DDR1 register corresponding to that pin is set to "1".
- □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- □ When a pin is used as an output port, it outputs the value of the PDR1 register to external pins.
- ☐ If data is written to the PDR1 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
- ☐ Reading the PDR1 register returns the PDR1 register value.

■ Operation as an input port

- □ A pin becomes an input port if the bit in the DDR1 register corresponding to that pin is set to "0".
- □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- □ If data is written to the PDR1 register, the value is stored in the output latch but is not output to the pin set as an input port.
- □ Reading the PDR1 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned.

■ Operation as a peripheral function output pin

- □ A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
- The pin value can be read from the PDR1 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR1 register. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned.

■ Operation as a peripheral function input pin

- ☐ To set a pin as an input port, set the bit in the DDR1 register corresponding to the input pin of a peripheral function to "0".
- □ Reading the PDR1 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR1 register, the PDR1 register value is returned.

■ Operation at reset

If the CPU is reset, all bits in the DDR1 register are initialized to "0" and port input is enabled.

■ Operation in stop mode and watch mode

- □ If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR1 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input of P14/UCK0 and P15/UI0 is enabled by the external interrupt control register ch. 0 (EIC00) of the external interrupt circuit and the interrupt pin selection circuit control register (WICR) of the interrupt pin selection circuit, the input is enabled and is not blocked.
- □ If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

■ Operation of the pull-up register

Setting the bit in the PUL1 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL1 register.

Document Number: 002-04698 Rev. *A Page 44 of 110

15.3 Port 2

Port 2 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95610H Series Hardware Manual".

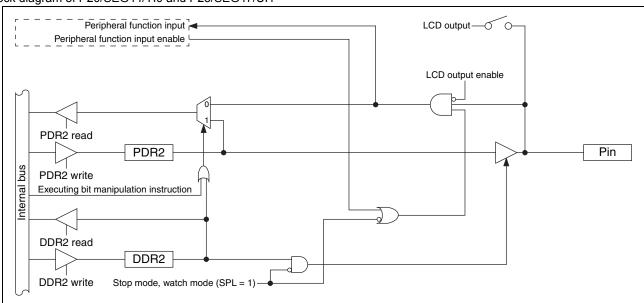
15.3.1 Port 2 configuration

Port 2 is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port 2 data register (PDR2)
- Port 2 direction register (DDR2)

15.3.2 Block diagrams of port 2

■ P20/SEG44/TI0 pin


This pin has the following peripheral functions:

- □ LCDC SEG44 output pin (SEG44)
- ☐ 16-bit reload timer ch. 0 input pin (TI0)
- P23/SEG47/UI1 pin

This pin has the following peripheral functions:

- □ LCDC SEG47 output pin (SEG47)
- □ UART/SIO ch. 1 data input pin (UI1)

■ Block diagram of P20/SEG44/TI0 and P23/SEG47/UI1

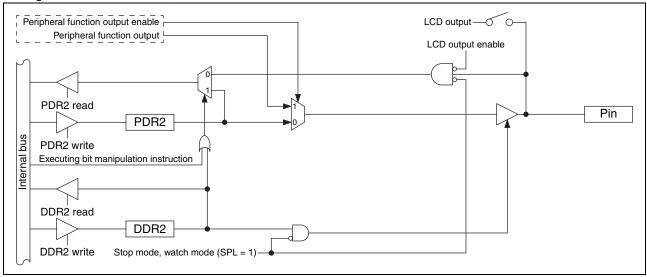
■ P21/SEG45/UO1 pin

This pin has the following peripheral functions:

- □ LCDC SEG45 output pin (SEG45)
- □ UART/SIO ch. 1 data output pin (UO1)

■ P24/SEG48/PPG00 pin

This pin has the following peripheral functions:


- □ LCDC SEG48 output pin (SEG48)
- □ 8/16-bit PPG ch. 0 output pin (PPG00)

■ P25/SEG49/PPG01 pin

This pin has the following peripheral functions:

- □ LCDC SEG49 output pin (SEG49)
- □ 8/16-bit PPG ch. 0 output pin (PPG01)

■ Block diagram of P21/SEG45/UO1, P24/SEG48/PPG00 and P25/SEG49/PPG01

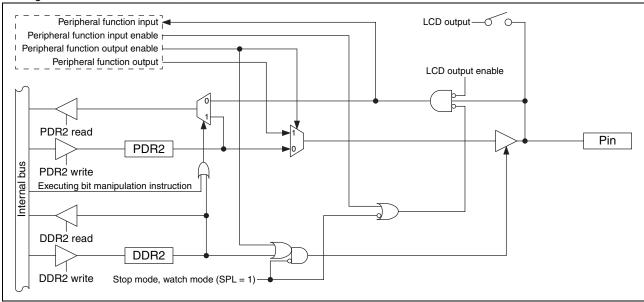
■ P22/SEG46/UCK1 pin

This pin has the following peripheral functions:

- □ LCDC SEG46 output pin (SEG46)
- □ UART/SIO ch. 1 clock I/O pin (UCK1)

■ P26/SEG50/SCL pin

This pin has the following peripheral functions:


- □ LCDC SEG50 output pin (SEG50)
- □ I²C bus interface ch. 0 clock I/O pin (SCL)

■ P27/SEG51/SDA pin

This pin has the following peripheral functions:

- □ LCDC SEG51 output pin (SEG51)
- □ I²C bus interface ch. 0 data I/O pin (SDA)

■ Block diagram of P22/SEG46/UCK1, P26/SEG50/SCL and P27/SEG51/SDA

15.3.3 Port 2 registers

■ Port 2 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write		
PDR2	0	Pin state is "L" level.	PDR2 value is "0".	As output port, outputs "L" level.		
PDRZ	1	Pin state is "H" level.	PDR2 value is "1".	As output port, outputs "H" level.		
DDR2	0		Port input enabled			
DDR2	1	Port output enabled				

■ Correspondence between registers and pins for port 2

	Correspondence between related register bits and pins							
Pin name	P27	P26	P25	P24	P23	P22	P21	P20
PDR2	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
DDR2	DILI	Dito	טונס	DIL4	טונס	טונב	DILI	טונט

15.3.4 Port 2 operations

■ Operation as an output port

- □ A pin becomes an output port if the bit in the DDR2 register corresponding to that pin is set to "1".
- □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- □ When a pin is used as an output port, it outputs the value of the PDR2 register to external pins.
- ☐ If data is written to the PDR2 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
- ☐ Reading the PDR2 register returns the PDR2 register value.
- □ To use a pin shared with the LCDC as an output port, set a corresponding function select bit in the LCDC enable register 9 (LCDCE9:SEG[51:48]) or in the LCDC enable register 8 (LCDCE8:SEG[47:44]) to "0" to select the general-purpose I/O port function, and then set the port input control bit (PICTL) in the LCDC enable register 1 (LCDCE1) to "1".

■ Operation as an input port

- □ A pin becomes an input port if the bit in the DDR2 register corresponding to that pin is set to "0".
- ☐ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- ☐ If data is written to the PDR2 register, the value is stored in the output latch but is not output to the pin set as an input port.
- □ Reading the PDR2 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR2 register, the PDR2 register value is returned.
- □ To use a pin shared with the LCDC as an input port, set a corresponding function select bit in the LCDC enable register 9 (LCDCE9:SEG[51:48]) or in the LCDC enable register 8 (LCDCE8:SEG[47:44]) to "0" to select the general-purpose I/O port function, and then set the port input control bit (PICTL) in the LCDC enable register 1 (LCDCE1) to "1".

■ Operation as a peripheral function output pin

- □ A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
- □ The pin value can be read from the PDR2 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR2 register. However, if the read-modify-write (RMW) type of instruction is used to read the PDR2 register, the PDR2 register value is returned.

■ Operation as a peripheral function input pin

- □ To set a pin as an input port, set the bit in the DDR2 register corresponding to the input pin of a peripheral function to "0".
- □ Reading the PDR2 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR2 register, the PDR2 register value is returned.

■ Operation as an LCDC segment output pin

- ☐ Set the bit in the DDR2 register corresponding to a desired LCDC segment output pin to "0".
- □ Select the segment pin by setting a corresponding function select bit in the LCDC enable register 9 (LCDCE9:SEG[51:48]) or in the LCDC enable register 8 (LCDCE8:SEG[47:44]) to "1", and then set the PICTL bit in the LCDCE1 register to "1".

■ Operation at reset

If the CPU is reset, all bits in the DDR2 register are initialized to "0" and port input is enabled.

■ Operation in stop mode and watch mode

- □ If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR2 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
- □ If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

15.4 Port 3

Port 3 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95610H Series Hardware Manual".

15.4.1 Port 3 configuration

Port 3 is made up of the following elements.

- ☐ General-purpose I/O pins/peripheral function I/O pins
- □ Port 3 data register (PDR3)
- □ Port 3 direction register (DDR3)

15.4.2 Block diagrams of port 3

■ P30/SEG36/INT04 pin

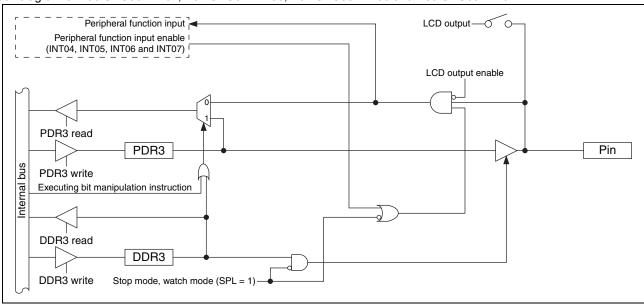
This pin has the following peripheral functions:

- □ LCDC SEG36 output pin (SEG36)
- ☐ External interrupt input pin (INT04)
- P31/SEG37/INT05 pin

This pin has the following peripheral functions:

- □ LCDC SEG37 output pin (SEG37)
- ☐ External interrupt input pin (INT05)
- P32/SEG38/INT06 pin

This pin has the following peripheral functions:


- ☐ LCDC SEG38 output pin (SEG38)
- ☐ External interrupt input pin (INT06)
- P33/SEG39/INT07 pin

This pin has the following peripheral functions:

- □ LCDC SEG39 output pin (SEG39)
- ☐ External interrupt input pin (INT07)

■ Block diagram of P30/SEG36/INT04, P31/SEG37/INT05, P32/SEG38/INT06 and P33/SEG39/INT07

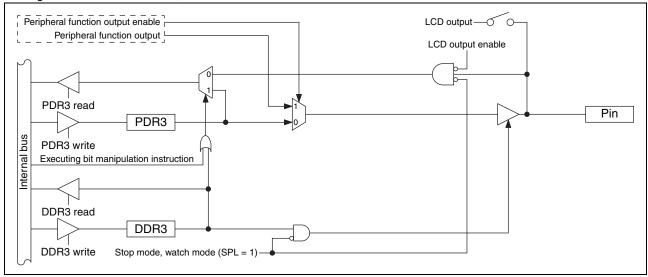
■ P34/SEG40/TO11 pin

This pin has the following peripheral functions:

- □ LCDC SEG40 output pin (SEG40)
- □ 8/16-bit composite timer ch. 1 output pin (TO11)

■ P35/SEG41/TO10 pin

This pin has the following peripheral functions:

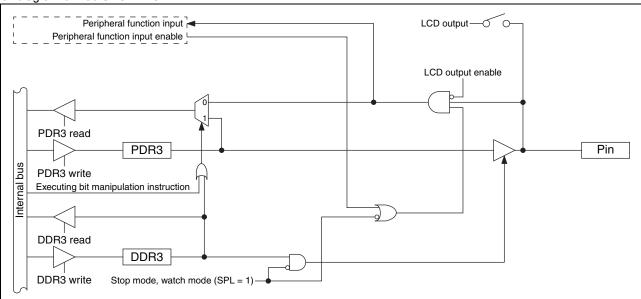

- □ LCDC SEG41 output pin (SEG41)
- □ 8/16-bit composite timer ch. 1 output pin (TO10)

■ P37/SEG43/TO0 pin

This pin has the following peripheral functions:

- □ LCDC SEG43 output pin (SEG43)
- ☐ 16-bit reload timer ch. 0 output pin (TO0)

■ Block diagram of P34/SEG40/TO11, P35/SEG41/TO11 and P37/SEG43/TO0



■ P36/SEG42/EC1 pin

This pin has the following peripheral functions:

- □ LCDC SEG42 output pin (SEG42)
- □ 8/16-bit composite timer ch. 1 clock input pin (EC1)

■ Block diagram of P36/SEG42/EC1

15.4.3 Port 3 registers

■ Port 3 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write		
PDR3	0	Pin state is "L" level.	PDR3 value is "0".	As output port, outputs "L" level.		
PDRS	1	Pin state is "H" level.	PDR3 value is "1".	As output port, outputs "H" level.		
DDR3	0		Port input enabled			
DDR3	1	Port output enabled				

■ Correspondence between registers and pins for port 3

		Correspondence between related register bits and pins							
Pin name	P37	P36	P35	P34	P33	P32	P31	P30	
PDR3	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
DDR3	DILI	Dito	טונס	DIL4	มแจ	DILZ	DILI	DILU	

15.4.4 Port 3 operations

- Operation as an output port
 - □ A pin becomes an output port if the bit in the DDR3 register corresponding to that pin is set to "1".
 - □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - □ When a pin is used as an output port, it outputs the value of the PDR3 register to external pins.
 - □ If data is written to the PDR3 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - □ Reading the PDR3 register returns the PDR3 register value.

- □ To use a pin shared with the LCDC as an output port, set a corresponding function select bit in the LCDC enable register 8 (LCDCE8:SEG[43:40]) or in the LCDC enable register 7 (LCDCE7:SEG[39:36]) to "0" to select the general-purpose I/O port function, and then set the port input control bit (PICTL) in the LCDC enable register 1 (LCDCE1) to "1".
- Operation as an input port
 - □ A pin becomes an input port if the bit in the DDR3 register corresponding to that pin is set to "0".
 - □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - ☐ If data is written to the PDR3 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - □ Reading the PDR3 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR3 register, the PDR3 register value is returned.
 - □ To use a pin shared with the LCDC as an input port, set a corresponding function select bit in the LCDC enable register 8 (LCDCE8:SEG[43:40]) or in the LCDC enable register 7 (LCDCE7:SEG[39:36]) to "0" to select the general-purpose I/O port function, and then set the port input control bit (PICTL) in the LCDC enable register 1 (LCDCE1) to "1".
- Operation as a peripheral function output pin
 - □ A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
 - □ The pin value can be read from the PDR3 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR3 register. However, if the read-modify-write (RMW) type of instruction is used to read the PDR3 register, the PDR3 register value is returned.
- Operation as a peripheral function input pin
 - ☐ To set a pin as an input port, set the bit in the DDR3 register corresponding to the input pin of a peripheral function to "0".
 - □ Reading the PDR3 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR3 register, the PDR3 register value is returned.

- Operation as an LCDC segment output pin
 - □ Set the bit in the DDR3 register corresponding to a desired LCDC segment output pin to "0".
 - □ Select the segment pin by setting a corresponding function select bit in the LCDC enable register 8 (LCDCE8:SEG[43:40]) or in the LCDC enable register 7 (LCDCE7:SEG[39:36]) to "1", and then set the PICTL bit in the LCDCE1 register to "1".

■ Operation at reset

If the CPU is reset, all bits in the DDR3 register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - □ If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR3 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input is enabled for the external interrupt (INT04 to INT07), the input is enabled and not blocked.
 - □ If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.
- Operation as an external interrupt input pin
 - □ Set the bit in the DDR3 register corresponding to the external interrupt input pin to "0".
 - □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - □ The pin value is always input to the external interrupt circuit. When using a pin for a function other than the interrupt, disable the external interrupt function corresponding to that pin.

Document Number: 002-04698 Rev. *A Page 55 of 110

15.5 Port 5

Port 5 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95610H Series Hardware Manual".

15.5.1 Port 5 configuration

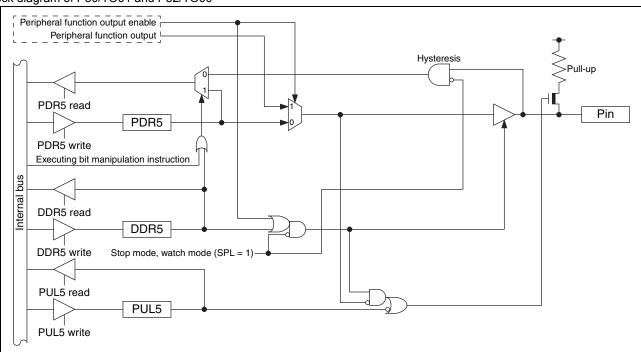
Port 5 is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port 5 data register (PDR5)
- Port 5 direction register (DDR5)
- Port 5 pull-up register (PUL5)

15.5.2 Block diagrams of port 5

■ P50/TO01 pin

This pin has the following peripheral function:

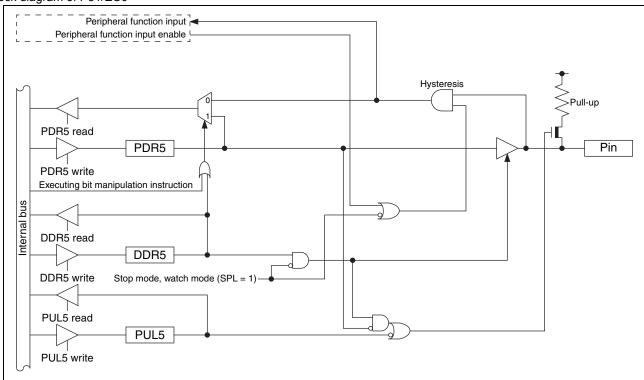

□ 8/16-bit composite time ch. 0 output pin (TO01)

■ P52/TO00 pin

This pin has the following peripheral function:

□ 8/16-bit composite time ch. 0 output pin (TO00)

■ Block diagram of P50/TO01 and P52/TO00


■ P51/EC0 pin

This pin has the following peripheral function:

□ 8/16-bit composite time ch. 0 clock input pin (EC0)

■ Block diagram of P51/EC0

15.5.3 Port 5 registers

■ Port 5 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write		
PDR5	0	Pin state is "L" level.	PDR5 value is "0".	As output port, outputs "L" level.		
PDRS	1	Pin state is "H" level.	PDR5 value is "1".	As output port, outputs "H" level.		
DDR5	0		Port input enabled			
DDR3	1	Port output enabled				
PUL5	0		Pull-up disabled			
FULS	1	Pull-up enabled				

■ Correspondence between registers and pins for port 5

		Correspondence between related register bits and pins								
Pin name	-	-	-	-	-	P52	P51	P50		
PDR5										
DDR5	-	-	-	-	-	bit2	bit1	bit0		
PUL5										

15.5.4 Port 5 operations

- Operation as an output port
 - □ A pin becomes an output port if the bit in the DDR5 register corresponding to that pin is set to "1".
 - □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - □ When a pin is used as an output port, it outputs the value of the PDR5 register to external pins.
 - □ If data is written to the PDR5 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - □ Reading the PDR5 register returns the PDR5 register value.
- Operation as an input port
 - ☐ A pin becomes an input port if the bit in the DDR5 register corresponding to that pin is set to "0".
 - □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - □ If data is written to the PDR5 register, the value is stored in the output latch but is not output to the pin set as an input port.
 - □ Reading the PDR5 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR5 register, the PDR5 register value is returned.
- Operation as a peripheral function output pin
 - □ A pin becomes a peripheral function output pin if the peripheral output function is enabled by setting the output enable bit of a peripheral function corresponding to that pin.
 - ☐ The pin value can be read from the PDR5 register even if the peripheral function output is enabled. Therefore, the output value of a peripheral function can be read by the read operation on the PDR5 register. However, if the read-modify-write (RMW) type of instruction is used to read the PDR5 register, the PDR5 register value is returned.
- Operation as a peripheral function input pin
 - □ To set a pin as an input port, set the bit in the DDR5 register corresponding to the input pin of a peripheral function to "0".
 - □ Reading the PDR5 register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDR5 register, the PDR5 register value is returned.

■ Operation at reset

If the CPU is reset, all bits in the DDR5 register are initialized to "0" and port input is enabled.

■ Operation in stop mode and watch mode

- □ If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR5 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open. However, if the interrupt input of P51/EC0 is enabled by the external interrupt control register ch. 0 (EIC00) of the external interrupt circuit and the interrupt pin selection circuit control register (WICR) of the interrupt pin selection circuit, the input is enabled and is not blocked.
- □ If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

■ Operation of the pull-up register

Setting the bit in the PUL5 register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PUL5 register.

Document Number: 002-04698 Rev. *A Page 59 of 110

15.6 Port 9

Port 9 is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95610H Series Hardware Manual".

15.6.1 Port 9 configuration

Port 9 is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port 9 data register (PDR9)
- Port 9 direction register (DDR9)

15.6.2 Block diagrams of port 9

■ P90/V4 pin

This pin has the following peripheral function:

□ LCDC drive power supply pin (V4)

■ P91/V3 pin

This pin has the following peripheral function:

□ LCDC drive power supply pin (V3)

■ P92/V2 pin

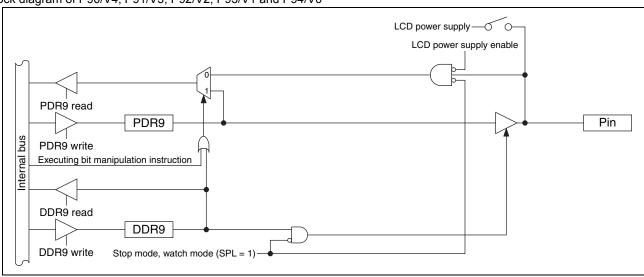
This pin has the following peripheral function:

□ LCDC drive power supply pin (V2)

■ P93/V1 pin

This pin has the following peripheral function:

□ LCDC drive power supply pin (V1)


■ P94/V0 pin

This pin has the following peripheral function:

□ LCDC drive power supply pin (V0)

■ Block diagram of P90/V4, P91/V3, P92/V2, P93/V1 and P94/V0

15.6.3 Port 9 registers

■ Port 9 register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write			
PDR9	0	Pin state is "L" level.	PDR9 value is "0".	As output port, outputs "L" level.			
L DK9	1	Pin state is "H" level.	PDR9 value is "1".	As output port, outputs "H" level.			
DDR9	0		Port input enabled				
DDR9	1	Port output enabled					

■ Correspondence between registers and pins for port 9

		Correspondence between related register bits and pins							
Pin name	-	-	-	P94	P93	P92	P91	P90	
PDR9				bit4	bit3	bit2	bit1	bit0	
DDR9	-	-	-	DIL4	มแจ	DILZ	DILI	bito	

15.6.4 Port 9 operations

■ Operation as an output port

- □ A pin becomes an output port if the bit in the DDR9 register corresponding to that pin is set to "1".
- ☐ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- □ When a pin is used as an output port, it outputs the value of the PDR9 register to external pins.
- ☐ If data is written to the PDR9 register, the value is stored in the output latch and is output to the pin set as an output port as it is.
- □ Reading the PDR9 register returns the PDR9 register value.
- □ To use a pin shared with the LCDC as an output port, set the bit corresponding to that pin in the VE[4:0] bits in the LCDC enable register 1 (LCDCE1) to "0".

■ Operation as an input port

- □ A pin becomes an input port if the bit in the DDR9 register corresponding to that pin is set to "0".
- □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- ☐ If data is written to the PDR9 register, the value is stored in the output latch but is not output to the pin set as an input port.
- □ Reading the PDR9 register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDR9 register, the PDR9 register value is returned.
- □ To use a pin shared with the LCDC as an input port, set the bit (VE[4:0]) corresponding to that pin in the LCDCE1 register to "0".

■ Operation at reset

If the CPU is reset, all bits in the DDR9 register are initialized to "0" and port input is enabled.

■ Operation in stop mode and watch mode

- □ If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDR9 register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
- □ If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

■ Operation as an LCDC drive power supply pin

- □ Set the bit in the DDR9 register corresponding to a desired LCDC drive power supply pin to "0".
- □ Select the LCDC drive power supply pin by setting the bit corresponding to that pin in the VE[4:0] bits in the LCDCE1 register to "1".

Document Number: 002-04698 Rev. *A Page 62 of 110

15.7 Port F

Port F is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95610H Series Hardware Manual".

15.7.1 Port F configuration

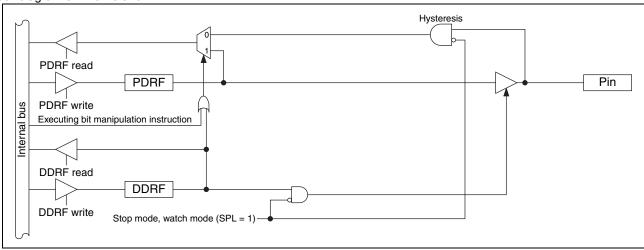
Port F is made up of the following elements.

- ☐ General-purpose I/O pins/peripheral function I/O pins
- □ Port F data register (PDRF)
- □ Port F direction register (DDRF)

15.7.2 Block diagrams of port F

■ PF0/X0 pin

This pin has the following peripheral function:

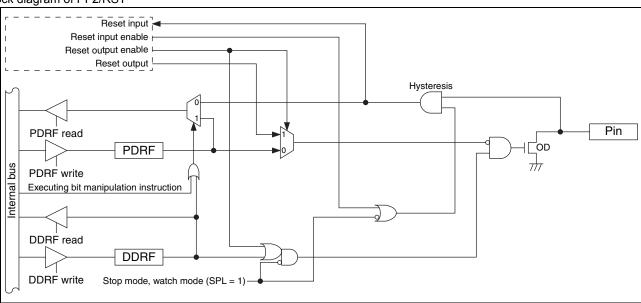

☐ Main clock input oscillation pin (X0)

■ PF1/X1 pin

This pin has the following peripheral function:

☐ Main clock I/O oscillation pin (X1)

■ Block diagram of PF0/X0 and PF1/X1



■ PF2/RST pin

This pin has the following peripheral function:

□ Reset pin (RST)

■ Block diagram of PF2/RST

15.7.3 Port F registers

■ Port F register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write					
PDRF	0	Pin state is "L" level.	PDRF value is "0".	As output port, outputs "L" level.					
FDRF	1	Pin state is "H" level.	PDRF value is "1".	As output port, outputs "H" level.*					
DDRF	0		Port input enabled						
DDKI	1		Port output enabled						

^{*:} If the pin is an N-ch open drain pin, the pin state becomes Hi-Z.

■ Correspondence between registers and pins for port F

		Correspondence between related register bits and pins									
Pin name	-	-	-	-	-	PF2*	PF1	PF0			
PDRF						bit2	bit1	bit0			
DDRF	•	-	-	-	-	DILZ	DILI	Dito			

^{*:} PF2/RST is the dedicated reset pin on MB95F613H/F614H/F616H.

15.7.4 Port F operations

- Operation as an output port
 - □ A pin becomes an output port if the bit in the DDRF register corresponding to that pin is set to "1".
 - □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - □ When a pin is used as an output port, it outputs the value of the PDRF register to external pins.
 - □ If data is written to the PDRF register, the value is stored in the output latch and is output to the pin set as an output port as it is.
 - □ Reading the PDRF register returns the PDRF register value.
- Operation as an input port
 - □ A pin becomes an input port if the bit in the DDRF register corresponding to that pin is set to "0".
 - ☐ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
 - □ If data is written to the PDRF register, the value is stored in the output latch but is not output to the pin set as an input port.
 - □ Reading the PDRF register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDRF register, the PDRF register value is returned.

■ Operation at reset

If the CPU is reset, all bits in the DDRF register are initialized to "0" and port input is enabled.

- Operation in stop mode and watch mode
 - □ If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRF register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
 - □ If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

15.8 Port G

Port G is a general-purpose I/O port. This section focuses on its functions as a general-purpose I/O port. For details of peripheral functions, refer to their respective chapters in "New 8FX MB95610H Series Hardware Manual".

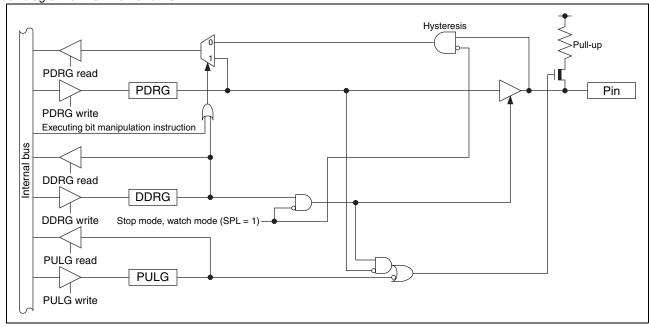
15.8.1 Port G configuration

Port G is made up of the following elements.

- General-purpose I/O pins/peripheral function I/O pins
- Port G data register (PDRG)
- Port G direction register (DDRG)
- Port G pull-up register (PULG)

15.8.2 Block diagram of port G

■ PG1/X0A pin


This pin has the following peripheral function:

- Subclock input oscillation pin (X0A)
- PG2/X1A pin

This pin has the following peripheral function:

□ Subclock I/O oscillation pin (X1A)

■ Block diagram of PG1/X0A and PG2/X1A

15.8.3 Port G registers

■ Port G register functions

Register abbreviation	Data	Read	Read by read-modify-write (RMW) instruction	Write				
PDRG	0	Pin state is "L" level.	PDRG value is "0".	As output port, outputs "L" level.				
PDRG	1	Pin state is "H" level.	PDRG value is "1".	As output port, outputs "H" level.				
DDRG	0		Port input enabled					
DDRG	1		Port output enabled					
PULG	0		Pull-up disabled					
FOLG	1		Pull-up enabled					

■ Correspondence between registers and pins for port G

		Correspondence between related register bits and pins									
Pin name	-	-	-	-	-	PG2	PG1	-			
PDRG											
DDRG	-	-	-	-	-	bit2	bit1	-			
PULG											

15.8.4 Port G operations

■ Operation as an output port

- □ A pin becomes an output port if the bit in the DDRG register corresponding to that pin is set to "1".
- □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- □ When a pin is used as an output port, it outputs the value of the PDRG register to external pins.
- ☐ If data is written to the PDRG register, the value is stored in the output latch and is output to the pin set as an output port as it is.
- □ Reading the PDRG register returns the PDRG register value.

■ Operation as an input port

- ☐ A pin becomes an input port if the bit in the DDRG register corresponding to that pin is set to "0".
- □ For a pin shared with other peripheral functions, disable the output of such peripheral functions.
- ☐ If data is written to the PDRG register, the value is stored in the output latch but is not output to the pin set as an input port.
- □ Reading the PDRG register returns the pin value. However, if the read-modify-write (RMW) type of instruction is used to read the PDRG register, the PDRG register value is returned.

■ Operation as a peripheral function input pin

- □ To set a pin as an input port, set the bit in the DDRG register corresponding to the input pin of a peripheral function to "0".
- □ Reading the PDRG register returns the pin value, regardless of whether the peripheral function uses that pin as its input pin. However, if the read-modify-write (RMW) type of instruction is used to read the PDRG register, the PDRG register value is returned.

■ Operation at reset

If the CPU is reset, all bits in the DDRG register are initialized to "0" and port input is enabled.

■ Operation in stop mode and watch mode

- □ If the pin state setting bit in the standby control register (STBC:SPL) is set to "1" and the device transits to stop mode or watch mode, the pin is compulsorily made to enter the high impedance state regardless of the DDRG register value. The input of that pin is locked to "L" level and blocked in order to prevent leaks due to input open.
- □ If the pin state setting bit is "0", the state of the port I/O or that of the peripheral function I/O remains unchanged and the output level is maintained.

■ Operation of the pull-up register

Setting the bit in the PULG register to "1" makes the pull-up resistor be internally connected to the pin. When the pin output is "L" level, the pull-up resistor is disconnected regardless of the value of the PULG register.

16. Interrupt Source Table

Interrupt source	Interrupt request		r table ress	Interrupt level setting register		Priority order of interrupt sources of the same level	
interrupt source	number	Upper	Lower	Register	Bit	(occurring simultaneously)	
External interrupt ch. 0	IRQ00	0xFFFA	0xFFFB	ILR0	L00 [1:0]	High	
External interrupt ch. 4	INQUU	OXITIA	OXITID	ILINO	L00 [1.0]	A	
External interrupt ch. 1	IRQ01	0xFFF8	0xFFF9	ILR0	L01 [1:0]		
External interrupt ch. 5	INQUI	UXITIO	UXITIS	ILINO	L01[1.0]		
External interrupt ch. 2	IRQ02	0xFFF6	0xFFF7	ILR0	10.11.01		
External interrupt ch. 6	IRQ02	UXFFFO	UXFFF7	ILKU	L02 [1:0]		
External interrupt ch. 3	IRQ03	0xFFF4	0xFFF5	ILR0	L03 [1:0]		
External interrupt ch. 7	IRQUS	UXFFF4	UXFFFS	ILKU	LU3 [1.0]		
UART/SIO ch. 0	IRQ04	0xFFF2	0xFFF3	ILR1	L04 [1:0]		
8/16-bit composite timer ch. 0 (lower)	IRQ05	0xFFF0	0xFFF1	ILR1	L05 [1:0]		
8/16-bit composite timer ch. 0 (upper)	IRQ06	0xFFEE	0xFFEF	ILR1	L06 [1:0]		
_	IRQ07	0xFFEC	0xFFED	ILR1	L07 [1:0]		
LCDC	IRQ08	0xFFEA	0xFFEB	ILR2	L08 [1:0]		
8/16-bit PPG ch. 1 (lower)	IDOOO	0 5550	0 5550		1 00 14 03		
UART/SIO ch. 1	IRQ09	0xFFE8	0xFFE9	ILR2	L09 [1:0]		
8/16-bit PPG ch. 1 (upper)	IRQ10	0xFFE6	0xFFE7	ILR2	L10 [1:0]		
16-bit reload timer ch. 0	IRQ11	0xFFE4	0xFFE5	ILR2	L11 [1:0]		
8/16-bit PPG ch. 0 (upper)	IRQ12	0xFFE2	0xFFE3	ILR3	L12 [1:0]		
8/16-bit PPG ch. 0 (lower)	IRQ13	0xFFE0	0xFFE1	ILR3	L13 [1:0]		
8/16-bit composite timer ch. 1 (upper)	IRQ14	0xFFDE	0xFFDF	ILR3	L14 [1:0]		
_	IRQ15	0xFFDC	0xFFDD	ILR3	L15 [1:0]		
I ² C bus interface ch. 0	IRQ16	0xFFDA	0xFFDB	ILR4	L16 [1:0]		
_	IRQ17	0xFFD8	0xFFD9	ILR4	L17 [1:0]		
8/10-bit A/D converter	IRQ18	0xFFD6	0xFFD7	ILR4	L18 [1:0]		
Time-base timer	IRQ19	0xFFD4	0xFFD5	ILR4	L19 [1:0]		
Watch prescaler	IDOOO	0 5550	0 5500		1 00 14 01		
Watch counter	IRQ20	0xFFD2	0xFFD3	ILR5	L20 [1:0]		
_	IRQ21	0xFFD0	0xFFD1	ILR5	L21 [1:0]		
8/16-bit composite timer ch. 1 (lower)	IRQ22	0xFFCE	0xFFCF	ILR5	L22 [1:0]		
Flash memory	IRQ23	0xFFCC	0xFFCD	ILR5	L23 [1:0]	Low	

17. Pin States in Each Mode

Din nama	Normal	Sleep mode	Stop	mode	Watch	On reset	
Pin name	operation		SPL=0	SPL=1	SPL=0	SPL=1	On reset
	Oscillation input	Oscillation input	Hi-Z	Hi-Z	Hi-Z	Hi-Z	_
PF0/X0	I/O port* ¹	I/O port* ¹	- Previous state kept - Input blocked*1, *2	- Hi-Z - Input blocked* ^{1,} * ²	- Previous state kept - Input blocked*1, *2	- Hi-Z - Input blocked* ^{1, *2}	- Hi-Z - Input enabled* ³ (However, it does not function.)
	Oscillation input	Oscillation input	Hi-Z	Hi-Z	Hi-Z	Hi-Z	_
PF1/X1	I/O port* ¹	I/O port* ¹	 Previous state kept Input blocked*^{1, *2} 	- Hi-Z - Input blocked* ^{1, *2}	 Previous state kept Input blocked*^{1, *2} 	- Hi-Z - Input blocked* ^{1, *2}	 Hi-Z Input enabled*³ (However, it does not function.)
	Reset input	Reset input	Reset input	Reset input	Reset input	Reset input	Reset input*4
PF2/RST	I/O port* ¹	I/O port* ¹	 Previous state kept Input blocked*^{1, *2} 	- Hi-Z - Input blocked* ^{1, *2}	 Previous state kept Input blocked*^{1, *2} 	- Hi-Z - Input blocked* ^{1,} * ²	 Hi-Z Input enabled*³ (However, it does not function.)
	Oscillation input	Oscillation input	Hi-Z	Hi-Z	Hi-Z	Hi-Z	_
PG1/X0A	I/O port* ¹	I/O port* ¹	 Previous state kept Input blocked*^{1, *2} 	- Hi-Z - Input blocked* ^{1, *2}	 Previous state kept Input blocked*^{1, *2} 	- Hi-Z - Input blocked* ^{1, *2}	 Hi-Z Input enabled*³ (However, it does not function.)
	Oscillation input	Oscillation input	Hi-Z	Hi-Z	Hi-Z	Hi-Z	_
PG2/X1A	I/O port* ¹	I/O port* ¹	 Previous state kept Input blocked*^{1, *2} 	- Hi-Z - Input blocked* ^{1, *2}	 Previous state kept Input blocked*^{1, *2} 	- Hi-Z - Input blocked* ^{1, *2}	- Hi-Z - Input enabled* ³ (However, it does not function.)
P00/INT00/							
AN01 P02/INT02/ AN02 P03/INT03/		I/O port/ peripheral function I/O/ analog input	- Previous state kept - Input blocked*2, *5	- Hi-Z - Input blocked* ^{2,} * ⁵	- Previous state kept - Input blocked*2,*5	- Hi-Z - Input blocked* ² ,* ⁵	- Hi-Z - Input blocked* ²
AN03							
	I/O port/ peripheral function I/O/ analog input	I/O port/ peripheral function I/O/ analog input	 Previous state kept Input blocked*² 	- Hi-Z - Input blocked* ²	 Previous state kept Input blocked*² 	- Hi-Z - Input blocked* ²	- Hi-Z - Input blocked* ²
P07/SEG35/ PPG11							

(Continued)

Dim w	Normal	Class	Stop	mode	Watch	mode	On (12.2.4)
Pin name	operation	Sleep mode	SPL=0	SPL=1	SPL=0	SPL=1	On reset
P12/DBG	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	- Previous state kept - Input blocked*2	- Hi-Z - Input blocked* ²	- Previous state kept - Input blocked* ²	- Hi-Z - Input blocked* ²	- Hi-Z - Input enabled* ³ (However, it does not function.)
P13/UO0	I/O port/	I/O port/	- Previous state	- Hi-Z* ⁶	- Previous state	- Hi-Z* ⁶	- Hi-Z - Input enabled* ³
	peripheral	peripheral function I/O	kept - Input blocked*2	- Input blocked* ²	kept - Input blocked* ²	- Input blocked* ²	(However, it does not
P15/UI0							function.)
P20/SEG44/ TI0							
D04/CEC40/	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	- Previous state kept - Input blocked* ^{2,*7}	- Hi-Z - Input blocked* ^{2,*7}	- Previous state kept - Input blocked* ^{2,*7}	- Hi-Z - Input blocked* ^{2, *7}	- Hi-Z - Input enabled* ³ (However, it does not function.)
INT04 P31/SEG37/ INT05	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	 Previous state kept Input blocked*^{2*5} 	- Hi-Z - Input blocked* ^{2*5}	- Previous state kept - Input blocked* ^{2*5}	- Hi-Z - Input blocked* ^{2*5}	- Hi-Z - Input enabled* ³ (However, it does not function.)
D36/SEC43/	I/O port/ peripheral function I/O	I/O port/ peripheral function I/O	 Previous state kept Input blocked*² 	- Hi-Z - Input blocked* ²	 Previous state kept Input blocked*² 	- Hi-Z - Input blocked* ²	- Hi-Z - Input enabled* ³ (However, it does not function.)
P50/TO01	I/O port/ peripheral	I/O port/ peripheral	- Previous state kept	- Hi-Z* ⁶	- Previous state kept	- Hi-Z* ⁶	- Hi-Z - Input enabled* ³
P52/TO00	function I/O	function I/O	- Input blocked*2	- Input blocked* ²	- Input blocked*2	- Input blocked* ²	(However, it does not function.)

Pin name	n name Normal Sleep mode		Stop	mode	Watch	On reset	
Fill Hallie	operation	Sieep illoue	SPL=0	SPL=1	SPL=0	SPL=1	Onreset
P90/V4			5				
P91/V3	•	I/O port/ peripheral		- Hi-Z	 Previous state kept 	- Hi-Z	- Hi-Z - Input
D02/\/2			- Input blocked*2	 Input blocked*² 	- Input blocked*2	 Input blocked*² 	blocked*2
P93/V1	1411041011 11 0	idilotion i/ C	mpat blocked		input biootica		bioonod

(Continued)

(Continued)

Din name	Normal	Class d -	Stop	mode	Watch	mode	On reset
Pin name	operation	Sleep mode	SPL=0	SPL=1	SPL=0	SPL=1	On reset
COM0							
COM1							
COM2							
COM3							
COM4/			- Previous state		- Previous state		- Hi-Z
SEG00	Analog output	Analog output	kept	 Hi-Z Input blocked*² 	kept	- Hi-Z - Input blocked* ²	- Input
COM5/			- Input blocked*2	- Input blocked -	- Input blocked*2	- Input blocked -	blocked*2
SEG01							
COM6/ SEG02							
COM7/							
SEG03							
SEG04							
SEG05							
SEG06							
SEG07							
SEG08							
SEG09							
SEG10							
SEG11							
SEG12							
SEG13							
SEG14							
SEG15							
SEG16							
SEG17	.	.	- Previous state	- Hi-Z	- Previous state	- Hi-Z	- Hi-Z
SEG18	Analog output	Analog output	kept - Input blocked*2	 Input blocked*² 	kept - Input blocked*2	 Input blocked*² 	 Input blocked*²
SEG19			- Input blocked		- Input blocked		DIOCKEU
SEG20							
SEG21							
SEG22	1						
SEG23	1						
SEG24	1						
SEG25	1						
SEG26	1						
SEG27	1						
SEG28	1						
SEG29	1						
SEG30	1						
SEG31	1						

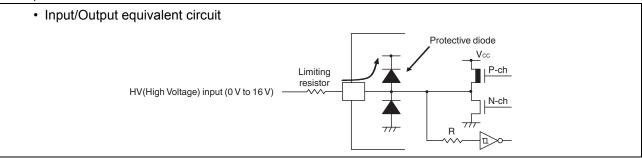
SPL: Pin state setting bit in the standby control register (STBC:SPL)

Hi-Z: High impedance

- *1: The pin stays at the state shown when configured as a general-purpose I/O port.
- *2: "Input blocked" means direct input gate operation from the pin is disabled.
- *3: "Input enabled" means that the input function is enabled. While the input function is enabled, execute a pull-up or pull-down operation to prevent leaks due to external input. If a pin is used as an output port, its pin state is the same as that of other ports.
- *4: The PF2/RST pin stays at the state shown when configured as a reset pin.
- *5: Though input is blocked, an external interrupt can be input when the external interrupt request is enabled.
- *6: The pull-up control setting is still effective.
- *7: The I²C bus interface can wake up the MCU in stop mode or watch mode when its MCU standby mode wakeup function is enabled.

For details of the MCU standby mode wakeup function, refer to "CHAPTER 23 I^2 C BUS INTERFACE" in "New 8FX MB95610H Series Hardware Manual".

18. Electrical Characteristics


18.1 Absolute Maximum Ratings

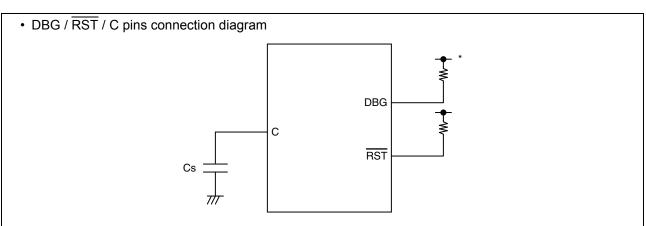
Parameter	Cumbal	Rat	ing	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1	V _{CC}	V _{SS} – 0.3	V _{SS} + 6	V	
Input voltage*1	V _I	V _{SS} - 0.3	V _{SS} + 6	V	*2
Output voltage*1	Vo	V _{SS} - 0.3	V _{SS} + 6	V	*2
Maximum clamp current	I _{CLAMP}	-2	+2	mA	Applicable to specific pins*3
Total maximum clamp current	$\Sigma I_{CLAMP} $	_	20	mA	Applicable to specific pins*3
"L" level maximum output current	I _{OL}	_	15	mA	
"L" level average current	I _{OLAV}	_	4	mA	Average output current = operating current × operating ratio (1 pin)
"L" level total maximum output current	Σl _{OL}	_	100	mA	
"L" level total average output current	Σl _{OLAV}		50	mA	Total average output current = operating current × operating ratio (Total number of pins)
"H" level maximum output current	I _{OH}	_	-15	mA	
"H" level average current	I _{OHAV}	_	-4	mA	Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣI_{OH}	_	-100	mA	
"H" level total average output current	ΣΙ _{ΟΗΑV}	_	-50	mA	Total average output current = operating current × operating ratio (Total number of pins)
Power consumption	P_d		320	mW	
Operating temperature	T_A	-40	+85	°C	
Storage temperature	T _{stg}	-55	+150	°C	

(Continued)

- * 1: These parameters are based on the condition that V_{SS} is 0.0 V.
- *2: V_1 and V_0 must not exceed $V_{CC} + 0.3$ V. V_1 must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the I_{CLAMP} rating is used instead of the V_1 rating
- *3: Specific pins: P00 to P07, P12 to P15, P20 to P27, P30 to P37, P50 to P52, P90 to P94
 - · Use under recommended operating conditions.
 - · Use with DC voltage (current).
 - The HV (High Voltage) signal is an input signal exceeding the V_{CC} voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
 - The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current.
 - When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the V_{CC} pin, affecting other devices.
 - If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
 - If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
 - · Do not leave the HV (High Voltage) input pin unconnected.
 - · Example of a recommended circuit:

WARNING:

Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings.



18.2 Recommended Operating Conditions

 $(V_{SS} = 0.0 \text{ V})$

Parameter	Symbol	Value		Unit	Remarks				
raiailletei	Syllibol	Min	Max	Oilit	Remarks				
Power supply voltage	V _{CC}	2.4* ¹	5.5	V	In normal operation				
Fower supply voltage	, CC	2.3	5.5	V	Hold condition in stop mode				
Decoupling capacitor	C _S	0.022	1	μF	*2				
Operating temperature	т.	- 40	+85	°C	Not in on-chip debug mode				
Operating temperature	T _A	+5	+35	C	In on-chip debug mode				

- *1: The minimum power supply voltage becomes 2.88 V when a product with the low-voltage detection reset is used or when the on-chip debug mode is used.
- *2: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The decoupling capacitor for the V_{CC} pin must have a capacitance equal to or larger than the capacitance of C_S. For the connection to a decoupling capacitor C_S, see the diagram below. To prevent the device from unintentionally entering an unknown mode due to noise, minimize the distance between the C pin and C_S and the distance between C_S and the V_{SS} pin when designing the layout of a printed circuit board.

*: Connect the DBG pin to an external pull-up resistor of $2 \text{ k}\Omega$ or above. After power-on, ensure that the DBG pin does not stay at "L" level until the reset output is released. The DBG pin becomes a communication pin in debug mode. Since the actual pull-up resistance depends on the tool used and the interconnection length, refer to the tool document when selecting a pull-up resistor.

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.

Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.

No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

18.3 DC Characteristics

(V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = -40 °C to +85 °C)

_					Value			Domonico	
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks	
	V _{IHI}	P15, P23, P26, P27	_	0.7 V _{CC}	-	V _{CC} + 0.3	V	Hysteresis input	
"H" level input voltage	V _{IHS}	P00 to P07, P12 to P14, P20 to P22, P24, P25, P30 to P37, P50 to P52, P90 to P94, PF0 to PF2, PG1, PG2	_	0.8 V _{CC}	ı	V _{CC} + 0.3	V	Hysteresis input	
	V _{ILI}	P15, P23, P26, P27	_	$V_{SS}-0.3$	_	0.3 V _{CC}	V	Hysteresis input	
"L" level input voltage	V _{ILS}	P00 to P07, P12 to P14, P20 to P22, P24, P25, P30 to P37, P50 to P52, P90 to P94, PF0 to PF2, PG1, PG2,	_	V _{SS} – 0.3	ı	0.2 V _{CC}	V	Hysteresis input	
Open-drain output application voltage	V _D	P12, PF2	_	V _{SS} - 0.3	_	Vss + 5.5	V		
"H" level output voltage	V _{OH}	P00 to P07, P13 to P15, P20 to P27, P30 to P37, P50 to P52, P90 to P94, PF0, PF1, PG1, PG2	I _{OH} = -4 mA	V _{CC} – 0.5	_	_	V		
"L" level output voltage	V _{OL}	P00 to P07, P12 to P15, P20 to P27, P30 to P37, P50 to P52, P90 to P94, PF0 to PF2, PG1, PG2	I _{OL} = 4 mA	_	_	0.4	V		

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$

Damamat	Comple - I	Din mana	Condition		Value			Domonico
Parameter	eter Symbol Pin name Condition		Condition	Min	Тур	Max	Unit	Remarks
Input leak current (Hi-Z output leak current)	ILI	P00 to P07, P12 to P15, P20 to P27, P30 to P37, P50 to P52, P90 to P94, PF0 to PF2 PG1, PG2	0.0 V < V _I < V _{CC}	-5	_	+5	μА	When the internal pull-up resistor is disabled
Internal pull-up resistor	R _{PULL}	P13 to P15, P50 to P52, PG1, PG2* ¹	V _I = 0 V	25	50	100	kΩ	When the internal pull-up resistor is enabled
Input capacitance	C _{IN}	Other than V _{CC} and V _{SS}	f = 1 MHz	_	5	15	pF	
	I _{CC}		F _{CH} = 32 MHz F _{MP} = 16 MHz Main clock mode (divided by 2)	_	4.5	5.8	mA	Except during Flash memory programming and erasing
				_	10.0	13.8	mA	During Flash memory programming and erasing
				_	6.3	9.1	mA	At A/D conversion
	I _{CCS}		F _{CH} = 32 MHz F _{MP} = 16 MHz Main sleep mode (divided by 2)	_	2.0	3.0	mA	
Power supply current*1	I _{CCL}	V _{CC} (External clock operation)	F _{CL} = 32 kHz F _{MPL} = 16 kHz Subclock mode (divided by 2) T _A = +25 °C	_	60	100	μА	
	I _{CCLS} *2		F _{CL} = 32 kHz F _{MPL} = 16 kHz Subsleep mode (divided by 2) T _A = +25 °C	_	10	15	μΑ	
	I _{CCT} *2		F _{CL} = 32 kHz Watch mode Main stop mode T _A = +25 °C	_	8	13	μΑ	

(V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Cumbal	Din nama	Condition		Value		Unit	Remarks
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
	I _{CCMPLL}	.,	$F_{MCRPLL} = 16 \text{ MHz}$ $F_{MP} = 16 \text{ MHz}$ Main CR PLL clock mode (multiplied by 4) $T_{A} = +25 \text{ °C}$	_	5.5	6.8	mA	
	I _{CCMCR}	V _{CC}	F _{CRH} = 4 MHz F _{MP} = 4 MHz Main CR clock mode	_	1.4	2.0	mA	
	I _{CCSCR}		Sub-CR clock mode (divided by 2) T _A = +25 °C	_	70	150	μA	
	I _{CCTS}	V _{CC} (External clock	F_{CH} = 32 MHz Time-base timer mode T_A = +25 °C	_	360	410	μA	
Power supply	Іссн	operation)	Substop mode $T_A = +25 ^{\circ}C$	_	7	11	μΑ	
current*1	I _{LVD}		Current consumption of the low-voltage detection reset circuit	_	4	7	μΑ	The low-voltage detection reset circuit operates only in on-chip debug mode.
	I _{CRH}		Current consumption of the main CR oscillator	_	240	320	μA	
	I _{CRL}	V _{CC}	Current consumption of the sub-CR oscillator oscillating at 100 kHz	_	7	20	μΑ	
	I _{NSTBY}		Current consumption difference between normal standby mode and deep standby mode T _A = +25 °C	_	20	30	μA	

(Continued)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40 \text{ °C to } +85 \text{ °C})$

Parameter	Cumbal	Pin name	Condition		Value		Unit	Remarks
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
				_	20	_	kΩ	1/2 bias, 10 kΩ resistor
LCD internal	В			_	200	_	kΩ	1/2 bias, 100 kΩ resistor
resistance	R _{LCD}	_	Between V4 and V _{SS}	_	40	_	kΩ	1/4 bias, 10 kΩ resistor
				_	400	_	kΩ	1/4 bias, 100 kΩ resistor
COM0 to COM7 output impedance	R _{VCOM}	COM0 to COM7	V1 to V4 = 4.1 V	_	_	5	kΩ	
SEG00 to SEG51 output impedance	R _{VSEG}	SEG00 to SEG51	1 V 1 10 V4 – 4.1 V	_	_	7	kΩ	
LCD leakage current	I _{LCDL}	V0 to V4, COM0 to COM7, SEG00 to SEG51	_	-1		+1	kΩ	

^{*1: •} The power supply current is determined by the external clock. When the low-voltage detection reset circuit is selected, the power supply current is the sum of adding the current consumption of the low-voltage detection reset circuit (I_{LVD}) to one of the values from I_{CC} to I_{CCH}. When both the low-voltage detection reset circuit and a CR oscillator are selected, the power supply current is the sum of adding up the current consumption of the low-voltage detection reset circuit (I_{LVD}), the current consumption of the CR oscillator (I_{CRH} or I_{CRL}) and one of the values from I_{CC} to I_{CCH}. In on-chip debug mode, the main CR oscillator (I_{CRH}) and the low-voltage detection reset circuit are always in operation, and current consumption therefore increases accordingly.

- See "4. AC Characteristics (1) Clock Timing" for F_{CH}, F_{CL}, F_{CRH} and F_{MCRPLL}.
 See "4. AC Characteristics (2) Source Clock/Machine Clock" for F_{MP} and F_{MPL}.

[•] The power supply current value in standby mode is measured in deep standby mode. The current consumption in normal standby is higher than that in deep standby mode. The power supply current value in normal standby can be found by adding the current consumption difference between normal standby mode and deep standby mode (I_{NSTBY}) to the power supply current value in deep standby mode. For details of normal standby and deep standby mode, refer to "CHAPTER 3 CLOCK CONTROL-LER" in "New 8FX MB95610H Series Hardware Manual".

^{*2:} In sub-CR clock mode, the power supply current is the sum of adding I_{CCLS} or I_{CCT} to I_{CRH}.

18.4 AC Characteristics

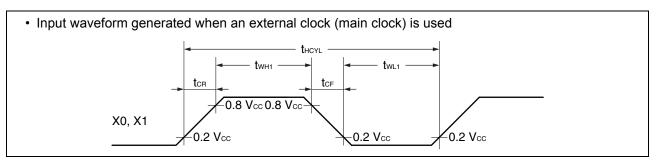
18.4.1 Clock Timing

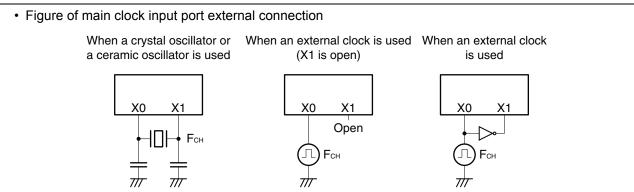
 $(V_{CC} = 2.4 \text{ V to } 5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

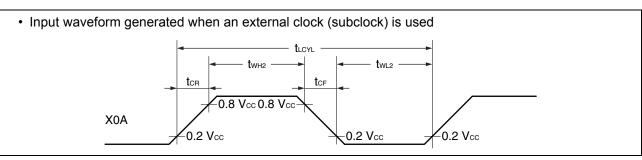
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Farameter	Syllibol	Fill Hallie	Condition	Min	Тур	Max	Ollit	Kemarks
		X0, X1	_	1	_	16.25	MHz	When the main oscillation circuit is used
		X0	X1: open	1		12	MHz	When the main external clock is used
		X0, X1	*	1		32.5	MHz	When the main external clock is used
				4		8.13	MHz	Operating conditions The main clock is used. PLL multiplication rate: 2
	F _{CH}	X0, X1	_	4	_	6.5	MHz	Operating conditions The main clock is used. PLL multiplication rate: 2.5
Clock frequency		λ0, λ1		4	_	5.41	MHz	Operating conditions The main clock is used. PLL multiplication rate: 3
				4	_	4.06	MHz	Operating conditions The main clock is used. PLL multiplication rate: 4
				3.92	4	4.08	MHz	Operating conditions • The main CR clock is used. • $0 ^{\circ}\text{C} \le T_{\text{A}} \le +70 ^{\circ}\text{C}$
	F _{CRH}	_	_	3.9	4	4.1	MHz	$ \begin{array}{ll} \mbox{Operating conditions} \\ \bullet \mbox{ The main CR clock is used.} \\ \bullet -40\ ^{\circ}\mbox{C} \leq T_{A} < 0\ ^{\circ}\mbox{C}, \\ +70\ ^{\circ}\mbox{C} < T_{A} \leq +85\ ^{\circ}\mbox{C} \\ \end{array} $

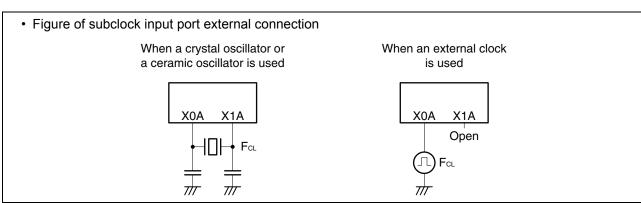
(V_{CC} = 2.4 V to 5.5 V, V_{SS} = 0.0 V, T_A = -40 °C to +85 °C)

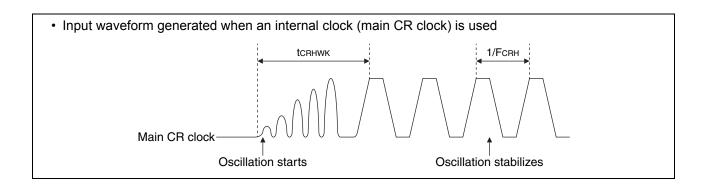
Dorometer	Cumbal	Din nama	Condition		Value		Unit	Domarko			
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks			
				7.84	8	8.16	MHz	Operating conditions • PLL multiplication rate: 2 • $0 \text{ °C} \le T_A \le +70 \text{ °C}$			
				7.6	8	8.4	MHz	$ \begin{array}{ll} \text{Operating conditions} \\ \bullet & \text{PLL multiplication rate: 2} \\ \bullet & -40~^{\circ}\text{C} \leq \text{T}_{\text{A}} < 0~^{\circ}\text{C}, \\ & +70~^{\circ}\text{C} < \text{T}_{\text{A}} \leq +85~^{\circ}\text{C} \\ \end{array} $			
				9.8	10	10.2	MHz	Operating conditions • PLL multiplication rate: 2.5 • 0 °C ≤ T _A ≤ +70 °C			
	E	F _{MCRPLL} —					9.5	10	10.5	MHz	$ \begin{array}{ll} \mbox{Operating conditions} \\ \bullet \mbox{ PLL multiplication rate: 2.5} \\ \bullet -40\ ^{\circ}\mbox{C} \leq \mbox{T}_{\mbox{A}} < 0\ ^{\circ}\mbox{C}, \\ +70\ ^{\circ}\mbox{C} < \mbox{T}_{\mbox{A}} \leq +85\ ^{\circ}\mbox{C} \\ \end{array} $
Clock frequency	FMCRPLL		_	11.76	12	12.24	MHz	Operating conditions • PLL multiplication rate: 3 • 0 °C ≤ T _A ≤ +70 °C			
				11.4	12	12.6	MHz	$ \begin{array}{ll} \mbox{Operating conditions} \\ \bullet \mbox{ PLL multiplication rate: 3} \\ \bullet -40\ ^{\circ}\mbox{C} \leq \mbox{T}_{\mbox{A}} < 0\ ^{\circ}\mbox{C}, \\ +70\ ^{\circ}\mbox{C} < \mbox{T}_{\mbox{A}} \leq +85\ ^{\circ}\mbox{C} \\ \end{array} $			
						15.68	16	16.32	MHz	Operating conditions • PLL multiplication rate: 4 • 0 °C ≤ T _A ≤ +70 °C	
				15.2	16	16.8	MHz	$ \begin{array}{ll} \text{Operating conditions} \\ \bullet & \text{PLL multiplication rate: 4} \\ \bullet & -40~^{\circ}\text{C} \leq \text{T}_{\text{A}} < 0~^{\circ}\text{C}, \\ & +70~^{\circ}\text{C} < \text{T}_{\text{A}} \leq +85~^{\circ}\text{C} \\ \end{array} $			
	F _{CL}	X0A, X1A	_	_	32.768	_	kHz	When the suboscillation circuit is used			
				_	32.768	_	kHz	When the sub-external clock is used			
	F _{CRL}	_	_	50	100	150	kHz	When the sub-CR clock is used			

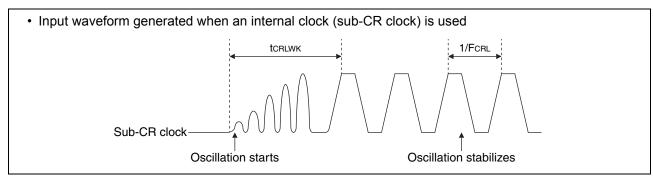

(Continued)

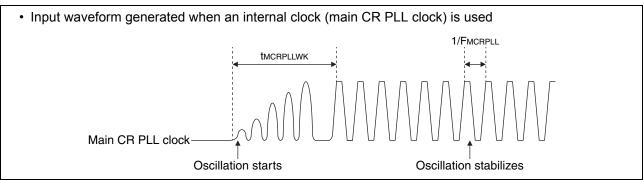

(V_{CC} = 2.4 V to 5.5 V, V_{SS} = 0.0 V, T_A = -40 °C to +85 °C)


	0	D .	0		Value			D 1 .	
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks	
		X0, X1	_	61.5	_	1000	ns	When the main oscillation circuit is used	
Clock cycle time	t _{HCYL}	X0	X1: open	83.4	_	1000	ns	When an external clock is used	
		X0, X1	*	30.8		1000	ns	When an external clock is used	
	t _{LCYL}	X0A, X1A	_	_	30.5	_	μs	When the subclock is used	
	t _{WH1} ,	X0	X1: open	33.4	_	_	ns		
Input clock	t _{WL1}	X0, X1	*	14.4	15.2	_	ns	When an external clock is used, the duty ratio should range	
pulse width	t _{WH2} , t _{WL2}	X0A	_	_	30.5	_		between 40% and 60%.	
Input clock	+	X0, X0A	X1: open	_	_	5	ns		
rising time and falling time	t _{CR} , t _{CF}	X0, X1, X0A, X1A	*	_	_	5	ns	When an external clock is used	
CR oscillation	t _{CRHWK}	_	_	_	_	50	μs	When the main CR clock is used	
start time	t _{CRLWK}	_	_	_	_	30	μs	When the sub-CR clock is used	
PLL oscillation start time	t _{MCRPLLW} K	_	_	_	_	100	μs	When the main CR PLL clock is used	

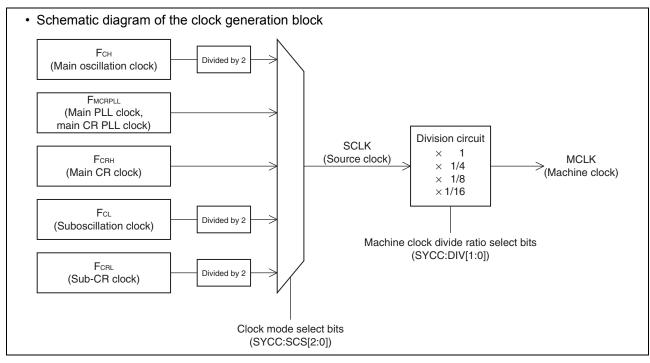

^{*:} The external clock signal is input to X0 and the inverted external clock signal to X1.

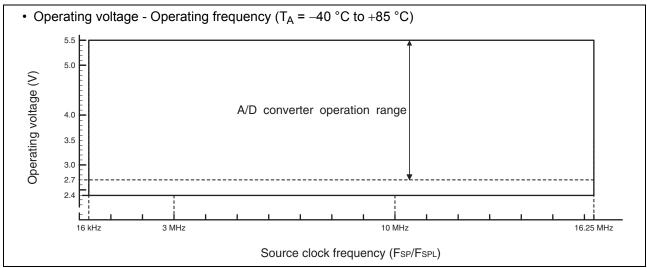






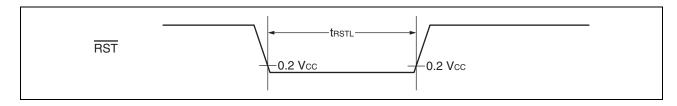
18.4.2 Source Clock/Machine Clock


(V_{CC} = 5.0 V \pm 10%, V_{SS} = 0.0 V, T_A = -40 °C to +85 °C)


D	0	Pin		Value		11 !4	D
Parameter	Symbol	name	Min	Тур	Max	Unit	Remarks
			61.5	_	2000	ns	When the main external clock is used Min: F _{CH} = 32.5 MHz, divided by 2 Max: F _{CH} = 1 MHz, divided by 2
Source clock cycle time*1	t _{SCLK}	_	62.5		1000	ns	When the main CR clock is used Min: F _{CRH} = 4 MHz, multiplied by 4 Max: F _{CRH} = 4 MHz, divided by 4
			l	61	1	μs	When the suboscillation clock is used F _{CL} = 32.768 kHz, divided by 2
			1	20	1	μs	When the sub-CR clock is used F _{CRL} = 100 kHz, divided by 2
	F _{SP}		0.5	_	16.25	MHz	When the main oscillation clock is used
Source clock	' SP		_	4	12.5	MHz	When the main CR clock is used
frequency		_	_	16.384	_	kHz	When the suboscillation clock is used
	F _{SPL}		_	50	_	kHz	When the sub-CR clock is used F _{CRL} = 100 kHz, divided by 2
			61.5	_	32000	ns	When the main oscillation clock is used Min: F_{SP} = 16.25 MHz, no division Max: F_{SP} = 0.5 MHz, divided by 16
Machine clock cycle time*2 (minimum			250	_	4000	ns	When the main CR clock is used Min: F _{SP} = 4 MHz, no division Max: F _{SP} = 4 MHz, divided by 16
instruction execution time)	t _{MCLK}	_	61	_	976.5	μs	When the suboscillation clock is used Min: F _{SPL} = 16.384 kHz, no division Max: F _{SPL} = 16.384 kHz, divided by 16
			20	_	320	μs	When the sub-CR clock is used Min: F _{SPL} = 50 kHz, no division Max: F _{SPL} = 50 kHz, divided by 16
	F		0.031		16.25	MHz	When the main oscillation clock is used
Machine clock	F _{MP}		0.25		16	MHz	When the main CR clock is used
Machine clock frequency		_	1.024	_	16.384	kHz	When the suboscillation clock is used
. ,	F _{MPL}		3.125	_	50	kHz	When the sub-CR clock is used F _{CRL} = 100 kHz

^{*1:} This is the clock before it is divided according to the division ratio set by the machine clock division ratio select bits (SYCC:DIV[1:0]). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio select bits (SYCC:DIV[1:0]). In addition, a source clock can be selected from the following.

- Main clock divided by 2
- · Main CR clock
- PLL multiplication of main clock or main CR clock (Select a multiplication rate from 2, 2.5, 3 and 4.)
- Subclock divided by 2
- · Sub-CR clock divided by 2
- *2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.
 - Source clock (no division)
 - · Source clock divided by 4
 - · Source clock divided by 8
 - · Source clock divided by 16

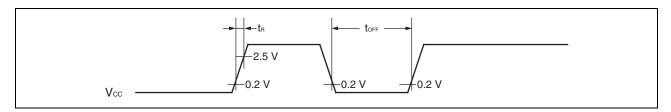


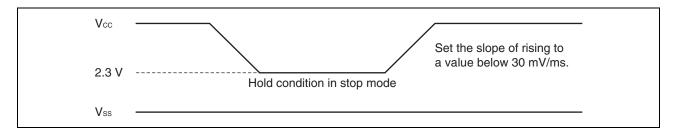
18.4.3 External Reset

(V_{CC} = 5.0 V±10%, V_{SS} = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol	Value		Unit	Remarks
Farameter	Syllibol	Min	Max	Oilit	Remarks
RST "L" level pulse width	t _{RSTL}	2 t _{MCLK} *	1	ns	

^{*:} See "Source Clock/Machine Clock" for t_{MCLK}.

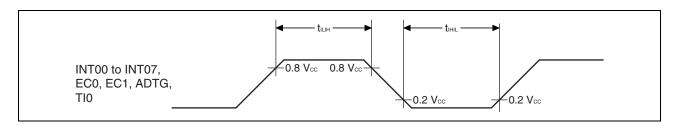



18.4.4 Power-on Reset

(V_{SS} = 0.0 V,
$$T_A$$
 = -40 °C to +85 °C)

Parameter	Symbol	Condition	Val	lue	Unit	Remarks
raiailletei	Syllibol	Condition	Min	Max	Oilit	Remarks
Power supply rising time	t _R	_	_	50	ms	
Power supply cutoff time	t _{OFF}		1	_	ms	Wait time until power-on

Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within 30 mV/ms as shown below.



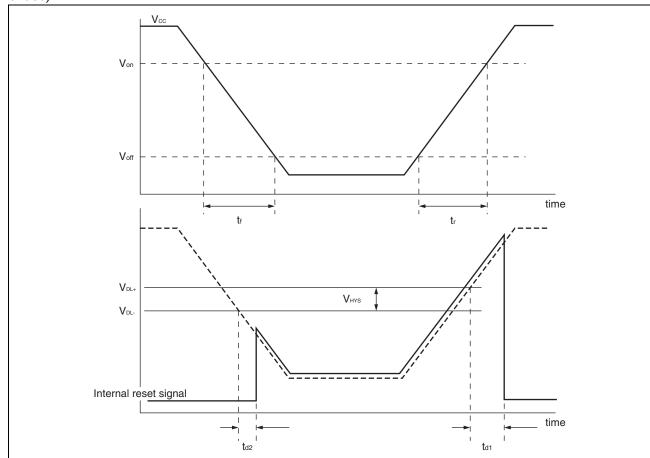
18.4.5 Peripheral Input Timing

$$(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C})$$

Parameter	Symbol	Pin name	Va	lue	Unit
Faranietei	Symbol	Fill liame	Min	Max	Oilit
Peripheral input "H" pulse width	t _{ILIH}	INT00 to INT07, EC0, EC1, ADTG, TI0	2 t _{MCLK} *		ns
Peripheral input "L" pulse width	t _{IHIL}	INTO to INTO 1, LCO, ECT, ADTG, TIO	2 t _{MCLK} *		ns

^{*:} See "Source Clock/Machine Clock" for t_{MCLK}.

18.4.6 Low-voltage Detection

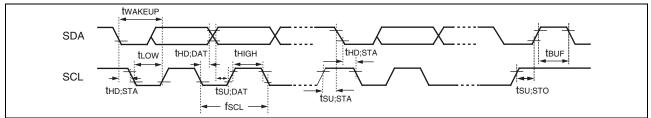

(V_{SS} = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol Value			Unit	Remarks			
Parameter	Symbol	Min	Тур Мах		Ullit	Remarks		
		2.52	2.7	2.88				
Release voltage*	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2.61	2.8	2.99	V	At power supply rise		
Release voltage	V _{DL} +	2.89	3.1	3.31	V	At power supply rise		
		3.08	3.3	3.52				
		2.43	2.6	2.77				
Detection voltage*	V- :	2.52	2.7	2.88	V	At power supply fall		
Detection voltage	V _{DL} -	2.80	3	3.20] v	At power supply fair		
		2.99	3.2	3.41				
Hysteresis width	V _{HYS}	_	_	100	mV			
Power supply start voltage	V _{off}	_	_	2.3	V			
Power supply end voltage	V _{on}	4.9	_	_	V			
Power supply voltage change time (at power supply rise)	t _r	650	_	-	μs	Slope of power supply that the reset release signal generates within the rating (V _{DL+})		
Power supply voltage change time (at power supply fall)	t _f	650	_		μs	Slope of power supply that the reset release signal generates within the rating (V _{DL-})		
Reset release delay time	t _{d1}			30	μs			
Reset detection delay time	t _{d2}			30	μs			
LVD reset threshold voltage transition stabilization time	t _{stb}	10	_	_	μs			

^{*:} The release voltage and the detection voltage can be selected by using the LVD reset voltage selection ID register (LVDR) in the low-voltage detection reset circuit. For details of the LVDR register, refer to "CHAPTER 16 LOW-VOLTAGE DETECTION RESET CIRCUIT" in "New 8FX MB95610H Series Hardware Manual".

18.4.7 I²C Bus Interface Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40 \,^{\circ}\text{C to } +85 \,^{\circ}\text{C})$


Parameter	Symbol	Pin name	Condition		rd-mod	Fast-mode		Unit
				Min	Max	Min	Max	
SCL clock frequency	f _{SCL}	SCL		0	100	0	400	kHz
(Repeated) START condition hold time SDA \downarrow \rightarrow SCL \downarrow	t _{HD;STA}	SCL, SDA		4.0	_	0.6	_	μs
SCL clock "L" width	t _{LOW}	SCL		4.7	_	1.3	_	μs
SCL clock "H" width	t _{HIGH}	SCL		4.0	_	0.6	_	μs
(Repeated) START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t _{SU;STA}	SCL, SDA	R = 1.7 kΩ,	4.7	_	0.6	_	μs
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	t _{HD;DAT}	SCL, SDA	C = 50 pF*1	0	3.45 ^{*2}	0	0.9*3	μs
Data setup time SDA $\downarrow\uparrow$ \rightarrow SCL \uparrow	t _{SU;DAT}	SCL, SDA		0.25	_	0.1	_	μs
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	t _{SU;STO}	SCL, SDA		4		0.6	_	μs
Bus free time between STOP condition and START condition	t _{BUF}	SCL, SDA		4.7	_	1.3	_	μs

^{*1:} R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.

^{*2:} The maximum t_{HD;DAT} in the Standard-mode is applicable only when the time during which the device is holding the SCL signal at "L" (t_{LOW}) does not extend.

^{*3:} A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, provided that the condition of t_{SU;DAT} ≥ 250 ns is fulfilled.

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to} + 85 ^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Valu	ue* ²	Unit	Remarks
Parameter	Symbol	name	Condition	Min	Max	Unit	Remarks
SCL clock "L" width	t _{LOW}	SCL		(2 + nm/2)t _{MCLK} - 20	_	ns	Master mode
SCL clock "H" width	t _{HIGH}	SCL		(nm/2)t _{MCLK} – 20	(nm/2)t _{MCLK} + 20	ns	Master mode
START condition hold time	t _{HD;STA}	SCL, SDA		(-1 + nm/2)t _{MCLK} – 20	(-1 + nm)t _{MCLK} + 20	ns	Master mode Maximum value is applied when m, n = 1, 8. Otherwise, the minimum value is applied.
STOP condition setup time	t _{SU;STO}	SCL, SDA		(1 + nm/2)t _{MCLK} - 20	(1 + nm/2)t _{MCLK} + 20	ns	Master mode
START condition setup time	t _{SU;STA}	SCL, SDA		(1 + nm/2)t _{MCLK} - 20	(1 + nm/2)t _{MCLK} + 20	ns	Master mode
Bus free time between STOP condition and START condition	t _{BUF}	SCL, SDA	R = 1.7 kΩ, C = 50 pF* ¹	(2 nm + 4) t _{MCLK} – 20	-	ns	
Data hold time	t _{HD;DAT}	SCL, SDA		3 t _{MCLK} – 20	_	ns	Master mode
Data setup time	t _{SU;DAT}	SCL, SDA		(-2 + nm/2) t _{MCLK} – 20	(-1 + nm/2) t _{MCLK} + 20	ns	Master mode It is assumed that "L" of SCL is not extended. The minimum value is applied to the first bit of continuous data. Otherwise, the maximum value is applied.
Setup time between clearing interrupt and SCL rising	t _{SU;INT}	SCL		(nm/2) t _{MCLK} – 20	(1 + nm/2) t _{MCLK} + 20	ns	The minimum value is applied to the interrupt at the ninth SCL↓. The maximum value is applied to the interrupt at the eighth SCL↓.
SCL clock "L" width	t _{LOW}	SCL		4 t _{MCLK} – 20	_	ns	At reception
SCL clock "H" width	t _{HIGH}	SCL		4 t _{MCLK} – 20	_	ns	At reception

(Continued)

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, V_{SS} = 0.0 \text{ V}, T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Symbol	Pin	Condition	Value* ²		Unit	Remarks
i arameter	Cymbol	name	Condition	Min	Max	Oiiii	Nemarks
START condition detection	t _{HD;STA}	SCL, SDA		2 t _{MCLK} – 20	_	ns	No START condition is detected when 1 t _{MCLK} is used at reception.
STOP condition detection	t _{SU;STO}	SCL, SDA		2 t _{MCLK} – 20	_	ns	No STOP condition is detected when 1 t _{MCLK} is used at reception.
RESTART condition detection condition	t _{SU;STA}	SCL, SDA		2 t _{MCLK} – 20	_	ns	No RESTART condition is detected when 1 t _{MCLK} is used at reception.
Bus free time	t _{BUF}	SCL, SDA		2 t _{MCLK} – 20	_	ns	At reception
Data hold time	t _{HD;DAT}	SCL, SDA	R = 1.7 kΩ, C = 50 pF* ¹	2 t _{MCLK} – 20	_	ns	At slave transmission mode
Data setup time	t _{SU;DAT}	SCL, SDA	ου ρ.	t _{LOW} – 3 t _{MCLK} – 20	_	ns	At slave transmission mode
Data hold time	t _{HD;DAT}	SCL, SDA		0	_	ns	At reception
Data setup time	t _{SU;DAT}	SCL, SDA		t _{MCLK} – 20	_	ns	At reception
$SDA\downarrow \rightarrow SCL\uparrow$ (with wakeup function in use)	t _{WAKEUP}	SCL, SDA		Oscillation stabilization wait time +2 t _{MCLK} - 20	_	ns	

^{*1:} R represents the pull-up resistor of the SCL and SDA lines, and C the load capacitor of the SCL and SDA lines.

- *2: See "(2) Source Clock/Machine Clock" for t_{MCLK}.
 m represents the CS[4:3] bits in the I²C clock control register ch. 0 (ICCR0).
 - n represents the CS[2:0] bits in the I²C clock control register ch. 0 (ICCR0).
 - The actual timing of the I²C bus interface is determined by the values of m and n set by the machine clock (t_{MCLK}) and the CS[4:0] bits in the ICCR0 register.
 - · Standard-mode:

m and n can be set to values in the following range: 0.9 MHz < t_{MCLK} (machine clock) < 16.25 MHz.

The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

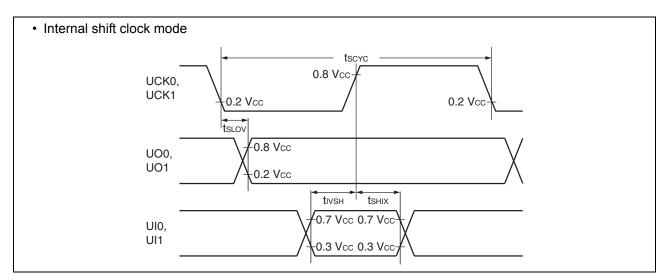
(m, n) = (1, 8): 0.9 MHz < $t_{MCLK} \le 1$ MHz (m, n) = (1, 22), (5, 4), (6, 4), (7, 4), (8, 4): 0.9 MHz < $t_{MCLK} \le 2$ MHz (m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8): 0.9 MHz < $t_{MCLK} \le 4$ MHz (m, n) = (1, 98), (5, 22), (6, 22), (7, 22): 0.9 MHz $< t_{MCLK} \le 10$ MHz (m, n) = (8, 22): $0.9 \text{ MHz} < t_{MCLK} \le 16.25 \text{ MHz}$

· Fast-mode:

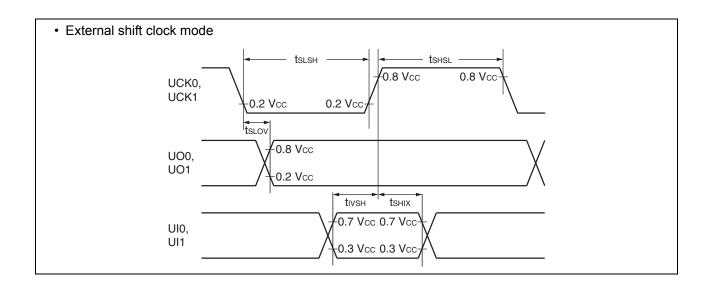
m and n can be set to values in the following range: $3.3 \text{ MHz} < t_{MCLK} \text{ (machine clock)} < 16.25 \text{ MHz}.$

The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

(m, n) = (1, 8): 3.3 MHz < t_{MCLK} \le 4 MHz : 3.3 MHz < $t_{MCLK} \le 8$ MHz (m, n) = (1, 22), (5, 4): 3.3 MHz < $t_{MCLK} \le 10$ MHz (m, n) = (1, 38), (6, 4), (7, 4), (8, 4)(m, n) = (5, 8): 3.3 MHz $< t_{MCLK} \le 16.25$ MHz



18.4.8 UART/SIO, Serial I/O Timing


(V $_{CC}$ = 5.0 V±10%, V $_{SS}$ = 0.0 V, T $_{A}$ = –40 °C to +85 °C)

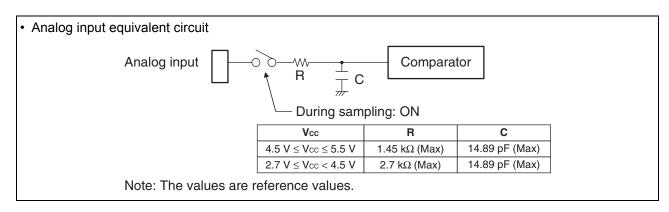
Parameter	Cumbal	Pin name	Condition	Va	lue	Unit
Parameter	Symbol	Pin name	Condition	Min	Min Max	
Serial clock cycle time	t _{SCYC}	UCK0, UCK1		4 t _{MCLK} *	_	ns
$UCK \downarrow \to UO$ time	t _{SLOV}	UCK0, UCK1, UO0, UO1	Internal clock exerctions	-190	+190	ns
Valid UI → UCK ↑	t _{IVSH}	UCK0, UCK1, UI0, UI1	Internal clock operation: C _L = 80 pF + 1 TTL	2 t _{MCLK} *	_	ns
UCK ↑ → valid UI hold time	t _{SHIX}	UCK0, UCK1, UI0, UI1		2 t _{MCLK} *	_	ns
Serial clock "H" pulse width	t _{SHSL}	UCK0, UCK1		4 t _{MCLK} *	_	ns
Serial clock "L" pulse width	t _{SLSH}	UCK0, UCK1		4 t _{MCLK} *	_	ns
$UCK \downarrow \to UO$ time	t _{SLOV}	UCK0, UCK1, UO0, UO1	External clock operation:	_	190	ns
Valid UI → UCK ↑	t _{IVSH}	UCK0, UCK1, UI0, UI1	C _L = 80 pF + 1 TTL	2 t _{MCLK} *	_	ns
UCK ↑ → valid UI hold time	t _{SHIX}	UCK0, UCK1, UI0, UI1		2 t _{MCLK} *	-	ns

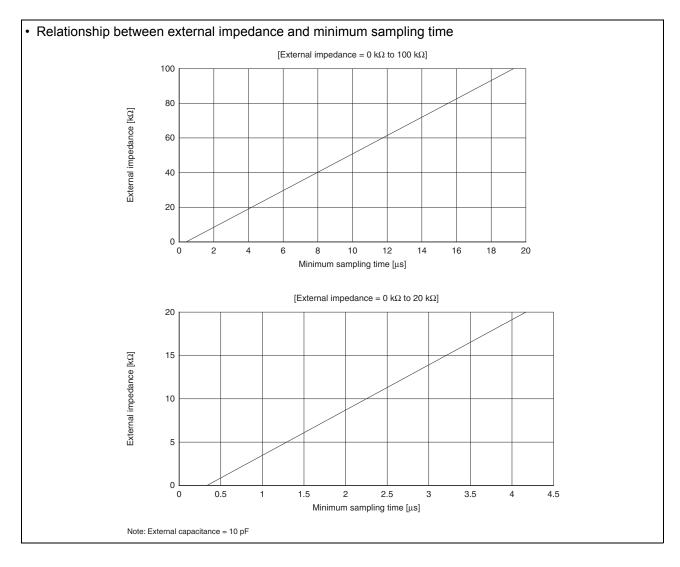
^{*:} See "Source Clock/Machine Clock" for t_{MCLK}.

18.5 A/D Converter

18.5.1 A/D Converter Electrical Characteristics

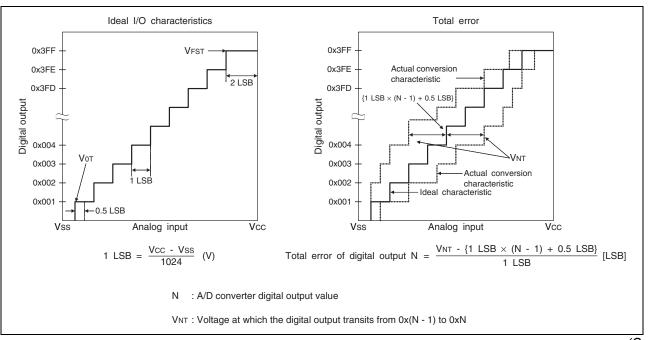
(V_{CC} = 2.7 V to 5.5 V, V_{SS} = 0.0 V, T_A = -40 °C to +85 °C)


Parameter	Cumbal		Value	Unit	Remarks	
Parameter	Symbol	Min Typ		Max	Unit	Remarks
Resolution		_	_	10	bit	
Total error		-3	_	+3	LSB	
Linearity error	_	-2.5	_	+2.5	LSB	
Differential linearity error		-1.9	_	+1.9	LSB	
Zero transition voltage	V _{0T}	V _{SS} – 7.2 LSB	V _{SS} + 0.5 LSB	V _{SS} + 8.2 LSB	٧	
Full-scale transition voltage	V _{FST}	V _{CC} – 6.2 LSB	V _{CC} – 1.5 LSB	V _{CC} + 9.2 LSB	٧	
Compare time	_	3	_	10	μs	$2.7~\text{V} \leq \text{V}_{CC} \leq 5.5~\text{V}$
Sampling time	_	0.941	_	∞	μs	$2.7~V \le V_{CC} \le 5.5~V,$ with external impedance $<$ $3.3~k\Omega$ and external capacitance = 10 pF
Analog input current	I _{AIN}	-0.3	_	+0.3	μA	
Analog input voltage	V _{AIN}	V _{SS}	_	V _{CC}	V	

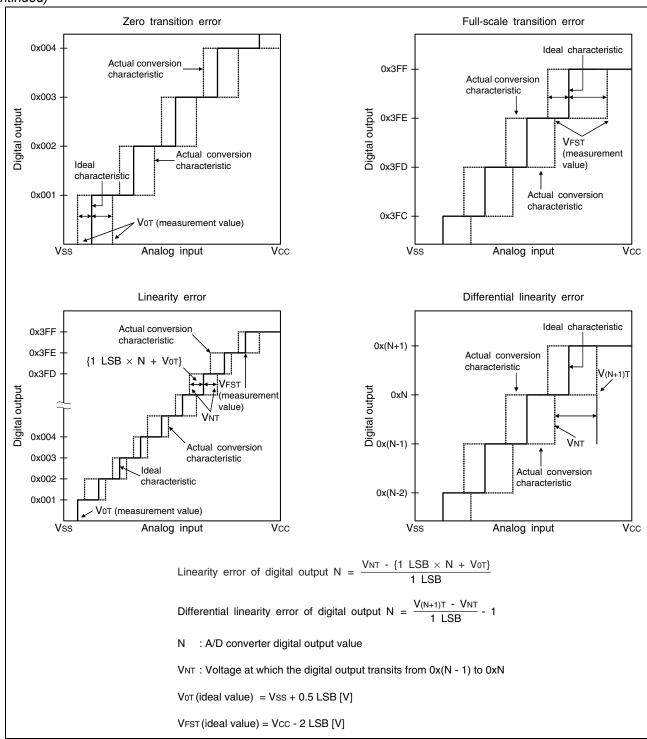

18.5.2 Notes on Using A/D Converter

■ External impedance of analog input and its sampling time

The A/D converter of the MB95610H Series has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 µF to the analog input pin.


■ A/D conversion error

As $|\mbox{V}_{\mbox{CC}} - \mbox{V}_{\mbox{SS}}|$ decreases, the A/D conversion error increases proportionately.



18.5.3 Definitions of A/D Converter Terms

- Resolution
 - It indicates the level of analog variation that can be distinguished by the A/D converter.
 - When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.
- · Linearity error (unit: LSB)
 - It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("0000000000" \leftrightarrow "0000000001") of a device to the full-scale transition point ("1111111111" \leftrightarrow "1111111110") of the same device.
- · Differential linear error (unit: LSB)
 - It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.
- Total error (unit: LSB)
 - It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

18.6 Flash Memory Program/Erase Characteristics

Parameter		Value		Unit	Remarks
raiailletei	Min	Тур	Max	Oilit	Remarks
Sector erase time (2 Kbyte sector)	_	0.3*1	1.6* ²	s	The time of writing "0x00" prior to erasure is excluded.
Sector erase time (32 Kbyte sector)	_	0.6* ¹	3.1* ²	s	The time of writing "0x00" prior to erasure is excluded.
Byte writing time	_	17	272	μs	System-level overhead is excluded.
Program/erase cycle	100000	_	_	cycle	
Power supply voltage at program/erase	2.4	_	5.5	٧	
	20*3	_	_		Average T _A = +85 °C Number of program/erase cycles: 1000 or below
Flash memory data retention time	10* ³	_	_	year	Average T _A = +85 °C Number of program/erase cycles: 1001 to 10000 inclusive
	5* ³	_	_		Average T _A = +85 °C Number of program/erase cycles: 10001 or above

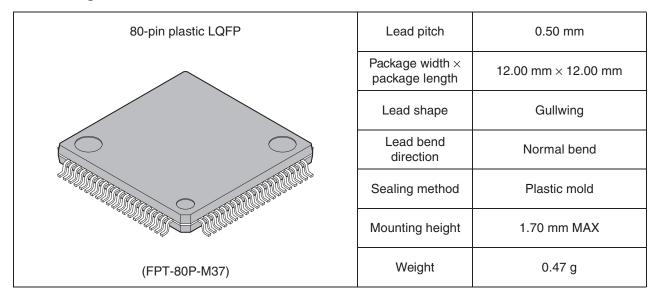
^{*1:} V_{CC} = 5.5 V, T_A = +25 °C, 0 cycle

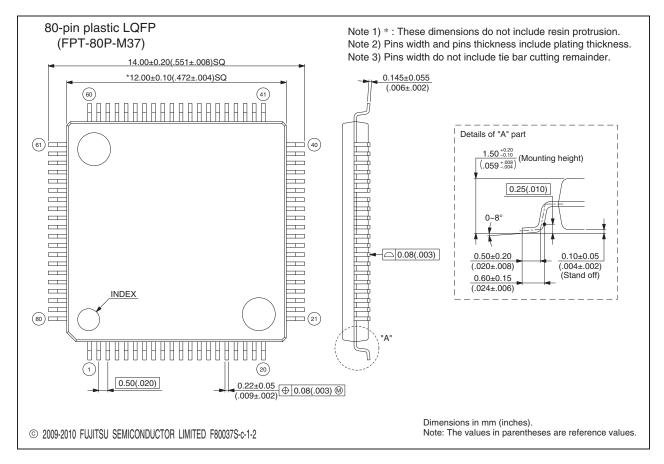
*2: V_{CC} = 2.4 V, T_A = +85 °C, 100000 cycles

*3: These values were converted from the result of a technology reliability assessment. (These values were converted from the result of a high temperature accelerated test using the Arrhenius equation with the average temperature being +85 °C.)

19. MASK Options

No.	Part number	MB95F613H MB95F614H MB95F616H	MB95F613K MB95F614K MB95F616K	
	Selectable/Fixed	Fix	ked	
1	Low-voltage detection reset	Without low-voltage detection reset	With low-voltage detection reset	
2	Reset	With dedicated reset input	Without dedicated reset input	




20. Ordering Information

Part number	Package
MB95F613HPMC-G-SNE2 MB95F613KPMC-G-SNE2 MB95F614HPMC-G-SNE2 MB95F614KPMC-G-SNE2 MB95F616HPMC-G-SNE2 MB95F616KPMC-G-SNE2	80-pin plastic LQFP (FPT-80P-M37)

21. Package Dimension

22. Major Changes

Spansion Publication Number: DS702-00017-0v02-E.

Page	Section	Details
19	Pin Connection DBG pin	Revised details of "• DBG pin".
	RST pin	Revised details of "• RST pin".
20	• C pin	Corrected the following statement. The decoupling capacitor for the V_{CC} pin must have a capacitance larger than C_S . \rightarrow The decoupling capacitor for the V_{CC} pin must have a capacitance equal to or larger than the capacitance of C_S .
75	Electrical Characteristics Recommended Operating Conditions	Revised remark *1. The minimum value becomes 2.88 V when the low-voltage detection reset is used or in on-chip debug mode. The minimum power supply voltage becomes 2.88 V when a product with the low-voltage detection reset is used or when the on-chip debug mode is used.
		Corrected the following statement in remark *2. The decoupling capacitor for the V_{CC} pin must have a capacitance larger than C_S . \rightarrow The decoupling capacitor for the V_{CC} pin must have a capacitance equal to or larger than the capacitance of C_S .
		Revised the remark in "• DBG/RST/C pins connection diagram".
77	DC Characteristics	Revised the remark of the parameter "Input leak current (Hi-Z output leak current)". When pull-up resistance is disabled When the internal pull-up resistor is disabled
		Rename the parameter "Pull-up resistance" to "Internal pull-up resistor".
		Revised the remark of the parameter "Internal pull-up resistor". When pull-up resistance is enabled When the internal pull-up resistor is enabled
82	AC Characteristics Clock Timing	Corrected the pin names of the parameter "Input clock rising time and falling time". X0 → X0, X0A X0, X1 → X0, X1, X0A, X1A

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB95F613H/F613K/F614H, MB95F614K/F616H/F616K New 8FX MB95610H Series 8-bit Microcontrollers Document Number: 002-04698				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	_	AKIH	06/14/2013	Migrated to Cypress and assigned document number 002-04698. No change to document contents or format.
*A	5211405	AKIH	04/08/2016	Updated to Cypress template

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/usb

cypress.com/wireless

Products

USB Controllers

Wireless/RF

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory **PSoC** cypress.com/psoc **Touch Sensing** cypress.com/touch

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2012-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.