Features

- 50Ω Terminated Switch
- Low Insertion Loss: 0.70 dB @ 2.7 GHz $0.90 \mathrm{~dB} @ 3.8 \mathrm{GHz}$
1.10 dB @ 5.8 GHz
- Isolation: 31.0 dB @ 2.7 GHz

$$
\begin{aligned}
& 28.0 \mathrm{~dB} @ 3.8 \mathrm{GHz} \\
& 25.0 \mathrm{~dB} @ 5.8 \mathrm{GHz}
\end{aligned}
$$

- Low DC Power Consumption
- Miniature USON6L (1.5x1.5x0.4 mm)

Using Lead (Pb) free materials with RoHS compliant

- PHEMT process

Description

The HWS531 is a GaAs PHEMT MMIC SPDT switch with 50Ω termination operating at $0.5-6.0$ GHz in a low cost miniature USON6L ($1.5 \times 1.5 \times 0.4$ $\mathrm{mm})$ plastic lead (Pb) free package. The HWS531 features low insertion loss and high isolation with very low DC power consumption. This switch can be used in WiMAX or IEEE $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n}$ WLAN PC card and access point applications as transmit/receive switch, antenna diversity switch, or band-selection switch.

Absolute Maximum Ratings

Parameter	Absolute Maximum
RF Input Power	$+40 \mathrm{dBm} @+3 \mathrm{~V}$
Control Voltage	+6 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Electrostatic Discharge Machine Model	$\mathrm{Class} \mathrm{M1}$

USON6L (1.5x1.5X0.4 mm)

Pin Out (Top View)

Note:

1. DC blocking capacitors $\mathrm{C}_{\mathrm{B}}=8 \mathrm{pF}$ are required on all RF ports for operating frequency $>2 \mathrm{GHz}$.
2. $\mathrm{C}_{\mathrm{B}}=47 \mathrm{pF}$ for operating frequency $<2 \mathrm{GHz}$.
3. Exposed pad in the bottom must be connected to ground by via holes.

Logic Table for Switch On-Path

VC1	VC2	RFC-RF1	RFC-RF2
1	0	On	Off
0	1	Off	On

' 1 ' $=+2.5 \mathrm{~V}$ to +5 V
' 0 ' $=0 \mathrm{~V}$ to +0.2 V

Electrical Specifications at $25^{\circ} \mathrm{C}$ with $\mathbf{0 , + 3 V}$ Control Voltages

Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Insertion Loss	$\begin{aligned} & 0.50-6.00 \mathrm{GHz} \\ & 0.50-2.70 \mathrm{GHz} \\ & 2.70-3.80 \mathrm{GHz} \\ & 3.80-5.85 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 1.10 \\ & 0.70 \\ & 0.90 \\ & 1.10 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 1.10 \\ & 1.30 \end{aligned}$	dB dB dB dB
Isolation	$\begin{aligned} & 0.50-6.00 \mathrm{GHz} \\ & 0.50-2.70 \mathrm{GHz} \\ & 2.70-3.80 \mathrm{GHz} \\ & 3.80-5.85 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 28.0 \\ & 25.0 \\ & 20.0 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 31.0 \\ & 28.0 \\ & 25.0 \end{aligned}$		dB dB dB dB
Return Loss (On Port)	$0.50-6.00 \mathrm{GHz}$		11		dB
Return Loss (Off Port)	$\begin{gathered} \text { Isolated output RF1 or RF2: } \\ 2.30-2.70 \mathrm{GHz} \\ 2.70-3.80 \mathrm{GHz} \\ 4.90-5.85 \mathrm{GHz} \end{gathered}$		$\begin{aligned} & 12 \\ & 15 \\ & 15 \end{aligned}$		dB dB dB
Input Power for One dB Compression	$\begin{aligned} & 2.5 \mathrm{GHz} \\ & @ 0 /+3 \mathrm{~V} \end{aligned}$		39		dBm
Second Harmonic	$\mathrm{Pin}=25 \mathrm{dBm}$		-75		dBc
Third Harmonic	$\mathrm{Pin}=25 \mathrm{dBm}$		-75		dBc
Switching Time	10\% to $90 \%, 90 \%$ to 10% RF		300		ns
Control Current	@+3V		5	100	uA

Note: All measurements made in a 50 ohm system with $0 /+3.0 \mathrm{~V}$ control voltages, unless otherwise specified.

Typical Performance Data with 8pF Capacitors @ +25²

RFC/RF1/RF2 (On State)
Return Loss vs. Frequency

RF1/RF2 (Off State)
Return Loss vs. Frequency

Typical Performance Data with 8pF Capacitors @ +25 ${ }^{\circ} \mathrm{C}$

RFC \rightarrow RF1/RF2 Insertion Loss vs. Frequency

RFC \rightarrow RF1/RF2
Isolation vs. Frequency

