

flowPIM 2

Output Inverter Application

1200 V / 50 A

General conditions

3phase SPWM

V_{GEon} = V_{GEoff} -15 V

16 Ω R_{gon}

 R_{goff} 16 Ω

Typical average static loss as a function of output current $P_{loss} = f(I_{out})$

 \mathbf{At} $T_j =$

150 \mathcal{C}

Mi*cosφ from -1 to 1 in steps of 0,2

Figure 3

Αt

 $T_j =$ 150 \mathcal{C} DC link = 600

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

Typical average static loss as a function of output current

 \mathbf{At} $T_j =$

Figure 4

150 ${\mathfrak C}$

 $\mbox{Mi*}\mbox{cos}\phi$ from -1 to 1 in steps of 0,2

Typical average switching loss

 $\begin{array}{l} \textbf{At} \\ \textbf{T}_{j} = \end{array}$

150 ${\mathfrak C}$ DC link = 600 ٧

 $f_{\rm sw}$ from 2 kHz to 16 kHz in steps of factor 2

flowPIM 2

Output Inverter Application

1200 V / 50 A

Αt

 ${\mathfrak C}$ $T_j =$ 150 DC link = V 600 kHz $f_{sw} =$

 T_h from 60 $^{\circ}$ to 100 $^{\circ}$ in steps of 5 $^{\circ}$

Αt

 $T_j =$ 150 C DC link = 600 ٧ 80 \mathcal{C}

At

 ${\mathbb C}$ $T_j =$ 150 DC link = 600

 $Mi^*\cos \varphi = 0.8$

 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Αt

 $T_j =$ 150 \mathcal{C} DC link = 600

 T_h from 60 ${\mathbb C}$ to 100 ${\mathbb C}$ in steps of 5 ${\mathbb C}$

Mi = 0

flowPIM 2

Output Inverter Application

1200 V / 50 A

Αt

 $T_j =$ 150 °C DC link = 600 V

DC link = 60 Mi = 1

 $\cos \phi = 0.80$

 f_{sw} from 2 kHz to 16 kHz in steps of factor 2

ure 11 Inverte

Typical available overload factor as a function of

Αt

 $T_j = 150$ °C

DC link = 600

 $\begin{aligned} \text{Mi} &= & 1 \\ \cos \phi &= & 0.8 \end{aligned}$

f_{sw} from 1 kHz to 16kHz in steps of factor 2

 $T_h = 80$ °C

Motor eff = 0.85

Typical efficiency as a function of output power efficiency= $f(P_{\text{out}})$

T_j = 150 ℃

DC link = 600 V

Mi = 1 cos φ = 0.80

f_{sw} from 2 kHz to 16 kHz in steps of factor 2